Finding Nearest Neighbors in Growth-restricted Metrics

David R. Karger Matthias Ruhl

MIT Laboratory for Computer Science
Cambridge, MA 02139, USA

{karger, ruhl }@heory.lcs.mt.edu

ABSTRACT These problems are quite hard for general metrics, evidenced

Most research on nearest neighbor algorithms in the literature ha t_)y the fact that known data structures perform poorly (requiring

1-9
been focused on the Euclidean case. In many practical search probt-'m.e Q(n™"®)) for range queries with no.n-tr.|V|aI, or for nearest .
lems however, the underlying metric is non-Euclidean. Nearest "€ighbor searches where the query point is relatively far from its
neighbor algorithms for general metric spaces are quite weak, whic earest neighbor (See. related work. below). This seemingly is
motivates a search for other classes of metric spaces that can b&€cause general metrics do not provide enough structure to solve
tractably searched these problems efficiently.

In this paper, we develop an efficient dynamic data structure In the instancgs Whe”? search problems arise in practice,. h.OW'
for nearest neighbor queries gnowth-constrainednetrics. These ever, the underlying metric usually is far from general, but satisfies
metrics satisfy the property that for any poirand number the ra- additional constraints. Developing efficient search data structures
tio between numbers of points in balls of radiusa2dr is bounded forF}:]:vsi‘gurQ?glsceZ?fﬁ%i 'fhingggfgﬁgrgair?gggé d on the Euclidean
by a ponstant. Spaces of this kind may occur in networking ap- case el — (Rd L), which is particularly important since many
plications, such as the Internet or Peer-to-peer networks, and vec- . AL o »
tor quantization applications, where feature vectors fall into low- practical applications deal with “feature vectors” that are naturally

dimensional manifolds within high-dimensional vector spaces. embedded in Euclidean space. A large numbgr of daFa strugtures
have been developed that perform very well (with logarithmic time

per operation) irow dimensionaEuclidean spaces. There is, how-

1. INTRODUCTION ever, a significant number of problems where the data cannot eas-

Finding the nearest neighbor of a point in a given metric is a clas- jly be embedded into low-dimensional Euclidean space, or such an
sic algorithmic problem with many practical applications. Some embedding results in the loss of information.
such applications are database queries, in particular for complex |n this paper, we are concerned with sample Sthat have
data such as multimedia data or biO'OgiCﬁ' structures, €.g. On pro-a certain Smooth_growth property_ Throughout this paper, we let
tein structures or genome data. Other uses are in lossy data ComB,(r) := {s€ S| d(p,s) < r} be the ball of radius aroundpin S.
pression, where data can be encoded by the closest representative
from a fixed set of representatives. The common characteristic of pefinition 1 (Expansion Rate)
these examples is that comparing two elements is costly, S0 onewe say thas has(p, c)-expansiore iff for all p € M andr > 0,
would like to develop data structures that allow for nearest neigh-
bor searching with a small number of comparisons. IBp(r)| > p = [Bp(2r)| <c-|Bp(r)|.

In the formal setting, one is given a metric spate— (M, d) In the bulk of this paper, we will sgt= O(log|S|) and refer ta as
(whered is symmetrlg anq satisfies the trlanglfe-lnequallty), and a ipe expansion ratefS.
subsetS C M of n points in the space. Allowing for some pre-
processing one wants to efficiently answer queries of two kinds: Intuitively, for any space satisfying this property, points fr@n
“come into view” at a constant rate when we expand a ball around
any pointp € M.

The factor 2 in the expansion definition can be replaced by any
(i) Range Query: Given a poirtc M andr > 0, return all points other constant with a corresponding change iRor intuition, con-

p € Sthat satisfyd(p,q) <r. sider the set of points in a unifordrdimensional grid under thig
metric. Balls in this metric are-dimensional hypercubes. Mul-
tiplying the ball radius by 2 corresponds to increasing each side
length by this amount, which increases the volume of the cube, and
thus the number of points in it, b)PZThus, theL; metric on the
grid has(1,24)-expansion.

Permission to make digital or hard copies of all or part of this work for ~ Based on this grid intuition, we can consider the expansion rate
personal or classroom use is granted without fee provided that copies ardo be a kind of “dimensionality” measurement for our metric space.
not made or distributed for profit or commercial advantage and that copiesExpansion rate is incomparable to standard dimension, however: a
bear this notice and the full citation on the first page. To copy otherwise, to halanced binary tree, which can be embedded in 2 dimensions, has

republish, to post on servers or to redistribute to lists, requires prior specific huge expansion rate. A low dimensional manifold in a high dimen-
permission and/or a fee. :

STOC'02May 19-21, 2002, Montreal, Quebec, Canada sional space can have very low expansion rate (as in the applica-
Copyright 2002 ACM 1-58113-495-9/02/00055.00. tions discussed below). Under standard dimensionality, a subset of

(i) Nearest Neighbor: Given a poigte M, return the point irs
that is closest tg among all points ir&.

It is also desirable that the data structure support efficient insertion
and deletion of points frors.

points has no higher dimension than its containing set; this power- thread of machine learning research [9, 8] postulates that the feature
ful fact is not true for expansion rate. However, we will see below vectors representing points being analyzed form a low-dimensional
that a weaker and still useful result does holdraadom subset manifold of a high dimensional space. There is no a-priori spec-
of points from a low-expansion metric space has low expansion. ification of the manifold; rather, a large set of example points is
Thus, for example,a collection of points randomly distributed in a provided. The distance metric on these points is given in the high

d-dimensional Euclidean cube has expansion @{t). dimensional space. Identifying near neighbors among the example
The expansion property, applied recursively, shows that the num- points is useful — for example, to implement the standangarest
ber of points in a ball of radius is at most polynomial im. The neighbors algorithm for classification, or to identify neighborhoods

converse is not true, however: the expansion property requires thisin the manifold in order to construct local parameterizations of the
growth to be reasonably smooth — it rules out the possibility (con- manifold. Under assumptions of limited curvature (which are also
sistent with the polynomial bound) that as the ball grows, we en- made in the Al literature) and random selection of example points
counter a few points, then a long period with no points, then sud- from the manifold, the low-expansion property will hold (as it does
denly a tremendous number of points. for low dimensional Euclidean spaces) and our near-neighbor struc-

our result. ture could be applied.

Our main result is a randomized data structure, rttegric skip Related Work.
list, that allow for nearest neighbor queries in spaces with constant As mentioned previously, most research on nearest neighbor search
expansion ratesc(= O(1)). The data structure can answer near- has focused on the case of vector spaces and/or Euclidean metrics
est neighbor queries i@(logn) time, and range queries in time [1, 2]. There has been a growing interest in general metrics, how-
O(logn + k) (wherek is the number of returned elements) with ever. In a recent survey [4], Chavez et al. give an overview on the
high probability. The data structure can be constructé(irlogn) data structures developed for these applications. The most frequent
time, use$D(nlogn) space and allows for the addition and deletion approach is by “pivoting” [10, 11], i.e. the space is partitioned into
of points in expecte®(logn) time. The assumption of constant two halves by picking a random pivot, and putting points into either
simplifies notation; more generally, the running time is logarithmic half of the partition according to their distance to the pivot element.
in n, but polynomial in the expansion rat¢ The data structure Variations use multiple pivoting elements per split [3]. While these
is Las Vegas, i.e. always returns the correct result regardless ofstructures answer queries @(logn) time for a point that is ac-
our random choice. The structure works even if the metric spacetually in the setS, they cannot be used efficiently to find nearest
does not have a bounded expansion rate, although its running timeneighbors, or perform range queries unless the radii involved are
bounds degrade. very small. This is because in general the search ranges can split at
Our data structure is quite simple, deducing from the low expan- every pivoting step, requiring the exploration of a significant part of
sion property that a random sample of a few points in a given ball the search tree. (Comparable to the performance guarantee of near-
around the query point is likely to yield a point inside a much closer est neighbor searches using quad-trees, whidgb(ign).) Also,
ball. dynamic maintenance of the trees, in particular deletion, is diffi-

L cult.
Applications, . - . . Clarkson [5] developed two data structures for non-Euclidean
Clearly, the main motivation for looking at spaces with low ex-

ansion rates is because they actually appear in real problems Wspaces. He assumes that the samplaadgq are drawn from the
p y actually appear in P - &ame (unknown) probability distribution. While his data structures
are aware of at least two applications where this is the case.

In Internet applications, it is often important for nodes to find apply to the low-expansion spaces that we consider (as long as

other nodes that are “near” each other with respect to distance asthe non-trivial assumption of random inputs is satisfied), they have

measured by latency or bandwidth. This paper was motivated bysuper-loganthmm query times, and do not allow for insertion or

k on the Chord svst Zlwhich id ting infrastruct deletion of elements.
work on the &.hord System [].W ICh provides routing infrastructure -, already mentioned paper by Plaxton et al [6] contains a data
for various peer-to-peer applications. In many such applications, it

is useful for clients of the system to find a nearest Chord node thatStrUCture for low expansion spaces that allows for locating data ob-
can proxv for them in the ay lication. In data caching applications jects in a shared network in that space. The data structure cannot be
can proxy PP : ng app ' directly used for nearest neighbor search, as it returns only approx-
it is useful to solve the more general problem of finding a nearby

node that actually has a copy of the desired data. Plaxton et al [G]imately clqsest data itgms. Moreover, the construction makes addi-
tackled this problem. They describe a distributed éystem that stc)re tional crucial assumptions on the space, suqBger)| > 8/Bq(r)|
) X : . Stor all g € Sandr > 0, so does not necessarily work on all spaces
replicated copies of a data item, and a protocol that lets any node_, - :
.~ with low expansion.

retrieve a “nearby” copy of the data item — more precisely, their
randomized scheme finds a copy whose expected distance is clos®utline.
to that of the nearest copy. Their scheme makes the same “con- The paper is structured as follows. First, we will derive some ad-
stant expansion” assumption as we make here. In fact, they requireditional properties of spaces with low expansion rates. We then de-
more: that ratio of points in the larger ball to that in the smaller ball scribe and discuss our data structure for searching in low expansion
must be uppeand lower bounded by constants exceeding one. We metrics, and conclude the paper with describing some directions for
require only the upper bound. In an additional improvement, when future research.
data is replicated by the Chord protocol, our scheme can be used to
:tl(r;;jnt.he closest (rather than just close in expectation) copy of a data2_ CONSEQUENCES OF LOW EXPANSION

A second application comes from machine learning. A current L€t us begin by introducing notation, and proving a few facts
about spaces with low expansion that show why sampling is a good
IRecall that on a grid the expansion ratés exponential in the way to find nearest neighbors in these spaces.
standard dimensiod; thus being polynomial i fits the outcome, We begin by proving the fact claimed in the introduction.
common in geometric algorithms and data structures, of being ex-
ponential in the standard dimension.

Lemma 2

A random subset af points from a metric space witlp,c) ex-
pansion rate will havémax(p, O(logm)), 2c)-expansion with high
probability (in the size of the subset).

Proof: We prove(maxp, 1), 2c) expansion for somg= O(logm).
Let Z be the sample from the metric spa&eConsider a particular
ball Bp(r) for some pointp in the sample. Let us now condition on
the numbek of points inZNBp(2r). If k < p then the expansion
property is vacuously satisfied. Similarlykf< pwe are done.

So we can assumie> p andk > . This impliesBp(2r) contains
atleask > p points inZ and thus irS. From the expansion property
for Swe know thatBp(2r) has at most times as many points as
Bp(r) in S. Conditioned ork, the set of points included in the
sample is chosen at random frd@m By(2r); thus, each such point
is inBp(r) with probability at least Ac. Thus, the expected number
of pointsk’ in ZNBp(r) is at leastk/c. Sincek >, a standard

Chernoff bound implies tha > k/2c with probability 1— e~ (W,

By choosingp = O(logm) (varying the constant according to the
precise desired probability bound) we deduce that k/2c with
high probability inm.

Our analysis has shown that regardles,ate ball obeys the
expansion property with high probability m. Thus, the same high
probability result holds without conditioning.

This outcome holds with high probability for any particutae Z
and any particular. It thus holds with high probability im for
any of the(?) pairwise distances between pointszinSince these

particular distances are the only ones where ball-sizes change, th

claim is proven]

As can be seen in the proof, sampling creates a size logjgh-
borhood of a point within which expansion fails to be preserved;
this motivated the parameterthat excepts small balls from the
expansion-rate bound.

Now we turn to developing our data structure. In the following,
we will assume that the metric spa@é€ is normalized (by scaling)
such that the maximum distance between any two poingisnl.

As before, len be the size of the subsBt

All the algorithms we describe below can be viewed as random
walks on the se8. To find g, we start at an arbitrary poig € S,
and step through a sequence of points that quickly converggs to

Proof: This follows from the Sandwich Lemma. Let= |Bq(r/2)|

be the number of “good” points. Sind@g(r/2) C By(r) C Bp(2r)

by the Sandwich Lemma, all good points are possible results in our
sampling. Also due to the Sandwiching Lemma, we h@yé2r)| <
Bq(4r)| < c3|Bq(r/2)| = c3-k, the last inequality due to the limited
expansion rate. Thus, the probability that one sample is good is at
leastk/(c3k) = 1/c3. The probability that® samples are all bad is

at most
1 3c? 1 3
1-=] <[(Z) <oo0s
(-a) =) =

Thus, we succeed with probability more than 90 %. Because the
sample space had at least logarithmic size, the effect of sampling
without replacement vs. with replacement is negligifile.

2.1 A simple local search algorithm

The Sampling Lemma immediately suggests a nearest neighbor
search algorithm.

let p be an arbitrary point i1

while pis not the nearest neighbor gin S
let X = random sample of& elements 0Bp(2d(p,q))
let p= element ofX U { p} of minimal distance ta

Let us briefly discuss this algorithm. For simplicity, we ana-
lyze this scheme in terms of the rati®between maximum and
minimum pairwise distances between points in the metric space,

nd assume that the set hdsc)-expansion (as opposed to the
O(logn), c) expansion considered in the rest of the paper).

Theorem 5
The local search algorithm completes with high probabili{fogR)
time.

Proof: We start with a point at distance at most 1 from the query
point (recall that we normalized our space this way). By the sam-
pling lemma, each local search step (iteration of the while loop)
will halve our distance tg with probability at least 10 (and will
never increase it). It follows that the expected number of iterations
to halve our distance tqis at most 199, and the expected num-
ber of iterations to produce Ryhalvings is(10/9)IgR. But after

In fact, in each step we expect to halve the number of points closer|gR halvings, we will have a point at distance at mogRTrom q.

to g that our current position, resulting inG(logn) query time.

Since by definition oR there are no points at this small a distance,

The steps in the random walk are performed by sampling points we must terminate sooner with the nearest neighbar of

from Sin a ball around our current poi: We will now show how

A standard Chernoff bound on the expectation yields the high

this yields good performance. First, we state a simple claim about probability result]

inclusions of balls around a pair of points.

Lemma 3 (Sandwich Lemma)
Ifd(p,q) <r, thenBq(r) C Bp(2r) C By(4r).

Proof: For the firstinclusion, it € By(r), thend(p,s) < d(p,q) +
d(g,s) <r+r =2r. For the second inclusion, §c By(2r), then
d(g,s) <d(q,p)+d(p,s) <r+2r<4r.0

This simple observation leads us to the sampling lemma which
is the basis for our algorithms.

Lemma 4 (Sampling Lemma)
Let M be a metric space, arBliC M be a subset of size with
(p,c)-expansion. Then for afi,q € Sandr > d(p,q) with [By(r/2)| >
p, the following is true.

When selectin@®c® points inBp(2r) uniformly at random, with
probability at leas®/10, one of these points will lie iBq(r /2).

An Space-Inefficient Structure

The local search algorithm relies on a random-sampling prim-
itive which we have yet to implement. We provide a data struc-
ture that supports the necessary sampling. We saw above that local
search takes onl@(logR) time with high probability. It follows
trivially that with high probability, we will need to examine only
O(logR) samples from a ball around any particular pginn our
search. Our data structure simply chooses ti@$egR) samples
in advance for alh points in the metric space.

Of course, we do not have advance knowledge of the query points,
so we cannot predict the distance between a poemd the query
point. Without such knowledge, we do not know what radius of ball
aroundp to sample from. We get around this problem by choosing
from a set of balls with power-of-two radii. One such ball will have
radius within twice the current distance to the query point, and we
can use the in-advance samples from that ball.

More precisely, for each integét each pointp chooses a set
of 3clogR level k finger pointsiniformly at random from the set

Bp(z_k) of points within distance 2 of p. Denote this set of the corresponding poirg. For each nods, we will storefinger
fingers adp(k). This selection is done for eadtup tok = logR, lists.

since there are no points closer than this distange tblote also .

that the level O fingers are simply random points in the metric space. Definition 7

Given these finger points, we use the following algorithm. Forr > 0 theradiusr finger listfor s, denoted~ (s;), contains the
indices of the firs4c® elements aftes in the ordering that have
Procedurequer y(q) a distance<r tos. If we reach the end of the ordering, we wrap
around to the beginning, and if there are less v elements of
let p be any point irS this kind inS, thenk (s) just contains all of them.

while pis not the nearest neighbor gf
let k be maximum such that(p,q) < 27X
let p= closest point ta in Fp(k— 1)
return p

In the remainder of this section we will analyze the space re-
quirements of the data structure, prove that it can be used to find
nearest neighbors in tim@(lognloglogn), and give an off-line
O(nlognloglogn) construction algorithm. We defer the problem
of dynamic updates (addition and removal of points fi§rthe the
following section. Later in section 4.2 we will also improve the
running time of the FD-algorithm toO(logn).

We can analyze this algorithm using the Sampling Lemma. Given
some pointp at distance from g, with 2-&+1) < r < 2K we use
samples (fingers) from the ball of radiusk2< 2r. The Sampling
Lemma thus applies, telling us that we halve the distance of the 3.1 Space requirements
current point toq with constant probability. The analysis of the

previous section therefore applies to tell us the following theorem, Atfirst glance, it seems that the number of finger Ii5ts) we

have to store at a node is not bounded. But it actually turns out that
with high probability onlyO(logn) of the finger lists are distinct,

as we will show now. Thus, itis enough to just store these, indexed
by r. This leads td(logn) storage per node, @(nlogn) for the
whole data structure.

Theorem 6
There is a data structure of sig&nlog’R) that answers near-
neighbor queries with high probability @(logR) time.

Proof: There are log distinct powers of 2 between the maximum
and minimum distances in the metric spaces. For each such po erl_emma8
inimum d ' ICsp : uch power ors— {s1,--.,5n} be arandomly ordered subset of a metric space

of 2, we need)(logR) fingers for each of oun points.[A — (M,d), k P h
: .) = (M,d), ke N, andp € M. Then with high probability, there
The problem with this approach, however, is the fact that draw- are onlyO(Klogn) distinct finger lists for each.

ing samples uniformly at random from prescribed spheres is not
easy. In particular, if we demand that all these samples are inde-proof: We give an algorithm that outputs all the elements in any

pendent of each other, efficient dynamic maintenance of the dataf, (p), and analyze its behavior. Consider the following algorithm:
structure seems difficult.

If we do not require dynamic maintenance of the data structure, let J =0,F ={s,%,...,%}
however, this approach can be developed into a data structure byfor i =k+1to ndo

independently choosing the samples in “advance” during construc- if d(p,§) < maxscr d(p,s) then// new element closer
tion time. This scheme produces a data structure we call a “metric let j=j+1,

search tree” with the same time bounds as our current structure that fj = elements € F maximizingd(p,s),

can be analyzed by an application of branching processes. We omit F=(F\{fj}))u{s}

the details in this version of the paper. output FU{fq, f,..., fj}.

Instead, we concentrate on a data structure where the “pre-chosen”
samples are not completely independent. While allowing for easier
insertion and deletion, this makes the analysis more complicated,
as we will see.

We claim that this algorithm outputs all elements that appear in

any finger list ofp. Clearly, an elemeng will not be in a finger

list, if there arek elements before it in the ordering which are all

closer top thans. The setF maintained by the algorithm always

contains thek closest element tp among{s;, s, ...,S_1}. Using

3. METRIC SKIP LISTS this invariant, we see that no elements besides the ones output at
We now describenetric skip listthat solve the nearest neighbor the end can appear in a finger list.

search problem in metric spaces with constant expansion rates. It We will now show that the number of elements in the output is

follows the sampling paradigm described in the last section. To O(logn) with high probability. To be output, an element must first

avoid the problem of creating (and maintaining) completely inde- enterF. An elements entersF if and only if it is one of thek

pendent samples, we use a trick previously applied to the design ofclosest elements tpamong{si, ...,s}. These items are a random

treaps(a dictionary data structure). To construct our data structure, permutation of (some subset @) sos is one of thek closest to

we introduce a random ordering on the points in the sample spacep with probability k/i. It follows immediately that the expected

S. The construction of the data structure will then be determinis- number of points entering is 5 k/i = O(logn) for constank. For

tic given the ordering. But, using the fact that the ordering is truly the high probability bound, consider generating the{lssf. .., sn}

random, we will show good performance guarantees. backwards from the end by repeatedly choosing a random element
For simplicity, we will assume in the following that all pair-wise not yet in the list. From this framework it can be seen that the of
distances of points i are distinct (via perturbation). 5 becoming a finger is independent of all other such events. Thus,
We impose a random total order 83= {s1,%,...,S}. We call the number of fingers is a sum of independent indicator random
S+1 the successor &f, and lets; be the successor &f, so one can variables with mea®(logn), and thus i€(logn) with high prob-
actually imagine the points arranged on a circle. ability by the Chernoff bound.

The data structure consists of sets of pre-chosen samples for ev- Finally, note that the number of elements output upper-bounds
ery points € S. We will refer to those samples being “stored at” the number of distinct finger lists (p), since the seF (which

enumerates all finger lists) changes once each time we produce ahe bound is true for any starting point, in particular the point where

new output element in the above algorithio. we end up after processing the first third of the points. This allows
. us to process the second (and eventually last) third of the points
3.2 TheFIND-operation again inO(logn) each, yielding at total time bound 6f(logn).

The RnD-operation on our data structure is the “obvious” ap- ~ So consider the first thir&, 3 (the proof for the other thirds is
plication of the sampling search strategy given in section 2. The identical). Suppose that our search is currently at igrhav-

algorithm is defined as follows: ing passed the s& = {s1,...,%-1}. The setS— & is (thanks
to our random ordering) a random subset$fof size at least
FIND(q) (finds nearest neighbor dfin S) 2n/3. It follows from Lemma 2 thaS— S is a metric space with
leti=1//iis current position (O(logn), 2c) expansion. In other words, with high probability, for
let m=1//mis minimum so far allr > 0 such thatB; (q)| = Q(logn), we haveBy (q) N (S\ &) | <
whilei <ndo 2c-|Br(g) N (S\ |-
letr =d(s,q) We briefly defer the case ¢B; (q)| = O(logn). For larger balls,
if 3 j € Fx(s) such that we have just argued that the elements in the finger list are drawn
d(sj,q) < d(sm,q) ord(sj,q) <r/2then at random from a space with expansion rate Zhus drawing
leti be the smallest index F (s) with that property 24c3 = 3(2¢)2 of them will yield one with distance at most/2
if d(s,q) < d(sm,q) thenletm= with probability at least 910, by Lemma 4. This tells us that tife
else leti = maxFy () test in the FND algorithm will be satisfied with probability at least
output sm. 9/10 in each iteration.

])) To outline our argument, we make two assumptions that must
Let us first prove the correctness of the algorithm. For this we pe revisited later. First, we assume any record-breakingasep
will not need the fact thab has low expansion, i.e. the algorithm redyces the distance by half. Second, we assume that the outcomes
will work correctly (if not particularly efficiently) on any metric of the iterations arendependentUnder these two assumptions, we

space. can analyze our algorithm as a random walk.

Let (di,dy,...) be the distances tq of the elements visited
Lemma 9 during the execution of IND on the first third of the elements. We
TheFIND-algorithm always returns the nearest neighbay io S. will model (d) as a random walk. The analysis above (and our

assumption about record events) means that with probabjlit9 9
theif test succeeds and we halve our distanag When thef test
fails, by definition and the Sandwich Lemma, we hdvg < 4d;.
Itfollows thatE[logd;1] <logd; —9/10+2-1/10=logd, —7/10.
In other words, the random walk has negative drift.

Such a random walk has the property thaGiflogn) moves, it
will move O(logn) times to a value below any previous encoun-
tered value. Such a move discovers a record breaking item. Since
by Lemma 8 there are onl®(logn) record-breakers, we will have

3.3 Running time analysis forFIND found them all withinO(logn) time steps.
. L . . N We must now revisit our assumptions. Our argument that the dis-
In the following running time analysis, we will make a simplify-

. :) ., tance halves with probability 9/10 per iteration ignored two cases.
ing assumption to be removed later. When we access a finger list

i . "First, if we are on one of the = O(logn) closest points t@, then
V\?e do St?l by tlhe c?rrespondltng rafdnusT?e .unkick)]ur}.ded nltlmt1b.er the expansion rate need not hold. Second, in iterations where we
Of possible values for prevents us trom storing the INger lists In- ooy nter a record breaker, the distance need not halve. Note that
dexed byr, however. Therefore we store the finger lists in an array

. . each outcome (being on a close point, or encountering a record
ordered byr. The most straightforward way of locating the correct breaker) happens ony(logn) times. We model this by letting an
list is therefore binary search enwhich leads to an additional cost

£ O(loq | f list Lat il red this ti adversary “cancelO(logn) of the distance-halving steps that oc-
of O(loglogn) periingeriistaccess. Later, we will reduce tistime ¢, iy our algorithm. The random walk analysis generalizes to this
to constant per finger list.

case and still shows th&(logn) record-breakers will be encoun-
tered withinO(logn) steps.

Finally, it remains to justify our assumption above that the ran-
dom walk steps are independent. We use the principle of deferred
decisions. In an iteration starting §t our algorithm selects the
closest itensj € Fx(s) that satisfies thé test. We can identify
sj by walking forward on the list fronf;, adding valid items to the
finger list until the finger list is full or we encounter an appropriate
sj. In this variant of the algorithm, we reas before examining
anynode followings; in the list. Thus, by the principle of deferred
decisions, the fingers ef are independent of all our previous steps.

Proof: We only move forward in the ordering, i.ei. is strictly
increasing. An invariant of the algorithm is thegf is always the
point closest tag among{sy,...,S}. Assume, for contradictions
sake, that after moving fromto j, this condition did not hold. Then
there must be a poigt (i < k< j) with d(s¢,q) < d(s,q) =r. This
impliesd(s,,s) < 2r. But such arg should have been included in
the finger list, and would not have been skipped. The contradiction
shows the correctness of the algorithm.

Theorem 10

The FIND -algorithm with high probability accesses or@{logn)
finger lists. Thus, its running time B(lognloglogn) with high
probability.

Proof: First observe that thelRD-algorithm actually steps through
all the elements that would appear in the length 1 finger list of
(hadq been inserted where we start the search). In particular, any
time we take an elemerst with d(s;,q) < d(sm,q), we are taking
a 1-finger-list element. We will refer to these as “record” items.
Note from Lemma 8 that there a@logn) record items with high
probability. However, the algorithm will also encounter nodes that .
arenotrecord items. We must bound this work. 3.4 Range Queries

We consider the running time of the algorithm on the first third In arange queries we want to find all elementSthat are within
Sh/3 = {s1,%,---,Sy3} of the elements, and prove that with high a distance of a query pointy. These queries can be answered by a
probability it is onlyO(logn). But “high probability” implies that variant of our FND-algorithm in timeO((logn+ k) loglogn) with

high probability, wherek is the number of returned points. tain aradiusx(s)) > 0 such thatlogn < [Bg()(s)| < 3clogn,
We simply modify the IND-algorithm to never query finger lists and a listNN(s) of the points iNBRr(s) (s).

with a radius of less thanr2 This ensures that we will never miss

any of the points within the required ball arougd Similar to the Query Lists Qr(s): For each finger lisk (s) we store an associ-

original AND, the behavior of this algorithm can be analyzed as a ated list of all elements; that queried (s) when construct-
random walk, where the points within distancef q are considered ing their own finger lists. The exception to this is that we do
to be one set at distanceo g. It takes at most tim&(logn) for the not recordsj’s queries for its finger lists with radius less than
random walk to get within distanaeof g, and thenO(k) time to R(sj)-

visit all points in the query radius, since it takes expected constant .)
time between visiting successive elements in the ball. This yields _These additions do not change ténlogn) space requirement

a total bound o(logn-+ k) finger list accesses, for@((logn -+ of the data structure. The nearest neighbor lists recDitegn)

k)log logn) running time. space per node. And since the number of queries performed when
) . constructing an element’s finger lists@logn) with high proba-

3.5 Offline construction bility, the total number of entries in the query listsd¢nlogn).

Before considering dynamic updated to the data structure, We4 2 A faster FIND

first present a simpl®(nlognloglogn) off-line construction algo-)]
rithm for our data structure. It turns out that with only small changes, thenB-algorithm

Suppose we truncate all finger ligs(s), so that they do not ~ can be modified to run tim@(logn) with high probability, with a
“wrap around” at the end of the ordering, but rather only include corresponding bound @(logn-+ k) for the range search. We will
elements aftes in the ordering. This data structure would still Use these bounds from now on to compute running times.

support searches, as long as they stast at the beginning of the We change the IND-algorithm so that once it queries a finger

ordering. list Fr(s) with r < R(s), we stop the random walk, and just return
Constructing this data structure can be done by starting with an the closest element to the query pointNi(s), which takes time

empty data structure, and repeatedly adding,_1,5_2,...,51 to O(logn) by a linear pass. N

the beginning of the previously constructed data structure. This ~The only reason that we incurred an additiodéloglogn) fac-

way, when we insersj, we only have to computg’s finger lists, tor in the running time of the IkD-algorithm so far is that this was

while the finger lists of already inserted elements remain the samethe time per accessed node to find the correct finger list. Suppose
(since, by definition, they will not contai). At each step, the data now that we further augment our data structure such that for each
structure so far is a metric skip list on the (random) subset of items | € Fr(8) there is an associated pointeriids;), and also pointers
{S4+1,...,5}. This random sample has low expansion (Lemma 2) from R (s) to Fx (s). Maintaining these pointers can be subsumed

so the finger list Computations fqrare fast. in the total time taken forNSERTand DELETE.

])] Thus, we can find the next finger list in theN®-procedure in
Constructing the new element’s finger lists. constant time if the radius we query is “not too far off” the previ-
The construction of the new elemegis finger lists can be done oys one. But this is true in the case of thelE algorithm. The

by a modification of the D algorithm. We start a search farat query radius never increases to more than fram2r, and we can

Si+1, the successor &f. Butinstead of just maintaining the closest find that finger list in timeO(1). From that point, we can seek
elementsy encountered so far, we keep thec24losest elements through decreasingfor the correct radius finger list. Each drop in
seen so far, dropping the furthest element of that set as soon as adius take©(1) time, but can be “charged” against the improved
closer element becomes available. As seen in the proof of Lemmagistance—in the Rib algorithm, we can basically think of this as
8, this yields all elements of's finger lists. o a random walk step which improves with probability 1 rather than
The running time analysis of this search is virtually identical to 9/10. Thus the analysis goes through unchanged, sha@ogn)
the one given for the ikD-algorithm. The main change is that the steps, but now the “steps” bound not only the number of nodes vis-
number of finger elements is now@4imes as large, which causes jted but also the work at each node.
still yields aO(lognlog logn) bound with high probability. in section 3.4, yielding a running time &f{logn+ k).
Thus, we can construct our data structure in tialognlog logn).] o
The problem is that this approach does not immediately lend itself 4.3 Range queries revisited

to performing dynamic updates, because by always inserting atthe |n section 3.4, we considered the range query of reporting all
beginning” of the ordering, we would not guarantee that the or- points within distance of a pointg. Now we consider the related

dering remains random. query, where given a numbkand a pointy, we are asked to output
thek closest points tg. This type of query will be useful to us for
4. DYNAMIC MAINTENANCE the INSERT procedure.

In this section we describe how the metric skip list data structure ~ Unfortunately, this problem cannot be directly reduced to the one
can be maintained dynamically, i.e. how elements can added andwe already solved, as finding the correcuch thatB(q)| = k is
deleted |rO(|ogn|og |ogn) amortized expected time each. We will difficult. It would be considerably easier if in addition to the ex-
focus mostly on the NSERT-operation to add a new node to the ~Pansion property we also had a lower bound of the fiBs(q)| >
structure, as the analysis for the deletion of a node is very similar. €'|Br(Q)| because that would relateandk very closely. However,

. it is still possible to solve the problem efficiently.
4.1 Augmenting the data structure

To make dynamic maintenance of the search data structure posL.emma 11 _) _
sible efficiently, we have to add two more pieces of data to the basic There is an algorithm that, given a potpand a numbek, outputs
structure described in the previous section. These are: thek closest neighbors afin time O(logn+ k). J

Nearest Neighbor ListsNN(s),R(s): For every poing we main- Due to its technical nature, we defer the proof to appendix A.

4.4 ThelNSERT-0operation We can do this using the procedure from Lemma 11 in time

We have seen in section 3.5 how to construct our data structure©O(logn). IntimeO(logn) we can find the element gfrank Zlogn
in an offline manner, and in particular how to construct the finger @mong these elements, which yieR)) andNN(q).
lists of any newly inserted elemeaqt The main change for dynamic Step 4: Includeqin NN(s;)

updates is that now insertions do not occur “at the beginning” ofthe p ;e 1o the expansion property, any nagéor which g is among
ordering, but rather at a random position in the middle. This means Tlogn closest nodes must be among tl@18gn nodes closest
that the new elementhas to appear on other element's finger lists. 5 ¢ 5o this step of the algorithm suffices to maintain the correct
The main difficulty of making insertion efficient is to be able to 5, ,es of theN N(s).

quickly find the elements that should pointdo Using the list of the &logn nearest neighbors computed in

How do we find the elements that should include in their step 3, we can check for each of then@ifiL) by comparingd(s, q)
finger lists? An element could have computed different finger lists, 4 R(q) to determine whetheg should be included iNN().

hadq been present, only if it queried a finger list that should have \when this causes aNN(s) to grow beyond size dogn, we
containedq as well during its construction. This observation is .5, recompute that element's finger lis\(s) andR(s) (such
only self-referential at first glance: to construct a fingerfigt;) that[NN(s)| = 2clogn) in time O(logn). Since it takeslogn in-

of radiusr, § would query only finger lists with radius 2r higher. sertions to cause such a change, the amortized cost per insertion is
Using the query lists we introduced, the elemexntthat have only O(1).

to point toq can be found using a sea_rch backyvards a_long qUery Thys, the total amortized time of step 40¢logn).

pointers. First, we know thathas to be included in the distance 1

(the maximal distance) finger lists for the@4lements preceding Step 5: Following query pointers backwards

it in the ordering. Then, recursively, whenever we add a finger In the next step of the algorithm, we follow query pointers back-

list, we check all elements mentioned in the associated query list Wwards to determine which finger lists have to updated following the

to determine which of these should change their finger lists, and soinsertion ofq.

on. First, we will show that the number of nodes that we reach using
The correctness follows, since, as mentioned above, for con-this search ig(logn) in expectation. Then, we will show that

structing a finger list of radius the INSERTprocedure would only ~ each of these nodes is pointed to by only a constant number of

query finger lists of radiusr2and higher. That means that by fix- query pointers, so that the query pointer traversal takes total time

ing all radius 1 finger lists, we will inductively fix all other affected ~ O(logn).

lists.
4.4.1 The algorithm Lemma 12
9 . The expected number of elements that encoupierthe construc-
In summary, the NSERT-procedure for a new elemeqtis the tion of their finger lists i©(logn)
following. '

Proof: Here and in the following we will use different methods to
bound the work spent on thidogn nodes closest tq and all the
other nodes.
In this case, we have to give no particular analysis forciiogn
closest nodes, since even if they all encountere¢key would be
3. Find 32logn nodes closest tq, computeR(q), NN(q) such only O(logn) nodes. _
that|NN(q)| = 2clogn. . For the. remaining — glogn nodes we are going to use a bpund-
ing technique that we will also use repeatedly in the remaining run-
4. Includeq in NN(s) among the &logn nodess closestto timeanalysis. Les be some fixed node in the structure, a8er)
g, as necessary. be the probability thag sees the element gfrankr during its fin-
ger list construction. This probabilitgsedr) has the property that
5. Follow query pointers backwards to find all nodes thatgsee it is monotonically decreasing in This is because if an element
in the construction of their finger lists. For these elements of rankr were replaced by an element of rarikvith r’ < r in the

1. Insertg at a random position in the ordering.

2. Construct's finger lists by searching forward in the ordering
(cf. section 3.5)

and the 32Iogn closest neighbors: same orderingg would still see this element in its search, if it saw
the element of rank before. Thus' <r = psed’) > PsedTr)-
() Update their finger lists as necessary to inclgde Also, since the finger list construction only depends the ranks of

the elementspsedr) is actually independent of the element
Two more observations yield the desired bound. First, since the
number of nodes that are encountered in a finger list construction is
O(logn) in expectation, we havg]'_; psedr) = O(logn). Second,
if an elements hasg-rankr > clogn, thenq has as-rank of at
4.4.2 The analysis leastr /c. This follows directly from the expansion property of the
metric space. Thus, we have

(i) Update the query list entries they caused, as necessary.

We will now bound the expected running time of thesERT
operation, and give more details on the implementation.

We perform the running time analysis step by step of the algo-

rithm. To do it, we introduce one more definition. Theank of . n . .

point p is the number of points closer tpthanp is. E[#elements that “seef] = Prlelement ofg-rankr “sees”q
r=1

Step 2: Constructingg's finger lists n

n
Computing the finger lists can be done by a modifiedt~ < O(logn) + Z Psedr/c) < O(logn) +¢) psedr) = O(logn),
operation as in section 3.5, using tifB¢logn). r=clogn r=1

Step 3: Finding 3c2logn closest neighbors proving the lemmald

Lemma 13

Lets be any node. Then the number of finger lists that oveglap
position, that are queried in the constructiors&ffinger lists, is at
most24c® = O(1). Thus,s can “see’y only a constant number of
times during the construction of its finger lists.

Step 5(ii): Updating query lists

All the nodes that “seefj in the construction of their finger lists
might now take potentially different query paths than before the
insertion ofq. So we have to construct as much of the new query
paths as might be influenced by the insertiom.of

For a nodes that includegy in its finger lists, the queried finger
lists might be different as long agemains among the closest@4
elements. For a nodgthat does not includgin its finger lists, the
queried finger lists might be different up to the next elementghat
poesinclude into its finger lists.

Proof: When constructing’s finger lists, the first time we access
a finger list that overlapg's position in the ordering, this finger list
by definition contains all elements befagehat we might include
into s finger list. This number is therefore at mostc34 If we
move to one of these points, then by the next time we access afinge
list overlappingg’s position, their number has decreased by one. So
after seeingy’s position at most 2¢ times, we will move past itJ Lemma 16

The insertion ofy cause$O(logn) query list pointers to change in

The previous lemma implies that only @4query pointers from expectation.

finger lists containingy can point to an elemery that “sees’q
during its finger list construction. Thus the running time for the
“query pointer search” part of step 5@&logn).

Proof: We will first treat the nodes separately for whiclg is one
of theclogn closest nodes tg (i.e. g € NN(s)). For each of these
nodes, the expected number of changed query point€glis for

Step 5(i): Updating finger lists . . o a total ofO(logn) for all theses.
The time Faken to create the finger I_|sts cqntalnmg at most This is because only 22 of the nodes oNN(s) appear irg’s
O(loglogn) times the number of these finger lists. Th@og logn) finger lists with radius> R(s), and only these could result in the

is taken to find the correct insertion point of the new finger list change query pointers. The probability tigs one of these nodes
among the other finger Iists..We W!|| now ShQW tiogappears in an is thereforeO(1/logn). As the worst case number of changed
expected number @(logn) finger lists, yielding a total bound for query pointers i©(logn), the expected number of pointer that have

this step ofO(lognloglogn). to be changed i©(1/logn-logn) = O(1).
We will first use a coarse bound that we will use for tegn For all other elements, we are going to distinguish between the
elements closest cases that] does appear or does not appear on their finger lists.
First, the elements that includgn their finger lists.
Lemma 14 Let E/ be the expected number of queries performed for the fin-
Lets be any node. Then the expected numbeg sffinger lists ger list construction of an elemest such thatj hass-rankr, while
thatq appears in i©(1). g is among the elements of the current finger lists. As there are al-

)])))) ways 242 elements in the current finger list, we end up charging
Proof: Consider the construction &fs finger lists. If we imagine each query to 2 elements. Since the expected total number of
§ being at the beginning of an order ofelements, and inserting queries for is O(logn), we therefore have
g at a random position in that order, thgran only appear on the
finger lists that are created “after” its insertion point in the ordering.

Consider some positiokin the order. The 2&-rd smallests-

rank of the elements before theth position is expected to be close
to 24c3n/k = O(n/k). We have shown in the proof of Lemma 8 that As an element with a lower rank in the same position in the search
the rank of this furthest element in the current finger list decreasesWill stay as long or longer in the finger list during the search, we
by a constant factor in expectation every time we create a new fin- have that <r’ = E{ > E[,. A similar bound as in the finger list
ger list by dropping off this furthest element. The expected number case above that gives thats expected to influence at most a total

n
$ Ef =24c-O(logn) = O(logn).
r=1

of finger lists created after this point is theref@gog(n/k)). number ofO(logn) query pointer accesses. _ _
If q gets inserted at a random position, the expected number of ~Second, we have to analyze the number of query pointers influ-
finger lists created after that point is therefore on the order of ences byg among the elements that sgeduring their finger list

construction, but do not actually includgamong their finger list
elements. The changes thlgamight necessitate are limited to the
finger list construction from seeinguntil the next finger list ele-
. ment is found. We will bound this in a similar fashion as above:
as claimedC] let E/' be the expected number of elements seeg hjter an ele-
. .) ment of rankr, before the next element of its finger listis found (we

Again, this bound is enough for theogn elements closest to 4 this independent of whettgis actually a finger list element

g, as it yields an expected total number@flogn) occurrences jiseit e only bound the number of search steps until the next ele-

10 n logn!
- kleogE =logn— = logn— (logn—0(1)) = O(1),

amon.g.these elements, but we require a different approach for theyant is found). Again, we hawe< r' = E! > E, because we
remaining elements. _ are more likely to see an element of low rank at all.

If Eq(r) is the expected number times that an elemeng-of We have
rankr appears irs’s finger lists, then again we hay'_, Eq(r) =
O(logn) andr’ <r = Eq(r') > Eq(r), by similar arguments as n _~ Oogn 2
in the proof of Lemma 12 fopsedr). Following the same proof Z B = Z E[XJ’ /2,
technigue as above, this shows that the expected total number of r=1 =1
finger lists tha appears in i©(logn) among all elements. whereX; is the number of elements seen betweenijttie and the

(j + 1)-st finger list element that we find, searching frgmSince

Lemma 15 the variablesX; are distributed geometrically with a constant ex-

An elementy appears ifD(logn) finger lists in expectatiori] pectation, we also havE[XjZ] = O(1), and thereforeg|' | E/ =

O(logn). So in this case alsaj is expected to influence at most a
logarithmic number of query list&]

Thus, the running time of theusERT-0peration is expected total
time O(lognloglogn). Note that we did not analyze the cost to re-
move finger and query list entries now obsolete due to the insertion
of g. But since our work will be linear in their size, and the size of
the structure is expected to grow upon insertion of an element, the
above bounds dominate the insertion time.

4.5 TheDELETE-operation

For the DELETE-Operation, we use the query lists to determine
all finger lists containingj. Essentially, we do the opposite of what
we did for INSERT, and rebuild a node’s finger lists MN(s) be-
comes smaller thaologn. Thus, the same time bounds apply, and
the operation takes tim@(lognloglogn).

5. APPLICATION TO PEER-TO-PEER NET-
WORKS

The nearest neighbor search structure described in this paper ca
be used with only slight modifications in the Chord Peer-To-Peer
network protocol co-developed by the first author [7]. We will now
give a brief introduction to the relevant parts of the Chord data man-

2. Find a locationg’ containing the item, so that there is no
closer node with the item betwegrand g in the ordering.

3. Perform a D from p’ for g, keeping track of the closest
item containing node seen, and stop as soon asithe &p-
eration moves beyonp.

Step 1 needs no explanation — if the item is already at our cur-
rent location there is no need to look for it elsewhere. Step 2 is
straightforward by a modification of the chord lookup protocol—
that protocol does a binary search fprand it can be modified to
report an “overshoot” if it encounters amythat contains the item.
Step 3 finds the closest copy of an item, assuming that the second
step completed successfully, because during the Bperation we
will see all elements that are closergohan the previously closest
element we saw, starting out witth. So we cannot possibly miss
seeing the closest elementgdetweenp’ and p, which is the one
we are looking for. And obviously, we can terminate the search as
soon as we have passpdaince the following elements do not con-
tain the item. Both steps only take tin@logn) (or rather access

that number of nodes).

6. CONCLUSION

agement protocol and describe how the nearest neighbor structure We have introduced a new data structure for nearest neighbor

can be used in this context.
The Chord protocol allows for distributed data access by storing
data items in multiple locations across the network. Every node

search in metric spaces with low expansion rates. The structure is
simple, efficient, and can easily be use in a distributed environment,
for example if points correspond to nodes in a network.

gets assigned a random identifier, and the nodes can be imagined An interesting open problem is to make the data structure fault

ordered on a circle based on these IDs. If an data item is stored in
the network, it has one primary location, where the original copy of

tolerant, in the following sense. If the data structure is actually dis-
tributed on a set of nodes, such as a Peer-To-Peer network, then it

the item is stored. To speed up accesses, an item might be replicateds not unlikely that single nodes just “fail” without invoking a dele-

to be stored at other nodes besides the primary location. In Chord,

tion procedure. Is it possible to augment the data structure to work

these copies are held on the nodes which immediately precede theven when nodes (and their associated finger lists) just disappear?

primary location in the order of IDs. l.e., the item copies propagate
backwards along the ordering, and the nodes that hold the item
always are a continuous segment of the ordering of nodes.

In many applications of Peer-To-Peer networks, such as in wire-
less networks, the cost of accessing an data item grows as the dis

Another interesting property of low expansion metrics is that
they can be embedded into &f,/logn)-dimensional Euclidean
space with low distortion (as opposed to thdogn)-dimensional
space required for general metrics). This allows for approximate
nearest neighbor searches by reduction to the Euclidean case. It

tance to the item increases. Thus, it is advantageous to locate thevould be interesting to see whether this avenue leads to other ap-
“closest” copy of a data item to speed up accesses and lower operproaches to this problem.

ating costs. We will now show how the data structure developed in
the previous sections can be used to this effect.

Observe that our data structure can easily be made “distributed”
by simply storing the finger and query lists at the node in the net-
work that they are associated with. This requires aB(yogn)
additional storage for each node. As the nodes in Chord already
have random IDs and are therefore naturally ordered in a random
order, we can make use of the same ordering for our data structure

The AND, ADD and DELETE protocols work as before, although
in practice it might not be possible to store pointers into another
node’s lists that allow foO(1) lookups of the correct lists. Thus,

a list lookup cost ofO(loglogn) is more realistic, and the opera-
tions become more costly by that factor. But since the cost of an
operation in a Peer-to-peer network is dominated by the number of
node-to-node communications (which sta9dogn)) and not by
in-node computations, this does not seem to be a great loss.

Suppose now that we want to find the closest copy to a nod
g of an data item whose primary locations is nquieThe search
is similar to the FND-operation with the difference that we will
not search beyong, since all copies of the data item are stored
directly before the node in the ordering. On a high level, the
search algorithm is as follows:

e

1. If the item is stored at nod® stop and access the item.

7. REFERENCES

[1] J. Bentley. Multidimensional binary search trees used for
associative searchin@ommunications of the ACM
18(9):509-517, 1975.

[2] J. Bentley, B. Weide, and A. Yao. Optimal expected-time
algorithms for closest point problem&CM Transactions of
Mathematical Softwares(4):563-580, 1980.

[3] S. Brin. Near neighbor search in large metric spaces. In

Proceedings VLDBpages 574-584, 1995.

E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Maﬁmqu

Searching in metric space&CM Computing Surveys

33(3):273-321, 2001.

K. Clarkson. Nearest neighbor queries in metric spaces.

Discrete Computational Geometr32(1):63—-93, 1999.

[6] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing

nearby copies of replicated objects in a distributed

environmentTheory of Computing Systen®2:241-280,

1999.

I. Stoica, R. Morris, D. Karger, F. Kasshoek, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup

service for internet applications. Proceedings ACM

SIGCOMM 2001.

(4]

(5]

(7]

[8] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global
geometric framework for nonlinear dimensionality reduction.
Science290(5500):2319-2323, December 2000. See also
http://isomap. st anford. edu.

[9] J. B. Tennebaum. Mapping a manifold of perceptual
observations. Iidvances in Neural Information Processing
Systemsvolume 10. The MIT Press, 1998.

[10] J. Uhlmann. Satisfying general proximity/similarity queries
with metric treesinformation Processing Letters
40:175-179, 1991.

[11] P. Yianilos. Data structures and algorithms for nearest
neighbor search in general metric space$roceedings
SODA pages 311-321, 1993.

APPENDIX

A. RANGE QUERIES

The Algorithm

In this section we prove Lemma 11: we give an algorithm that
reports thek closest neighbors of a nodgn time O(logn+Kk). The
algorithm can be summarized as follows:

K-RANGE-QUERY(q, k) (returnsk nearest neighbors ofin S)
let sy, := nearest neighbor af
letr :=R(sm), B:=B(q)
while |B| < kdo
r := AUGMENT(r,B,q), B:= B (q)
output k points inB closest tag

Note that the statemenB:= B;(q) here correspond to range
queries in the sense of section 3.4.

The sub-routine AGMENT(r, B, g) that we have to define later
can be called wittB = Br(q) andB > logn. It returns with high
probability in timeO(|B|) anr’ > r such that

(1+ 25) BI< Br(@l <78 &
In other words|B| grows by a constant factor each time.

The correctness of the above algorithm is clear. As for the run-
ning time, the first two lines take tim@(logn). Every execute of
the while loop takes tim&(logn-+ |B|). Since|B| grows geometri-
cally, the sum of these times collapsesddogn+ k), as claimed.

The AUGMENT-Procedure

The AuGMENT-procedure overcomes the fact that by there is no
bound on by how much we have to increasés increase the size
of Br(q) by a constant factor. The procedure uses samplingBear
to obtain an estimate on the local growth ratdg(fg).

AUGMENT(r,B,q)
(letB= {by,by,...,b;} be an enumeration d's elements)
fori=1toldo
let g := element closest thy in bj's finger lists withd(a;, b;) > 2r
letr :=d(aj,by)
output median of{r; | 1 <i < ¢}

The running time of this algorithm i©(|B|) as each iteration of
the loop requires a lookup & (b;), which can be done in constant
time as in section 4.2, because we already have pointeéfghio
after the range search. Note that if there is no elemelptdriinger
lists of distance more thamr 20 b, then we can saf = .

For correctness, we need to prove that the inequalities (1) hold

(we use to refer to the value returned by the&JAMENT-procedure).

The lower bound is the easier of the two. Note that none of the
g are inB, as their distance tq is at leastd(a;,q) > d(a;,bj) —
d(bj,q) > 2r —r =r. On the other hand, by returning the median
of therj, we guarantee that the new b&ll (q) now contains at
least half of theg;. It remains to show that there are not too many
repetitions among tha.

For this and the following it will be useful to recall that the
are arranged on a circle order in the search data structure. For no-
tational simplicity assume that they occur in the orbgrby, ...,

b, in the data structure. Notice that we hayet a; if i+24c® < j.
This is becausd would encountebiq,bii2,...,b, 24 before
seeinga, in its finger list construction, and since all thés are
closer tob; thanaj, aj would not be included intdy’s finger list.
That is, eachs; appears at most 22 times among the othex's.
Thus,By ()| > |B|+ % %g |B|, which shows the first inequality.

While the previous inequality holds unconditionally, we will prove
that the second inequality holds with high probability. Lebe
the element ofy-rank 72|B|, andR:= d(p,q) +r. We will show
that with high probability’ < R. This is enough, because by the
expansion propertyBr(a)| < ¢[Bypq)(a)| = 7¢3|B|, usingR =
d(p,q)+r < 2d(p,q).

LetX; be the event that < R. To show that with high probability
at least half of theX; occur, we will bound them by other events.
Let P be the set of elements withrank in{|B| +1,...,c%B|}, and
Q be the set of element witrank in{c?|B| +1,...,7¢%|B|}. Note
that the elements @ all are at least distance 4 r = 3r from the
elements irB, and thus would be considered as choices forghe
in the AUGMENT procedure.

In the random order of the data structure the $etndQ oc-
cur interleaved with the points;, by, ..., b,. Focus on the random
sub-ordering consisting just of theseZ['B| elements. LeY; be the
event thaty; is directly followed by an element @ in this order-
ing. We then have tha impliesX;. This is because ifj includes
the element of) that directly follows it in its finger list, then that
element is a valid candidate fay, and since it is closer thaR to
g, X is true. On the other hand, if does not include the element
in its finger list, then there must be &4elements closer than it to
b; between the two in the ordering. Singeholds, these elements
must haveg-rank > 702|B|, thus cannot be closer than ® by, but
also cannot be further thadfrom by, thusX; is satisfied.

We now proceed to bound the probability that less than half of
theY; happen. Fix any ordering of thg andP. If we imagine

inserting the elements @ at random places in this ordering, then
there are('BH"g"HQ‘) ways to do so. If, however, more than half
of theY; are not true, then the elements@fmay not be inserted

directly behind thdy for whichY; is not true. Thus, there are only
(1BI724IPIIQl) choices for an ordering. By multiplying with the

QI
number of possible choices for whidhare not true, we obtain an

upper bound on the probability of failure by:
B B|/2+|P|+|Q
(52 (*/ 1)
(IBHI +\Q\)

<Q

My
< (IBl+IP
= \IB/+|P|+]Q|

_ (B
—\ 7B

This is polynomially small sincéB| > logn.

Bl/2+[P[+k \ B2
B2+ P+ Ql k) %

[Bl/2
2e>

Bl/2
2e> < 0.8828l

Bl/2

<

