Randomization in Graph Optimization Problems:
A Survey

David R. Karger*
June 12, 1998

Abstract

Randomization has become a pervasive technique in combinatorial op-
timization. We survey our thesis and subsequent work, which uses four
common randomization techniques to attack numerous optimization prob-
lems on undirected graphs.

1 Introduction

Randomization has become a pervasive technique in combinatorial optimization.
Randomization has been used to develop algorithms that are faster, simpler,
and/or better-performing than previous deterministic algorithms. This article
surveys our thesis [Kar94], which presents randomized algorithms for numerous
problems on undirected graphs. Our work uses four important randomization
techniques:

Random Selection, which lets us easily choose a “typical” element of a set,
avoiding rare “bad” elements;

Random Sampling, which provides a quick way to build a small, representa-
tive subproblem of a larger problem for quick analysis;

Randomized Rounding, which lets us transform fractional problem solutions
into integral ones; and

Monte Carlo Simulation, which lets us estimate the probabilities of inter-
esting events.

*MIT Laboratory for Computer Science, Cambridge, MA 02138.
email: karger@lcs.mit.edu
URL: http://theory.lcs.mit.edu/~karger.
Work supported in part by ARPA contract N00014-95-1-1246 and NSF contract CCR-9624239,
and Fellowships from the Alfred P. Sloane and David and Lucille Packard Foundations.



We apply these techniques to numerous optimization problems on undirected
graphs. The graph is one of the most common structures in computer sci-
ence and optimization, modeling among other things roads, communication and
transportation networks, electrical circuits, relationships between individuals,
hypertext collections, resource allocations, project plans, database and program
dependencies, and parallel architectures. Among the graph problems we address
are finding a minimum spanning tree, finding a maximum flow, determining the
connectivity (minimum cut) of a graph, network design, graph coloring, and
estimating the reliability (disconnection probability) of a network with random
edge failures. A great deal of work has been done on all of these problems. Due
to space limitations, we are unable to discuss all of this related work. Such a
discussion can be found in our thesis.

It is extremely important to note that we are not carrying out “expected
case” analysis of algorithms running on random inputs. Rather, we consider
worst case inputs and use random choices by the algorithm to solve them effi-
ciently.

We begin this article with a survey of many of our applications of the four
randomization techniques, sketching the methods, the problems, and the result-
ing algorithms. Afterwards, we will present a more detailed discussion of a few
algorithms and proofs which will hopefully give some flavor of our work.

1.1 Notation

We address only undirected graphs; directed graphs have so far not succumbed
to the techniques we apply here. Throughout our discussion, we will consider
a graph G with m edges and n vertices. Each graph edge may have a weight
(reflecting cost or capacity) associated with it. To simplify our presentation
here, we often focus on unweighted graphs (that is, graphs with all edge weights
equal to one), though many of our algorithms apply equally well to weighted
graphs. Unless it has parallel edges (multiple edges with the same endpoints) a
graph has m < (}).
The notation O(f) denotes O(f log? n) for some constant d.

1.2 Overview of Results

We show how randomization can be used in several ways on problems of varying
degrees of difficulty. For the “easy to solve” minimum spanning tree problem,
where a long line of research has resulted in ever closer to linear-time algorithms,
random sampling gives the final small increment to a truly linear time algorithm.
For harder problems it improves running times by a more significant factor. For
example, we improve the time needed to find minimum cuts from O(mn) to
O(m), and give the first efficient parallel algorithm for the problem. Addressing
some hard NP-complete problems such as network design and graph coloring,
where finding an exact solution in polynomial time is thought to be hopeless,
we use randomized rounding to give better approximation algorithms than were
previously known. Finally, for the problem of determining the reliability of a



network (a §P-complete problem which is thought to be “even harder” than
N'P-complete ones) we use Monte Carlo simulation to give the first efficient
approximation algorithm.

1.3 Randomized Algorithms

Our work deals with randomized algorithms. Our typical model is that the algo-
rithm has a source of “random bits”—variables that are mutually independent
and take on values 0 or 1 with probability 1/2 each. Extracting one random bit
from the source is assumed to take constant time. If our algorithms use more
complex operations, such as flipping biased coins or generating samples from
more complex distributions, we take into account the time needed to simulate
these operations in our unbiased-bit model. Event probabilities are taken over
the sample space of random bit strings produced by the random bit generator.
An event occurs with high probability (w.h.p.) if on problems of size n it occurs
with probability greater than (1 — n—l,c) for some constant k£ > 1, and with low
probability if its complement occurs with high probability.

The random choices that an algorithm makes can affect both its running time
and its correctness. An algorithm that has a fixed (deterministic) running time
but has a low probability of giving an incorrect answer is called Monte Carlo
(MC). If the running time of the algorithm is a random variable but the correct
answer is given with certainty, then the algorithm is said to be Las Vegas (LV).
Depending on the circumstances, one type of algorithm may be better than the
other. However, a Las Vegas algorithm is “stronger” in the following sense.

A Las Vegas algorithm can be made Monte Carlo by having it terminate with
an arbitrary wrong answer if it exceeds the time bound f(n). Since the Las Ve-
gas algorithm is unlikely to exceed its time bound, the converted algorithm is
unlikely to give the wrong answer. On the other hand, there is no universal
method for making a Monte Carlo algorithm into a Las Vegas one, and indeed
some of the algorithms we present are Monte Carlo with no Las Vegas version
apparent. The fundamental problem is that sometimes it is impossible to check
whether an algorithm has given a correct answer. However, the failure proba-
bility of a Monte Carlo optimization algorithm can be made arbitrarily small
by repeating it several times and taking the best answer; we shall see several
examples of this below. In particular, we can reduce the failure probability so
far that other unavoidable events (such as a power failure) are more likely than
an incorrect answer.

2 A Survey of Techniques and Results

In this section, we provide a high level overview of the four randomization
techniques and the various algorithms we have been able to develop by using
them.



2.1 Random Selection

The first and simplest randomization technique we discuss is random selection.
The intuition behind this idea is that a single randomly selected individual is
probably a “typical” representative of the entire population. Thus, random
selection provides a good way to avoid choosing rare “bad” elements. This is
the idea behind Quicksort [Hoa62], where the assumption is that the randomly
selected pivot will be neither extremely large nor extremely small, and will
therefore serve to separate the remaining elements into two roughly equal sized
groups.

We apply this idea in a new algorithm for finding minimum cuts in undirected
graphs. A cut is a partition of the graph vertices into two groups; the value of
the cut is the number (or total weight) of edges with one endpoint in each group.
The minimum cut problem is to identify a cut of minimum value. We distinguish
the (global) minimum cut from an s-t minimum cut which is required to separate
two specific vertices s and ¢. Finding minimum cuts is of great importance in
analyzing network reliability and also plays a role in solving traveling salesman
and network design problems.

We present the Recursive Contraction Algorithm (joint work with Clifford
Stein [KS96]). The idea behind our algorithm is simple: a randomly selected
edge is unlikely to cross a particular minimum cut, so its endpoints are probably
on the same side. If we merge two vertices on the same side of this minimum cut,
then we will not affect the minimum cut but will reduce the number of graph
vertices by one. Therefore, we can find the minimum cut by repeatedly selecting
a random edge and merging its endpoints until only two vertices remain and
the minimum cut becomes obvious.

An efficient implementation of the above idea leads to a strongly polyno-
mial O(n?)-time algorithm for the minimum cut problem on weighted undi-
rected graphs. In contrast, the best deterministic bound, due to Hao and Or-
lin [HO94], is O(mn). Our algorithm actually finds all minimum cuts with
high probability. It extends to enumerating approximately minimum cuts and
minimum k-way cuts for constant k, as well as to constructing the cactus of a
graph (a compact representation of all its minimum cuts). The algorithm is the
first with a theoretically good parallelization. A derandomization of the algo-
rithm (joint with Rajeev Motwani [KM97]) gave the first proof that there was
a fast deterministic parallel algorithm for the minimum cut problem. An im-
plementation experiment shows that the algorithm has reasonable time bounds
in practice [CGK197].

The Contraction Algorithm is Monte Carlo: it gives the correct answer with
high probability, but does have a small chance of being wrong. As we are
unaware of any algorithm for verifying that a cut is minimum, we have been
unable to devise a Las Vegas version of the algorithm. This is a case where a
willingness to occasionally be wrong seems to provide a significant speedup.

The Contraction Algorithm also gives an important new bound on the num-
ber of small cuts a graph may contain; this has important applications in net-
work reliability analysis and graph sampling (see below).



In subsequent work [BK98], we used the Contraction Algorithm to efficiently
solve the graph augmentation problem: adding the minimum possible capacity
to a graph so as to increase its minimum cut to a given value (this work is joint
with Andras Benczur).

2.2 Random Sampling

A more general use of randomization than random selection is to generate small
representative subproblems. The representative random sample is a central
concept of statistics. It is often possible to gather a great deal of information
about a large population by examining a small sample randomly drawn from it.
This approach has obvious advantages in reducing the investigator’s work, both
in gathering and in analyzing the data.

Given an optimization problem, it may be possible to generate a small rep-
resentative subproblem by random sampling (perhaps the most natural sample
from a graph is a random subset of its edges). Intuitively, such a subproblem
should form a microcosm of the larger problem. Our goal is to examine the
subproblem and use it to glean information about the original problem. Since
the subproblem is small, we can spend proportionally more time examining it
than we would spend examining the original problem. In one approach that we
use frequently, an optimal solution to the subproblem may be a nearly optimal
solution to the problem as a whole. In some situations, such an approxima-
tion might be sufficient. In other situations, it may be easy to refine this good
solution into a truly optimal solution.

Floyd and Rivest [FRT75] use this approach in a fast and elegant algorithm
for finding the median of an ordered set. They select a small random sample of
elements from the set and show how inspecting this sample gives a very accurate
estimate of the value of the median. It is then easy to find the actual median
by examining only those elements close to the estimate. This algorithm, which
is very simple to implement, uses fewer comparisons than any other known
median-finding algorithm.

The Floyd-Rivest algorithm typifies three components needed in a random-
sampling algorithm. The first is a definition of a randomly sampled subproblem.
The second is an approzimation theorem that proves that a solution to the sub-
problem is an approximate solution to the original problem. These two com-
ponents by themselves will typically yield an obvious approximation algorithm
with a speed-accuracy tradeoff. The third component is a refinement algo-
rithm that takes the approximate solution and turns it into an actual solution.
Combining these three components can yield an algorithm whose running time
will be determined by that of the refinement algorithm; intuitively, refinement
should be easier than computing a solution from scratch.

In an application of this approach, we present the first (randomized) linear-
time algorithm for finding minimum spanning trees in the comparison-based
model of computation. This result reflects joint work with Philip Klein and
Robert E. Tarjan [KKT95]. A long stream of results reduced the best known
deterministic time bound to almost linear [GGST86], but a linear time bound



remained elusive. Our fundamental insight is that if we construct a subgraph
of a graph by taking a random sample of the graph’s edges, then the minimum
spanning tree in the subgraph is a “nearly” minimum spanning tree of the
entire graph. More precisely, very few graph edges can be used to improve the
sample’s minimum spanning tree. By examining these few edges, we can refine
our approximation into the actual minimum spanning tree at little additional
cost.

We also apply sampling to the minimum cut problem and several other
related problems involving cuts in graphs, including maximum flows. The max-
imum flow problem is perhaps the most widely studied of all graph optimization
problems, having hundreds of applications. Given vertices s and ¢ and capaci-
tated edges, the goal is to ship the maximum quantity of material from s to ¢
without exceeding the capacities of the edges. The value of a graph’s maximum
flow is completely determined by the value of the minimum s-t cut in the graph.

We prove a cut sampling theorem that says that when we choose half a
graph’s edges at random we approximately halve the value of every cut. In
particular, we halve the graph’s connectivity and the value of all s-t minimum
cuts and maximum flows. This theorem gives a random-sampling scheme for
approximating minimum cuts and maximum flows: compute the minimum cut
and maximum flow in a random sample of the graph edges. Since the sample
has fewer edges, the computation is faster. At the same time, our sampling
theorems show that this approach gives accurate estimates of the correct values.
If we want to get exact solutions rather than approximations, we still can use
our samples as starting points to which we can apply inexpensive refinement
algorithms. This leads to a simple randomized divide-and-conquer algorithm
for finding exact maximum flows.

We put our results on graph sampling into a larger framework by examining
sampling from matroids [Kar98b]. We generalize our minimum spanning tree
algorithm to the problem of finding a minimum cost matroid basis, and extend
our cut-sampling and maximum flow results to the problem of matroid basis
packing. Our techniques actually give a paradigm that can be applied to any
packing problem where the goal, given a collection of feasible subsets of a uni-
verse, is to find a maximum collection of disjoint feasible subsets. For example,
in the maximum flow problem, we are attempting to send units of flow from s
to t. Each such unit of flow travels along a path from s to ¢, so the feasible
edge-sets are the s-t paths. We apply the sampling paradigm to the problem of
packing disjoint bases in a matroid, and get faster algorithms for approximating
and exactly finding optimum basis packings.

We have continued to apply random sampling technique in work following
our thesis. Our recent results include:

e An O(mlog® n)-time Monte Carlo algorithm for finding minimum cuts [Kar96],

e A compression algorithm that lets us transform any undirected graph into
a graph with O(n) edges but roughly the same cut values, speeding up
any algorithm that depends only on cut values [BK96],



e As an application, an O(n?logn)-time Monte Carlo algorithm for finding
any constant factor approximation to an s-¢ minimum cut [BK96],

e An O(my/n)-time Las Vegas algorithm for finding any constant factor
approximation to an s-t max-flow [Kar98a],

e An O(n???)-time algorithm for finding a maximum flow in a simple (un-
capacitated) graph [KL98] (joint work with Matt Levine).

All of these bounds are significantly better than the best general time bound
for finding maximum flows in directed graphs (O(mn) for a strongly polynomial
bound [GT88], and recently O(m?/?logU) for a scaling algorithm of Goldberg
and Rao [GRI7]). This suggests that perhaps a better bound for maximum flow

can be achieved, at least on undirected graphs.

2.3 Randomized Rounding

Yet another powerful randomization technique is randomized rounding. This
approach is used to find approximate solutions to NP-hard integer programs.
These problems typically ask for an assignment of 0/1 values to variables z;
such that linear constraints of the form > a;z; = c are satisfied. If we relaz the
integer program, allowing each z; to take any real value between 0 and 1, we get a
linear program that can be solved in polynomial time, giving values p; such that
> a;p; = c¢. Raghavan and Thompson [RT87] observed that we could treat the
resulting values p; as probabilities. If we randomly set x; = 1 with probability p;
and 0 otherwise, then the ezpected value of 3 a;x; is Y a;p; = c. Raghavan and
Thompson presented techniques for ensuring that the randomly chosen values
do in fact yield a sum near the expectation, thus giving approximately correct
solutions to the integer program. We can view randomized rounding as a way
of sampling randomly from a large space of answers, rather than subproblems
as before. Linear programming relaxation is used to construct an answer-space
in which most of the answers are good ones.

We use our graph sampling theorems to apply randomized rounding to net-
work design problems. Such a problem is specified by an input graph G with
each edge assigned a cost. The goal is to output a subgraph of G satisfying
certain connectivity requirements at minimum cost (measured as the sum of
the costs of edges used). These requirements are described by specifying a min-
imum number of edges that must cross each cut of G. This formulation easily
captures many classic problems including perfect matching, minimum cost flow,
Steiner tree, and minimum T-join. By applying randomized rounding, we im-
prove the approximation bounds for a large class of network design problems,
from O(logn) (due to Goemans et al [GGPT94]) to 1+ o(1) in some cases. Our
graph sampling theorems provide the necessary tools for showing that random-
ized rounding works well in this case.

We also apply randomized rounding to the classic graph coloring problem. No
linear programs have yet been devised that provide a useful fractional solution,
so we use more powerful semidefinite programming as our starting point. We



show that any 3-colorable graph can be colored in polynomial time with O(nl/ 4
colors, improving on the previous best bound of O(n3/®) [Blu94]. We also give
presently best results for k-colorable graphs. Along the way, we discover new
properties of the Lovdsz ¥-function, an object that has received a great deal of
attention because of its connections to graph coloring, cliques, and independent
sets. This work is joint with Rajeev Motwani and Madhu Sudan [KMS98]. We
gave a slight improvement with Avrim Blum [BK97].

2.4 Monte Carlo Estimation

The last randomization technique we consider is Monte Carlo estimation. The
technique is applied when we want to estimate the probability p of a given event
E over some probability space. Monte Carlo estimation carries out repeated
“trials” (samples from the probability space) and measures in what fraction
of the trials the event E occurs. This gives a natural estimate of the event
probability.

The Monte Carlo approach breaks down when the interesting probability p
is very small. To estimate p, we need to carry out enough experiments to see
at least a few occurrences of E. But we expect to see a first occurrence only
after 1/p trials, which may be too many to carry out efficiently. A solution to
this problem, explored by Karp, Luby and Madras [KLM89], is to carry out
the Monte Carlo simulation in a different, “biased” way that makes the event
E more likely to occur, so that we can get by with fewer trials. The trick is
to choose the new simulation so that it gives us useful information about the
original probability space.

We apply this technique to the network reliability problem. In this problem,
we are interested in estimating the probability that a network is disconnected
by random edge failures, so it is perhaps unsurprising that randomization is
useful. We are given a graph G whose edges fail randomly and independently
with certain specified probabilities. Our goal is to determine the probability
that the graph becomes disconnected by edge failures.

Unfortunately, it is known to be #P-hard (even worse than NP-hard) to
exactly determine the reliability of a network. But we use Monte Carlo meth-
ods to give a fully polynomial randomized approximation scheme (FPRAS) for
the network reliability problem [Kar98d]. Given a failure probability p for the
edges, our algorithm, in time polynomial in n and 1/e€, returns a number P
that estimates the probability FAIL(p) that the graph becomes disconnected.
With high probability, P is in the range (1+¢)FAIL(p). The algorithm is Monte
Carlo, meaning that the approximation is correct with high probability but that
it is not possible to verify its correctness. It generalizes to the case where the
edge failure probabilities are different, to computing the probability the graph
fails to be k-connected (for any fixed k), and to the more general problem of
approximating the Tutte Polynomial for a large family of graphs. Our algo-
rithm is easy to implement and appears likely to have satisfactory time bounds
in practice [Kar98d, CGK*97, KT97].

A natural way to estimate a network’s failure probability is to carry out



numerous simulations of the edge failures and check how often the graph is
disconnected by them. But as mentioned above, this can take prohibitively
many trials if the failure probability is extremely small. However, we use our
cut counting and sampling theorems to prove that when P is small, only the
small cuts in a graph are significantly likely to fail. We use our cut algorithms
to enumerate these small cuts and then use the biased Monte Carlo technique
developed by Karp, Luby and Madras [KLM89] to estimate the probability the
one of the explicitly enumerated cuts fails.

3 The Contraction Algorithm

To give some flavor of our results, we begin by describing an algorithm for
finding a minimum cut in an undirected graph [KS96]. For simplicity we discuss
unweighted graphs, but the algorithm works equally well for graphs with edge
weights.

The algorithm is based on the idea of contracting edges. Suppose we were
somehow able to identify an edge that did not cross the minimum cut. This
would tell us that both of its endpoints are on the same side of the cut. We can
use this information to simplify the graph by contracting the two endpoints.
To contract two vertices v; and vs we replace them by a vertex v, and let the
set of edges incident on v be the union of the sets of edges incident on v; and
ve. We do not merge edges from v; and ve that have the same other endpoint;
instead, we allow multiple instances of those edges. However, we remove self
loops formed by edges originally connecting vy to vy. Formally, we delete all
edges (v1,v=2), and replace each edge (v1,w) or (ve, w) with an edge (v, w). The
rest of the graph remains unchanged. We will use G/(v1,v2) to denote graph G
with edge (v1,v2) contracted (by contracting an edge, we will mean contracting
the two endpoints of the edge).

Note that a contraction reduces the number of graph vertices by one. We can
imagine repeatedly selecting and contracting edges until every vertex has been
merged into one of two remaining “metavertices.” These metavertices define
a cut of the original graph: each side corresponds to the vertices contained in
one of the metavertices. It is easy to see that if we never contract an edge
that crosses the minimum cut, then the two metavertices we end up with will
correspond to the two sides of the minimum cut we are looking for.

So our subgoal is to devise a method for selecting an edge that does not
cross the minimum cut. There are some sophisticated deterministic algorithms
for doing this [NI92], but unfortunately they are slow. We instead rely on the
following observation: almost none of the edges in a graph cross the minimum
cut. Thus, if we choose a random edge to contract, we probably get a non-min-
cut edge! This gives us a very fast edge selection algorithm; the trade-off is
that we must be prepared for it occasionally to make mistakes. We describe our
algorithm in Figure 1. Assume initially that we are given a multigraph G(V, E)
with n vertices and m edges. The Contraction Algorithm, which is described in
Figure 1, repeatedly chooses an edge at random and contracts it.



Algorithm Contract(G)

repeat until G has 2 vertices

choose an edge (v, w) uniformly at random from G

let G+ G/(v,w)

return the unique cut defined by (the contracted) G

Figure 1: The Contraction Algorithm

It is relatively straightforward to implement this algorithm in O(n?) time.

Lemma 3.1. A particular minimum cut in G is returned by the Contraction
Algorithm with probability at least (g)fl.

Proof. Fix attention on some specific minimum cut C' with ¢ crossing edges. We
will use the term minimum cut edge to refer only to edges crossing C. If we
never select a minimum cut edge during the Contraction Algorithm, then the
two vertices we end up with must define the minimum cut.

Observe that after each contraction, the minimum cut value in the new
graph must still be at least c. This is because every cut in the contracted graph
corresponds to a cut of the same value in the original graph, and thus has value
at least ¢. Furthermore, if we contract an edge (v,w) that does not cross C,
then the cut C corresponds to a cut of value ¢ in G/(v,w); this corresponding
cut is a minimum cut (of value ¢) in the contracted graph.

Each time we contract an edge, we reduce the number of vertices in the
graph by one. Consider the stage in which the graph has r vertices. Since
the contracted graph has a minimum cut of at least ¢, it must have minimum
degree ¢, and thus at least rc/2 edges. However, only c¢ of these edges are in
the minimum cut. Thus, a randomly chosen edge is in the minimum cut with
probability at most 2/r. To determine the probability that we never contract a
minimum cut edge, we simply multiply all of the per-stage probabilities. This
shows that the probability that we never contract a minimum cut edge through

all n — 2 contractions is at least
2 2 2 n—2 n—3 2 1
(-2 (-5) - (-5) - () 6=)- () 6)
\2

> 1/n%

O

Note that (;‘)71 ~ 1/n?, so the Contraction Algorithm described above has
a relatively small chance of succeeding. But it is large enough to be useful.

10



To improve our chance of success, we may simply repeat the algorithm a large
number of times. If we run the Contraction Algorithm n?Inn times, and take
the best answer we see, then the probability that we fail to give the right answer
is just the probability that none of the repetitions of the algorithm yield the
right answer, which is at most

(1—1/n?)" "n x5 1/n,

which means the algorithm works with high probability. This “amplification
through repetition” is standard for randomized algorithms: we can get an expo-
nential decrease in the failure probability from a linear slowdown in the running
time.

Since the Contraction Algorithm takes O(n?) time per iteration, we im-
mediately get an algorithm that finds a minimum cut with high probability
in O(n*logn) time. This is somewhat unsatisfactory, as algorithms based on
flow [HO94] can be used to find the minimum cut in O(mn) time.

3.1 The Recursive Contraction Algorithm

By adding another idea we can improve the running time of our minimum cut
algorithm to O(n?). We aim to “share work” among the numerous iterations of
the algorithm. Note that the failure probability of the Contraction Algorithm
rises as its size decreases. In fact, if we contract G until it has k vertices
rather than 2, then the probability that the algorithm does not destroy the
minimum cut of G exceeds (k/n)? (this follows by truncating the product we
used to analyze the original Contraction Algorithm). So the real problem with
the Contraction Algorithm arises when the graph has gotten small. We might
imagine switching over to a deterministic algorithm once the graph is small,
and indeed this approach yields improved performance. But we can do even
better with another application of the principle that “repetition improves your
chances.” When the graph gets small, in order to improve our odds of success,
we (recursively) carry out two executions of the algorithm on what remains.

Let Contract(G,k) denote a subroutine that runs the Contraction Algo-
rithm until G is reduced to k vertices. Consider the Recursive Contraction
Algorithm in Figure 2. As can be seen, we perform two independent trials. In
each, we first partially contract the graph, but not so much that the likelihood
of the cut surviving is too small. By contracting the graph until it has n/v/2
vertices, we ensure a 50% probability of not contracting a minimum cut edge,
so we expect that on the average one of the two attempts will avoid contracting
a minimum cut edge. We then recursively apply the algorithm to each of the
two partially contracted graphs. As described, the algorithm returns only a cut
value; it can easily be modified to return a cut of the given value. Alternatively,
we might want to output every cut encountered, hoping to enumerate all the
minimum cuts.

Next we analyze the running time of this algorithm.

Lemma 3.2. Algorithm Recursive-Contract runs in O(n?logn) time.

11



Algorithm Recursive-Contract(G,n)

input A graph G of size n.
if G has 2 vertices

then

return the weight of (unique) cut in G

else repeat twice

G' + Contract(G,n/\/2)
Recursive-Contract(G’',n/v/2).

return the smaller of the two resulting values.

Figure 2: The Recursive Contraction Algorithm

Proof. One level of recursion consists of two independent trials of contraction
of G ton/ V2 vertices followed by a recursive call. Performing a contraction to
n/ V2 vertices can be implemented by Algorithm Contract from the previous
section in O(n?) time. We thus have the following recurrence for the running
time:

T(n) =2 (n* + 7 (n/V2)). (1)
This recurrence is solved by
T(n) = O(n® logn).
O

We now analyze the probability that the algorithm finds the particular min-
imum cut we are looking for. We will say that the Recursive Contraction Algo-
rithm finds a certain minimum cut if that minimum cut corresponds to one of
the leaves in the algorithm’s tree of recursive calls. Note that if the algorithm
finds any minimum cut then it will output the minimum cut value.

Lemma 3.3. The Recursive Contraction Algorithm finds a particular minimum
cut with probability Q(1/logn).

Proof. We give a recursive argument. The algorithm will find a particular mini-
mum cut if, in one of its two iterations, the following two things happen: (i) the
call to Contract (G, n/+/2) preserves the minimum cut and (ii) the recursive call
finds the particular minimum cut. The probability that an iteration succeeds
is just the product of the probabilities of events (i) and (ii). The algorithm
succeeds if either iteration succeeds, and thus fails only if both iterations fail.
The probability this double failure happens is just the square of the probability
that one iteration fails. Thus the success probability is one minus this squared

12



quantity. This yields a recurrence P(n) for a lower bound on the probability of
success on a graph of size n:

P2 = 1
1 (1 - %P (n/\/§)>

We solve this recurrence through a change of variables. Write 2z, = 4/P(2F/2)—
1, so P(2%/?) = 4/(z; + 1). Plugging this into the above recurrence and solving
for z, yields

2

=~
<
v

z1 = 3
Zp+1 = zk+1+1/zk.

Since clearly z, > 1, it follows by induction that
k<zp<3+2
Thus z; = O(k) and thus that
P(n) =4/(2210gn + 1) = O(1/ logn).

In other words, one trial of the Recursive Contraction Algorithm finds any
particular minimum cut with probability (1/logn). O

Those familiar with branching processes might see that we are evaluating the
probability that the extinction of contracted graphs containing the minimum cut
does not occur before depth 2logmn.

Theorem 3.4 ([KS96]). All minimum cuts in an arbitrarily weighted undi-
rected graph with n vertices can be found with high probability in O(n?log® n)
time.

Proof. We will see below that there are at most (;‘) minimum cuts in a graph.

Repeating Recursive-Contract O(log®n) times gives an O(1/n*) chance of
missing any particular minimum cut. Thus our chance of missing any one of the
at most (};) minimum cuts is upper bounded by O((}) -n™*) = 0(1/n?). O

3.2 Counting Cuts

Besides serving as an algorithm to find minimum cuts, the Contraction Algo-
rithm tells us some interesting things about the number of minimum and, more
generally, small cuts in a graph. These results are extremely useful when we
consider our next topic, random sampling from graphs.

Definition 3.5. An a-minimum cut is a cut whose value is at most a times
that of the (global) minimum cut.

Lemma 3.6. There are at most (7;) < n® minimum cuts.

13



Proof. We showed that the Contraction Algorithm outputs a given minimum cut
with probability at least (g) - Suppose that there were more than & minimum
cuts. Each is output with probability k. Since these output events are disjoint
(the algorithm outputs only one cut), the probability that one of them is output
is just the sum of their individual probabilities, namely k/(%). This quantity,
being a probability, is at most one. So k < (}). O

Theorem 3.7 (Cut Counting [KS96]). In a graph with minimum cut ¢, there
are less than n*“ cuts of value at most ac.

Proof. If we consider a cut of value ac, we can prove (by generalizing the ar-
gument we gave for minimum cuts in the obvious way) that the Contraction
Algorithm outputs it with probability at least 1/n2®. The argument then pro-
ceeds as in the previous lemma. |

4 Random Sampling

So far we have addressed random selection, which works by finding a “typical”
element (eg a non-min-cut edge). We now turn to random sampling, where
the goal is to build a small representative model of our input problem. We
will describe algorithms for approximating and exactly finding maximum flows
and minimum cuts in an undirected graph. For simplicity, we will restrict our
discussion to graphs with unit-capacity edges (unweighted graphs) though many
of the techniques that we discuss can be applied to weighted graphs as well.
Due to space limitations, and because we are focusing on our thesis work rather
than later improvements, we present algorithms that only work well when the
minimum cut of the graph is large.

In unweighted graphs, the s-t mazimum flow problem is to find a maximum
set, or packing, of edge-disjoint s-t paths. It is known [FF62] that the value
of this flow is equal to the value of the minimum s-¢ cut. In fact, the only
known algorithms for finding an s-¢t minimum cut simply identify a cut that is
saturated by an s-t maximum flow.

In unweighted graphs, a classic algorithm for finding such a maximum flow
is the augmenting path algorithm (cf. [Tar83, AMO93]). Given a graph and
an s-t flow of value f, a linear-time depth first search of the so-called residual
graph will either show how to augment the flow to one of value f + 1 or prove
that f is the value of the maximum flow. This algorithm can be used to find
a maximum flow of value v in O(mv) time by finding v augmenting paths. Of
course, since the algorithm’s running time depends on the edge count and flow
value, we can make it faster by reducing one or both quantities. We show how
random sampling can be used to do this.

4.1 A Sampling Theorem

Our algorithms are all based upon the following model of random sampling
in graphs. We are given an unweighted graph G = (V, E) with a sampling

14



probability p for each edge e, and we construct a random subgraph, or skeleton,
on the same vertices V' by placing each edge e in the skeleton independently
with probability p. We denote the skeleton by G(p). Note that if a given cut
has k edges crossing it in G, then the expected number of edges crossing that
cut in G(p) is pk. In particular, if the s-t minimum cut in G has value v, then
we might expect that the s-t minimum cut in G(p) has value pv.

Unfortunately, samples invariably dewviate from their expectations. In order
to effectively make use of a skeleton, we need to show that these deviations
are small. If they are, then the skeleton will tell us things about the original
graph that are approximately correct. Let ¢ be the minimum cut of graph G.
Our main theorem says that so long as pc (the minimum expected cut value in
the skeleton) is sufficiently large, every cut in the skeleton takes on roughly its
expected value.

Theorem 4.1 ([Kar98c]). Lete = \/3(d + 2)(Inn)/pc (sop = O((lnn)/ec)).
If € < 1, then with probability 1 — O(1/n?), every cut in G(p) has value between
1 —¢€ and 1+ € times its expected value.

This result is somewhat surprising. A graph has exponentially many (2"!)
cuts. Naively, even if each cut is unlikely to deviate far from its expected value,
with so many cuts one probably will. We are saved by the cut counting theorem
discussed in the previous section. The central limit theorem (as quantified by
the Chernoff bound [Che52, MR95b]) says that as the expected value of a sample
gets larger, its sample value becomes more and more tightly concentrated about
its expectation. In particular, as a cut value grows, its probability of deviating
by a given ratio e from its expectation decays exponentially with the cut value.
The cut counting theorem says that the number of cuts of a given value increases
“only” exponentially with the cut value. The parameters of Theorem 4.1 are
chosen so that the exponential decrease in deviation probability dominates the
exponential increase in the number of cuts.

4.2 Applications

We now show how the skeleton approach can be applied to minimum cuts and
maximum flows. We use the following definitions:

Definition 4.2. An a-minimum s-t cut is an s-t cut whose value is at most «
times the value of the s-t minimum cut. An a-mazimum s-t flow is an s-t flow
whose value is at least a times the optimum.

We have the following immediate extension of Theorem 4.1:

Theorem 4.3. Let G be any graph with minimum cut ¢ and let p = O((Inn)/e>c)
as in Theorem 4.1. Suppose the s-t minimum cut of G has value v. Then with
high probability, the s-t minimum cut in G(p) has value between (1 — €)pv and
(1 + ¢)pv, and the minimum cut has value between (1 — €)pc and (1 + €)pc.

Corollary 4.4. Assuming ¢ < 1/2, the s-t min-cut in G(p) corresponds to a
(1 + 4e)-minimum s-t cut in G.

15



Proof. Assuming that Theorem 4.3 holds, the minimum cut in G is sampled to
a cut of value at most (1 + €)c in G(p). So G(p) has minimum cut no larger.
And (again by the previous theorem) this minimum cut corresponds to a cut of
value at most (14 ¢€)c/(1 —€) < (1 + 4€)c when € < 1/2. O

This means that if we use augmenting paths to find maximum flows in a
skeleton, we find them faster than in the original graph for two reasons: the
sampled graph has fewer edges, and the value of the maximum flow is smaller.
The maximum flow in the skeleton reveals an s-t minimum cut in the skeleton,
which corresponds to a near-minimum s-¢ cut of the original graph. An extension
of this idea lets us find near-maximum flows: we randomly partition the graph’s
edges into many groups (each a skeleton), find maximum flows in each group,
and then merge the skeleton flows into a flow in the original graph. Furthermore,
once we have an approximately maximum flow, we can turn it into a maximum
flow with a small number of augmenting path computations. This leads to an
algorithm called DAUG that finds a maximum flow in O(mwv+/(logn)/c) time,
improving on the basic augmenting paths algorithm when ¢ is large.

In the following subsections, we detail the algorithms we just sketched. We
lead into DAUG with some more straightforward algorithms.

4.2.1 Approximate s-t Minimum Cuts

The most obvious application of Theorem 4.3 is to approximate s-t minimum
cuts. We can find an approximate s-t minimum cut by finding an s-t minimum
cut in a skeleton.

Lemma 4.5. In a graph with minimum cut c, a ~(1 + €)-approzimation to the

s-t minimum cut of value v can be computed in O(mv/e3c®) time (with a low
probability of error).

Proof. Given ¢, determine the corresponding p = ©O((logn)/e*c) from The-
orem 4.3. Suppose we compute an s-t maximum flow in G(p). By Theo-
rem 4.3, 1/p times the value of the computed maximum flow gives a (1 + €)-
approximation to the s-t min-cut value (with high probability). Furthermore,
any flow-saturated (and thus s-t minimum) cut in G(p) will be a (14 €)-minimum
s-t cut in G.

By the Chernoff bound [Che52, MR95b], the skeleton has O(pm) edges (that
is, about its expectation) with high probability. Also, by Theorem 4.3, the s-t
minimum cut in the skeleton has value O(pv). Therefore, the standard aug-
menting path algorithm can find a skeletal s-t maximum flow in O((pm)(pv)) =
O(mwlog® n/e*c?) time. Our improved augmenting paths algorithm DAUG in
Section 4.2.4 lets us shave a factor of ©(y/pc/logn) = ©(1/¢) from this running
time, yielding the claimed bound. ]

4.2.2 Approximate Maximum Flows

A slight variation on the previous algorithm will compute approximate maxi-
mum flows.

16



Lemma 4.6. In a graph with minimum cut ¢ and s-t mazimum flow v, a (1—e)-
mazimum s-t flow can be found in O(mv/ec) time (with a low probability of
error).

Proof. Given p as determined by €, randomly partition the edges into 1/p groups,
creating 1/p graphs. Each graph looks like (has the distribution of) a p-skeleton,
and thus with high probability has an s-t minimum cut of value at least pv(1 —
€). It has an s-t maximum flow of the same value that can be computed in
O((pm)(pv)) time as in the previous section (the skeletons are not independent,
but even the sum of the probabilities that any one of them violates the sampling
theorem is negligible). Adding the 1/p flows that result gives a flow of value
v(1 —€). The running time is O((1/p)(pm)(pv)) = O(mv(logn)/e*c). If we use
our improved augmenting path algorithm DAUG in Section 4.2.4, we improve the
running time by an additional factor of ©(1/e), yielding the claimed bound. [

4.2,.3 A Las Vegas Algorithm

Our max-flow and min-cut approximation algorithms are both Monte Carlo,
since they are not guaranteed to give the correct output (though the error prob-
ability can be made arbitrarily small). However, by combining the two approx-
imation algorithms, we can certify the correctness of our results and obtain a
Las Vegas algorithm for both problems—one that is guaranteed to find the right
answer, but has a small probability of taking a long time to do so. This is a
standard example of turning a Monte Carlo (error-prone) algorithm into a Las
Vegas (correct but occasionally slow) one by checking the correctness of the
output and trying again if it is wrong.

Corollary 4.7. In a graph with minimum cut ¢ and s-t mazimum flow v, a (1-
€)-mazimum s-t flow and a (1 + €)-minimum s-t cut can be found in O(mv/ec)
time by a Las Vegas algorithm.

Proof. Run both the approximate min-cut and approximate max-flow algo-
rithms, obtaining (with high probability) a (1 — €/2)-maximum flow of value v
and a (1+¢/2)-minimum cut of value v;. We know that vy < v < vy, so to verify
the correctness of the results all we need do is check that (1+€/2)vg > (1—€/2)vy,
which happens with high probability. To make the algorithm Las Vegas, we re-
peat both algorithms until each demonstrates the other’s correctness (or switch
to a deterministic algorithm if the first randomized attempt fails). We are right
on the first try with high probability, so the algorithm runs fast with high prob-
ability. ]

4.2.4 Exact Maximum Flows

We now use the above sampling ideas to speed up the familiar augmenting paths
algorithm for maximum flows. This section is devoted to proving the following
theorem:

Theorem 4.8 ([Kar98c]). In a graph with minimum cut value c, a mazimum
flow of value v can be found in O(mwv/+\/c) time by a Las Vegas algorithm.

17



We assume for now that v > logn. Our approach is a randomized divide-
and-conquer algorithm that we analyze by treating each subproblem as a (non-
independent) random sample. This technique gives a general approach to solving
packing problems with an augmentation algorithm (including packing bases in
a matroid [Kar98b]). The flow that we are attempting to find can be seen as a
packing of disjoint s-t paths. We use the algorithm in Figure 3, which we call
DAUG (Divide-and-conquer AUGmentation).

1. Randomly split the edges of G into two groups (each edge goes to one or
the other group with probability 1/2), yielding graphs G; and Gs.

2. Recursively compute s-t maximum flows in G; and Gs.

3. Add the two flows, yielding an s-t flow f in G.

4. Use augmenting paths to increase f to a maximum flow.

Figure 3: Algorithm DAUG

Note that we cannot apply sampling in DAUG’s cleanup phase (Step 4) because
the residual graph we manipulate there is directed, while our sampling theorems
apply only to undirected graphs. We have left out a condition for terminating
the recursion; when the graph is sufficiently small (say with one edge) we use
the basic augmenting path algorithm.

The outcome of Steps 1-3 is a flow. Regardless of its value, Step 4 will
transform this flow into a maximum flow. Thus, our algorithm is clearly correct;
the only question is how fast it runs. Suppose the s-t maximum flow is v.
Consider GG;. Since each edge of G is in G; with probability 1/2, we can apply
Theorem 4.3 to deduce that with high probability the s-t maximum flow in G is
at least (v/2)(1 — O(y/1/c)) and the global minimum cut is ©(c/2). The same
holds for G2 (the two graphs are not independent, but this is irrelevant). It
follows that the flow f has value v(1 —O(1/1/c)) = v — O(v/+/c). Therefore the
number of augmentations that must be performed in G to make f a maximum
flow is O(v/+/c). Each augmentation takes O(m) time on an m-edge graph.
Intuitively, this suggests the following recurrence for the running time of the
algorithm in terms of m, v, and c:

T(m,v,c) = 2T (m/2,v/2,¢/2) + O(mv /).

(where we use the fact that each of the two subproblems expects to contain m /2
edges). If we solve this recurrence, it evaluates to T'(m, v, c) = O(mv/+/c).

Unfortunately, this argument does not constitute a proof because the actual
running time recurrence is in fact a probabilistic recurrence: the number of
edges and sizes of cuts in the subproblems are random variables not guaranteed
to equal their expectations. In particular, the recursion arguments is likely to
be false when ¢ = o(logn). Actually proving the result requires some additional
work [Kar98c].

18



5 Randomized Rounding

Next we turn to Randomized Rounding. Randomized Rounding is a powerful
method for approximately solving integer programming problems. The basic
idea is to take the values of some relazation of the problem (eg a linear pro-
gram) and use them to generate integer values that define a solution to the
integer program. There are two elements of a randomized rounding approach: a
good relaxation that preserves much of the structure of the original intractable
problem but can be solved efficiently, and a rounding strategy that transforms
the relaxed solution into an integer one (along with a proof that it works well).

We apply randomized rounding to two N P-complete problems: network
design and graph coloring. Both rounding approaches are slightly unusual. In
the network design problem, we simultaneously round against exponentially
many constraints. For graph coloring, we use semidefinite programming instead
of the more traditional linear programming to determine a structure-preserving
relaxation.

5.1 Network Design

The network design problem is a mirror to the minimum cut problem. The
input is a set of vertices and a collection of candidate edges, each of which can
be purchased for some specified cost. The goal is to design a network whose
cuts are “sufficiently large.” For example, one might wish to build (at minimum
cost) a network that is k-connected. Alternatively one might want a network
with sufficient capacity to route a certain amount of flow v between two vertices
s and t (thus, the network must have s-t minimum cut v). Network design
also covers many other classic problems, often N P-complete, including perfect
matching, minimum cost flow, Steiner tree, and minimum T-join. A minimum
cost 1-connected graph is just a minimum spanning tree, but for larger values
of k the minimum-cost k-connected graph problem is A/P-complete even when
all edge costs are 1 or infinity [ET76].

Whenever a network design problem can be formulated in terms of (lower
bound) constraints on the capacity or number of edges crossing each cut, one
can write it as an integer linear program with a 0/1 variable for each edge that
may be purchased and a constraint for each cut. To make the problem more
tractable, we can relax the requirement that variables take 0/1 values and allow
them to take fractional values in the interval [0, 1]. This gives rise to a linear
programming relaxation that can often be solved in polynomial time. Sometimes
the linear programs can be represented compactly and solved with standard
methods. At other times, even though the relaxation has exponentially many
constraints, it has a good separation oracle (e.g. a minimum cut computation
for the k-connected subgraph problem) and can thus be solved with the ellipsoid
algorithm.

Solving the relaxation yields a fractional solution. Randomized rounding is
used to convert the fractional solution back into an integral one. Given fractional
variable values x1,...,x,,, we convert them to integer values yi,...,ym by

19



setting y; = 1 with probability z; and 0 otherwise. Note that E[y;] = z;. It
follows that if az = b for some constraint vector a and scalar b, then E[ay] = b.
In other words, y is “expected” to satisfy then same constraint that = did.
The problem, of course, is that random experiment deviate somewhat from
their expectation. Raghavan and Thompson [RT87] showed that these devi-
ations are often (provably) small enough that the resulting rounded solution
is an approximately optimal solution to the integer program. Unfortunately,
their analysis is focused on problems with a small number of constraints, which
lets them argue that massive deviations from expectation are unlikely to hap-
pen. The network design problem has exponentially many constraints, so even
unlikely large deviations are likely to occur in some of them. Fortunately, an
analogue to our cut sampling theorem bounds these deviations, with the con-
clusion that randomized rounding can be applied to “fractional graphs” with
much the same approximation guarantees as the original Raghavan-Thompson
analysis. Among the results this yields is a 1 + O((logn)/k) approximation
algorithm for the minimum k-connected subgraph problem [Kar98c].

5.2 Graph Coloring

We also apply randomized rounding to the problem of graph coloring. This prob-
lem is N'P-complete and has recently been proven extremely hard even to ap-
proximate well on graphs with large chromatic number [LY93]. However, there
still remains some hope that it might be possible to do reasonably well coloring
a graph with small chromatic number. In our thesis, we focus on 3-colorable
graphs, and show how to color them with O(n1/4) colors. The technique extends
to give new performance ratios for graphs with larger chromatic number. This
work is joint with Rajeev Motwani and Madhu Sudan [KMS98] and built upon
the exciting work of Goemans and Williamson [GW95] on the maximum cut
problem. We later improved it in joint work with Avrim Blum [BK97].

To attack graph coloring, we turned to the recently developed technique
of semidefinite programming. Instead of rounding fractional-valued scalars to
integers, we round vectors. To illustrate, we describe the relaxation of our graph
coloring problem. We aim to assign a unit-length vector v; to each vertex i of
our graph such that for any two adjacent vertices ¢ and j, the dot product
v; -v; < —1/2. To see that this can be done to any three-colorable graph,
consider a “star” of three vectors on the unit circle with 120° angles between
them, for example (1,0), (=1/2,4/3/2), and (—1/2,—v/3/2). Each has unit
length and has dot product —1/2 with the other two vectors. Given a 3-colored
graph, we can solve the vector problem by assigning the first vector to all red
vertices, the second to all green, and the third to all blue vertices. This proves
that any 3-colorable graph has a feasible solution to our vector problem, which
means that it is a valid relaxation.

Solving the relaxation can be formulated as finding a feasible (vector) solu-
tion to the following semidefinite program (where E denotes the set of edges in

20



the graph G).

IN

—1/2if (i,j) € E

ViU = 1.

Ui " U5

The fact that such a system of constraints (on any linear combination of dot
products) can be solved (to within a negligibly small error) in polynomial time
is a difficult result [GLS88] which we can fortunately use as a black box.
Unfortunately, there are many feasible assignments to this semidefinite program—

most in a dimension much higher than 2. We cannot constrain the solution to
be two dimensional (and still solve the problem in polynomial time) so we must
decide how to take a high dimensional relaxed solution and transform it into a
coloring. Our method for doing so is quite straightforward: we choose a number
of random unit vectors as centers, and color vertex ¢ with the center closest to
v;. We show that if the number of centers is sufficiently large, no two adjacent
vertices are likely to be assigned to the same center—that is, we get a legal
coloring. The intuition behind our argument is simple. The vectors for adjacent
vertices ¢ and j point “away” from each other thanks to the semidefinite con-
straints. Thus, if ¢ is “near” a random center, j will be “far” from that center
and is thus likely to end up attached to some other center. Some technical ar-
guments involving Gaussian distributions suffice to prove that O(n'/*) centers
suffice to make the probabilities work out.

6 Monte Carlo Estimation

The last randomization technique we consider is Monte Carlo estimation. The
technique is applied when we want to estimate the probability p of a given
event over some probability space. Monte Carlo estimation carries out repeated
“trials” (samples from the probability space) and measures how often the given
event occurs. This gives a natural estimate of the event probability.

We use Monte-Carlo estimation to attack the all-terminal network reliability
problem: given a network on n vertices, each of whose m links is assumed to fail
(disappear) independently with some probability, determine the probability that
the surviving network is connected. The practical applications of this question
to communication networks are obvious, and the problem has therefore been the
subject of a great deal of study. A comprehensive survey can be found in [Col87].
As mentioned in Section 2, this problem is §P-hard to solve exactly, so we give
a fully polynomial randomized approzimation scheme (FPRAS) that gives an
answer accurate to within a relative error of € in time polynomial in n and 1/e.
Although our algorithm is quite general [Kar98d], we restrict discussion here to
the case where every edge fails independently with the same probability p. We
let FAIL(p) denote the failure probability of G when edges fail with probability
p.

The basic approach of our FPRAS is to consider two cases. When FAIL(p)
is large, we estimate it in polynomial time by direct Monte Carlo simulation

21



of edge failures. That is, we randomly fail edges and check whether the graph
remains connected. Since FAIL(p) is large, a small number of trials gives enough
data to estimate it well. When FAIL(p) is small, we show that we can focus
on the small cuts in a graph. We enumerate them with our cut algorithms and
then use a biased Monte Carlo estimation technique to determine their failure
probability.

Observe that a graph becomes disconnected precisely when all of the edges
in some cut of the graph fail. If each edge fails with probability p, then the
probability that a k-edge cut fails is p*¥. Thus, the smaller a cut, the more likely
it is to fail. It is therefore natural to focus attention on the small graph cuts.
In particular, the probability that the graph becomes disconnected is at least
p°¢ (since this is the probability that a minimum cut fails). At the same time,
the probability that any one a-minimum cut fails is p®¢.

We can now describe our two cases. When FAIL(p) > p° > n~3, we use direct
Monte Carlo simulation to estimate the failure probability. A single experiment
consists of flipping coins to see which edges fail and then checking whether the
graph is connected. If we carry out roughly (logn)/e?FAIL(p) = O(n®/€?) ex-
periments (a polynomial number), we will see about (logn)/e? failures. This
provides enough “evidence” to give a good estimate of the failure probabil-
ity [Che52, KLM89].

Unfortunately, when FAIL(p) is small, we need too many simulations to
develop a good baseline (note that we do not expect to see a single failure
until we perform 1/FAIL(p) experiments; this number can be super-polynomial).
We instead turn to an enumeration of the small cuts. When p¢ < n=3, we
know that a given a-minimum cut fails with probability p®¢ < n=3®. But we
argued in our Cut Counting theorem that the number of a-minimum cuts is
only n?®. It follows that the probability that any c-minimum cut fails is less
than n~“—that is, exponentially decreasing with «. Thus, for a relatively small
a, the probability that a greater than a-minimum cut fails is negligible. We
can therefore approximate FAIL(p) by approximating the probability that some
less than a-minimum cut fails. We do so by enumerating the q-minimum cuts
(using a modification of the Contraction Algorithm [KS96]) and then applying a
DNF' counting algorithm developed by Karp, Luby, and Madras [KLM89]. The
algorithm of [KLM89] is also based on Monte-Carlo methods, but uses biased
sampling to ensure that we see failures often so that a good estimate of their
likelihood can be constructed quickly. The contribution of our work is to show
that it is possible to build a small formula that can be fed to the DNF counting
algorithm to produce a meaningful answer.

7 Conclusion
Randomization has become an essential tool in the design of optimization al-
gorithms. Randomization leads to algorithms that are faster, simpler, and/or

better-performing than their deterministic counterparts. The basic techniques
of random selection, random sampling, randomized rounding and Monte Carlo

22



estimation let us draw on our intuitions about common cases and representa-
tive samples: whenever we expect that something should “usually” happen or
be “typical,” randomization may give us a way to turn our suspicion into an al-
gorithm. We have demonstrated this approach on numerous basic optimization
problems. But a great deal of work remains to be done.

The most direct open question is how far our particular results can be
pushed. The minimum spanning tree and minimum cut problems are essen-
tially “done,” one with a linear time algorithm and the other with a linear-times-
polylog time algorithm; but our results on s-¢ minimum cuts and maximum flows
seem very incomplete: no lower bounds are evident, and our upper bounds are
“odd” (e.g. O(n?*/?) for flows in simple graphs [KL98]) in ways that suggest
that it must be possible to improve them (e.g. to O(n?)). Our approximation
algorithms apply well to both capacitated and uncapacitated problems, but our
exact algorithms so far apply best to uncapacitated problems. We suspect that
more can be done here.

More questionable is whether any of our technology can be applied to di-
rected graphs. Absolutely none of the results discussed in this article extend
to directed graphs: the Contraction Algorithm fails on them, and as a result
we have been unable to prove a sampling theorem, a cut counting theorem (in
fact a directed graph can have exponentially many minimum cuts), a sampling
theorem, a rounding theorem, or anything about directed reliability. One pos-
sible explanation for this is that undirected graphs form natural matroids while
directed graphs do not [Kar98b].

Thinking more broadly, a fundamental question about randomization is
whether it is truly “necessary.” Often, after a randomized algorithm gives in-
sight into a problem, one can devise a deterministic algorithm with some of the
same properties. Within theoretical computer science, there is an entire subfield
devoted to derandomization—the development of techniques that will mechan-
ically convert a randomized algorithm into a deterministic one. For example,
the randomized rounding procedure for (polynomial size) linear programs can
be made deterministic [Rag88], as can our randomized rounding algorithm for
graph coloring [MR95a]. We have also derandomized our Contraction Algo-
rithm [KM97].

Even when it is possible to derandomize an algorithm, it may not be worth
doing so. The derandomization can add complexity, either computational (e.g.
in the case of the Contraction Algorithm, where the derandomization drastically
slows the algorithm) or conceptual (e.g. for randomized rounding, where the
intuitive expectation argument is replaced by a more complex numeric calcula-
tion).

However, there are still motivations for exploring the derandomization ques-
tion. Perhaps the strongest is the wish for an algorithm with predictable be-
havior. In a situation with lives at stake, it would be unsatisfactory to be right
most of the time, or usually fast enough. This problem is particularly acute
with our Monte Carlo algorithms, where one cannot even tell whether the an-
swer is correct! An obvious place to begin is the minimum cut problem, where
a Monte Carlo algorithm can solve the problem (with high probability) in O(m)

23



time but the best known deterministic running time is O(mn). Another spe-

cific question is whether there is a deterministic linear-time minimum spanning

tree algorithm (which would finally put the problem to rest for good). A more

abstract question is the following: we have proven that any graph has a sparse

“skeleton” that accurately approximates its cuts; this seems to have assorted

uses. Can such a skeleton be constructed deterministically in polynomial time?
Comments and questions on this survey are most welcome.

References

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.

[BK96] A. A. Benczir and D. R. Karger. Approximate st min-cuts in O(n?)
time. In G. Miller, editor, Proceedings of the 28t" ACM Symposium
on Theory of Computing, pages 47-55. ACM, ACM Press, May 1996.

[BK97] A. Blum and D. R. Karger. Improved approximation for graph col-
oring. Information Processing Letters, 61(1):49-53, January 1997.

[BK98] A. A. Benczur and D. R. Karger. Augmenting undirected edge con-
nectivity in O(n?) time. In H. Karloff, editor, Proceedings of the
9t" Annual ACM-SIAM Symposium on Discrete Algorithms, pages
500-509. ACM-SIAM, January 1998.

[Blu94| A. Blum. New approximation algorithms for graph coloring. Journal
of the ACM, 41(3):470-516, May 1994.

[CGKT97] C. C. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine, and
C. Stein. Experimental study of minimum cut algorithms. In
M. Saks, editor, Proceedings of the 8" Annual ACM-SIAM Sympo-
stum on Discrete Algorithms, pages 324-333. ACM-SIAM, January
1997.

[Cheb2] H. Chernoff. A measure of the asymptotic efficiency for tests of a hy-
pothesis based on the sum of observations. Annals of Mathematical
Statistics, 23:493-509, 1952.

[Col87] C. J. Colbourn. The Combinatorics of Network Reliability, volume 4
of The International Series of Monographs on Computer Science.
Oxford University Press, 1987.

[ET76] K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAM
Journal on Computing, 5:653—-665, 1976.

[FF62) L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton
University Press, Princeton, New Jersey, 1962.

24



[FR75]

[GGP*94]

[GGSTS6]

[GLSSS]

[GR97]

[GTSS]

[GW95]

[HO94]

[Hoa62]
[Kar94]

[Kar96]

[Kar98a]

R. W. Floyd and R. L. Rivest. Expected time bounds for selection.
Communications of the ACM, 18(3):165-172, 1975.

M. X. Goemans, A. Goldberg, S. Plotkin, D. Shmoys, E. Tardos,
and D. Williamson. Improved approximation algorithms for network
design problems. In D. D. Sleator, editor, Proceedings of the 5t
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 223—
232. ACM-SIAM, January 1994.

H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan. Efficient
algorithms for finding minimum spanning tree in undirected and
directed graphs. Combinatorica, 6:109-122, 1986.

M. Grétschel, L. Lovész, and A. Schrijver. Geometric Algorithms
and Combinatorial Optimization, volume 2 of Algorithms and Com-
binatorics. Springer-Verlag, 1988.

A. Goldberg and S. Rao. Beyond the flow decomposition barrier.
In Proceedings of the 30" Annual Symposium on the Foundations
of Computer Science, pages 2-11. IEEE, IEEE Computer Society
Press, October 1997.

A. V. Goldberg and R. E. Tarjan. A new approach to the maximum
flow problem. Journal of the ACM, 35:921-940, 1988.

M. X. Goemans and D. P. Williamson. Improved approximation al-
gorithms for maximum cut and satisfiability problems using semidef-
inite programming. Journal of the ACM, 1995.

Hao and Orlin. A faster algorithm for finding the minimum cut
in a directed graph. Journal of Algorithms, 17(3):424-446, 1994.
A preliminary version appeared in Proceedings of the 3¢ Annual
ACM-SIAM Symposium on Discrete Algorithms.

C. A. R. Hoare. Quicksort. Computer Journal, 5(1):10-15, 1962.

D. R. Karger. Random Sampling in Graph Optimization
Problems. PhD thesis, Stanford University, Stanford, CA
94305, 1994. Contact at karger@lcs.mit.edu. Available from
http://theory.lcs.mit.edu/"karger.

D. R. Karger. Minimum cuts in near-linear time. In G. Miller, editor,
Proceedings of the 28" ACM Symposium on Theory of Computing,
pages 56-63. ACM, ACM Press, May 1996.

D. R. Karger. Better random sampling algorithms for flows in undi-
rected graphs. In H. Karloff, editor, Proceedings of the 9" An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 490
499. ACM-SIAM, January 1998.

25



[Kar98b]

[Kar98c]

[Kar98d]

[Kar98e]

[KKT95)

[KL98

[KLMB8]

[KM97]

[KMS98]

[KS96]

[KT97]

D. R. Karger. Random sampling and greedy sparsification in matroid
optimization problems. Mathematical Programmming B, 82(1-2):41—
81, June 1998. A preliminary version appeared in Proceedings of the
34" Annual Symposium on the Foundations of Computer Science.

D. R. Karger. Random sampling in cut, flow, and network design
problems. Mathematics of Operations Research, 1998. To appear.
A preliminary version appeared in Proceedings of the 26" ACM
Symposium on Theory of Computing.

D. R. Karger. A randomized fully polynomial approximation scheme
for the all terminal network reliability problem. SIAM Journal on
Computing, 1998. To appear. A preliminary version appeared in
Proceedings of the 27t* ACM Symposium on Theory of Computing.

H. Karloff, editor. Proceedings of the 9" Annual ACM-SIAM Sym-
posium on Discrete Algorithms. ACM-SIAM, January 1998.

D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-
time algorithm to find minimum spanning trees. Journal of the
ACM, 42(2):321-328, 1995.

D. R. Karger and M. Levine. Finding maximum flows in simple
undirected graphs seems faster than bipartite matching. In Proceed-
ings of the 29'" ACM Symposium on Theory of Computing. ACM,
ACM Press, May 1998.

R. M. Karp, M. Luby, and N. Madras. Monte-carlo approxima-
tion algorithms for enumeration problems. Journal of Algorithms,
10(3):429-448, September 1989.

D. R. Karger and R. Motwani. Derandomization through approx-
imation: An NC algorithm for minimum cuts. SIAM Journal on
Computing, 26(1):255-272, 1997. A preliminary version appeared in
Proceedings of the 25" ACM Symposium on Theory of Computing,
p- 497.

D. R. Karger, R. Motwani, and M. Sudan. Approximate graph col-
oring by semidefinite programming. Journal of the ACM, 45(2):246—
265, March 1998.

D. R. Karger and C. Stein. A new approach to the minimum cut
problem. Journal of the ACM, 43(4):601-640, July 1996. Prelimi-
nary portions appeared in SODA 1992 and STOC 1993.

D. R. Karger and R. P. Tai. Implementing a fully polynomial
time approximation scheme for all terminal network reliability. In
M. Saks, editor, Proceedings of the 8" Annual ACM-SIAM Sympo-
stum on Discrete Algorithms, pages 334-343. ACM-SIAM, January
1997.

26



[LY93)

[Mil96]

[MR95a]

[MR95b]

[N192]

[Rag88]

[RTS7]

[Sak97]

[Tar83]

C. Lund and M. Yannakakis. On the hardness of approximating min-
imization problems. In A. Aggarwal, editor, Proceedings of the 25"
ACM Symposium on Theory of Computing, pages 286-293. ACM,
ACM Press, May 1993.

G. Miller, editor. Proceedings of the 28t" ACM Symposium on The-
ory of Computing. ACM, ACM Press, May 1996.

S. Mahajan and H. Ramesh. Derandomizing semidefinite program-
ming based approximation algorithms. In Proceedings of the 36"
Annual Symposium on the Foundations of Computer Science, pages
162-169. IEEE, IEEE Computer Society Press, October 1995.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, New York, NY, 1995.

H. Nagamochi and T. Ibaraki. Linear time algorithms for finding
k-edge connected and k-node connected spanning subgraphs. Algo-
rithmica, 7:583-596, 1992.

P. Raghavan. Probabilistic construction of deterministic algorithms:
Approximate packing integer programs. Journal of Computer and
System Sciences, 37(2):130—43, October 1988.

P. Raghavan and C. D. Thompson. Randomized rounding: a tech-
nique for provably good algorithms and algorithmic proofs. Combi-
natorica, 7(4):365-374, 1987.

M. Saks, editor. Proceedings of the 8" Annual ACM-SIAM Sympo-
stum on Discrete Algorithms. ACM-SIAM, January 1997.

R. E. Tarjan. Data Structures and Network Algorithms, volume 44
of CBMS-NSF Regional Conference Series in Applied Mathematics.
SIAM, 1983.

27



