Approximation Algorithms for Orienteering and Discounted-Reward TSP

Avrim Blum* Shuchi Chawla David R. Karger Terran Lané
Adam Meyersoh Maria Minkofff
Abstract 1. Introduction

Consider a robot with a map of its environment, that
In this paper, we give the first constant-factor approx- needs to visit a number of sites in order to drop off pack-
imation algorithm for the rooted Orienteering problem, ages, collect samples, search for a lost item, etc. One
as well as a new problem that we call the Discounted- classic model of such a scenario is flraveling Sales-
Reward TSP, motivated by robot navigation. In both man Problemin which we ask for the tour that visits all
problems, we are given a graph with lengths on edges the sites and whose length is as short as possible. How-

and prizes (rewards) on nodes, and a start ngdén
the Orienteering Problemnthe goal is to find a path that

ever, what if this robot cannot visit everything? For ex-
ample, it might have a limited supply of battery power.

maximizes the reward collected, subject to a hard limit In that case, a natural question to ask is for the tour

on the total length of the path. In tidscounted-Reward

that visits the maximum total reward of sites (where re-

TSP, instead of a length limit we are given a discount ward might correspond to the value of a package being
factor v, and the goal is to maximize total discounted delivered or the probability that some lost item we are
reward collected, where reward for a node reached at searchingforis located there), subject to a constraint tha

time ¢ is discounted byy?. This is similar to the objec-

the total length is at most some given bouBdThis is

tive considered in Markov Decision Processes (MDPs) called the (rootedPrienteering Probleng“rooted”, be-

except we only receive a reward tfiest time a node

cause we are fixing the starting location of the robot).

is visited. We also consider tree and multiple-path vari- Interestingly, while there have been a number of algo-
ants of these problems and provide approximations for rithms that given a desired reward can approximately
those as well. Although the unrooted orienteering prob- minimize the distance traveled (which yield approxima-

lem, where there is no fixed start nogdas been known

tions to the unrooted orienteering problem), approximat-

to be approximable using algorithms for related prob- ing the reward for the case ofiaedstarting location and

lems such a%-TSP (in which the amount of reward to

be collected is fixed and the total length is approximately

fixedhard length limit has been an open problem.
Alternatively, suppose that battery power is not the

minimized), ours is the first to approximate the rooted |imiting consideration, but we simply want to give the

guestion, solving an open problem [3, 1].

+ Computer Science Department,
versity. Research supported by NSF Grants
0105488, 11S-0121678, and CCR-0122581.
{avri m shuchi , adam}@s. cru. edu

T MIT Laboratory for Computer Science.

{karger, mari amf@heory. |l cs. mt.edu

Carnegie Mellon

email:

t Department of Computer Science, University of New Mexico.

email:t erran@s. unm edu

Uni-
CCR-
email:

robot a penalty for taking too long to visit high-value
sites. For example, if we are searching for a lost item,
and at each time step there is some possibility the item
will be taken (or, if we are searching for a trapped in-
dividual in a dangerous environment, and at each time
step there is some probability the individual might die),
then we would want to discount the reward for a site
reached at time by ~¢, where~ is a known discount
factor. We call this th®iscounted-Reward TSFhis is
similar to the classic setting dflarkov Decision Pro-
cesse$18, 17], except that we are giving the robot a re-
ward only for thefirst time it visits a site (and, we are
assuming a deterministic environment).

In this paper, we provide the first constant-factor ap- MDP is to determine the optimal policy: the mapping of
proximations to both the (rooted) Orienteering and the states to actions that maximizes expected discounted re-
Discounted-Reward TSP problems, and well as a num-ward £ [Ry.¢].
ber of variants that we discuss below. There are well-known algorithms for solving MDPs
in time polynomial in the state space [5, 17, 18]. How-
ever, one drawback of the MDP model is that the robot
receives the reward for a state every time that state is vis-
ited (or every time the robot performs that action from
that state if rewards are on state-action pairs). Thus, in
Science and Optimization communities, these are typ-©rder to model a package-delivery or search-and-rescue
ically modeled as kinds of Prize-Collecting Traveling "0P0t one would need a state representing not only the

Salesman Problems [12, 4, 10, 3]. In the Artificial Intel- current location of the robot, but also a record of all lo-

ligence community, problems of this sort are often mod- cations it has already visited. This causes an exponen-
eled as Markov Decision Processes [5, 6, 14, 17 18]_tia| increase in the size of the state space. Thus, it would

Below we give some background and motivation for our °€ Preferable to directly model the case of rewards that
work from each perspective. are given only thdirst time a state is visited [15, 16].
As a first step towards tackling this general prob-

1.1.1. Markov Decision Process motivatiorA lem, we abandon the stochastic element and restrict to
Markov Decision Process (MDP) consists of a state deterministic, reversible actions. This leads us to study
space S, a set of actionsA, a probabilistic transi- theDiscounted-Reward Traveling Salesman Problem
tion function 7', and a reward functionR. At any which we assume we have an undirected weighted graph
given time step, an agent acting in an MDP will be lo- (edge weights represent the time to traverse a given
cated at some state € S, where he can choose edge), with a prize (reward) valug, on each vertex,
an actiona € A. The agent is subsequently relo- and our goal is to find a path visiting each verteat
cated to a new state’ determined by the transi- timet, so asto maximiz&_ m,y".
tion probability distributionT(s'|s,a). At each state
s, an agent collects rewar®(s) (or, sometimes, re- 1.1.2. PC-TSP and Orienteering problemsA differ-
wards are put on state-action pairs). For example, aentway to model the goal of collecting as much reward
package-delivery robot might get a reward every time it as possible as early as possible is as a Prize-Collecting
correctly delivers a package. Note that each action de-Traveling Salesman (PC-TSP) or Orienteering Problem
fines a probability distribution of the next state; if ac- [4, 12, 11, 3, 1]. In the PC-TSP, a salesman is required
tions were pre-determined, then we would get just a to collect at least some given amount of reward (possi-
Markov chain. bly zero), while minimizing the distance travelled plus

In order to encourage the robot to perform the tasks the sum of rewards foregone (in a roughly equivalent
that we want, and to do so in a timely manner, a stan- problem,k-TSP, every node has a prize of one unit and
dard objective considered in MDPs is to maximidis- the salesman is required to visit at le@shodes). In
counted reward14, 17, 18]. Specifically, for a given the Orienteering problem, one instead fixes a deadline
discount factory € (0, 1), the value of reward col- D (a maximum distance that can be traveled) and aims
lected at timet is discounted by a factoyt. Thus the to maximizetotal reward collected by that time.
total discounted reward, which we aim to maximize, is There are several approximations known for the PC-
Riot = >_,—o R(s¢)7". This guides the robot to get as TSP and:-TSP problems[11, 2,9, 7, 3], the best being a
much reward as possible as early as possible, and pro{2 + ¢)-approximation due to Arora and Karakostas [2].
duces what in practice turns out to be good behavior. Most of these approximations are based on a classic
One can also motivate exponential discounting by imag- Primal-Dual algorithm for the Prize Collecting Steiner
ining that at each time step, there is some fixed proba-Tree problem, due to Goemans and Williamson [11].
bility the game will end (the robot loses power, a catas- These algorithms for PC-TSP extend easily to time
trophic failure occurs, the objectives change, etc.) Expo- rootedversion of the Orienteering problem in which we
nential discounting also has the nice mathematical prop-do not fix the starting location [13, 3]. In particular,
erty that it istime-independenimeaning that an opti- given a path of valu&l but whose length isD for some
mal strategy can be described just bpalicy, a map- ¢ > 1, we can just break the path intgieces of length
ping from states to actions. The goal of planning in an at mostD, and then take the best one, whose total value

1.1. Motivation and Background

Robot navigation and path planning problems can be
modeled in many ways. In the Theoretical Computer

will be at leastlI/c. However, this doesn’t work for the Our problems aim to construct a certain subgraph—a
rooted problem because the “best piece” in the above re-path, tree, or cycle, possibly with additional constraints
duction might be far from the start. Arkin et. al [1] give Most of the problems attempt a trade-off between two
a constant-factor approximation to the rooted Orienteer- objective functions: theost (distance) of the path (or
ing problem for the special case of points in the plane. tree, or cycle), andotal prizespanned by it. From the

However, there is no previously known(1) approxi- point of view of exact algorithms, we need simply to
mation algorithm for the rooted Orienteering Problem specify the cost we are willing to tolerate and the prize
or Discounted-Reward TSP in general graphs. we wish to span. Most variants of this problem, however,

)) areN"P-hard, so we focus on approximation algorithms.
1.1.3. Result Summaryin this paper, we give con- \e must then specify our willingness to approximate
stant factor approximation algorithms for both the above he two distinct objectives. We refer tonain-costprob-

problems. To do this, we devisemain-exces®pproxi- |em when our goal is tapproximatelyminimize the cost
mation algorithm that, given two endpoint®ndz, ap- of our objective subject to a fixed lower bound on prize
proximates to within a constant factor the optimdif: (thus, prize is a feasibility constraint while our approxi-

ferencebetween the length of a prize-collecting path mated objective is cost). Conversely, we refer tax-
and the length of the shortest path between the two e”d'prize problem when our goal is tapproximatelymaxi-
points. Note that Fhis is a strictly better guarantee than mize the prize collected subject to a fixed upper bound
what can be obtained by using an algorithmeFSP, o cost (thus, cost is a feasibility constraint while our
which would return a path that has length at most a con- pproximated objective is prize). For example, the min-
stant multiple times théotal optimal length froms to ¢ost tree problem is the traditionaMST: it requires
t. spanningk prize and aims to minimize the cost of do-
Using an approximation okcp for the min-costs- jng so. Both the rooted and unrooted min-cost tree prob-
¢ path problem K-path problem in [8]) as a subroutine, |ems have constant-factor approximations[13, 2, 9, 7, 3].
we getanvgp = jacp —5 approximationforthe min- The max-prize path problem, which aims to find a path
excesys, t)-path problem, & + [agp| approximation of |ength at mostD from the start node that visits a
for Orienteering, and a roughly(arp + 1) @pproxi- - maximum amount of prize, is the orienteering problem.
mation for Discounted-Reward TSP. Usinga+ ¢)- The main subroutine in our algorithms requires also
approximation for min-cost-¢ path, due to Chaudhuri jyoducing a variation on approximate cost. Define the
et. al [8], we get constaljts af+ ¢, 4, and6.75 + € for excesof a pathP from s to ¢ to bed” (s,t) — d(s,),
these problems respectively. that is, the difference between that path’s length and
The rest of this paper is organized as follows. We be- he distance between and? in the graph. Obviously,
gin with some definitions in section 2. Then we give an he minimum-excess path of total prif€is also the
algorithm for min-excess path in section 3, followed by inimum-costpath of total prizdT; however, a path of a
algorithms for Discounted PC-TSP and Orienteering in constant factor times minimum cost may have more than
sections 4 and 5 respectively. In section 6 we extend 5 constant-factor times the minimum excess. We there-
some of the algorithms to tree and multiple-path ver- tore consider separately tinginimum excess pagrob-

sions of the problems. We conclude in section 7. lem. Note that arfs, t) path approximating the optimum
excess by a factora will have lengthd(s,t) + ae <
2. Notation and Definitions a(d(s,t) + €) and therefore approximates the minimum

cost path by a factotr as well. Achieving a good ap-

LetG = (V, E) be a weighted undirected graph, with proximation to this min-excess path problem will turn
a distance function on edges; E — R*, and gprizeor out to be a key ingredient in our approximation algo-

rewardfunction on nodesy : V — R*. Letw, = 7(v) rithms.
be the reward on node. Let s € V denote a special Finally, as discussed earlier, we consider a different
node called thatart or root. means of combining length and cost motivated by ap-

For a pathP visiting u beforev, let d” (u,v) denote plications of Markov decision processes. We introduce
the length alongP from « to v. Letd(u,v) denote the adiscount factory < 1. Given a pathP rooted ats, let
length of theshortestpath from node: to nodev. For thediscounted rewaraollected at node by pathP be

ease of notation, let, = d(s,v) andd” (v) = d” (s, v). defined ap? = m,74? (=*). That s, the prize gets dis-
For a set of nodes” C V, letIl(V') = _ ., m,. For counted exponentially by the amount of time it takes for
asetofedge®’ C I, letd(E') = >_ .y d(e). the path to reach node The max-discounted-reward

Problem Current approx| Source/Reduction
min-costs-t path @ep) 2+€ [8]

min-excess pathn(z p) 2.5+ ¢ 3(acp) — %

max discounted-prize patf p) 8.12+ € (1+agp)(14+1/agp)2®r
max-prize pathd¢pp) 4 1+ [agp]

max-prize treed pr) 8 2app

max-prize cycle ¢ pc) 8 2app

max-prize multiple-pathdx.pp) 5 app +1

max discounted multiple-patlafp p) 9.12+ ¢ app +1

Figure 1. Approximation factors and reductions for our problems.

problem is to find a patl® rooted ats, that maximizes 2.2. Preliminaries

pt = Y ,cppl. We call this thediscounted-reward

TSP Note that the length of the path is not specifically ~ To support dynamic programming in the max-prize

bounded in this problem, though of course shorter pathsvariants, we begin by scaling all prizes to polynomially

produce less discounting. bounded integers (in the number of vertiegsWe can
do this by guessing the valliéof the optimum solution
via binary searchand multiplying all prizes by:.?/II,
yielding a graph with optimal prize valu€?. If we now
round every prize down to the nearest integer, we lose

2.1. Results at mostn units of prize, which is a negligible multi-
plicative factor. This negligible factor does mean that
an approximation algorithm with guarante@n poly-

We present a constant-factor approximation algo- nomially bounded inputs has (weaker) guarantee “arbi-
rithm for the max-prize path (rooted Orienteering) prob- trarily close toc” on arbitrary inputs. Likewise, for the
lem, solving an open problem of [3, 1], as well as min-cost or min-excess variants, we can assume that the
the discounted-reward TSP. Central to our results is agiven prize valudl is polynomially bounded.
constant-factor approximation for thmin-excess path Let nodes inV be ordered from; = s throughuv,,
problem defined above, which uses an algorithm for the jn order of their distance from. (Note thatt is not nec-
min-costs-t path problem as a subroutine. We also give essarily the last vertex in this order). L&t = d(s, v;),
constant-factor approximations to several related prob-sod4, < d, < --- < d,,. For convenience in the anal-
lems, including the max-prize tree problem—the “dual” ysis, we assume all; are distinct (in the algorithm we
to thek-MST (min-cost tree) problem—and max-prize can handle equal distances by breaking ties lexicograph-
cycle. Specific constants are given in Figure 1. For the jcally).

Min-Excess problem, we derive an improved approxi-
mation of2 + ¢ in section 6.3, based on a tighter analysis i
of the min-costs-¢ path algorithm of [8]. This improve- 3. Min-Excess Path

ment giveg a better approximation factor6ofs + e for Let P* be the shortest path frosto ¢ with II(P*) >
the Max Discounted-Prize Path problem. k. Let e(P*) = d(P*) — d(s,t). Our algorithm re-

Our approximation algorithms reflect a series of re- turns a path?” with II(P) > & and lengthd(P) =
ductions from one approximation problem to another. d(s;t) + agpe(P*), whereagp = Sacp — 5. Thus
Improvements in the approximations for various prob- We obtain &2.5 + ¢)-approximation to min-excess path
lems will propagate through. We state approximation Using an algorithm of Chaudhuri et. al [8] for min-cost
factors in the formuyy where XY denotes the prob- s-t path withacp = 2 + €. A brief description of the
lem being approximated; the first letter denotes the ob- Min-cost path algorithm and approximation is given in
jective (cost, prize, excess, or discounted prize denotedthe appendix.
by C, P, E, and D respectively), and the second the

structure (path, cycle, or tree denotedByC, or T re- 1 Technically we will be finding the highest vallig such that our
spectively) algorithm comes within its claimed approximation ratio.

Vl V2 Vn
—_ — T
t)
b b b; by
- - - - >
type 1 type 2 type 1 type 2 type 1 type 2

Figure 2. Segment partition of a path in graph G

The idea for our algorithm for Min-Excess Path " intervalis(b;, b;11). Note that each; is the distance
(MEP) is as follows. Suppose that the optimum solu- label for some vertex. Lat; be the set of vertices whose
tion path encounters all its vertices in increasing or- distance frons falls in thei” interval. Note that the op-
der of distance frons. We call such a patmonotonic timum path traverses each détexactly once—once it
We can find this optimum monotonic path via a sim- leaves somé&/; it does not return. One of any two ad-
ple dynamic program: for each possible prize value jacent intervals is of type 1; if the path left this interval
p and for each vertex in increasing order of dis- and returned to it therf(d) would exceed 1 within the
tance froms, we compute the minimum excess path that interval. Thus, the vertices @?* in setV; form a con-

starts at vertex, ends at, and collects prize at leagt tiguoussegmenbf the optimum path that we label as
We will solve the general case by breaking the op- Si = P*NV;.
timum path into continuousegmentshat are either A segment partition is shown in Figure 2.

monotonic (so can be found optimally as just described) Note that for eachi, there may be (at most) 1 edge

or “wiggly” (generating a large amount of excess). We crossing fromV; to V; ;. To simplify the next two lem-

will show that the total length of the wiggly portions is mas, let us split that edge into two with a vertex at dis-

comparable to the excess of the optimum path; our so-tanceb; from s, so that every edge is completely con-

lution uses the optimum monotonic paths and approx- tained in one of the segments (this can be done since one

imates the length of the wiggly portions by a constant endpoint of the edge has distance exceedinand the

factor, yielding an overall increase proportional to the other endpoint has distance less tthgn Placing a ver-

excess. tex at each interval boundary ensures that the length of
Consider the optimal patf* from s to t. We divide & segment igqual tothe integral off (d) over its inter-

it into segments in the following manner. For any real val.

d, define f(d) as the number of edges dfr with one Lemma 3.1. A segmens; of type 1 has length at least
endpointat distance less th@from s and the otherend- 5, _ 1. A segmentS; of type 2 has length at least

point at distance at leagtfrom s. Note thatf (d) > 1 for 3(bis1 — b;), unless it is the segment containingn

all0 <t < d; (itmay also be nonzero for somie> d;). which case it has length at leadtd; — b;).
Note also thatf is piecewise constant, changing only

at distances equal to vertex distances. We break the reaProof. The length of segmeng; is lower bounded by
line into intervals according t¢: thetype one intervals the integral off (d) over thei*" interval. In a type 1 in-
are the maximal intervals on whigh{d) = 1; the type 2 terval the result is immediate. For a type 2 interval, note

intervals are the maximal intervals on whi¢ld) > 2. that f(d) > 1 actually implies thaff (d) > 3 by a par-
These intervals partition the real line (out to the maxi- ity argument—if the path crosses distantgvice only,
mum distance reached by the optimum solution) and al- it must end up at distance less than O

ternate between types 1 and 2. Let the interval bound-
aries be labeled = b; < by---b,,, Whereb,, is the Corollary 3.2. The total length of type-2 segments is at
maximum distance of any vertex on the path, so that the MOSt3¢/2.

Proof. Let ¢; denote the length of segmentWe know our solution will be at least as good as the one we get
that the length oP* isd; + ¢ = >_ ¢;. Atthe same time, by using the segments corresponding to the ones on the

we can write optimum path (i.e., using the optimum type-1 segments
m—1 and using the approximately optimum type-2 segments).
dy < by = Z (bit1 — bi) < Z l; + Z 0i/3 We need only show that this solution is good.

i=1 itype1 i type2 We focus on the segments corresponding to the opti-

mum pathP*. Consider the segmen$s of length/; on

It follows that the optimum path. If5; is of type 1, our algorithm will
€ — Z 0 —d; > Z 20;/3 find.a (monotonic) segmentwi?h the same endpoints col-
i type2 lecting the same amount of prize of no greater length. If

o _ S; is of type 2, our algorithm (through its use of subrou-
Multiplying both sides by/2 completes the proof. O tine MCP) will find a path with the same endpoints col-
Having completed this analysis, we note that the '€cting the same prize over length at mestp(;. Let L
corollary remains true even if we do not introduce ex- denote the total length of the optimum type 1 segments,
together with the lengths of the edges used to connect

tra vertices on edges crossing interval boundaries. Theb g H ¥ h of th
crossing edges are no longer counted as parts of segP€tWween segments. L&, denote the total length of the

ments, but this only decreases the total length of type 2°Ptimum type 2 segments. Recall tHat+ Ly = d; + ¢
segments. and that (by Corollary 3.2, < 3¢/2. By concate-

nating the optimum type-1 segments and the approxi-
mately optimum type-2 segments, the dynamic program
can (and therefore will) find a path collecting the same

Our algorithm computes, for each interval that might total prize asP* of total length
be an m_terval of the optimum sol.utlo_n, a segment cor- L+ acpls = Ly + Lo + (aop — 1)Ls
responding to the optimum solution in that interval. It <dy + e+ (aop — 1)(3¢/2)
then uses a dynamic program to paste these fragments = or

3.1. A Dynamic Program

together using (and paying for) edges that cross between =d;, + (§aCP _ 1) c.
segments. The segments we compute are defined by 4 2 2
vertices: the closest-t9-and farthest-frons vertices,c In other words, we approximate the minimum excess to

and f, in the interval (which define the start- and end- \yithin a factor of2acp — 2.
points of the interval: our computation is limited to ver- 2 2

tices within that interval), and the first and last vertices, 4. Maximum Discounted-Prize Path

z andy, on the segment within that interval. They are

also defined by the amoupbf prize we are required to Recall that we aim to optimizp(P) = Evd{jm_

e 4
collect within the segment. There are therefor@in”) Assume without loss of generality that the discount fac-
distinct segment to compute, whdrkeis the total prize 5, is = 1/2—we simply rescale each lengttto ¢/
in the graph. For each segment we find an optimum so- ¢, that/! = (1)4/ i.e.l' = llog,(1/7)

. . . 2 y b .
lution for a type 1 and a type 2 interval. For atype-1in- \g first establish a property of an optimal solution
terval the optimum path is monotonic; we can therefore inat we make use of in our algorithm. Define tealed
compute (in linear time) an optimum (shortest) MoNo- 76 7 of a nodew to be the (discounted) reward that a
tonic path fromz to y that collects prizg. If the inter- ya1h gets at node if it follows a shortest path from the
val is of type 2, the optimum path need not be mono- 4ot tow. That is./. — vl LetIl'(P) = S, p !

. T Y. vep To-

tonic. Instead, we approximate to within a constant fac- note that for any pattP, the discounted reward obtained
tor the minimum length of a path that startsrafinishes by P is at mostil’(P).

aty, stays within the boundaries of the interval defined ~ \ow consider an optimal solutioR*. Fix a parame-

by cand/f, and collects prize at leagt _ ter e that we will set later. Let be the last node on the
Given the optimum type 1 and near-optimum type-2 pathP* for whichd?” —d; < e—i.e., the excess of path
segment determined for each set of 4 vertices and prizep+ 4¢+ is at most. Consider the portion aP* from root

value, we can find the optimal way to paste some subset, . ; call this pathP; .

of them together monotonically using a dynamic pro-

gram. Note that the segments corresponding to the op-Lémma4.1. Let P;* be the part ofP* froms to ¢. Then,
timum path are considered in this dynamic program, so p(Pr) = p(P)(1 = 2%)-

Proof. Assume otherwise. Suppose we shorteXitby v in P is at mostae. Thus, the discounted reward col-

taking a shortest path fromto the next node visited lected aw is at least

by P* aftert. This new path collects (discounted) re- dotae d. e e
) : 1 1 1 , (1

wards from the vertices dP* — P, which form atleast p(v) > m, 5 =" | 5 3 =73

% of the total by assumption. The shortcutting proce- .

dure decreases the distance on each of these vertices b§umming over alb € P completes the proof. O

at leasts, meaning these rewards are und|scognted by Combining Lemma 4.2 and Lemma 4.1, we get the

a factor of at leas® over what they would be in path following:

P*. Thus, the total reward on this path exceeds the opti-]
Theorem 4.3. The solution returned by the above algo-

mum, a contradiction. :
rithm hasp(P) > (1 — 5)p(P*)/2%c.

It follows that we can approximaig P*) by approx- Proof.

L?::‘Tgp(Pt*). Bas.ed on the apovg observatlon,'we give p(P) > T (P)/2°¢ by Lemma 4.2
gorithm of Figure 3 for finding an approximately P ERA .

1 1 “ “ ” 2 H (Pt)/2 by ChOICE OfP
optimal solution. Note that “gue$s and “guessk” are S (D) /90 by definition ofr’
implemented by exhausting all polynomially many pos- = o)/1 y detinition ot
sibilities. > (1 N 2_) p(P¥)/20¢ by Lemma 4.1

O

Algorithm for Discounted PC-TSP
We can now set as we like. Writingz = 27¢ we

,) .__optimize our approximation factor by maximizig —
2. Replace the prize value of each node with the prize o) to deducer = a/(a+1). Plugging in thisz yields

discounted by the shortest path to that nade= an apbroximation ratio ofL 141 app
v47,. Call this modified grapld’. PP ol +app)(1+1/ape)™".

3. Guess—the last node on optimal pafh* with ex- 5. Orienteering
cess less than
4. Guessi—the value ofil'(P}). We would like to compute the maximum-prize path

) . of length at mostD, starting ats. We will use the algo-
5. Apply our min-excess path approximation algo- jnm for min-excess path given in section 3 as a subrou-

1. Re-scale all edge lengths so that 1/2.

rithm to find a pathP collecting scaled priz& with tine. Our algorithm is in Figure 4
small excess. ' ’
6. Return this path as the solution. Algorithm for Max-Prize Path (Orienteering)

1. Guessk, the amount of prize collected by an opti-
mum orienteering solution.

2. For each vertex, compute min-excess path fram
to v collecting prizek.

3. There exists a such that the min-excess path re-

Figure 3. Approximation for Maximum
Discounted-Prize Path

Our analysis below proceeds in termscof= agp, turned has length at mo#&t; return the correspond-
the approximation factor for our min-excess path algo- ing path.
rithm.

Lemma 4.2. Our approximation algorithm finds a path Figure 4. Algorithm for Max-Prize Path
P that collects discounted rewayd P) > II'(P) /2°¢. (Orienteering)

Proof. The prefix P of the optimum path shows that

it is possible to collect scaled prize = II'(P;*) on a As can be seen from our algorithm, we solve Max-
path with excess. Thus, our approximation algorithm Prize Path by directly invoking our Min-Excess Path al-
finds a path collecting the same scaled prize with ex- gorithm. Our analysis consists of showing that any op-
cess at moste. In particular, the excess of any vertex timum orienteering solution contains a low-excess path

which, in turn, is an approximately optimum orienteer- Proof. Let f be the furthest point frommalong the given

ing solution. path P. We are interested in the case wherez t. We
More precisely, we prove that for some vertgxhere can break pathP into two pieces; first a path from
exists a path froms to v with excess at mos% to f and then a path fronf to ¢. Using the symmetry

that collects prize at Ieasotji (hereagp is the ap- of our metric, we can produce a second path froto
PP 1

proximation ratio for min-excess pathgpp is the de- /Py using the shortest path fromto ¢ and then fol-

sired approximation ratio for Max-Prize Path, and lowing the portion of our original path fronito ¢ in re-

is the prize of the optimum Max-Prize Path). Assum- Verse.We now have two paths fromo f, each of which

ing this path exists, our min-excess path computation onhas length at mosb. The total length of these paths is
this vertexv will find a path with total length at most Pounded byD +d;. We will call our pathsd and B, and

dy, + agp I;;im — D and prize at lea O::P, provid- let their lengths bel; + 5,4_; anddy + ép respectively.
ing ana p p-approximation for orienteering. We now map pathi to the interval fron0 to § 4 accord-

ing to the excess at each point, much as in Lemma 5.1.
We consider dividing this interval into pieces of length
94tz (the last sub-interval may have shorter length if
04 does not divide evenly). We perform the same pro-
cess on patlB. We have created a total of+ 1 inter-
Lemma 5.1. If there is a path froms to ¢ of length at vals (this relies on the assumption thais integral, al-
mostD that collects prizer, such thatt is the furthest lowing us to bound the sum of the ceilings of the num-
point froms along this path, then there is a path fram ber of intervals for each path). We conclude that some
to some node with excess at mosé=%: and prize at such interval has prize at least;. We suppose with-
least” (for any integen > 1). out loss of generality that this interval spans a portion of
path A from a to v. We now consider a path that trav-
Proof. For each point along the original pattP, let els froms to a via the shortest path and then fraemnto v
e(a) = df — dg; in other wordse(a) is the excess in following pathA. The length of this path is bounded by
the length of the path ta over the shortest-path dis- 4, + @ for an excess of at mo&;_df < D+dv as
tance. We have(t) < D — d,. Consider mapping the desired. 0
points on the path to a line frofto ¢(¢) according to
their excess (we observe that excess only increases as
we traverse pat?). Divide this line intor intervals with
Iength#). Some such interval must contain at legst
prize, since otherwise the entire interval fréno e(t)
would not be able to collect prize. Suppose such an
interval starts with node and ends with node. We
consider a path from to v that takes the shortesta

path, then follows pgtH? from a to v. This path 90|' Theorem 5.3. There is an([agp]| + 1)-approximation
lects the_prlz_e of the interval fromto v in the original for the max-prize path (orienteering) problem, where
path, which is a prize of at leagt as desired. The total , , , js the approximation factor for min-excess path.
length of this path ig, + d” (a,v) = d, + dY’ —df’ =

dy +€(v) —e(a) < d, + <) The excess of this path is

T

Lett be the vertex on the optimum orienteering path
at maximum distance from We first consider the case
where the optimum orienteering path endsg és op-
posed to doubling back towards

Making use of Lemma 5.2, we can prove that our al-
gorithm for orienteering obtains a constant approxima-
tion. Making use of Chaudhuri et. al's approximation for
min-costs-t¢ path [8] along with our result on min-excess
path from section 3, we havelaapproximation for Ori-
enteering.

e(t) _ D—d; - D—d, . Proof. Lemma 5.2 implies that there exists a p*ath from
r ro= s to somev with excess2=4x obtaining priz T

Of course, in general the optimum orienteering path Such a path has length, + 29, implying that the

might have some intermediate node that is farther from @PProximation algorithm for min-excess will find a path

s than the terminal node We will generalize the above ~ froms tov with length at most, +(D—d,) = D and at
lemma to account for this case. least the same prize. The algorithm described will even-

tually try the proper values of andv and find such a
Lemma 5.2. If there is a path froms to ¢ of length at path in polynomial time (actually the approximation fac-
mostD that collects prizer, then there is a path from tor will be [app] + 1 + € and the running time will de-
to some node with excess at most=%= and prize at pend logarithmically or}; note that this running time is
least 7 (for any integen > 1). still polynomial in the size of the input). O

6. Extensions Proof. We consider the Multiple-Path Orienteer-
ing problem. The corresponding result for Discounted-
6.1. Budget Prize Collecting Steiner Tree Reward TSP can be derived analogously.
First consider the case when all the paths have a com-
In this section, we consider the tree variant of the Ori- Mon source. Let the reward collected by the optimal so-
enteering problem, called Max-Prize Tree in our nota- !ution, but not collected by our solution by stagene
tion. Namely, given a grapti' with root r, prize func- - Atleast one of the paths in the optimal solution col-
tion 7 and lengthsi, we are required to output a tree lects at least & fraction of this reward. Then, using the
T rooted atr with d(7) < D and maximum possible approximation guarantee of the algorithm for orienteer-
. —_ . . . 1 . .
rewardII(7). This problem is also called the Budget "9: our solution collects at least;g— fraction of this
Prize-Collecting Steiner Tree problem [13]. reward. By the end of: rounds, the total reward col-
Letthe optimal solution for this problem be a trge. lected by optimal solution, but not collected by us, is at

Double the edges of this tree to obtain an Euler tour of MOSt(L — ag7)" < 777, and the result follows.
length at mos2D. Now, divide this tour into two paths, Next consider the case when the paths have differ-
each starting from the rootand having length at most ~ €nt sources. LeD; be the set of points visited by the
D. Among them, let?’ be the path that has greater re- ¢-th path in the optimal solution, and, be the corre-
ward. Now consider the Max-Prize Path problem on the SPonding set of points visited by our algorithm. Lef
same graph with distance limid. Clearly the optimal ~ P€ the set of points that are visited by théh path in
solution P* to this problem hadI(P*) > TI(P') > the optimal solution and some other path in our solu-
e
Orienteering to get dapp-approximation tdr™. source, that visits all points i®; \ A,. Thus we have
II(4;) > £ ,p (II(O;) — II(A;)). Summing ovet, we
getappll(A) > (T1(O) — TI(A)). BUtTI(A) < TI(A).

ThusIl(4) > —L=T1(0). O

6.2. Multiple-Path Orienteering and
Discounted-Reward TSP

In this section we consider a variant of the Orienteer- § 3. An Improved Approximation for Min-
ing and Discounted-Reward TSP in which we are al- Excess and Maximum Discounted-Prize
lowed to construct up t& paths. For the Orienteering Path
problem, each path must have length at midsEor the
Discounted-Reward problem, tiierobots move simul-
taneously, so the discounting is done based on the indi-

vidual lengths of the paths. Discounted-Prize Path. The min-cast path algorithm

For t?Oth pr.oblems, we apply t,he algorithms ‘?'e' of Chaudhuri et. al has the property that if the optimal
scribed in sections 4 and 5 respectively to successwelypath has lengtth — d(s,) + ¢, then it returns a path

construct thet paths. At thei-th step, we setthe prizes i jength at most1 +6) L + ¢, for any fixed small con-
of all points visited in the first — 1 paths to 0, and con- gian¢5. A brief description of their algorithm and guar-
structed the-th path on the new graph, using the pre- antee is given in the appendix.

viously described algorithms. Using a set-cover like . . .
argument, we get the following approximation guaran- Using th.'s guarantee, note that if a segment of type 2
' has endpointa andv and lengttY = d(u,v) + €, then

tees. the length of this segment in the path found by the dy-
namic program is at mo$t + §)¢ + €.

In this section we show how to slightly improve our
approximation factors for Min-Excess and Maximum

Theorem 6.1. If all the paths have a common start node,

the above algorithm gives &/(1 — e=®#7) (1/(1 — Now for any nodey, lete, be the excess of the path
e~opr)) approximation for the Multiple-Path Orien- P~ fromstou. Then, US'”Q/i(%U) > dy —d, andd, +
teering (resp. Discounted-Reward TSP). €v = dy + €, + £ We gete’ < €, — €,. Furthermore,

| usingl < 3(€y — €u), from Corollary 3.2, we get that

If th ths h diff t start nodes, the ab X
© pamns have ditierent start hodes, the anove a the length of the segment is bounded by

gorithm gives aapp + 1 (app + 1) approximation
for the Multiple-Path Orienteering (resp. Discounted- 3
Reward TSP). 4+ (1+ 55)(% —€u)

Summing over all segments, we get an approximation

ratio of 2 + %5 for Min-Excess, for any small constant
Using this improved approximation for Min-excess,

we get an approximation factor of roughdyrs + ¢ for

the Maximum Discounted-Prize Path problem.

7. Conclusions

In this paper we give constant factor algorithms for
the Orienteering problem, Discounted-Reward TSP, and
some of their variants. An interesting open problem is
to consider other discount functions, or different dead-
lines for each vertex. For example, the reward collected
at vertexv at timet could be given by,, =11, if t < T,
and0 otherwise. Another interesting open problemis to
consider the directed versions of the problems, although
we believe that it may be hard to approximate these to
within constant or even logarithmic factors.

Even more ambitiously, returning to the MDP maoti-
vation for this work, one would like to generalize these
results to probabilistic transition functions. However,
this has the additional complication that the optimum
solution may not even have a short description (it is no
longer just a path). Still, perhaps some sort of non-trivial
approximation bound, or a result holding in important
special cases, can be found.

References

[1] E. M. Arkin, J. S. B. Mitchell, and G. Narasimhan.
Resource-constrained geometric network optimization.
In Symposium on Computational Geomepgges 307—
316, 1998.

S. Arora and G. Karakostas. 2+ ¢ approximation al-
gorithm for the k -MST problem. Iymposium on Dis-
crete Algorithmspages 754759, 2000.

B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Im-
proved approximation guarantees for minimum-weight
k-trees and prize-collecting salesme®iam J. Comput-
ing, 28(1):254-262, 1999.

E. Balas. The prize collecting traveling salesman prob-
lem. Networks 19:621-636, 1989.

D. P. Bertsekas. Dynamic Programming and Optimal
Control. Athena Scientific, 1995.

D. P. Bertsekas and J. N. Tsitsiklideural Dynamic Pro-
gramming Athena Scientific, 1996.

[7] A.Blum, R. Ravi, and S. Vempala. A constant-factor ap-
proximation algorithm for theé-MST problem. JCS$S
58:101-108, 1999.

K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths,
trees, and minimum latency tours. Rroceedings of
the 44th Annual Symposium on Foundations of Computer
ScienceCambridge, Massachusetts, 2003.

(2]

(3]

(4]
(5]
(6]

(8]

10

[9] N. Garg. A 3-approximation for the minimum tree span-
ning k vertices. InProceedings of the 37th Annual Sym-
posium on Foundations of Computer Sciemages 302—
309, October 1996.

M. Goemans and D. Williamson. A general approxima-
tion technique for constrained forest problems. Pho-
ceedings of the 3rd Annual ACM-SIAM Symposium on
Discrete Algorithmspages 307-315, 1992.

M.X. Goemans and D.P. Williamson. A general approxi-
mation technique for constrained forest problei@sAM

J. Comput.24:296-317, 1995.

B.L. Golden, L. Levy, and R. Vohra. The orienteering
problem.Naval Research Logistic84:307—-318, 1987.

D. Johnson, M. Minkoff, and S. Phillips. The prize col-
lecting steiner tree problem: Theory and practicePio-
ceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithmspages 760-769, 2000.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Rein-
forcement learning: A surveylournal of Artificial Intel-
ligence Researcht, 1996.

T. Lane and L. P. Kaelbling. Approaches to macro de-
compositions of large markov decision process planning
problems. InProceedings of the 2001 SPIE Conference
on Mobile RoboticsNewton, MA, 2001. SPIE.

T. Lane and L. P. Kaelbling. Nearly deterministic ab-
stractions of markov decision processesPtoceedings

of the Eighteenth National Conference on Artificial Intel-
ligence Edmonton, 2002.

M. L. Puterman. Markov Decision ProcessesWiley,
1994.

R. S. Sutton and A. G. BartdReinforcement Learning:
An Introduction MIT Press, 1998.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Appendix: The min-cost s-t path algorithm
of Chaudhuri et. al [8]

Chaudhuri et. al give a primal-dual algorithm for con-
structing ans-t path that collects prize at ledstand has
minimum possible length. For certain good valueg of
this algorithm returns a tree containin@ndt that con-
tains prize at least and has cost at most the cost of the
shortest-t pathcollecting reward:. Let the size of this
tree bed(s,t) + . Then, doubling all the edges of this
tree except those along the tree path froto ¢, we ob-
tain ans-¢ path of length at mosi(s, t) + 2¢, because
the tree path from to ¢ has length at leasl(s, ¢).

Using techniques from Arora et. al [2], one can ob-
tain ans-t path for any value ok, while increasing the
cost by a factor of1 + ¢), for any fixed constant. This
gives ans-t path of cost at mostl +6)d(s,)+ (2+J)e.

In particular, it implies 42 + ¢)-approximation for min-
costs-t path.

