
Randomization in Graph Optimization Problems:A SurveyDavid R. Karger�June 12, 1998AbstractRandomization has become a pervasive technique in combinatorial op-timization. We survey our thesis and subsequent work, which uses fourcommon randomization techniques to attack numerous optimization prob-lems on undirected graphs.1 IntroductionRandomization has become a pervasive technique in combinatorial optimization.Randomization has been used to develop algorithms that are faster, simpler,and/or better-performing than previous deterministic algorithms. This articlesurveys our thesis [Kar94], which presents randomized algorithms for numerousproblems on undirected graphs. Our work uses four important randomizationtechniques:Random Selection, which lets us easily choose a \typical" element of a set,avoiding rare \bad" elements;Random Sampling, which provides a quick way to build a small, representa-tive subproblem of a larger problem for quick analysis;Randomized Rounding, which lets us transform fractional problem solutionsinto integral ones; andMonte Carlo Simulation, which lets us estimate the probabilities of inter-esting events.�MIT Laboratory for Computer Science, Cambridge, MA 02138.email: karger@lcs.mit.eduURL: http://theory.lcs.mit.edu/�karger.Work supported in part by ARPA contract N00014-95-1-1246 and NSF contract CCR-9624239,and Fellowships from the Alfred P. Sloane and David and Lucille Packard Foundations.
1

We apply these techniques to numerous optimization problems on undirectedgraphs. The graph is one of the most common structures in computer sci-ence and optimization, modeling among other things roads, communication andtransportation networks, electrical circuits, relationships between individuals,hypertext collections, resource allocations, project plans, database and programdependencies, and parallel architectures. Among the graph problems we addressare �nding a minimum spanning tree, �nding a maximum ow, determining theconnectivity (minimum cut) of a graph, network design, graph coloring, andestimating the reliability (disconnection probability) of a network with randomedge failures. A great deal of work has been done on all of these problems. Dueto space limitations, we are unable to discuss all of this related work. Such adiscussion can be found in our thesis.It is extremely important to note that we are not carrying out \expectedcase" analysis of algorithms running on random inputs. Rather, we considerworst case inputs and use random choices by the algorithm to solve them e�-ciently.We begin this article with a survey of many of our applications of the fourrandomization techniques, sketching the methods, the problems, and the result-ing algorithms. Afterwards, we will present a more detailed discussion of a fewalgorithms and proofs which will hopefully give some avor of our work.1.1 NotationWe address only undirected graphs; directed graphs have so far not succumbedto the techniques we apply here. Throughout our discussion, we will considera graph G with m edges and n vertices. Each graph edge may have a weight(reecting cost or capacity) associated with it. To simplify our presentationhere, we often focus on unweighted graphs (that is, graphs with all edge weightsequal to one), though many of our algorithms apply equally well to weightedgraphs. Unless it has parallel edges (multiple edges with the same endpoints) agraph has m � �n2�:The notation ~O(f) denotes O(f logd n) for some constant d.1.2 Overview of ResultsWe show how randomization can be used in several ways on problems of varyingdegrees of di�culty. For the \easy to solve" minimum spanning tree problem,where a long line of research has resulted in ever closer to linear-time algorithms,random sampling gives the �nal small increment to a truly linear time algorithm.For harder problems it improves running times by a more signi�cant factor. Forexample, we improve the time needed to �nd minimum cuts from ~O(mn) to~O(m), and give the �rst e�cient parallel algorithm for the problem. Addressingsome hard NP-complete problems such as network design and graph coloring,where �nding an exact solution in polynomial time is thought to be hopeless,we use randomized rounding to give better approximation algorithms than werepreviously known. Finally, for the problem of determining the reliability of a2

network (a]P-complete problem which is thought to be \even harder" thanNP-complete ones) we use Monte Carlo simulation to give the �rst e�cientapproximation algorithm.1.3 Randomized AlgorithmsOur work deals with randomized algorithms. Our typical model is that the algo-rithm has a source of \random bits"|variables that are mutually independentand take on values 0 or 1 with probability 1/2 each. Extracting one random bitfrom the source is assumed to take constant time. If our algorithms use morecomplex operations, such as ipping biased coins or generating samples frommore complex distributions, we take into account the time needed to simulatethese operations in our unbiased-bit model. Event probabilities are taken overthe sample space of random bit strings produced by the random bit generator.An event occurs with high probability (w.h.p.) if on problems of size n it occurswith probability greater than (1 � 1nk) for some constant k > 1, and with lowprobability if its complement occurs with high probability.The random choices that an algorithmmakes can a�ect both its running timeand its correctness. An algorithm that has a �xed (deterministic) running timebut has a low probability of giving an incorrect answer is called Monte Carlo(MC). If the running time of the algorithm is a random variable but the correctanswer is given with certainty, then the algorithm is said to be Las Vegas (LV).Depending on the circumstances, one type of algorithm may be better than theother. However, a Las Vegas algorithm is \stronger" in the following sense.A Las Vegas algorithm can be made Monte Carlo by having it terminate withan arbitrary wrong answer if it exceeds the time bound f(n). Since the Las Ve-gas algorithm is unlikely to exceed its time bound, the converted algorithm isunlikely to give the wrong answer. On the other hand, there is no universalmethod for making a Monte Carlo algorithm into a Las Vegas one, and indeedsome of the algorithms we present are Monte Carlo with no Las Vegas versionapparent. The fundamental problem is that sometimes it is impossible to checkwhether an algorithm has given a correct answer. However, the failure proba-bility of a Monte Carlo optimization algorithm can be made arbitrarily smallby repeating it several times and taking the best answer; we shall see severalexamples of this below. In particular, we can reduce the failure probability sofar that other unavoidable events (such as a power failure) are more likely thanan incorrect answer.2 A Survey of Techniques and ResultsIn this section, we provide a high level overview of the four randomizationtechniques and the various algorithms we have been able to develop by usingthem.
3

2.1 Random SelectionThe �rst and simplest randomization technique we discuss is random selection.The intuition behind this idea is that a single randomly selected individual isprobably a \typical" representative of the entire population. Thus, randomselection provides a good way to avoid choosing rare \bad" elements. This isthe idea behind Quicksort [Hoa62], where the assumption is that the randomlyselected pivot will be neither extremely large nor extremely small, and willtherefore serve to separate the remaining elements into two roughly equal sizedgroups.We apply this idea in a new algorithm for �nding minimum cuts in undirectedgraphs. A cut is a partition of the graph vertices into two groups; the value ofthe cut is the number (or total weight) of edges with one endpoint in each group.The minimum cut problem is to identify a cut of minimum value. We distinguishthe (global) minimum cut from an s-t minimum cut which is required to separatetwo speci�c vertices s and t. Finding minimum cuts is of great importance inanalyzing network reliability and also plays a role in solving traveling salesmanand network design problems.We present the Recursive Contraction Algorithm (joint work with Cli�ordStein [KS96]). The idea behind our algorithm is simple: a randomly selectededge is unlikely to cross a particular minimum cut, so its endpoints are probablyon the same side. If we merge two vertices on the same side of this minimum cut,then we will not a�ect the minimum cut but will reduce the number of graphvertices by one. Therefore, we can �nd the minimum cut by repeatedly selectinga random edge and merging its endpoints until only two vertices remain andthe minimum cut becomes obvious.An e�cient implementation of the above idea leads to a strongly polyno-mial ~O(n2)-time algorithm for the minimum cut problem on weighted undi-rected graphs. In contrast, the best deterministic bound, due to Hao and Or-lin [HO94], is ~O(mn). Our algorithm actually �nds all minimum cuts withhigh probability. It extends to enumerating approximately minimum cuts andminimum k-way cuts for constant k, as well as to constructing the cactus of agraph (a compact representation of all its minimum cuts). The algorithm is the�rst with a theoretically good parallelization. A derandomization of the algo-rithm (joint with Rajeev Motwani [KM97]) gave the �rst proof that there wasa fast deterministic parallel algorithm for the minimum cut problem. An im-plementation experiment shows that the algorithm has reasonable time boundsin practice [CGK+97].The Contraction Algorithm is Monte Carlo: it gives the correct answer withhigh probability, but does have a small chance of being wrong. As we areunaware of any algorithm for verifying that a cut is minimum, we have beenunable to devise a Las Vegas version of the algorithm. This is a case where awillingness to occasionally be wrong seems to provide a signi�cant speedup.The Contraction Algorithm also gives an important new bound on the num-ber of small cuts a graph may contain; this has important applications in net-work reliability analysis and graph sampling (see below).4

In subsequent work [BK98], we used the Contraction Algorithm to e�cientlysolve the graph augmentation problem: adding the minimum possible capacityto a graph so as to increase its minimum cut to a given value (this work is jointwith Andras Bencz�ur).2.2 Random SamplingA more general use of randomization than random selection is to generate smallrepresentative subproblems. The representative random sample is a centralconcept of statistics. It is often possible to gather a great deal of informationabout a large population by examining a small sample randomly drawn from it.This approach has obvious advantages in reducing the investigator's work, bothin gathering and in analyzing the data.Given an optimization problem, it may be possible to generate a small rep-resentative subproblem by random sampling (perhaps the most natural samplefrom a graph is a random subset of its edges). Intuitively, such a subproblemshould form a microcosm of the larger problem. Our goal is to examine thesubproblem and use it to glean information about the original problem. Sincethe subproblem is small, we can spend proportionally more time examining itthan we would spend examining the original problem. In one approach that weuse frequently, an optimal solution to the subproblem may be a nearly optimalsolution to the problem as a whole. In some situations, such an approxima-tion might be su�cient. In other situations, it may be easy to re�ne this goodsolution into a truly optimal solution.Floyd and Rivest [FR75] use this approach in a fast and elegant algorithmfor �nding the median of an ordered set. They select a small random sample ofelements from the set and show how inspecting this sample gives a very accurateestimate of the value of the median. It is then easy to �nd the actual medianby examining only those elements close to the estimate. This algorithm, whichis very simple to implement, uses fewer comparisons than any other knownmedian-�nding algorithm.The Floyd-Rivest algorithm typi�es three components needed in a random-sampling algorithm. The �rst is a de�nition of a randomly sampled subproblem.The second is an approximation theorem that proves that a solution to the sub-problem is an approximate solution to the original problem. These two com-ponents by themselves will typically yield an obvious approximation algorithmwith a speed-accuracy tradeo�. The third component is a re�nement algo-rithm that takes the approximate solution and turns it into an actual solution.Combining these three components can yield an algorithm whose running timewill be determined by that of the re�nement algorithm; intuitively, re�nementshould be easier than computing a solution from scratch.In an application of this approach, we present the �rst (randomized) linear-time algorithm for �nding minimum spanning trees in the comparison-basedmodel of computation. This result reects joint work with Philip Klein andRobert E. Tarjan [KKT95]. A long stream of results reduced the best knowndeterministic time bound to almost linear [GGST86], but a linear time bound5

remained elusive. Our fundamental insight is that if we construct a subgraphof a graph by taking a random sample of the graph's edges, then the minimumspanning tree in the subgraph is a \nearly" minimum spanning tree of theentire graph. More precisely, very few graph edges can be used to improve thesample's minimum spanning tree. By examining these few edges, we can re�neour approximation into the actual minimum spanning tree at little additionalcost.We also apply sampling to the minimum cut problem and several otherrelated problems involving cuts in graphs, including maximum ows. The max-imum ow problem is perhaps the most widely studied of all graph optimizationproblems, having hundreds of applications. Given vertices s and t and capaci-tated edges, the goal is to ship the maximum quantity of material from s to twithout exceeding the capacities of the edges. The value of a graph's maximumow is completely determined by the value of the minimum s-t cut in the graph.We prove a cut sampling theorem that says that when we choose half agraph's edges at random we approximately halve the value of every cut. Inparticular, we halve the graph's connectivity and the value of all s-t minimumcuts and maximum ows. This theorem gives a random-sampling scheme forapproximating minimum cuts and maximum ows: compute the minimum cutand maximum ow in a random sample of the graph edges. Since the samplehas fewer edges, the computation is faster. At the same time, our samplingtheorems show that this approach gives accurate estimates of the correct values.If we want to get exact solutions rather than approximations, we still can useour samples as starting points to which we can apply inexpensive re�nementalgorithms. This leads to a simple randomized divide-and-conquer algorithmfor �nding exact maximum ows.We put our results on graph sampling into a larger framework by examiningsampling from matroids [Kar98b]. We generalize our minimum spanning treealgorithm to the problem of �nding a minimum cost matroid basis, and extendour cut-sampling and maximum ow results to the problem of matroid basispacking. Our techniques actually give a paradigm that can be applied to anypacking problem where the goal, given a collection of feasible subsets of a uni-verse, is to �nd a maximum collection of disjoint feasible subsets. For example,in the maximum ow problem, we are attempting to send units of ow from sto t. Each such unit of ow travels along a path from s to t, so the feasibleedge-sets are the s-t paths. We apply the sampling paradigm to the problem ofpacking disjoint bases in a matroid, and get faster algorithms for approximatingand exactly �nding optimum basis packings.We have continued to apply random sampling technique in work followingour thesis. Our recent results include:� An O(m log3 n)-time Monte Carlo algorithm for �nding minimum cuts [Kar96],� A compression algorithm that lets us transform any undirected graph intoa graph with ~O(n) edges but roughly the same cut values, speeding upany algorithm that depends only on cut values [BK96],6

� As an application, an O(n2 logn)-time Monte Carlo algorithm for �ndingany constant factor approximation to an s-t minimum cut [BK96],� An ~O(mpn)-time Las Vegas algorithm for �nding any constant factorapproximation to an s-t max-ow [Kar98a],� An ~O(n2:22)-time algorithm for �nding a maximum ow in a simple (un-capacitated) graph [KL98] (joint work with Matt Levine).All of these bounds are signi�cantly better than the best general time boundfor �nding maximum ows in directed graphs (~O(mn) for a strongly polynomialbound [GT88], and recently ~O(m3=2 logU) for a scaling algorithm of Goldbergand Rao [GR97]). This suggests that perhaps a better bound for maximum owcan be achieved, at least on undirected graphs.2.3 Randomized RoundingYet another powerful randomization technique is randomized rounding. Thisapproach is used to �nd approximate solutions to NP-hard integer programs.These problems typically ask for an assignment of 0/1 values to variables xisuch that linear constraints of the formPaixi = c are satis�ed. If we relax theinteger program, allowing each xi to take any real value between 0 and 1, we get alinear program that can be solved in polynomial time, giving values pi such thatPaipi = c. Raghavan and Thompson [RT87] observed that we could treat theresulting values pi as probabilities. If we randomly set xi = 1 with probability piand 0 otherwise, then the expected value ofP aixi isPaipi = c. Raghavan andThompson presented techniques for ensuring that the randomly chosen valuesdo in fact yield a sum near the expectation, thus giving approximately correctsolutions to the integer program. We can view randomized rounding as a wayof sampling randomly from a large space of answers, rather than subproblemsas before. Linear programming relaxation is used to construct an answer-spacein which most of the answers are good ones.We use our graph sampling theorems to apply randomized rounding to net-work design problems. Such a problem is speci�ed by an input graph G witheach edge assigned a cost. The goal is to output a subgraph of G satisfyingcertain connectivity requirements at minimum cost (measured as the sum ofthe costs of edges used). These requirements are described by specifying a min-imum number of edges that must cross each cut of G. This formulation easilycaptures many classic problems including perfect matching, minimum cost ow,Steiner tree, and minimum T-join. By applying randomized rounding, we im-prove the approximation bounds for a large class of network design problems,from O(log n) (due to Goemans et al [GGP+94]) to 1+ o(1) in some cases. Ourgraph sampling theorems provide the necessary tools for showing that random-ized rounding works well in this case.We also apply randomized rounding to the classic graph coloring problem. Nolinear programs have yet been devised that provide a useful fractional solution,so we use more powerful semide�nite programming as our starting point. We7

show that any 3-colorable graph can be colored in polynomial time with ~O(n1=4)colors, improving on the previous best bound of ~O(n3=8) [Blu94]. We also givepresently best results for k-colorable graphs. Along the way, we discover newproperties of the Lov�asz #-function, an object that has received a great deal ofattention because of its connections to graph coloring, cliques, and independentsets. This work is joint with Rajeev Motwani and Madhu Sudan [KMS98]. Wegave a slight improvement with Avrim Blum [BK97].2.4 Monte Carlo EstimationThe last randomization technique we consider is Monte Carlo estimation. Thetechnique is applied when we want to estimate the probability p of a given eventE over some probability space. Monte Carlo estimation carries out repeated\trials" (samples from the probability space) and measures in what fractionof the trials the event E occurs. This gives a natural estimate of the eventprobability.The Monte Carlo approach breaks down when the interesting probability pis very small. To estimate p, we need to carry out enough experiments to seeat least a few occurrences of E. But we expect to see a �rst occurrence onlyafter 1=p trials, which may be too many to carry out e�ciently. A solution tothis problem, explored by Karp, Luby and Madras [KLM89], is to carry outthe Monte Carlo simulation in a di�erent, \biased" way that makes the eventE more likely to occur, so that we can get by with fewer trials. The trick isto choose the new simulation so that it gives us useful information about theoriginal probability space.We apply this technique to the network reliability problem. In this problem,we are interested in estimating the probability that a network is disconnectedby random edge failures, so it is perhaps unsurprising that randomization isuseful. We are given a graph G whose edges fail randomly and independentlywith certain speci�ed probabilities. Our goal is to determine the probabilitythat the graph becomes disconnected by edge failures.Unfortunately, it is known to be]P-hard (even worse than NP-hard) toexactly determine the reliability of a network. But we use Monte Carlo meth-ods to give a fully polynomial randomized approximation scheme (FPRAS) forthe network reliability problem [Kar98d]. Given a failure probability p for theedges, our algorithm, in time polynomial in n and 1=�, returns a number Pthat estimates the probability FAIL(p) that the graph becomes disconnected.With high probability, P is in the range (1��)FAIL(p). The algorithm is MonteCarlo, meaning that the approximation is correct with high probability but thatit is not possible to verify its correctness. It generalizes to the case where theedge failure probabilities are di�erent, to computing the probability the graphfails to be k-connected (for any �xed k), and to the more general problem ofapproximating the Tutte Polynomial for a large family of graphs. Our algo-rithm is easy to implement and appears likely to have satisfactory time boundsin practice [Kar98d, CGK+97, KT97].A natural way to estimate a network's failure probability is to carry out8

numerous simulations of the edge failures and check how often the graph isdisconnected by them. But as mentioned above, this can take prohibitivelymany trials if the failure probability is extremely small. However, we use ourcut counting and sampling theorems to prove that when P is small, only thesmall cuts in a graph are signi�cantly likely to fail. We use our cut algorithmsto enumerate these small cuts and then use the biased Monte Carlo techniquedeveloped by Karp, Luby and Madras [KLM89] to estimate the probability theone of the explicitly enumerated cuts fails.3 The Contraction AlgorithmTo give some avor of our results, we begin by describing an algorithm for�nding a minimum cut in an undirected graph [KS96]. For simplicity we discussunweighted graphs, but the algorithm works equally well for graphs with edgeweights.The algorithm is based on the idea of contracting edges. Suppose we weresomehow able to identify an edge that did not cross the minimum cut. Thiswould tell us that both of its endpoints are on the same side of the cut. We canuse this information to simplify the graph by contracting the two endpoints.To contract two vertices v1 and v2 we replace them by a vertex v, and let theset of edges incident on v be the union of the sets of edges incident on v1 andv2. We do not merge edges from v1 and v2 that have the same other endpoint;instead, we allow multiple instances of those edges. However, we remove selfloops formed by edges originally connecting v1 to v2. Formally, we delete alledges (v1; v2), and replace each edge (v1; w) or (v2; w) with an edge (v; w). Therest of the graph remains unchanged. We will use G=(v1; v2) to denote graph Gwith edge (v1; v2) contracted (by contracting an edge, we will mean contractingthe two endpoints of the edge).Note that a contraction reduces the number of graph vertices by one. We canimagine repeatedly selecting and contracting edges until every vertex has beenmerged into one of two remaining \metavertices." These metavertices de�nea cut of the original graph: each side corresponds to the vertices contained inone of the metavertices. It is easy to see that if we never contract an edgethat crosses the minimum cut, then the two metavertices we end up with willcorrespond to the two sides of the minimum cut we are looking for.So our subgoal is to devise a method for selecting an edge that does notcross the minimum cut. There are some sophisticated deterministic algorithmsfor doing this [NI92], but unfortunately they are slow. We instead rely on thefollowing observation: almost none of the edges in a graph cross the minimumcut. Thus, if we choose a random edge to contract, we probably get a non-min-cut edge! This gives us a very fast edge selection algorithm; the trade-o� isthat we must be prepared for it occasionally to make mistakes. We describe ouralgorithm in Figure 1. Assume initially that we are given a multigraph G(V;E)with n vertices and m edges. The Contraction Algorithm, which is described inFigure 1, repeatedly chooses an edge at random and contracts it.9

Algorithm Contract(G)repeat until G has 2 verticeschoose an edge (v; w) uniformly at random from Glet G G=(v; w)return the unique cut de�ned by (the contracted) GFigure 1: The Contraction AlgorithmIt is relatively straightforward to implement this algorithm in O(n2) time.Lemma 3.1. A particular minimum cut in G is returned by the ContractionAlgorithm with probability at least �n2��1.Proof. Fix attention on some speci�c minimum cut C with c crossing edges. Wewill use the term minimum cut edge to refer only to edges crossing C. If wenever select a minimum cut edge during the Contraction Algorithm, then thetwo vertices we end up with must de�ne the minimum cut.Observe that after each contraction, the minimum cut value in the newgraph must still be at least c. This is because every cut in the contracted graphcorresponds to a cut of the same value in the original graph, and thus has valueat least c. Furthermore, if we contract an edge (v; w) that does not cross C,then the cut C corresponds to a cut of value c in G=(v; w); this correspondingcut is a minimum cut (of value c) in the contracted graph.Each time we contract an edge, we reduce the number of vertices in thegraph by one. Consider the stage in which the graph has r vertices. Sincethe contracted graph has a minimum cut of at least c, it must have minimumdegree c, and thus at least rc=2 edges. However, only c of these edges are inthe minimum cut. Thus, a randomly chosen edge is in the minimum cut withprobability at most 2=r. To determine the probability that we never contract aminimum cut edge, we simply multiply all of the per-stage probabilities. Thisshows that the probability that we never contract a minimum cut edge throughall n� 2 contractions is at least�1� 2n��1� 2n� 1� � � ��1� 23� = �n� 2n ��n� 3n� 1� � � ��24��13�= �n2��1� 1=n2:Note that �n2��1 � 1=n2, so the Contraction Algorithm described above hasa relatively small chance of succeeding. But it is large enough to be useful.10

To improve our chance of success, we may simply repeat the algorithm a largenumber of times. If we run the Contraction Algorithm n2 lnn times, and takethe best answer we see, then the probability that we fail to give the right answeris just the probability that none of the repetitions of the algorithm yield theright answer, which is at most(1� 1=n2)n2 lnn � 1=n;which means the algorithm works with high probability. This \ampli�cationthrough repetition" is standard for randomized algorithms: we can get an expo-nential decrease in the failure probability from a linear slowdown in the runningtime.Since the Contraction Algorithm takes O(n2) time per iteration, we im-mediately get an algorithm that �nds a minimum cut with high probabilityin O(n4 logn) time. This is somewhat unsatisfactory, as algorithms based onow [HO94] can be used to �nd the minimum cut in ~O(mn) time.3.1 The Recursive Contraction AlgorithmBy adding another idea we can improve the running time of our minimum cutalgorithm to ~O(n2). We aim to \share work" among the numerous iterations ofthe algorithm. Note that the failure probability of the Contraction Algorithmrises as its size decreases. In fact, if we contract G until it has k verticesrather than 2, then the probability that the algorithm does not destroy theminimum cut of G exceeds (k=n)2 (this follows by truncating the product weused to analyze the original Contraction Algorithm). So the real problem withthe Contraction Algorithm arises when the graph has gotten small. We mightimagine switching over to a deterministic algorithm once the graph is small,and indeed this approach yields improved performance. But we can do evenbetter with another application of the principle that \repetition improves yourchances." When the graph gets small, in order to improve our odds of success,we (recursively) carry out two executions of the algorithm on what remains.Let Contract(G; k) denote a subroutine that runs the Contraction Algo-rithm until G is reduced to k vertices. Consider the Recursive ContractionAlgorithm in Figure 2. As can be seen, we perform two independent trials. Ineach, we �rst partially contract the graph, but not so much that the likelihoodof the cut surviving is too small. By contracting the graph until it has n=p2vertices, we ensure a 50% probability of not contracting a minimum cut edge,so we expect that on the average one of the two attempts will avoid contractinga minimum cut edge. We then recursively apply the algorithm to each of thetwo partially contracted graphs. As described, the algorithm returns only a cutvalue; it can easily be modi�ed to return a cut of the given value. Alternatively,we might want to output every cut encountered, hoping to enumerate all theminimum cuts.Next we analyze the running time of this algorithm.Lemma 3.2. Algorithm Recursive-Contract runs in O(n2 logn) time.11

Algorithm Recursive-Contract(G;n)input A graph G of size n.if G has 2 verticesthen return the weight of (unique) cut in Gelse repeat twiceG0 Contract(G;n=p2)Recursive-Contract(G0; n=p2).return the smaller of the two resulting values.Figure 2: The Recursive Contraction AlgorithmProof. One level of recursion consists of two independent trials of contractionof G to n=p2 vertices followed by a recursive call. Performing a contraction ton=p2 vertices can be implemented by Algorithm Contract from the previoussection in O(n2) time. We thus have the following recurrence for the runningtime: T (n) = 2�n2 + T �n=p2�� : (1)This recurrence is solved by T (n) = O(n2 logn):We now analyze the probability that the algorithm �nds the particular min-imum cut we are looking for. We will say that the Recursive Contraction Algo-rithm �nds a certain minimum cut if that minimum cut corresponds to one ofthe leaves in the algorithm's tree of recursive calls. Note that if the algorithm�nds any minimum cut then it will output the minimum cut value.Lemma 3.3. The Recursive Contraction Algorithm �nds a particular minimumcut with probability
(1= logn).Proof. We give a recursive argument. The algorithm will �nd a particular mini-mum cut if, in one of its two iterations, the following two things happen: (i) thecall to Contract(G;n=p2) preserves the minimum cut and (ii) the recursive call�nds the particular minimum cut. The probability that an iteration succeedsis just the product of the probabilities of events (i) and (ii). The algorithmsucceeds if either iteration succeeds, and thus fails only if both iterations fail.The probability this double failure happens is just the square of the probabilitythat one iteration fails. Thus the success probability is one minus this squared12

quantity. This yields a recurrence P (n) for a lower bound on the probability ofsuccess on a graph of size n:P (2) = 1P (n) � 1��1� 12P �n=p2��2 :We solve this recurrence through a change of variables. Write zk = 4=P (2k=2)�1, so P (2k=2) = 4=(zk +1). Plugging this into the above recurrence and solvingfor zk yields z1 = 3zk+1 = zk + 1 + 1=zk:Since clearly zk � 1, it follows by induction thatk < zk < 3 + 2kThus zk = �(k) and thus thatP (n) = 4=(z2 logn + 1) = �(1= logn):In other words, one trial of the Recursive Contraction Algorithm �nds anyparticular minimum cut with probability
(1= logn).Those familiar with branching processes might see that we are evaluating theprobability that the extinction of contracted graphs containing the minimum cutdoes not occur before depth 2 logn.Theorem 3.4 ([KS96]). All minimum cuts in an arbitrarily weighted undi-rected graph with n vertices can be found with high probability in O(n2 log3 n)time.Proof. We will see below that there are at most �n2� minimum cuts in a graph.Repeating Recursive-Contract O(log2 n) times gives an O(1=n4) chance ofmissing any particular minimum cut. Thus our chance of missing any one of theat most �n2� minimum cuts is upper bounded by O(�n2� � n�4) = O(1=n2).3.2 Counting CutsBesides serving as an algorithm to �nd minimum cuts, the Contraction Algo-rithm tells us some interesting things about the number of minimum and, moregenerally, small cuts in a graph. These results are extremely useful when weconsider our next topic, random sampling from graphs.De�nition 3.5. An �-minimum cut is a cut whose value is at most � timesthat of the (global) minimum cut.Lemma 3.6. There are at most �n2� < n2 minimum cuts.13

Proof. We showed that the Contraction Algorithm outputs a given minimum cutwith probability at least �n2��1. Suppose that there were more than k minimumcuts. Each is output with probability k. Since these output events are disjoint(the algorithm outputs only one cut), the probability that one of them is outputis just the sum of their individual probabilities, namely k=�n2�. This quantity,being a probability, is at most one. So k � �n2�.Theorem 3.7 (Cut Counting [KS96]). In a graph with minimum cut c, thereare less than n2� cuts of value at most �c.Proof. If we consider a cut of value �c, we can prove (by generalizing the ar-gument we gave for minimum cuts in the obvious way) that the ContractionAlgorithm outputs it with probability at least 1=n2�. The argument then pro-ceeds as in the previous lemma.4 Random SamplingSo far we have addressed random selection, which works by �nding a \typical"element (eg a non-min-cut edge). We now turn to random sampling, wherethe goal is to build a small representative model of our input problem. Wewill describe algorithms for approximating and exactly �nding maximum owsand minimum cuts in an undirected graph. For simplicity, we will restrict ourdiscussion to graphs with unit-capacity edges (unweighted graphs) though manyof the techniques that we discuss can be applied to weighted graphs as well.Due to space limitations, and because we are focusing on our thesis work ratherthan later improvements, we present algorithms that only work well when theminimum cut of the graph is large.In unweighted graphs, the s-t maximum ow problem is to �nd a maximumset, or packing, of edge-disjoint s-t paths. It is known [FF62] that the valueof this ow is equal to the value of the minimum s-t cut. In fact, the onlyknown algorithms for �nding an s-t minimum cut simply identify a cut that issaturated by an s-t maximum ow.In unweighted graphs, a classic algorithm for �nding such a maximum owis the augmenting path algorithm (cf. [Tar83, AMO93]). Given a graph andan s-t ow of value f , a linear-time depth �rst search of the so-called residualgraph will either show how to augment the ow to one of value f + 1 or provethat f is the value of the maximum ow. This algorithm can be used to �nda maximum ow of value v in O(mv) time by �nding v augmenting paths. Ofcourse, since the algorithm's running time depends on the edge count and owvalue, we can make it faster by reducing one or both quantities. We show howrandom sampling can be used to do this.4.1 A Sampling TheoremOur algorithms are all based upon the following model of random samplingin graphs. We are given an unweighted graph G = (V;E) with a sampling14

probability p for each edge e, and we construct a random subgraph, or skeleton,on the same vertices V by placing each edge e in the skeleton independentlywith probability p. We denote the skeleton by G(p). Note that if a given cuthas k edges crossing it in G, then the expected number of edges crossing thatcut in G(p) is pk. In particular, if the s-t minimum cut in G has value v, thenwe might expect that the s-t minimum cut in G(p) has value pv.Unfortunately, samples invariably deviate from their expectations. In orderto e�ectively make use of a skeleton, we need to show that these deviationsare small. If they are, then the skeleton will tell us things about the originalgraph that are approximately correct. Let c be the minimum cut of graph G.Our main theorem says that so long as pc (the minimum expected cut value inthe skeleton) is su�ciently large, every cut in the skeleton takes on roughly itsexpected value.Theorem 4.1 ([Kar98c]). Let � =p3(d+ 2)(lnn)=pc (so p = �((lnn)=�2c)).If � � 1, then with probability 1�O(1=nd), every cut in G(p) has value between1� � and 1 + � times its expected value.This result is somewhat surprising. A graph has exponentially many (2n�1)cuts. Naively, even if each cut is unlikely to deviate far from its expected value,with so many cuts one probably will. We are saved by the cut counting theoremdiscussed in the previous section. The central limit theorem (as quanti�ed bythe Cherno� bound [Che52, MR95b]) says that as the expected value of a samplegets larger, its sample value becomes more and more tightly concentrated aboutits expectation. In particular, as a cut value grows, its probability of deviatingby a given ratio � from its expectation decays exponentially with the cut value.The cut counting theorem says that the number of cuts of a given value increases\only" exponentially with the cut value. The parameters of Theorem 4.1 arechosen so that the exponential decrease in deviation probability dominates theexponential increase in the number of cuts.4.2 ApplicationsWe now show how the skeleton approach can be applied to minimum cuts andmaximum ows. We use the following de�nitions:De�nition 4.2. An �-minimum s-t cut is an s-t cut whose value is at most �times the value of the s-t minimum cut. An �-maximum s-t ow is an s-t owwhose value is at least � times the optimum.We have the following immediate extension of Theorem 4.1:Theorem 4.3. Let G be any graph with minimum cut c and let p = �((lnn)=�2c)as in Theorem 4.1. Suppose the s-t minimum cut of G has value v. Then withhigh probability, the s-t minimum cut in G(p) has value between (1� �)pv and(1 + �)pv, and the minimum cut has value between (1� �)pc and (1 + �)pc.Corollary 4.4. Assuming � < 1=2, the s-t min-cut in G(p) corresponds to a(1 + 4�)-minimum s-t cut in G. 15

Proof. Assuming that Theorem 4.3 holds, the minimum cut in G is sampled toa cut of value at most (1 + �)c in G(p). So G(p) has minimum cut no larger.And (again by the previous theorem) this minimum cut corresponds to a cut ofvalue at most (1 + �)c=(1� �) < (1 + 4�)c when � < 1=2.This means that if we use augmenting paths to �nd maximum ows in askeleton, we �nd them faster than in the original graph for two reasons: thesampled graph has fewer edges, and the value of the maximum ow is smaller.The maximum ow in the skeleton reveals an s-t minimum cut in the skeleton,which corresponds to a near-minimum s-t cut of the original graph. An extensionof this idea lets us �nd near-maximum ows: we randomly partition the graph'sedges into many groups (each a skeleton), �nd maximum ows in each group,and then merge the skeleton ows into a ow in the original graph. Furthermore,once we have an approximately maximum ow, we can turn it into a maximumow with a small number of augmenting path computations. This leads to analgorithm called DAUG that �nds a maximum ow in O(mvp(logn)=c) time,improving on the basic augmenting paths algorithm when c is large.In the following subsections, we detail the algorithms we just sketched. Welead into DAUG with some more straightforward algorithms.4.2.1 Approximate s-t Minimum CutsThe most obvious application of Theorem 4.3 is to approximate s-t minimumcuts. We can �nd an approximate s-t minimum cut by �nding an s-t minimumcut in a skeleton.Lemma 4.5. In a graph with minimum cut c, a (1 + �)-approximation to thes-t minimum cut of value v can be computed in ~O(mv=�3c2) time (with a lowprobability of error).Proof. Given �, determine the corresponding p = �((logn)=�2c) from The-orem 4.3. Suppose we compute an s-t maximum ow in G(p). By Theo-rem 4.3, 1=p times the value of the computed maximum ow gives a (1 + �)-approximation to the s-t min-cut value (with high probability). Furthermore,any ow-saturated (and thus s-tminimum) cut in G(p) will be a (1+�)-minimums-t cut in G.By the Cherno� bound [Che52, MR95b], the skeleton has O(pm) edges (thatis, about its expectation) with high probability. Also, by Theorem 4.3, the s-tminimum cut in the skeleton has value O(pv). Therefore, the standard aug-menting path algorithm can �nd a skeletal s-t maximum ow in O((pm)(pv)) =O(mv log2 n=�4c2) time. Our improved augmenting paths algorithm DAUG inSection 4.2.4 lets us shave a factor of �(ppc= logn) = �(1=�) from this runningtime, yielding the claimed bound.4.2.2 Approximate Maximum FlowsA slight variation on the previous algorithm will compute approximate maxi-mum ows. 16

Lemma 4.6. In a graph with minimum cut c and s-t maximum ow v, a (1��)-maximum s-t ow can be found in ~O(mv=�c) time (with a low probability oferror).Proof. Given p as determined by �, randomly partition the edges into 1=p groups,creating 1=p graphs. Each graph looks like (has the distribution of) a p-skeleton,and thus with high probability has an s-t minimum cut of value at least pv(1��). It has an s-t maximum ow of the same value that can be computed inO((pm)(pv)) time as in the previous section (the skeletons are not independent,but even the sum of the probabilities that any one of them violates the samplingtheorem is negligible). Adding the 1=p ows that result gives a ow of valuev(1� �). The running time is O((1=p)(pm)(pv)) = O(mv(log n)=�2c). If we useour improved augmenting path algorithm DAUG in Section 4.2.4, we improve therunning time by an additional factor of �(1=�), yielding the claimed bound.4.2.3 A Las Vegas AlgorithmOur max-ow and min-cut approximation algorithms are both Monte Carlo,since they are not guaranteed to give the correct output (though the error prob-ability can be made arbitrarily small). However, by combining the two approx-imation algorithms, we can certify the correctness of our results and obtain aLas Vegas algorithm for both problems|one that is guaranteed to �nd the rightanswer, but has a small probability of taking a long time to do so. This is astandard example of turning a Monte Carlo (error-prone) algorithm into a LasVegas (correct but occasionally slow) one by checking the correctness of theoutput and trying again if it is wrong.Corollary 4.7. In a graph with minimum cut c and s-t maximum ow v, a (1��)-maximum s-t ow and a (1 + �)-minimum s-t cut can be found in ~O(mv=�c)time by a Las Vegas algorithm.Proof. Run both the approximate min-cut and approximate max-ow algo-rithms, obtaining (with high probability) a (1� �=2)-maximum ow of value v0and a (1+�=2)-minimum cut of value v1. We know that v0 � v � v1, so to verifythe correctness of the results all we need do is check that (1+�=2)v0 � (1��=2)v1,which happens with high probability. To make the algorithm Las Vegas, we re-peat both algorithms until each demonstrates the other's correctness (or switchto a deterministic algorithm if the �rst randomized attempt fails). We are righton the �rst try with high probability, so the algorithm runs fast with high prob-ability.4.2.4 Exact Maximum FlowsWe now use the above sampling ideas to speed up the familiar augmenting pathsalgorithm for maximum ows. This section is devoted to proving the followingtheorem:Theorem 4.8 ([Kar98c]). In a graph with minimum cut value c, a maximumow of value v can be found in ~O(mv=pc) time by a Las Vegas algorithm.17

We assume for now that v � logn. Our approach is a randomized divide-and-conquer algorithm that we analyze by treating each subproblem as a (non-independent) random sample. This technique gives a general approach to solvingpacking problems with an augmentation algorithm (including packing bases ina matroid [Kar98b]). The ow that we are attempting to �nd can be seen as apacking of disjoint s-t paths. We use the algorithm in Figure 3, which we callDAUG (Divide-and-conquer AUGmentation).1. Randomly split the edges of G into two groups (each edge goes to one orthe other group with probability 1=2), yielding graphs G1 and G2.2. Recursively compute s-t maximum ows in G1 and G2.3. Add the two ows, yielding an s-t ow f in G.4. Use augmenting paths to increase f to a maximum ow.Figure 3: Algorithm DAUGNote that we cannot apply sampling in DAUG's cleanup phase (Step 4) becausethe residual graph we manipulate there is directed, while our sampling theoremsapply only to undirected graphs. We have left out a condition for terminatingthe recursion; when the graph is su�ciently small (say with one edge) we usethe basic augmenting path algorithm.The outcome of Steps 1{3 is a ow. Regardless of its value, Step 4 willtransform this ow into a maximum ow. Thus, our algorithm is clearly correct;the only question is how fast it runs. Suppose the s-t maximum ow is v.Consider G1. Since each edge of G is in G1 with probability 1=2, we can applyTheorem 4.3 to deduce that with high probability the s-t maximum ow in G1 isat least (v=2)(1� ~O(p1=c)) and the global minimum cut is �(c=2). The sameholds for G2 (the two graphs are not independent, but this is irrelevant). Itfollows that the ow f has value v(1� ~O(1=pc)) = v� ~O(v=pc). Therefore thenumber of augmentations that must be performed in G to make f a maximumow is ~O(v=pc). Each augmentation takes O(m) time on an m-edge graph.Intuitively, this suggests the following recurrence for the running time of thealgorithm in terms of m, v, and c:T (m; v; c) = 2T (m=2; v=2; c=2)+ ~O(mv=pc):(where we use the fact that each of the two subproblems expects to contain m=2edges). If we solve this recurrence, it evaluates to T (m; v; c) = ~O(mv=pc).Unfortunately, this argument does not constitute a proof because the actualrunning time recurrence is in fact a probabilistic recurrence: the number ofedges and sizes of cuts in the subproblems are random variables not guaranteedto equal their expectations. In particular, the recursion arguments is likely tobe false when c = o(logn). Actually proving the result requires some additionalwork [Kar98c]. 18

5 Randomized RoundingNext we turn to Randomized Rounding. Randomized Rounding is a powerfulmethod for approximately solving integer programming problems. The basicidea is to take the values of some relaxation of the problem (eg a linear pro-gram) and use them to generate integer values that de�ne a solution to theinteger program. There are two elements of a randomized rounding approach: agood relaxation that preserves much of the structure of the original intractableproblem but can be solved e�ciently, and a rounding strategy that transformsthe relaxed solution into an integer one (along with a proof that it works well).We apply randomized rounding to two NP-complete problems: networkdesign and graph coloring. Both rounding approaches are slightly unusual. Inthe network design problem, we simultaneously round against exponentiallymany constraints. For graph coloring, we use semide�nite programming insteadof the more traditional linear programming to determine a structure-preservingrelaxation.5.1 Network DesignThe network design problem is a mirror to the minimum cut problem. Theinput is a set of vertices and a collection of candidate edges, each of which canbe purchased for some speci�ed cost. The goal is to design a network whosecuts are \su�ciently large." For example, one might wish to build (at minimumcost) a network that is k-connected. Alternatively one might want a networkwith su�cient capacity to route a certain amount of ow v between two verticess and t (thus, the network must have s-t minimum cut v). Network designalso covers many other classic problems, often NP-complete, including perfectmatching, minimum cost ow, Steiner tree, and minimum T-join. A minimumcost 1-connected graph is just a minimum spanning tree, but for larger valuesof k the minimum-cost k-connected graph problem is NP-complete even whenall edge costs are 1 or in�nity [ET76].Whenever a network design problem can be formulated in terms of (lowerbound) constraints on the capacity or number of edges crossing each cut, onecan write it as an integer linear program with a 0/1 variable for each edge thatmay be purchased and a constraint for each cut. To make the problem moretractable, we can relax the requirement that variables take 0/1 values and allowthem to take fractional values in the interval [0; 1]. This gives rise to a linearprogramming relaxation that can often be solved in polynomial time. Sometimesthe linear programs can be represented compactly and solved with standardmethods. At other times, even though the relaxation has exponentially manyconstraints, it has a good separation oracle (e.g. a minimum cut computationfor the k-connected subgraph problem) and can thus be solved with the ellipsoidalgorithm.Solving the relaxation yields a fractional solution. Randomized rounding isused to convert the fractional solution back into an integral one. Given fractionalvariable values x1; : : : ; xm, we convert them to integer values y1; : : : ; ym by19

setting yi = 1 with probability xi and 0 otherwise. Note that E[yi] = xi. Itfollows that if ax = b for some constraint vector a and scalar b, then E[ay] = b.In other words, y is \expected" to satisfy then same constraint that x did.The problem, of course, is that random experiment deviate somewhat fromtheir expectation. Raghavan and Thompson [RT87] showed that these devi-ations are often (provably) small enough that the resulting rounded solutionis an approximately optimal solution to the integer program. Unfortunately,their analysis is focused on problems with a small number of constraints, whichlets them argue that massive deviations from expectation are unlikely to hap-pen. The network design problem has exponentially many constraints, so evenunlikely large deviations are likely to occur in some of them. Fortunately, ananalogue to our cut sampling theorem bounds these deviations, with the con-clusion that randomized rounding can be applied to \fractional graphs" withmuch the same approximation guarantees as the original Raghavan-Thompsonanalysis. Among the results this yields is a 1 + O((logn)=k) approximationalgorithm for the minimum k-connected subgraph problem [Kar98c].5.2 Graph ColoringWe also apply randomized rounding to the problem of graph coloring. This prob-lem is NP-complete and has recently been proven extremely hard even to ap-proximate well on graphs with large chromatic number [LY93]. However, therestill remains some hope that it might be possible to do reasonably well coloringa graph with small chromatic number. In our thesis, we focus on 3-colorablegraphs, and show how to color them with ~O(n1=4) colors. The technique extendsto give new performance ratios for graphs with larger chromatic number. Thiswork is joint with Rajeev Motwani and Madhu Sudan [KMS98] and built uponthe exciting work of Goemans and Williamson [GW95] on the maximum cutproblem. We later improved it in joint work with Avrim Blum [BK97].To attack graph coloring, we turned to the recently developed techniqueof semide�nite programming. Instead of rounding fractional-valued scalars tointegers, we round vectors. To illustrate, we describe the relaxation of our graphcoloring problem. We aim to assign a unit-length vector vi to each vertex i ofour graph such that for any two adjacent vertices i and j, the dot productvi � vj � �1=2. To see that this can be done to any three-colorable graph,consider a \star" of three vectors on the unit circle with 120� angles betweenthem, for example (1; 0), (�1=2;p3=2), and (�1=2;�p3=2). Each has unitlength and has dot product �1=2 with the other two vectors. Given a 3-coloredgraph, we can solve the vector problem by assigning the �rst vector to all redvertices, the second to all green, and the third to all blue vertices. This provesthat any 3-colorable graph has a feasible solution to our vector problem, whichmeans that it is a valid relaxation.Solving the relaxation can be formulated as �nding a feasible (vector) solu-tion to the following semide�nite program (where E denotes the set of edges in20

the graph G). vi � vj � �1=2 if (i; j) 2 Evi � vi = 1:The fact that such a system of constraints (on any linear combination of dotproducts) can be solved (to within a negligibly small error) in polynomial timeis a di�cult result [GLS88] which we can fortunately use as a black box.Unfortunately, there are many feasible assignments to this semide�nite program|most in a dimension much higher than 2. We cannot constrain the solution tobe two dimensional (and still solve the problem in polynomial time) so we mustdecide how to take a high dimensional relaxed solution and transform it into acoloring. Our method for doing so is quite straightforward: we choose a numberof random unit vectors as centers, and color vertex i with the center closest tovi. We show that if the number of centers is su�ciently large, no two adjacentvertices are likely to be assigned to the same center|that is, we get a legalcoloring. The intuition behind our argument is simple. The vectors for adjacentvertices i and j point \away" from each other thanks to the semide�nite con-straints. Thus, if i is \near" a random center, j will be \far" from that centerand is thus likely to end up attached to some other center. Some technical ar-guments involving Gaussian distributions su�ce to prove that ~O(n1=4) centerssu�ce to make the probabilities work out.6 Monte Carlo EstimationThe last randomization technique we consider is Monte Carlo estimation. Thetechnique is applied when we want to estimate the probability p of a givenevent over some probability space. Monte Carlo estimation carries out repeated\trials" (samples from the probability space) and measures how often the givenevent occurs. This gives a natural estimate of the event probability.We use Monte-Carlo estimation to attack the all-terminal network reliabilityproblem: given a network on n vertices, each of whose m links is assumed to fail(disappear) independently with some probability, determine the probability thatthe surviving network is connected. The practical applications of this questionto communication networks are obvious, and the problem has therefore been thesubject of a great deal of study. A comprehensive survey can be found in [Col87].As mentioned in Section 2, this problem is]P-hard to solve exactly, so we givea fully polynomial randomized approximation scheme (FPRAS) that gives ananswer accurate to within a relative error of � in time polynomial in n and 1=�.Although our algorithm is quite general [Kar98d], we restrict discussion here tothe case where every edge fails independently with the same probability p. Welet FAIL(p) denote the failure probability of G when edges fail with probabilityp. The basic approach of our FPRAS is to consider two cases. When FAIL(p)is large, we estimate it in polynomial time by direct Monte Carlo simulation21

of edge failures. That is, we randomly fail edges and check whether the graphremains connected. Since FAIL(p) is large, a small number of trials gives enoughdata to estimate it well. When FAIL(p) is small, we show that we can focuson the small cuts in a graph. We enumerate them with our cut algorithms andthen use a biased Monte Carlo estimation technique to determine their failureprobability.Observe that a graph becomes disconnected precisely when all of the edgesin some cut of the graph fail. If each edge fails with probability p, then theprobability that a k-edge cut fails is pk. Thus, the smaller a cut, the more likelyit is to fail. It is therefore natural to focus attention on the small graph cuts.In particular, the probability that the graph becomes disconnected is at leastpc (since this is the probability that a minimum cut fails). At the same time,the probability that any one �-minimum cut fails is p�c.We can now describe our two cases. When FAIL(p) � pc � n�3, we use directMonte Carlo simulation to estimate the failure probability. A single experimentconsists of ipping coins to see which edges fail and then checking whether thegraph is connected. If we carry out roughly (log n)=�2FAIL(p) = ~O(n3=�2) ex-periments (a polynomial number), we will see about (logn)=�2 failures. Thisprovides enough \evidence" to give a good estimate of the failure probabil-ity [Che52, KLM89].Unfortunately, when FAIL(p) is small, we need too many simulations todevelop a good baseline (note that we do not expect to see a single failureuntil we perform 1=FAIL(p) experiments; this number can be super-polynomial).We instead turn to an enumeration of the small cuts. When pc � n�3, weknow that a given �-minimum cut fails with probability p�c � n�3�. But weargued in our Cut Counting theorem that the number of �-minimum cuts isonly n2�. It follows that the probability that any �-minimum cut fails is lessthan n��|that is, exponentially decreasing with �. Thus, for a relatively small�, the probability that a greater than �-minimum cut fails is negligible. Wecan therefore approximate FAIL(p) by approximating the probability that someless than �-minimum cut fails. We do so by enumerating the �-minimum cuts(using a modi�cation of the Contraction Algorithm [KS96]) and then applying aDNF counting algorithm developed by Karp, Luby, and Madras [KLM89]. Thealgorithm of [KLM89] is also based on Monte-Carlo methods, but uses biasedsampling to ensure that we see failures often so that a good estimate of theirlikelihood can be constructed quickly. The contribution of our work is to showthat it is possible to build a small formula that can be fed to the DNF countingalgorithm to produce a meaningful answer.7 ConclusionRandomization has become an essential tool in the design of optimization al-gorithms. Randomization leads to algorithms that are faster, simpler, and/orbetter-performing than their deterministic counterparts. The basic techniquesof random selection, random sampling, randomized rounding and Monte Carlo22

estimation let us draw on our intuitions about common cases and representa-tive samples: whenever we expect that something should \usually" happen orbe \typical," randomization may give us a way to turn our suspicion into an al-gorithm. We have demonstrated this approach on numerous basic optimizationproblems. But a great deal of work remains to be done.The most direct open question is how far our particular results can bepushed. The minimum spanning tree and minimum cut problems are essen-tially \done," one with a linear time algorithm and the other with a linear-times-polylog time algorithm; but our results on s-tminimum cuts and maximum owsseem very incomplete: no lower bounds are evident, and our upper bounds are\odd" (e.g. ~O(n20=9) for ows in simple graphs [KL98]) in ways that suggestthat it must be possible to improve them (e.g. to O(n2)). Our approximationalgorithms apply well to both capacitated and uncapacitated problems, but ourexact algorithms so far apply best to uncapacitated problems. We suspect thatmore can be done here.More questionable is whether any of our technology can be applied to di-rected graphs. Absolutely none of the results discussed in this article extendto directed graphs: the Contraction Algorithm fails on them, and as a resultwe have been unable to prove a sampling theorem, a cut counting theorem (infact a directed graph can have exponentially many minimum cuts), a samplingtheorem, a rounding theorem, or anything about directed reliability. One pos-sible explanation for this is that undirected graphs form natural matroids whiledirected graphs do not [Kar98b].Thinking more broadly, a fundamental question about randomization iswhether it is truly \necessary." Often, after a randomized algorithm gives in-sight into a problem, one can devise a deterministic algorithm with some of thesame properties. Within theoretical computer science, there is an entire sub�elddevoted to derandomization|the development of techniques that will mechan-ically convert a randomized algorithm into a deterministic one. For example,the randomized rounding procedure for (polynomial size) linear programs canbe made deterministic [Rag88], as can our randomized rounding algorithm forgraph coloring [MR95a]. We have also derandomized our Contraction Algo-rithm [KM97].Even when it is possible to derandomize an algorithm, it may not be worthdoing so. The derandomization can add complexity, either computational (e.g.in the case of the Contraction Algorithm, where the derandomization drasticallyslows the algorithm) or conceptual (e.g. for randomized rounding, where theintuitive expectation argument is replaced by a more complex numeric calcula-tion).However, there are still motivations for exploring the derandomization ques-tion. Perhaps the strongest is the wish for an algorithm with predictable be-havior. In a situation with lives at stake, it would be unsatisfactory to be rightmost of the time, or usually fast enough. This problem is particularly acutewith our Monte Carlo algorithms, where one cannot even tell whether the an-swer is correct! An obvious place to begin is the minimum cut problem, wherea Monte Carlo algorithm can solve the problem (with high probability) in ~O(m)23

time but the best known deterministic running time is ~O(mn). Another spe-ci�c question is whether there is a deterministic linear-time minimum spanningtree algorithm (which would �nally put the problem to rest for good). A moreabstract question is the following: we have proven that any graph has a sparse\skeleton" that accurately approximates its cuts; this seems to have assorteduses. Can such a skeleton be constructed deterministically in polynomial time?Comments and questions on this survey are most welcome.References[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows:Theory, Algorithms, and Applications. Prentice Hall, 1993.[BK96] A. A. Bencz�ur and D. R. Karger. Approximate s{tmin-cuts in ~O(n2)time. In G. Miller, editor, Proceedings of the 28th ACM Symposiumon Theory of Computing, pages 47{55. ACM, ACM Press, May 1996.[BK97] A. Blum and D. R. Karger. Improved approximation for graph col-oring. Information Processing Letters, 61(1):49{53, January 1997.[BK98] A. A. Bencz�ur and D. R. Karger. Augmenting undirected edge con-nectivity in ~O(n2) time. In H. Karlo�, editor, Proceedings of the9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages500{509. ACM-SIAM, January 1998.[Blu94] A. Blum. New approximation algorithms for graph coloring. Journalof the ACM, 41(3):470{516, May 1994.[CGK+97] C. C. Chekuri, A. V. Goldberg, D. R. Karger, M. S. Levine, andC. Stein. Experimental study of minimum cut algorithms. InM. Saks, editor, Proceedings of the 8th Annual ACM-SIAM Sympo-sium on Discrete Algorithms, pages 324{333. ACM-SIAM, January1997.[Che52] H. Cherno�. A measure of the asymptotic e�ciency for tests of a hy-pothesis based on the sum of observations. Annals of MathematicalStatistics, 23:493{509, 1952.[Col87] C. J. Colbourn. The Combinatorics of Network Reliability, volume 4of The International Series of Monographs on Computer Science.Oxford University Press, 1987.[ET76] K. P. Eswaran and R. E. Tarjan. Augmentation problems. SIAMJournal on Computing, 5:653{665, 1976.[FF62] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. PrincetonUniversity Press, Princeton, New Jersey, 1962.24

[FR75] R. W. Floyd and R. L. Rivest. Expected time bounds for selection.Communications of the ACM, 18(3):165{172, 1975.[GGP+94] M. X. Goemans, A. Goldberg, S. Plotkin, D. Shmoys, �E. Tardos,and D. Williamson. Improved approximation algorithms for networkdesign problems. In D. D. Sleator, editor, Proceedings of the 5thAnnual ACM-SIAM Symposium on Discrete Algorithms, pages 223{232. ACM-SIAM, January 1994.[GGST86] H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan. E�cientalgorithms for �nding minimum spanning tree in undirected anddirected graphs. Combinatorica, 6:109{122, 1986.[GLS88] M. Gr�otschel, L. Lov�asz, and A. Schrijver. Geometric Algorithmsand Combinatorial Optimization, volume 2 of Algorithms and Com-binatorics. Springer-Verlag, 1988.[GR97] A. Goldberg and S. Rao. Beyond the ow decomposition barrier.In Proceedings of the 30th Annual Symposium on the Foundationsof Computer Science, pages 2{11. IEEE, IEEE Computer SocietyPress, October 1997.[GT88] A. V. Goldberg and R. E. Tarjan. A new approach to the maximumow problem. Journal of the ACM, 35:921{940, 1988.[GW95] M. X. Goemans and D. P. Williamson. Improved approximation al-gorithms for maximum cut and satis�ability problems using semidef-inite programming. Journal of the ACM, 1995.[HO94] Hao and Orlin. A faster algorithm for �nding the minimum cutin a directed graph. Journal of Algorithms, 17(3):424{446, 1994.A preliminary version appeared in Proceedings of the 3rd AnnualACM-SIAM Symposium on Discrete Algorithms.[Hoa62] C. A. R. Hoare. Quicksort. Computer Journal, 5(1):10{15, 1962.[Kar94] D. R. Karger. Random Sampling in Graph OptimizationProblems. PhD thesis, Stanford University, Stanford, CA94305, 1994. Contact at karger@lcs.mit.edu. Available fromhttp://theory.lcs.mit.edu/~karger.[Kar96] D. R. Karger. Minimum cuts in near-linear time. In G. Miller, editor,Proceedings of the 28th ACM Symposium on Theory of Computing,pages 56{63. ACM, ACM Press, May 1996.[Kar98a] D. R. Karger. Better random sampling algorithms for ows in undi-rected graphs. In H. Karlo�, editor, Proceedings of the 9th An-nual ACM-SIAM Symposium on Discrete Algorithms, pages 490{499. ACM-SIAM, January 1998.25

[Kar98b] D. R. Karger. Random sampling and greedy sparsi�cation in matroidoptimization problems.Mathematical Programmming B, 82(1{2):41{81, June 1998. A preliminary version appeared in Proceedings of the34th Annual Symposium on the Foundations of Computer Science.[Kar98c] D. R. Karger. Random sampling in cut, ow, and network designproblems. Mathematics of Operations Research, 1998. To appear.A preliminary version appeared in Proceedings of the 26th ACMSymposium on Theory of Computing.[Kar98d] D. R. Karger. A randomized fully polynomial approximation schemefor the all terminal network reliability problem. SIAM Journal onComputing, 1998. To appear. A preliminary version appeared inProceedings of the 27th ACM Symposium on Theory of Computing.[Kar98e] H. Karlo�, editor. Proceedings of the 9th Annual ACM-SIAM Sym-posium on Discrete Algorithms. ACM-SIAM, January 1998.[KKT95] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to �nd minimum spanning trees. Journal of theACM, 42(2):321{328, 1995.[KL98] D. R. Karger and M. Levine. Finding maximum ows in simpleundirected graphs seems faster than bipartite matching. In Proceed-ings of the 29th ACM Symposium on Theory of Computing. ACM,ACM Press, May 1998.[KLM89] R. M. Karp, M. Luby, and N. Madras. Monte-carlo approxima-tion algorithms for enumeration problems. Journal of Algorithms,10(3):429{448, September 1989.[KM97] D. R. Karger and R. Motwani. Derandomization through approx-imation: An NC algorithm for minimum cuts. SIAM Journal onComputing, 26(1):255{272, 1997. A preliminary version appeared inProceedings of the 25th ACM Symposium on Theory of Computing,p. 497.[KMS98] D. R. Karger, R. Motwani, and M. Sudan. Approximate graph col-oring by semide�nite programming. Journal of the ACM, 45(2):246{265, March 1998.[KS96] D. R. Karger and C. Stein. A new approach to the minimum cutproblem. Journal of the ACM, 43(4):601{640, July 1996. Prelimi-nary portions appeared in SODA 1992 and STOC 1993.[KT97] D. R. Karger and R. P. Tai. Implementing a fully polynomialtime approximation scheme for all terminal network reliability. InM. Saks, editor, Proceedings of the 8th Annual ACM-SIAM Sympo-sium on Discrete Algorithms, pages 334{343. ACM-SIAM, January1997. 26

[LY93] C. Lund and M. Yannakakis. On the hardness of approximating min-imization problems. In A. Aggarwal, editor, Proceedings of the 25thACM Symposium on Theory of Computing, pages 286{293. ACM,ACM Press, May 1993.[Mil96] G. Miller, editor. Proceedings of the 28th ACM Symposium on The-ory of Computing. ACM, ACM Press, May 1996.[MR95a] S. Mahajan and H. Ramesh. Derandomizing semide�nite program-ming based approximation algorithms. In Proceedings of the 36thAnnual Symposium on the Foundations of Computer Science, pages162{169. IEEE, IEEE Computer Society Press, October 1995.[MR95b] R. Motwani and P. Raghavan. Randomized Algorithms. CambridgeUniversity Press, New York, NY, 1995.[NI92] H. Nagamochi and T. Ibaraki. Linear time algorithms for �ndingk-edge connected and k-node connected spanning subgraphs. Algo-rithmica, 7:583{596, 1992.[Rag88] P. Raghavan. Probabilistic construction of deterministic algorithms:Approximate packing integer programs. Journal of Computer andSystem Sciences, 37(2):130{43, October 1988.[RT87] P. Raghavan and C. D. Thompson. Randomized rounding: a tech-nique for provably good algorithms and algorithmic proofs. Combi-natorica, 7(4):365{374, 1987.[Sak97] M. Saks, editor. Proceedings of the 8th Annual ACM-SIAM Sympo-sium on Discrete Algorithms. ACM-SIAM, January 1997.[Tar83] R. E. Tarjan. Data Structures and Network Algorithms, volume 44of CBMS-NSF Regional Conference Series in Applied Mathematics.SIAM, 1983.

27

