
Approximation Algorithms for Orienteering and Discounted-Reward TSP

Avrim Blum∗ Shuchi Chawla∗ David R. Karger† Terran Lane‡

Adam Meyerson∗ Maria Minkoff†

Abstract

In this paper, we give the first constant-factor approx-
imation algorithm for the rooted Orienteering problem,
as well as a new problem that we call the Discounted-
Reward TSP, motivated by robot navigation. In both
problems, we are given a graph with lengths on edges
and prizes (rewards) on nodes, and a start nodes. In
theOrienteering Problem, the goal is to find a path that
maximizes the reward collected, subject to a hard limit
on the total length of the path. In theDiscounted-Reward
TSP, instead of a length limit we are given a discount
factor γ, and the goal is to maximize total discounted
reward collected, where reward for a node reached at
time t is discounted byγt. This is similar to the objec-
tive considered in Markov Decision Processes (MDPs)
except we only receive a reward thefirst time a node
is visited. We also consider tree and multiple-path vari-
ants of these problems and provide approximations for
those as well. Although the unrooted orienteering prob-
lem, where there is no fixed start nodes, has been known
to be approximable using algorithms for related prob-
lems such ask-TSP (in which the amount of reward to
be collected is fixed and the total length is approximately
minimized), ours is the first to approximate the rooted
question, solving an open problem [3, 1].

∗ Computer Science Department, Carnegie Mellon Uni-
versity. Research supported by NSF Grants CCR-
0105488, IIS-0121678, and CCR-0122581. email:
{avrim,shuchi,adam}@cs.cmu.edu

† MIT Laboratory for Computer Science. email:
{karger,mariam}@theory.lcs.mit.edu

‡ Department of Computer Science, University of New Mexico.
email:terran@cs.unm.edu

1. Introduction

Consider a robot with a map of its environment, that
needs to visit a number of sites in order to drop off pack-
ages, collect samples, search for a lost item, etc. One
classic model of such a scenario is theTraveling Sales-
man Problem, in which we ask for the tour that visits all
the sites and whose length is as short as possible. How-
ever, what if this robot cannot visit everything? For ex-
ample, it might have a limited supply of battery power.
In that case, a natural question to ask is for the tour
that visits the maximum total reward of sites (where re-
ward might correspond to the value of a package being
delivered or the probability that some lost item we are
searching for is located there), subject to a constraint that
the total length is at most some given boundB. This is
called the (rooted)Orienteering Problem(“rooted”, be-
cause we are fixing the starting location of the robot).
Interestingly, while there have been a number of algo-
rithms that given a desired reward can approximately
minimize the distance traveled (which yield approxima-
tions to the unrooted orienteering problem), approximat-
ing the reward for the case of afixedstarting location and
fixedhard length limit has been an open problem.

Alternatively, suppose that battery power is not the
limiting consideration, but we simply want to give the
robot a penalty for taking too long to visit high-value
sites. For example, if we are searching for a lost item,
and at each time step there is some possibility the item
will be taken (or, if we are searching for a trapped in-
dividual in a dangerous environment, and at each time
step there is some probability the individual might die),
then we would want to discount the reward for a site
reached at timet by γt, whereγ is a known discount
factor. We call this theDiscounted-Reward TSP. This is
similar to the classic setting ofMarkov Decision Pro-
cesses[18, 17], except that we are giving the robot a re-
ward only for thefirst time it visits a site (and, we are
assuming a deterministic environment).



In this paper, we provide the first constant-factor ap-
proximations to both the (rooted) Orienteering and the
Discounted-Reward TSP problems, and well as a num-
ber of variants that we discuss below.

1.1. Motivation and Background

Robot navigation and path planning problems can be
modeled in many ways. In the Theoretical Computer
Science and Optimization communities, these are typ-
ically modeled as kinds of Prize-Collecting Traveling
Salesman Problems [12, 4, 10, 3]. In the Artificial Intel-
ligence community, problems of this sort are often mod-
eled as Markov Decision Processes [5, 6, 14, 17, 18].
Below we give some background and motivation for our
work from each perspective.

1.1.1. Markov Decision Process motivationA
Markov Decision Process (MDP) consists of a state
spaceS, a set of actionsA, a probabilistic transi-
tion function T , and a reward functionR. At any
given time step, an agent acting in an MDP will be lo-
cated at some states ∈ S, where he can choose
an actiona ∈ A. The agent is subsequently relo-
cated to a new states′ determined by the transi-
tion probability distributionT (s′|s, a). At each state
s, an agent collects rewardR(s) (or, sometimes, re-
wards are put on state-action pairs). For example, a
package-delivery robot might get a reward every time it
correctly delivers a package. Note that each action de-
fines a probability distribution of the next state; if ac-
tions were pre-determined, then we would get just a
Markov chain.

In order to encourage the robot to perform the tasks
that we want, and to do so in a timely manner, a stan-
dard objective considered in MDPs is to maximizedis-
counted reward[14, 17, 18]. Specifically, for a given
discount factorγ ∈ (0, 1), the value of reward col-
lected at timet is discounted by a factorγt. Thus the
total discounted reward, which we aim to maximize, is
Rtot =

∑

t=0 R(st)γ
t. This guides the robot to get as

much reward as possible as early as possible, and pro-
duces what in practice turns out to be good behavior.
One can also motivate exponential discounting by imag-
ining that at each time step, there is some fixed proba-
bility the game will end (the robot loses power, a catas-
trophic failure occurs, the objectives change, etc.) Expo-
nential discounting also has the nice mathematical prop-
erty that it is time-independent, meaning that an opti-
mal strategy can be described just by apolicy, a map-
ping from states to actions. The goal of planning in an

MDP is to determine the optimal policy: the mapping of
states to actions that maximizes expected discounted re-
wardE [Rtot].

There are well-known algorithms for solving MDPs
in time polynomial in the state space [5, 17, 18]. How-
ever, one drawback of the MDP model is that the robot
receives the reward for a state every time that state is vis-
ited (or every time the robot performs that action from
that state if rewards are on state-action pairs). Thus, in
order to model a package-delivery or search-and-rescue
robot, one would need a state representing not only the
current location of the robot, but also a record of all lo-
cations it has already visited. This causes an exponen-
tial increase in the size of the state space. Thus, it would
be preferable to directly model the case of rewards that
are given only thefirst time a state is visited [15, 16].

As a first step towards tackling this general prob-
lem, we abandon the stochastic element and restrict to
deterministic, reversible actions. This leads us to study
theDiscounted-Reward Traveling Salesman Problem, in
which we assume we have an undirected weighted graph
(edge weights represent the time to traverse a given
edge), with a prize (reward) valueπv on each vertexv,
and our goal is to find a path visiting each vertexv at
time tv so as to maximize

∑

πvγtv .

1.1.2. PC-TSP and Orienteering problemsA differ-
ent way to model the goal of collecting as much reward
as possible as early as possible is as a Prize-Collecting
Traveling Salesman (PC-TSP) or Orienteering Problem
[4, 12, 11, 3, 1]. In the PC-TSP, a salesman is required
to collect at least some given amount of reward (possi-
bly zero), while minimizing the distance travelled plus
the sum of rewards foregone (in a roughly equivalent
problem,k-TSP, every node has a prize of one unit and
the salesman is required to visit at leastk nodes). In
the Orienteering problem, one instead fixes a deadline
D (a maximum distance that can be traveled) and aims
to maximizetotal reward collected by that time.

There are several approximations known for the PC-
TSP andk-TSP problems [11, 2, 9, 7, 3], the best being a
(2 + ε)-approximation due to Arora and Karakostas [2].
Most of these approximations are based on a classic
Primal-Dual algorithm for the Prize Collecting Steiner
Tree problem, due to Goemans and Williamson [11].
These algorithms for PC-TSP extend easily to theun-
rootedversion of the Orienteering problem in which we
do not fix the starting location [13, 3]. In particular,
given a path of valueΠ but whose length iscD for some
c > 1, we can just break the path intoc pieces of length
at mostD, and then take the best one, whose total value

2



will be at leastΠ/c. However, this doesn’t work for the
rooted problem because the “best piece” in the above re-
duction might be far from the start. Arkin et. al [1] give
a constant-factor approximation to the rooted Orienteer-
ing problem for the special case of points in the plane.
However, there is no previously knownO(1) approxi-
mation algorithm for the rooted Orienteering Problem
or Discounted-Reward TSP in general graphs.

1.1.3. Result SummaryIn this paper, we give con-
stant factor approximation algorithms for both the above
problems. To do this, we devise amin-excessapproxi-
mation algorithm that, given two endpointss andt, ap-
proximates to within a constant factor the optimumdif-
ferencebetween the length of a prize-collectings-t path
and the length of the shortest path between the two end-
points. Note that this is a strictly better guarantee than
what can be obtained by using an algorithm fork-TSP,
which would return a path that has length at most a con-
stant multiple times thetotal optimal length froms to
t.

Using an approximation ofαCP for the min-costs-
t path problem (k-path problem in [8]) as a subroutine,
we get anαEP = 3

2αCP − 1
2 approximation for the min-

excess(s, t)-path problem, a1 + dαEP e approximation
for Orienteering, and a roughlye(αEP + 1) approxi-
mation for Discounted-Reward TSP. Using a(2 + ε)-
approximation for min-costs-t path, due to Chaudhuri
et. al [8], we get constants of2 + ε, 4, and6.75 + ε for
these problems respectively.

The rest of this paper is organized as follows. We be-
gin with some definitions in section 2. Then we give an
algorithm for min-excess path in section 3, followed by
algorithms for Discounted PC-TSP and Orienteering in
sections 4 and 5 respectively. In section 6 we extend
some of the algorithms to tree and multiple-path ver-
sions of the problems. We conclude in section 7.

2. Notation and Definitions

LetG = (V, E) be a weighted undirected graph, with
a distance function on edges,d : E → <+, and aprizeor
reward function on nodes,π : V → <+. Let πv = π(v)
be the reward on nodev. Let s ∈ V denote a special
node called thestart or root.

For a pathP visiting u beforev, let dP (u, v) denote
the length alongP from u to v. Let d(u, v) denote the
length of theshortestpath from nodeu to nodev. For
ease of notation, letdv = d(s, v) anddP (v) = dP (s, v).
For a set of nodesV ′ ⊆ V , let Π(V ′) =

∑

v∈V ′ πv. For
a set of edgesE′ ⊆ E, let d(E′) =

∑

e∈E′ d(e).

Our problems aim to construct a certain subgraph—a
path, tree, or cycle, possibly with additional constraints.
Most of the problems attempt a trade-off between two
objective functions: thecost (distance) of the path (or
tree, or cycle), andtotal prizespanned by it. From the
point of view of exact algorithms, we need simply to
specify the cost we are willing to tolerate and the prize
we wish to span. Most variants of this problem, however,
areNP-hard, so we focus on approximation algorithms.
We must then specify our willingness to approximate
the two distinct objectives. We refer to amin-costprob-
lem when our goal is toapproximatelyminimize the cost
of our objective subject to a fixed lower bound on prize
(thus, prize is a feasibility constraint while our approxi-
mated objective is cost). Conversely, we refer to amax-
prizeproblem when our goal is toapproximatelymaxi-
mize the prize collected subject to a fixed upper bound
on cost (thus, cost is a feasibility constraint while our
approximated objective is prize). For example, the min-
cost tree problem is the traditionalk-MST: it requires
spanningk prize and aims to minimize the cost of do-
ing so. Both the rooted and unrooted min-cost tree prob-
lems have constant-factor approximations[13, 2, 9, 7, 3].
The max-prize path problem, which aims to find a path
of length at mostD from the start nodes that visits a
maximum amount of prize, is the orienteering problem.

The main subroutine in our algorithms requires also
introducing a variation on approximate cost. Define the
excessof a pathP from s to t to bedP (s, t) − d(s, t),
that is, the difference between that path’s length and
the distance betweens and t in the graph. Obviously,
the minimum-excess path of total prizeΠ is also the
minimum-costpath of total prizeΠ; however, a path of a
constant factor times minimum cost may have more than
a constant-factor times the minimum excess. We there-
fore consider separately theminimum excess pathprob-
lem. Note that an(s, t) path approximating the optimum
excessε by a factorα will have lengthd(s, t) + αε ≤
α(d(s, t) + ε) and therefore approximates the minimum
cost path by a factorα as well. Achieving a good ap-
proximation to this min-excess path problem will turn
out to be a key ingredient in our approximation algo-
rithms.

Finally, as discussed earlier, we consider a different
means of combining length and cost motivated by ap-
plications of Markov decision processes. We introduce
a discount factorγ < 1. Given a pathP rooted ats, let
thediscounted rewardcollected at nodev by pathP be
defined asρP

v = πvγdP (s,v). That is, the prize gets dis-
counted exponentially by the amount of time it takes for
the path to reach nodev. The max-discounted-reward

3



Problem Current approx. Source/Reduction
min-costs-t path (αCP ) 2 + ε [8]
min-excess path (αEP ) 2.5 + ε 3

2 (αCP ) − 1
2

max discounted-prize path (αDP ) 8.12 + ε (1 + αEP )(1 + 1/αEP )αEP

max-prize path (αPP ) 4 1 + dαEP e
max-prize tree (αPT ) 8 2αPP

max-prize cycle (αPC ) 8 2αPP

max-prize multiple-path (αkPP ) 5 αPP + 1
max discounted multiple-path (αkDP ) 9.12 + ε αDP + 1

Figure 1. Approximation factors and reductions for our problems.

problem is to find a pathP rooted ats, that maximizes
ρP =

∑

v∈P ρP
v . We call this thediscounted-reward

TSP. Note that the length of the path is not specifically
bounded in this problem, though of course shorter paths
produce less discounting.

2.1. Results

We present a constant-factor approximation algo-
rithm for the max-prize path (rooted Orienteering) prob-
lem, solving an open problem of [3, 1], as well as
the discounted-reward TSP. Central to our results is a
constant-factor approximation for themin-excess path
problem defined above, which uses an algorithm for the
min-costs-t path problem as a subroutine. We also give
constant-factor approximations to several related prob-
lems, including the max-prize tree problem—the “dual”
to thek-MST (min-cost tree) problem—and max-prize
cycle. Specific constants are given in Figure 1. For the
Min-Excess problem, we derive an improved approxi-
mation of2+ε in section 6.3, based on a tighter analysis
of the min-costs-t path algorithm of [8]. This improve-
ment gives a better approximation factor of6.75 + ε for
the Max Discounted-Prize Path problem.

Our approximation algorithms reflect a series of re-
ductions from one approximation problem to another.
Improvements in the approximations for various prob-
lems will propagate through. We state approximation
factors in the formαXY whereXY denotes the prob-
lem being approximated; the first letter denotes the ob-
jective (cost, prize, excess, or discounted prize denoted
by C, P , E, andD respectively), and the second the
structure (path, cycle, or tree denoted byP , C, or T re-
spectively).

2.2. Preliminaries

To support dynamic programming in the max-prize
variants, we begin by scaling all prizes to polynomially
bounded integers (in the number of verticesn). We can
do this by guessing the valueΠ of the optimum solution
via binary search1 and multiplying all prizes byn2/Π,
yielding a graph with optimal prize valuen2. If we now
round every prize down to the nearest integer, we lose
at mostn units of prize, which is a negligible multi-
plicative factor. This negligible factor does mean that
an approximation algorithm with guaranteec on poly-
nomially bounded inputs has (weaker) guarantee “arbi-
trarily close toc” on arbitrary inputs. Likewise, for the
min-cost or min-excess variants, we can assume that the
given prize valueΠ is polynomially bounded.

Let nodes inV be ordered fromv1 = s throughvn

in order of their distance froms. (Note thatt is not nec-
essarily the last vertex in this order). Letdi = d(s, vi),
sod1 ≤ d2 ≤ · · · ≤ dn. For convenience in the anal-
ysis, we assume alldi are distinct (in the algorithm we
can handle equal distances by breaking ties lexicograph-
ically).

3. Min-Excess Path

Let P ∗ be the shortest path froms to t with Π(P ∗) ≥
k. Let ε(P ∗) = d(P ∗) − d(s, t). Our algorithm re-
turns a pathP with Π(P ) ≥ k and lengthd(P ) =
d(s, t) + αEP ε(P ∗), whereαEP = 3

2αCP − 1
2 . Thus

we obtain a(2.5 + ε)-approximation to min-excess path
using an algorithm of Chaudhuri et. al [8] for min-cost
s-t path withαCP = 2 + ε. A brief description of the
min-cost path algorithm and approximation is given in
the appendix.

1 Technically we will be finding the highest valueΠ such that our
algorithm comes within its claimed approximation ratio.

4



V21V Vn

s

t

type 1 type 1type 2 type 2 type 1 type 2

b b b b2 n1 i

Figure 2. Segment partition of a path in graph G

The idea for our algorithm for Min-Excess Path
(MEP) is as follows. Suppose that the optimum solu-
tion path encounters all its vertices in increasing or-
der of distance froms. We call such a pathmonotonic.
We can find this optimum monotonic path via a sim-
ple dynamic program: for each possible prize value
p and for each vertexi in increasing order of dis-
tance froms, we compute the minimum excess path that
starts at vertexs, ends ati, and collects prize at leastp.

We will solve the general case by breaking the op-
timum path into continuoussegmentsthat are either
monotonic (so can be found optimally as just described)
or “wiggly” (generating a large amount of excess). We
will show that the total length of the wiggly portions is
comparable to the excess of the optimum path; our so-
lution uses the optimum monotonic paths and approx-
imates the length of the wiggly portions by a constant
factor, yielding an overall increase proportional to the
excess.

Consider the optimal pathP ∗ from s to t. We divide
it into segments in the following manner. For any real
d, definef(d) as the number of edges onP ∗ with one
endpoint at distance less thand froms and the other end-
point at distance at leastd froms. Note thatf(d) ≥ 1 for
all 0 ≤ t ≤ dt (it may also be nonzero for somed ≥ dt).
Note also thatf is piecewise constant, changing only
at distances equal to vertex distances. We break the real
line into intervals according tof : the type one intervals
are the maximal intervals on whichf(d) = 1; the type 2
intervals are the maximal intervals on whichf(d) ≥ 2.
These intervals partition the real line (out to the maxi-
mum distance reached by the optimum solution) and al-
ternate between types 1 and 2. Let the interval bound-
aries be labeled0 = b1 < b2 · · · bm, wherebm is the
maximum distance of any vertex on the path, so that the

ith interval is(bi, bi+1). Note that eachbi is the distance
label for some vertex. LetVi be the set of vertices whose
distance froms falls in theith interval. Note that the op-
timum path traverses each setVi exactly once—once it
leaves someVi it does not return. One of any two ad-
jacent intervals is of type 1; if the path left this interval
and returned to it thenf(d) would exceed 1 within the
interval. Thus, the vertices ofP ∗ in setVi form a con-
tiguoussegmentof the optimum path that we label as
Si = P ∗ ∩ Vi.

A segment partition is shown in Figure 2.
Note that for eachi, there may be (at most) 1 edge

crossing fromVi to Vi+1. To simplify the next two lem-
mas, let us split that edge into two with a vertex at dis-
tancebi from s, so that every edge is completely con-
tained in one of the segments (this can be done since one
endpoint of the edge has distance exceedingbi and the
other endpoint has distance less thanbi). Placing a ver-
tex at each interval boundary ensures that the length of
a segment isequal tothe integral off(d) over its inter-
val.

Lemma 3.1. A segmentSi of type 1 has length at least
bi+1 − bi. A segmentSi of type 2 has length at least
3(bi+1 − bi), unless it is the segment containingt in
which case it has length at least3(dt − bi).

Proof. The length of segmentSi is lower bounded by
the integral off(d) over theith interval. In a type 1 in-
terval the result is immediate. For a type 2 interval, note
thatf(d) ≥ 1 actually implies thatf(d) ≥ 3 by a par-
ity argument—if the path crosses distanced twice only,
it must end up at distance less thand.

Corollary 3.2. The total length of type-2 segments is at
most3ε/2.

5



Proof. Let `i denote the length of segmenti. We know
that the length ofP ∗ is dt + ε =

∑

`i. At the same time,
we can write

dt ≤ bm =
m−1
∑

i=1

(bi+1 − bi) ≤
∑

i type1

`i +
∑

i type2

`i/3

It follows that

ε =
∑

`i − dt ≥
∑

i type2

2`i/3

Multiplying both sides by3/2 completes the proof.

Having completed this analysis, we note that the
corollary remains true even if we do not introduce ex-
tra vertices on edges crossing interval boundaries. The
crossing edges are no longer counted as parts of seg-
ments, but this only decreases the total length of type 2
segments.

3.1. A Dynamic Program

Our algorithm computes, for each interval that might
be an interval of the optimum solution, a segment cor-
responding to the optimum solution in that interval. It
then uses a dynamic program to paste these fragments
together using (and paying for) edges that cross between
segments. The segments we compute are defined by 4
vertices: the closest-to-s and farthest-from-s vertices,c
andf , in the interval (which define the start- and end-
points of the interval: our computation is limited to ver-
tices within that interval), and the first and last vertices,
x andy, on the segment within that interval. They are
also defined by the amountp of prize we are required to
collect within the segment. There are thereforeO(Πn4)
distinct segment to compute, whereΠ is the total prize
in the graph. For each segment we find an optimum so-
lution for a type 1 and a type 2 interval. For a type-1 in-
terval the optimum path is monotonic; we can therefore
compute (in linear time) an optimum (shortest) mono-
tonic path fromx to y that collects prizep. If the inter-
val is of type 2, the optimum path need not be mono-
tonic. Instead, we approximate to within a constant fac-
tor the minimum length of a path that starts atx, finishes
at y, stays within the boundaries of the interval defined
by c andf , and collects prize at leastp.

Given the optimum type 1 and near-optimum type-2
segment determined for each set of 4 vertices and prize
value, we can find the optimal way to paste some subset
of them together monotonically using a dynamic pro-
gram. Note that the segments corresponding to the op-
timum path are considered in this dynamic program, so

our solution will be at least as good as the one we get
by using the segments corresponding to the ones on the
optimum path (i.e., using the optimum type-1 segments
and using the approximately optimum type-2 segments).
We need only show that this solution is good.

We focus on the segments corresponding to the opti-
mum pathP ∗. Consider the segmentsSi of length`i on
the optimum path. IfSi is of type 1, our algorithm will
find a (monotonic) segment with the same endpoints col-
lecting the same amount of prize of no greater length. If
Si is of type 2, our algorithm (through its use of subrou-
tine MCP) will find a path with the same endpoints col-
lecting the same prize over length at mostαCP `i. LetL1

denote the total length of the optimum type 1 segments,
together with the lengths of the edges used to connect
between segments. LetL2 denote the total length of the
optimum type 2 segments. Recall thatL1 + L2 = dt + ε
and that (by Corollary 3.2)L2 ≤ 3ε/2. By concate-
nating the optimum type-1 segments and the approxi-
mately optimum type-2 segments, the dynamic program
can (and therefore will) find a path collecting the same
total prize asP ∗ of total length

L1 + αCP L2 = L1 + L2 + (αCP − 1)L2

≤ dt + ε + (αCP − 1)(3ε/2)

= dt +

(

3

2
αCP −

1

2

)

ε.

In other words, we approximate the minimum excess to
within a factor of32αCP − 1

2 .

4. Maximum Discounted-Prize Path

Recall that we aim to optimizeρ(P ) =
∑

γdP
v πv.

Assume without loss of generality that the discount fac-
tor is γ = 1/2—we simply rescale each length` to `′

such thatγ` = (1
2 )`′ , i.e.`′ = ` log2(1/γ).

We first establish a property of an optimal solution
that we make use of in our algorithm. Define thescaled
prizeπ′ of a nodev to be the (discounted) reward that a
path gets at nodev if it follows a shortest path from the
root tov. That is,π′

v = πvγdv . Let Π′(P ) =
∑

v∈P π′
v.

Note that for any pathP , the discounted reward obtained
by P is at mostΠ′(P ).

Now consider an optimal solutionP ∗. Fix a parame-
ter ε that we will set later. Lett be the last node on the
pathP ∗ for whichdP∗

t −dt ≤ ε—i.e., the excess of path
P ∗ att is at mostε. Consider the portion ofP ∗ from root
s to t. Call this pathP ∗

t .

Lemma 4.1. LetP ∗
t be the part ofP ∗ froms to t. Then,

ρ(P ∗
t ) ≥ ρ(P ∗)(1 − 1

2ε ).

6



Proof. Assume otherwise. Suppose we shortcutP ∗ by
taking a shortest path froms to the next node visited
by P ∗ after t. This new path collects (discounted) re-
wards from the vertices ofP ∗−P ∗

t , which form at least
1
2ε of the total by assumption. The shortcutting proce-
dure decreases the distance on each of these vertices by
at leastε, meaning these rewards are “undiscounted” by
a factor of at least2ε over what they would be in path
P ∗. Thus, the total reward on this path exceeds the opti-
mum, a contradiction.

It follows that we can approximateρ(P ∗) by approx-
imatingρ(P ∗

t ). Based on the above observation, we give
the algorithm of Figure 3 for finding an approximately
optimal solution. Note that “guesst” and “guessk” are
implemented by exhausting all polynomially many pos-
sibilities.

Algorithm for Discounted PC-TSP

1. Re-scale all edge lengths so thatγ = 1/2.

2. Replace the prize value of each node with the prize
discounted by the shortest path to that node:π′

v =
γdvπv. Call this modified graphG′.

3. Guesst—the last node on optimal pathP ∗ with ex-
cess less thanε.

4. Guessk—the value ofΠ′(P ∗
t ).

5. Apply our min-excess path approximation algo-
rithm to find a pathP collecting scaled prizek with
small excess.

6. Return this path as the solution.

Figure 3. Approximation for Maximum
Discounted-Prize Path

Our analysis below proceeds in terms ofα = αEP ,
the approximation factor for our min-excess path algo-
rithm.

Lemma 4.2. Our approximation algorithm finds a path
P that collects discounted rewardρ(P ) ≥ Π′(P )/2αε.

Proof. The prefixP ∗
t of the optimum path shows that

it is possible to collect scaled prizek = Π′(P ∗
t ) on a

path with excessε. Thus, our approximation algorithm
finds a path collecting the same scaled prize with ex-
cess at mostαε. In particular, the excess of any vertex

v in P is at mostαε. Thus, the discounted reward col-
lected atv is at least

ρ(v) ≥ πv

(

1

2

)dv+αε

= πv

(

1

2

)dv
(

1

2

)αε

= π′
v

(

1

2

)αε

Summing over allv ∈ P completes the proof.

Combining Lemma 4.2 and Lemma 4.1, we get the
following:

Theorem 4.3. The solution returned by the above algo-
rithm hasρ(P ) ≥ (1 − 1

2ε )ρ(P ∗)/2αε.

Proof.

ρ(P ) ≥ Π′(P )/2αε by Lemma 4.2
≥ Π′(P ∗

t )/2αε by choice ofP
≥ ρ(P ∗

t )/2αε by definition ofπ′

≥

(

1 −
1

2ε

)

ρ(P ∗)/2αε by Lemma 4.1

We can now setε as we like. Writingx = 2−ε we
optimize our approximation factor by maximizing(1 −
x)xα to deducex = α/(α+1). Plugging in thisx yields
an approximation ratio of(1 + αEP )(1 + 1/αEP )αEP .

5. Orienteering

We would like to compute the maximum-prize path
of length at mostD, starting ats. We will use the algo-
rithm for min-excess path given in section 3 as a subrou-
tine. Our algorithm is in Figure 4.

Algorithm for Max-Prize Path (Orienteering)

1. Guessk, the amount of prize collected by an opti-
mum orienteering solution.

2. For each vertexv, compute min-excess path froms
to v collecting prizek.

3. There exists av such that the min-excess path re-
turned has length at mostD; return the correspond-
ing path.

Figure 4. Algorithm for Max-Prize Path
(Orienteering)

As can be seen from our algorithm, we solve Max-
Prize Path by directly invoking our Min-Excess Path al-
gorithm. Our analysis consists of showing that any op-
timum orienteering solution contains a low-excess path

7



which, in turn, is an approximately optimum orienteer-
ing solution.

More precisely, we prove that for some vertexv, there
exists a path froms to v with excess at mostD−dv

αEP

that collects prize at leastπ
∗

αP P
(hereαEP is the ap-

proximation ratio for min-excess path,αPP is the de-
sired approximation ratio for Max-Prize Path, andπ∗

is the prize of the optimum Max-Prize Path). Assum-
ing this path exists, our min-excess path computation on
this vertexv will find a path with total length at most
dv + αEP

D−dv

αEP
= D and prize at leastπ

∗

αP P
, provid-

ing anαPP -approximation for orienteering.
Let t be the vertex on the optimum orienteering path

at maximum distance froms. We first consider the case
where the optimum orienteering path ends att (as op-
posed to doubling back towardss).

Lemma 5.1. If there is a path froms to t of length at
mostD that collects prizeπ, such thatt is the furthest
point froms along this path, then there is a path froms
to some nodev with excess at mostD−dv

r
and prize at

least π
r

(for any integerr ≥ 1).

Proof. For each pointa along the original pathP , let
ε(a) = dP

a − da; in other words,ε(a) is the excess in
the length of the path toa over the shortest-path dis-
tance. We haveε(t) ≤ D − dt. Consider mapping the
points on the path to a line from0 to ε(t) according to
their excess (we observe that excess only increases as
we traverse pathP ). Divide this line intor intervals with
length ε(t)

r
. Some such interval must contain at leastπ

r

prize, since otherwise the entire interval from0 to ε(t)
would not be able to collect prizeπ. Suppose such an
interval starts with nodea and ends with nodev. We
consider a path froms to v that takes the shortests-a
path, then follows pathP from a to v. This path col-
lects the prize of the interval froma to v in the original
path, which is a prize of at leastπ

r
as desired. The total

length of this path isda + dP (a, v) = da + dP
v − dP

a =

dv + ε(v)− ε(a) ≤ dv + ε(t)
r

. The excess of this path is
ε(t)
r

= D−dt

r
≤ D−dv

r
.

Of course, in general the optimum orienteering path
might have some intermediate node that is farther from
s than the terminal nodet. We will generalize the above
lemma to account for this case.

Lemma 5.2. If there is a path froms to t of length at
mostD that collects prizeπ, then there is a path froms
to some nodev with excess at mostD−dv

r
and prize at

least π
r+1 (for any integerr ≥ 1).

Proof. Let f be the furthest point froms along the given
pathP . We are interested in the case wheref 6= t. We
can break pathP into two pieces; first a path froms
to f and then a path fromf to t. Using the symmetry
of our metric, we can produce a second path froms to
f by using the shortest path froms to t and then fol-
lowing the portion of our original path fromf to t in re-
verse. We now have two paths froms to f , each of which
has length at mostD. The total length of these paths is
bounded byD+dt. We will call our pathsA andB, and
let their lengths bedf + δA anddf + δB respectively.
We now map pathA to the interval from0 to δA accord-
ing to the excess at each point, much as in Lemma 5.1.
We consider dividing this interval into pieces of length
δA+δB

r
(the last sub-interval may have shorter length if

δA does not divide evenly). We perform the same pro-
cess on pathB. We have created a total ofr + 1 inter-
vals (this relies on the assumption thatr is integral, al-
lowing us to bound the sum of the ceilings of the num-
ber of intervals for each path). We conclude that some
such interval has prize at leastπ

r+1 . We suppose with-
out loss of generality that this interval spans a portion of
pathA from a to v. We now consider a path that trav-
els froms to a via the shortest path and then froma to v
following pathA. The length of this path is bounded by
dv + δA+δB

r
for an excess of at mostD−df

r
≤ D−dv

r
as

desired.

Making use of Lemma 5.2, we can prove that our al-
gorithm for orienteering obtains a constant approxima-
tion. Making use of Chaudhuri et. al’s approximation for
min-costs-t path [8] along with our result on min-excess
path from section 3, we have a4-approximation for Ori-
enteering.

Theorem 5.3. There is an(dαEP e + 1)-approximation
for the max-prize path (orienteering) problem, where
αEP is the approximation factor for min-excess path.

Proof. Lemma 5.2 implies that there exists a path from
s to somev with excessD−dv

αEP
obtaining prize π∗

dαEP e+1 .

Such a path has lengthdv + D−dv

αEP
, implying that the

approximation algorithm for min-excess will find a path
froms to v with length at mostdv+(D−dv) = D and at
least the same prize. The algorithm described will even-
tually try the proper values ofk andv and find such a
path in polynomial time (actually the approximation fac-
tor will be dαEP e + 1 + ε and the running time will de-
pend logarithmically on1

ε
; note that this running time is

still polynomial in the size of the input).

8



6. Extensions

6.1. Budget Prize Collecting Steiner Tree

In this section, we consider the tree variant of the Ori-
enteering problem, called Max-Prize Tree in our nota-
tion. Namely, given a graphG with root r, prize func-
tion π and lengthsd, we are required to output a tree
T rooted atr with d(T ) ≤ D and maximum possible
rewardΠ(T ). This problem is also called the Budget
Prize-Collecting Steiner Tree problem [13].

Let the optimal solution for this problem be a treeT ∗.
Double the edges of this tree to obtain an Euler tour of
length at most2D. Now, divide this tour into two paths,
each starting from the rootr and having length at most
D. Among them, letP ′ be the path that has greater re-
ward. Now consider the Max-Prize Path problem on the
same graph with distance limitD. Clearly the optimal
solution P ∗ to this problem hasΠ(P ∗) ≥ Π(P ′) ≥
Π(T ∗)

2 . Thus, we can use theαPP -approximation for
Orienteering to get a2αPP -approximation toT ∗.

6.2. Multiple-Path Orienteering and
Discounted-Reward TSP

In this section we consider a variant of the Orienteer-
ing and Discounted-Reward TSP in which we are al-
lowed to construct up tok paths. For the Orienteering
problem, each path must have length at mostD. For the
Discounted-Reward problem, thek robots move simul-
taneously, so the discounting is done based on the indi-
vidual lengths of the paths.

For both problems, we apply the algorithms de-
scribed in sections 4 and 5 respectively to successively
construct thek paths. At thei-th step, we set the prizes
of all points visited in the firsti − 1 paths to 0, and con-
structed thei-th path on the new graph, using the pre-
viously described algorithms. Using a set-cover like
argument, we get the following approximation guaran-
tees.

Theorem 6.1. If all the paths have a common start node,
the above algorithm gives a1/(1 − e−αPP ) (1/(1 −
e−αDP )) approximation for the Multiple-Path Orien-
teering (resp. Discounted-Reward TSP).

If the paths have different start nodes, the above al-
gorithm gives aαPP + 1 (αDP + 1) approximation
for the Multiple-Path Orienteering (resp. Discounted-
Reward TSP).

Proof. We consider the Multiple-Path Orienteer-
ing problem. The corresponding result for Discounted-
Reward TSP can be derived analogously.

First consider the case when all the paths have a com-
mon source. Let the reward collected by the optimal so-
lution, but not collected by our solution by stagei, be
Πi. At least one of the paths in the optimal solution col-
lects at least ak fraction of this reward. Then, using the
approximation guarantee of the algorithm for orienteer-
ing, our solution collects at least a1

kαP P
fraction of this

reward. By the end ofk rounds, the total reward col-
lected by optimal solution, but not collected by us, is at
most(1 − 1

kαP P
)k ≤ e−αPP , and the result follows.

Next consider the case when the paths have differ-
ent sources. LetOi be the set of points visited by the
i-th path in the optimal solution, andAi be the corre-
sponding set of points visited by our algorithm. Let∆i

be the set of points that are visited by thei-th path in
the optimal solution and some other path in our solu-
tion. Let O = ∪iOi, A = ∪iAi and∆ = ∪i∆i. Now,
in the i-th stage, there is a valid path starting at thei-th
source, that visits all points inOi \ ∆i. Thus we have
Π(Ai) ≥ 1

α PP
(Π(Oi) − Π(∆i)). Summing overi, we

getαPP Π(A) ≥ (Π(O) − Π(∆)). But Π(∆) ≤ Π(A).
ThusΠ(A) ≥ 1

αP P +1Π(O).

6.3. An Improved Approximation for Min-
Excess and Maximum Discounted-Prize
Path

In this section we show how to slightly improve our
approximation factors for Min-Excess and Maximum
Discounted-Prize Path. The min-costs-t path algorithm
of Chaudhuri et. al has the property that if the optimal
path has lengthL = d(s, t) + ε, then it returns a path
with length at most(1+δ)L+ε, for any fixed small con-
stantδ. A brief description of their algorithm and guar-
antee is given in the appendix.

Using this guarantee, note that if a segment of type 2
has endpointsu andv and length̀ = d(u, v) + ε′, then
the length of this segment in the path found by the dy-
namic program is at most(1 + δ)` + ε′.

Now for any nodeu, let εu be the excess of the path
P ∗ from s to u. Then, usingd(u, v) ≥ dv −du anddv +
εv = du + εu + ` we getε′ ≤ εv − εu. Furthermore,
using` ≤ 3

2 (εv − εu), from Corollary 3.2, we get that
the length of the segment is bounded by

` + (1 +
3

2
δ)(εv − εu)

9



Summing over all segments, we get an approximation
ratio of2+ 3

2δ for Min-Excess, for any small constantδ.
Using this improved approximation for Min-excess,

we get an approximation factor of roughly6.75 + δ for
the Maximum Discounted-Prize Path problem.

7. Conclusions

In this paper we give constant factor algorithms for
the Orienteering problem, Discounted-Reward TSP, and
some of their variants. An interesting open problem is
to consider other discount functions, or different dead-
lines for each vertex. For example, the reward collected
at vertexv at timet could be given byρv = Πv if t < Tv

and0 otherwise. Another interesting open problem is to
consider the directed versions of the problems, although
we believe that it may be hard to approximate these to
within constant or even logarithmic factors.

Even more ambitiously, returning to the MDP moti-
vation for this work, one would like to generalize these
results to probabilistic transition functions. However,
this has the additional complication that the optimum
solution may not even have a short description (it is no
longer just a path). Still, perhaps some sort of non-trivial
approximation bound, or a result holding in important
special cases, can be found.

References

[1] E. M. Arkin, J. S. B. Mitchell, and G. Narasimhan.
Resource-constrained geometric network optimization.
In Symposium on Computational Geometry, pages 307–
316, 1998.

[2] S. Arora and G. Karakostas. A2 + ε approximation al-
gorithm for the k -MST problem. InSymposium on Dis-
crete Algorithms, pages 754–759, 2000.

[3] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Im-
proved approximation guarantees for minimum-weight
k-trees and prize-collecting salesmen.Siam J. Comput-
ing, 28(1):254–262, 1999.

[4] E. Balas. The prize collecting traveling salesman prob-
lem. Networks, 19:621–636, 1989.

[5] D. P. Bertsekas. Dynamic Programming and Optimal
Control. Athena Scientific, 1995.

[6] D. P. Bertsekas and J. N. Tsitsiklis.Neural Dynamic Pro-
gramming. Athena Scientific, 1996.

[7] A. Blum, R. Ravi, and S. Vempala. A constant-factor ap-
proximation algorithm for thek-MST problem. JCSS,
58:101–108, 1999.

[8] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths,
trees, and minimum latency tours. InProceedings of
the 44th Annual Symposium on Foundations of Computer
Science, Cambridge, Massachusetts, 2003.

[9] N. Garg. A 3-approximation for the minimum tree span-
ningk vertices. InProceedings of the 37th Annual Sym-
posium on Foundations of Computer Science, pages 302–
309, October 1996.

[10] M. Goemans and D. Williamson. A general approxima-
tion technique for constrained forest problems. InPro-
ceedings of the 3rd Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 307–315, 1992.

[11] M.X. Goemans and D.P. Williamson. A general approxi-
mation technique for constrained forest problems.SIAM
J. Comput., 24:296–317, 1995.

[12] B.L. Golden, L. Levy, and R. Vohra. The orienteering
problem.Naval Research Logistics, 34:307–318, 1987.

[13] D. Johnson, M. Minkoff, and S. Phillips. The prize col-
lecting steiner tree problem: Theory and practice. InPro-
ceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 760–769, 2000.

[14] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Rein-
forcement learning: A survey.Journal of Artificial Intel-
ligence Research, 4, 1996.

[15] T. Lane and L. P. Kaelbling. Approaches to macro de-
compositions of large markov decision process planning
problems. InProceedings of the 2001 SPIE Conference
on Mobile Robotics, Newton, MA, 2001. SPIE.

[16] T. Lane and L. P. Kaelbling. Nearly deterministic ab-
stractions of markov decision processes. InProceedings
of the Eighteenth National Conference on Artificial Intel-
ligence, Edmonton, 2002.

[17] M. L. Puterman. Markov Decision Processes. Wiley,
1994.

[18] R. S. Sutton and A. G. Barto.Reinforcement Learning:
An Introduction. MIT Press, 1998.

Appendix: The min-cost s-t path algorithm
of Chaudhuri et. al [8]

Chaudhuri et. al give a primal-dual algorithm for con-
structing ans-t path that collects prize at leastk, and has
minimum possible length. For certain good values ofk,
this algorithm returns a tree containings andt that con-
tains prize at leastk and has cost at most the cost of the
shortests-t pathcollecting rewardk. Let the size of this
tree bed(s, t) + ε. Then, doubling all the edges of this
tree except those along the tree path froms to t, we ob-
tain ans-t path of length at mostd(s, t) + 2ε, because
the tree path froms to t has length at leastd(s, t).

Using techniques from Arora et. al [2], one can ob-
tain ans-t path for any value ofk, while increasing the
cost by a factor of(1 + δ), for any fixed constantδ. This
gives ans-t path of cost at most(1+δ)d(s, t)+(2+δ)ε.
In particular, it implies a(2+δ)-approximation for min-
costs-t path.

10


