Analysis of the Evolution of Peer-to-Peer Systems

David Liben-Nowell, Hari Balakrishnan, David Karger
Laboratory for Computer Science
Massachusetts Institute of Technology
200 Technology Square
Cambridge, MA 02139 USA

{dlI n, hari, karger}@cs.nt.edu

ABSTRACT

In this paper, we give a theoretical analysis of peer-ta-e2pP)
networks operating in the face of concurrent joins and ueetqu
departures. We focus on Chord, a recently developed P2Ensyst
that implements a distributed hash table abstraction, amty she
process by which Chord maintains its distributed state des\in
and leave the system. We argue that traditional performareze
sures based on run-time are uninformative fooatinually running
P2P network, and that thate at which nodes in the network need
to participate to maintain system state is a more usefulimétve
give a general lower bound on this rate for a network to rercaim
nected, and prove that an appropriately modified versiorhof€s
maintenance rate is within a logarithmic factor of the optinrate.

1. INTRODUCTION

Peer-to-peer (P2P) systems are distributed systems wehgwen-
tralized control or hierarchical organization, where tloétvgare
running at each node is equivalent in functionality. Thege s
tems have recently received significant attention in boddamia
and industry for a number of reasons. The lack of a centrakser
means that individuals can cooperate to form a P2P netwdtk wi
out any investment in additional high-performance harewarco-
ordinate it. Furthermore, P2P networks suggest a way tceggte
and make use of the tremendous computation and storagecesou
that remain unused on idle individual computers. Finahg te-
centralized, distributed nature of P2P systems makes tbbost
against certain kinds of faults, making them potentiallyl\gaited
for long-term storage or lengthy computations.

P2P systems are, of course, distributed systems, and madih tr
tional distributed systems research is relevant to thentatiely
unusual, however, is the assumption in P2P systems thas rzode

This research was sponsored by the Defense Advanced Riesearc
Projects Agency (DARPA), the Space and Naval Warfare System

Center, San Diego, under contract N66001-00-1-8933, amisih
Graduate Research Fellowship.

continuously joining and leaving the system. This makedlehg-
ing several issues which are trivial in a system with a fixednme
bership. In particular, data items must migrate as nodescm
go; this makes location of a data item at any given time naiatri
To deal with this problem, eontent addressable netweras Rat-
nasamy et al. [10] named this concept—provides a mappingyaf k
in some keyspace to machines in the network and a lookup-proto
col to allow any searcher to find the particular machine resite
for any key. For some applications, that node might be resipon
ble for storing a value associated with the key; for otheémight
perform computation on that key. The easiest way to implérmen
content addressable network is to maintain a directory pfde
signments; unfortunately, maintaining this directory sistently in

a distributed environment is too resource-intensive ttesca

Many P2P routing protocols—like CAN [10], Chord [12], Pgstr
[3], and Tapestry [14]—induce a connected overlay networkss
the Internet, with a rich structure that enables efficiegtlkekups.
The typical approach to the design of such overlays is rqughl
follows. First, an “ideal” overlay structure is specifiedder which
key lookups are efficient. Then, a protocol is specified tHaa
a node to join or leave the network, properly rearrangingdieal
overlay to account for their presence or absence. One threcorae
sider the issue of fault tolerance—e.g., showing that tkealidver-
lay can still route efficiently even after the failure of sofrection
of the nodes [3, 4, 12].

The Problem. Unfortunately, the approach described above ig-
nores the fact that a P2P network is a continuously evolvstesn.
The join protocol may work well if joins happen sequentiabyt
what if many joins happen concurrently? The ideal overlay ma
tolerate faults, but once those faults occur, the overlayitonger
ideal. What happens as the faults accumulate over time?

To cope with these problems that arise over time, any reaf&aP
system must implement some kind wiaintenance protocahat
continuously repairs the overlay as nodes come and go, ingdat
control information and routing tables to ensure that therlay
remains globally connected and supports efficient lookdipshe
analysis, we must recognize that the systémost nevewill be in

its ideal state. Thus, we must show that lookups, joins, @pad
tures (and, self-referentially, the maintenance protatself) be-
have correctly even in the imperfect overlay.

Evaluating maintenance protocols requires a new perfocearet-
ric. A P2P system is intended to be running continuouslever,
and system membership is dynamic. Thus, one cannot properly

evaluate a maintenance protocol in terms of running timeis
as long as the network does—or total network bandwidth, whic
is infinite if the network persists indefinitely. Similarihe main-

phasize these worst-case scenarios, since such algoatiertikely
to be overcautious and perform poorly in the typical caseerwh
the underlying network is behaving reasonably well. Weedfae

tenance work done by a single node will tend to grow as the node focus on analyses that mod@meof the problems we might face
spends time in the system. Instead, a proper performance mea e.g., that a large number of nodes may join or fail simultassy),

sure of a maintenance protocol is tla¢e at which each node must
expend resources in the maintenance protocol. This exjpeadi
consumes resources that cannot be used for “real” work,®addh
be kept small.

We can ask a number of questions in this framework. At what rat

while making assumptions that preclude more serious &sl(g.g.,

we assume that any two nodes attempting to exchange messages
will eventually be able to do so, and that node failures cadése
tected by their failure to respond “for a long time”).

For simplicity, we focus in our presentations on a fail-stepdel—

must each node in the system do work in order to keep the systemthat is, we assume perfect failure detection and reliablssage

in a “good” state? How much work is required to simply provide
a connected structure where lookups are correct? How mudh wo
is required to provide a richer structure where lookups areect
and also fast?

Our contribution. This paper investigates the per-nauketwork
bandwidthconsumed by maintenance protocols in P2P networks.
Network bandwidth (and not storage space or computatioa)tim
presently the most limited resource in P2P systems. If theuain

of per-node bandwidth consumed by a maintenance protoaa we
to grow fairly rapidly (e.g., linearly) as the network sizeieases,
then a system would quickly overwhelm the access bandwinfths
its participants and become impractical. Although we foouns
bandwidth, both our lower and upper bounds also apply toate r
of CPU usage and storage for maintenance.

delivery. In fact, many of our results apply even in weakedsis.

None of our algorithms are sensitive to message loss oretgliv
order; they can provably tolerate these problems to a soifsita
degree. However, recurring message losses can make a node ap
pear failed when it is actually alive, and our system doescope

with such “false suspicions of failure.” In practice, we explost
messages to lead to timeouts, and consider it reasonablento ¢
clude that repeated timeouts are signs of failure; howewemake

no formal claims about this scenario.

To model joins and failures, we postulate an adversary wimo ca
specify an arbitrary sequence of node join and failure tisued
key lookups. We assume the adversarghtiviousto the random
choices that our protocols will make—that is, that this skthe of
joins and failures is specified in advance, independent babe
ior of the overlay network. This rules out, e.g., the podisybihat

Any node joining the network must send at least some number of the adversary can fail all the nodes that a given node knowstab

maintenance messages to let other nodes know of its pregence
provide basic connectivity. Additional messages are UWgual
quired to update routing table information on nodes, to supp
efficient lookups. Similarly, because nodes may fail withaoy
notification, each node must periodically monitor the stdtsome

or all of its neighbors, consuming network bandwidith.

In this paper, we quantify the above observations. Firstgive
lower bounds on the maintenance protocol bandwidth forcbasi
connectivity in anyN-node P2P system as nodes join and leave.
We characterize this lower bound in terms of ttadf-life of a dis-
tributed system, which essentially measures the time folace-
ment of half the nodes in the network by new arrivals. We shat t
per-node maintenance protocol bandwidth, simply to mairtan-
nectivity of the network, is lower-bounded I§}(log N) per half-
life. Second, we consider the maintenance protocol usehdy t
Chord P2P routing protocol [12]. We modify this protocol éas
on our new analysis, and show that the result consumes badtidwi
at a polylogarithmic rate, nearly matching our lower bouutit-
ical to this analysis is a demonstration that Chord’s joooklup,
and (properly modified) maintenance protocols work colyeatd
efficiently even when the system is not in its ideal state.

A note on our model. Our goal in the upcoming sections is to
say something formal about the behavior of our system ingbk r
world setting of the Internet, where nodes can join and leqegbi-
trary times, and where messages can be arbitrarily losbotdeged.

At the same time, we do not want our algorithm design to overem

! Alternatively, a node may choose to detect failures only mite
actually needs to contact a neighbor; however, this merefgrd

the network traffic needed to find a new node when the old one
fails. It also raises the risk that all of a node’s neighbaikltfefore

it notices any of the failures, permanently disconnecthag hode
from the network.

Against such a powerful, adaptive adversary, the only wayutr-
antee complete connectivity is to maintain, at tremendass, @
fully-connected network. Recent work of Saia et al. [11] bas
gun to tackle the challenge of proving weaker guaranteemstga
an adaptive adversary, e.g., that most of the network resvain-
nected.

2. RELATED WORK

The Chord P2P system was introduced to solve the lookup prob-
lem described above. Using storage logarithmic in the sizbeo
network, Chord provides a lookup protocol that can find, iogk |
arithmic number of routing hops, the node responsible favarny
key. Keys in the system are evenly distributed among thegpart
pating nodes, providing good load balance. The assignni&eys
changes only locally as nodes join and leave the networkiidre
publications have described the Chord protocol, @o@perative
File Systenbuilt using it, and experimental results showing that it
performs well in practice [1, 2, 12, 13].

Many other recently designed P2P systems provide lookupvwseh
ior similar to Chord’s. These include CAN [10], Pastry [3hda
Tapestry [6, 14] (based on meshes [9]). All offer provablgtfa
lookups and efficient algorithms for node joins. Howevee, style

of evolutionary analysis of P2P networks that we are usirgyriva
been well-developed. Many of these P2P systems, such as thos
of Plaxton et al. [9] and Fiat and Saia [4], focus on models in
which nodes join and depart only in a well-behaved fashidn, a
lowing maintenance to happen only at the time of arrival aed d
parture. We believe this kind of well-behaved model is ulisea
tic. Other protocols such as CAN [10] and Pastry [3] allow for
the possibility of unexpected failures, and show that thetesy is
still well-structured after such failures occur. Theselgses, how-
ever, assume that the system begins in an ideal startirg) stad

do not show how the system returns to this ideal state afeefaih

ures; thus, accumulation of failures over time eventuaiyupts
the system.

Recently, Saia et al. [11] have explored the use of a buttadty
work in a P2P setting. Their system retains good routingcstru
ture even after thadversarialremoval of a constant fraction of the
nodes, and they show how to maintain their network as nodles fa
as long as the number of nodes joining the network is alwaf¢s su
ficiently larger than the number of failures. Their assuomptis
clearly limiting since any system must eventually stop gngw

Perhaps the closest to our evolutionary analysis is thenteeerk
of Pandurangan et al. [8]. They study the problem of maiigin

an N-node P2P network as nodes join and depart according to a

Poisson process. By using a central server to direct nevs join
specific nodes in the network, and to update old nodes’ neighb
as nodes depart, they are able to maintain connectivityeoP2@P
network using only a constant amount of space per nodedaeh
node remembers the identities of oily1) other nodes). Although
this compares favorably to our use Oflog V) space per node,
space is not an expensive resource in practice (at leastuansiub-
stantially exceed logarithmic space usage). Even moreritauptby,
their scheme does not solve the problenmaefting within the P2P
network: to find the node responsible for a given data itery th
propose to flood the network, requirifl V') messages, while our
lookup takesO(log V) time andO(log V) messages. Also, their
system requires a central server to guarantee connegtivitije
ours does not.

3. AHALF-LIFE LOWER BOUND

In this section, we give a general lower bound for the bantwid

If XA andy are fixed and the system is in a steady state, then the ar-
rival rate of A must be balanced by the departure ratévof (each

of N nodes is leaving at rajé), implying N = A/p. Then the dou-
bling time is1/x and halving time and half-life are boff /) 1n 2.

This reflects a general property: in any system where the eumb
of nodes is stable, the doubling time, halving time, and-litdfare

all equal up to constant factors.

Because nodes in the system are departing frequently, eadfk-s
ing node must beotifiedof additional nodes in the network to stay
connected after its original neighbors fail.

THEOREM 3.2. There exists a sequence of joins and leaves such
that any node that, at any time, has received an average @rfew
thank notifications per half-life will be disconnected from the-ne
work with probability at leas{l — —+)* ~ 0.418".

COROLLARY 3.3. Any N-node P2P network that remains con-
nected with high probability—i.e., with disconnection lgability
O(1/N)—for any sequence of joins and leaves with halfslifeust
notify every node with an average @flog V) nodes per- time.

ProoF We consider the above Poisson model, where nodes de-
part at ratg: (so the half-life ig1/u) In 2). By changing time units,
we assumg: = 1. If noden averages fewer thak notifications
per half-life then, there must be some timat which noden has
heard about fewer thaik nodes. Consider the minimum such

Let {n1,n2,...} be the nodes that nodehas heard about by time

maintenance messages in P2P systems, based on the ratesof nod- Including any nodes of which was initially aware. Let; be

joins and departures.

DerINITION 3.1. If there are N live nodes at time, then the
doubling time from timet is the time that elapses beforg ad-
ditional nodes arrive. Thdalving time from timet is the time
required for half of the nodes alive at timéo depart. Théalf-life
from timet is the smaller of the doubling and halving times from
time¢. Finally, the half-life of the entire system is the minimum
half-life over all timeg.

Intuitively, a half-life of means that after time+ 7, at most half
the state of the system can be extrapolated from its staimat t
t. Half-life is a coarse measure of the rate of change of a syste
it does not impose any specific conditions on the particutee-fi
grained pattern of arrivals and departures. Although thezesome
pathological situations in which the half-life is not a misyful
measure (e.g., the simultaneous failure of almost all nauléise
system), we believe that the concept of half-life is a usefud
general characterization of the rate of change of P2P sygsiteia
wide variety of circumstances.

As a specific example, consider a Poisson model of arrivads an
departures [8]: nodes arrive according to a Poisson progiths
rate \, while a node in the system departs according to an expo-
nential distribution with rate parametgr(i.e., expected node life-
time is1/u). If there areN nodes in the system at tinte then

the expected doubling time i¥/X and the expected halving time

is (1/pu)In2. (The probabilityp that a node fails in time- is

1—e #7; settingr = (1/p) In 2 makesp = 1/2.) The half-life is
thenmin((In2)/p, N/X).

the time of notification about; (and the last such time if there
are several—previous notifications will be irrelevantcsitthe last

notification ensures that; is alive at timet;.) Index such that the
t; are nonincreasing, so that nodewas the last node notification.

In our Poisson model, at timg the probability that node:; is
still alive is ei 7%, It follows that all the nodes has heard about
have failed, disconnecting from the network, with probability
P =T[;(1—e"""). By assumption, at any tinté < ¢, at leastt’
notifications occurred. It follows that in the time intergal- 9, ¢),
fewer thank notifications occurred. This observation lets us lower
boundP. Settingd = 1/k tells us that no notifications happened
after timet — 1/k. In other wordst; <t —1/k. Generalizing, we
find¢; <t —i/k. It follows that

[La-e9 = [La-e"
. k
_
(IL,,0=¢™)
where the last inequality follows by lower bounding eact/* by

e~ ["/*1. Now observe thaf[(1 —e /) > 1 - e/ =1— L,
and the theorem follows. [J

P

v

Of course, the node may exceed throtifications per half-life for
quite some time; the theorem does not apply until the avedeges
sufficiently far. We might worry about an initial condition which

the node is aware of a large number of neighbors. However, the
initial number of known neighbors can be at mdésand, under the
Poisson model, all of thes¥ known neighbors will be gone within
O(log N) half-lives with high probability. Thus the average need
be taken only the most recefilog V) half-lives.

/I ask noden to find the successor od.
n.find_successor(id)
if (¢d € (n,n.successor])
return n.successor;
else
n' := closest_preceding_node(id);
return n’.find_successor(id);

/I search the local table for the highest predecessaiiof
n.closest_preceding_node(id)
for ¢ := m downto 1

if (finger[i] € (n,id))
return finger|[i|;

/I join the system using information from node
n.join(n')
predecessor := nil;
successor := n'.find_successor(n);
build_fingers(n');

/I update finger table via searches by node
n.build fingers(n')
io := |log(successor — n)]| + 1; I/ first non-trivial finger.
for eachi > ig index intofinger|];
finger[i] := n'.find_successor(n + 2:1);

Figure 1: Pseudocode for the Chord P2P system.

Consider in particular a protocol in which the number of ficad-
tions is always bounded by per half-life. If noden is not iso-
lated at the end of thos@(log V) half lives, we can “restart” the
above analysis and, after at ma@3tlog V') additional half-lives,
test again whether nodeis isolated. Even conditioned on the fact
that the node has some neighbors at the beginning of thetresta
the above theorem applies. In other words, after @aflog V)
half-lives, the node will become isolated with probability*(*).

It follows that we expect the node to become isolated wig4f®
half-lives. This result can be strengthened further, usdere tech-
nical conditions to ensure symmetric behavior of the nodésn

a P2P protocol in which each node serdkbg N) notifications
per half-life in anN-node system, there is a sequence of joins and
leaves such that some node becomes isolated from the netitbrk
high probability withinO(log? IV) half-lives. Put more simply, any
network involvingo(log V) notifications per half-life will fall apart
almost immediately.

4. BACKGROUND ON CHORD

In this section, we outline the Chord P2P system, detailsrothv
can be found in an earlier paper [12]. Pseudocode for the ot
is given in Figure 1. The notation. f(-) means that node exe-
cutes procedurg(-), andn.z denotes the value of the varialte
stored at node.

The Chord protocol supports a single operation: given a key,
maps the key onto the node responsible for that key. Chord im-
plements distributed hash tablebased on consistent hashing [5,

N38

K30

Figure 2: The Chord key-node mapping.

tion (we use SHA-1); keys are mapped into the same space. A key
is assigned to itsuccessonode, the first whose hash follows it
modulo2™. Pictorially, nodes and keys are mapped onto a circle;
the key is assigned to the first node encountered moving wisek
from it; see Figure 2. For ease of exposition, we identifyewhnd
keys) and their hashed identifiers. To maintain the mappingna
noden joins, certain keys previously assignedits successor are
reassigned ta. When node: leaves the network, all of its keys are
reassigned ta’s successor. No other changes in assignment need
to occur. Previous work [5, 7] has shown that consistentihgsh
does a good job of load balancing keys onto nodes. Intuytitieis
follows since the use of an appropriate base hash functianme
that node and key identifiers can be treated as independeaint, u
formly distributed random points on the circle. This initoiit can

be justified formally, and we will make use of it without praof

this papef

Successor pointers and fingers. Each node stores isuccessor
node—the node immediately following it on the circle—so that the
successor of a ke can be determined by following successors
until we reach a node: with n < k < mn.successor. Succes-
sor pointers are sufficient to guarantee correct lookup pfkay’s
successor. To speed this search, we defingtthénger of node

n, fori =1,...,m, denotedn.finger[i], the first node to succeed
n+2"1 onthe circle. Every node always has some finger pointing
halfway to any destination key, so a sequenck@fV “halvings”

of the distance take us to the key [12].

Node joins and idealization. When a node: wishes to join the
system, it must be integrated into the Chord ring. Nadaust set
n.successor to point atits immediate successor on the ring, aisd
immediate predecessor must update its successor pointeirntoat

n. Furthermore, node must set its finger table entries, and certain
other nodes should update their fingers to point hstead ofn's
successor).

We allow nodes to join independently without any coordiomti

7]; keys are mapped onto nodes by a hash function that can be re These simultaneous joins can destroy the invariants thataméto

solved by any node in the system, via queries to other nodes. |
a steadylV-node network, each node needs “routing” information
aboutO(log N) other nodes, and resolves the hash function by
communicating withO(log N) nodes. We now discuss the map-

ping, and the mechanism for resolving it, in more detail.

Consistent hashing. Node identifiers (IP addresses) are hashed
into m-bit integers wher@™ > N, using some base hash func-

2We also note that to balance load to within a constant factor,
each node must plad®(log V) “virtual copies” of itself on the
ring. We ignore this issue in this paper, stating bounds pénal
node. Our bounds are thus precise for a system that uses-no vir
tual nodes, which still yields reasonable load balancetdwfthin
anO(log V) factor rather than a constant factor. If a system uses
multiple virtual nodes, all of our per-node message bouhdsils

be multiplied by the number of virtual copies used by eactenod

/I periodically verifyn’s successos, and informs of .
/I do not run untiljoin() is complete.
n.idealize()
T = successor.predecessor;
if (z € (n, successor))
successor = x,
successor.notify(n);

/I n' thinks it might be our predecessor.
n.notify(n')
if (predecessor = nilor n’ € (predecessor,n))
predecessor :=n';

/I periodically refresh finger table entries.
n.fix_fingers()
build_fingers(n);

Figure 3: Pseudocode for handling joins.

preserve, so each node periodically executitealizationproce-
dure that attempts to reconstruct the desired propert@pefform
idealization, each node stores an extradecessopointer, used
to record the closest predecessor that the node has evdrftaar
Noden updates its successorto= (n.successor).predecessor if
x falls betweem andn.successor. Every node runsgdealize() pe-
riodically; this is how older nodes learn about newly joinexties.
Periodically fingers are updated iy _fingers(). See Figure 3.

Departures and fault tolerance. Nodes can also depart the Chord
ring, either voluntarily or due to unexpected failures. Wighm
hope that nodes departing voluntarily might “clean up” lbefde-
parting, but since we need to plan for unexpected failurdschv

/I search the local table for the highest predecessawof
n.closest_preceding_node(id)
return the largest node in finger[l...m] or successor_list
so thatu € (n, id) andu is alive;

/I periodically reconcile with successor’s successor list
n.fix_successor_list()

(s1,--.,5r) := successor.successor_list;

successor _list := (successor,s1,82,...,8r—1);

/I periodically update failed successor pointer, if necegs
n.fix_successor()
if (successor has failed)
successor := smallest live node in
finger[1...m] or successor _list;

/I periodically flush predecessor pointer, if necessary.
n.fix_predecessor()
if (predecessor has failed)
predecessor := nil;

Figure 4: Pseudocode for handling failures.

the definitions that follow, we can handle (without an inse@
running time) a network with a reasonable degree of asymghro
where machines are operating at roughly the same rate, asgd me
sages take roughly consistent times to reach their deistirsatT his

is reasonable when differences among machines are small com
pared to the time between executionsidéalize(). When the
speeds of machines or message deliveries differ by a laager f
tor f, we can prove analogues of the following results, weakened
by that factorf. We refer to around of idealization as th&)(1)

cannot clean up, we make no attempt to define cleanup code fortime required for all nodes to ruidealize(), disregarding any time

a voluntary departure. Departing nodes simply vanish. éndé-
scription above, if a node’s successor fails, then the Chioglis
broken and proper lookups cannot take place. To avoid tlois-pr
lem, each node keepssaccessor lisbf the firstr nodes following
it on the ring rather than keeping a single successor pointer

In Figure 4, we give pseudocode for Chord’s operation in ties{

required for the transfer of data items.

5.1 What Could Go Wrong

First, we briefly describe some of the problems that migtsteairn
idealizing a network. An immediate concern is tfisconnection
of the network—by changing multiple successor pointerscaon

ence of failures. When searching for a node, we may encounter rently, we might cause the network to split into two or morp-se

failed nodes along the search path, desest_preceding_node()
must check that it is forwarding the search to a live node. iAdd
tionally, it must consider nodes in the successor list aslidates
for the next hop on the search path. A nedenaintains its suc-
cessor list by repeatedly fetching the successor list afitsediate
successos, removing its last entry, and prependiagp it. If node

arate components and cause any data stored in one component t
become inaccessible to nodes in the other. (Recall that we tera
use limited space per node, so the simple solution of remengbe

all nodes ever encountered is infeasible.)

A more subtle difficulty is the creation of laopy cycle. Call a

s fails, thenn can replace its successor with the next node on its chorg networkweakly idealif, for all nodesu in the system, we

successor list, and so on. Similarly, nodgeriodically confirms
that its predecessor is alive, and setgsredecessor to nil if not.

5. AN ANALYSIS OF CHORD

have(u.successor).predecessor = u andstrongly idealif, in ad-
dition, for each node., there is no node in the same component
asu so thatu < v < u.successor. A loopynetwork is one which
is weakly but not strongly ideal. The protocols in Sectiorr for

As nodes join and leave the system—unexpectedly, and ppssib weak ideality only, a consistency condition that is necesdaut
concurrently—thedealize() procedure attempts to reconstruct the not sufficient, for correct routing in a Chord network. Foasple,

Chord state described in Section 4. The primary goal of ideal
tion is to achieve that ideal state, but this goal is possihlg under
certain patterns of joins and leaves. In other cases, thedGlys-
tem can only hope to “keep up” with the changes: joins anddeav
are happening at too high a rate to progress towards thikstiga,
but the system can avoid slipping farther away from ideality
the remainder of this section, we attempt to quantify thed@@mns
under which this is possible.

A note on our model. For simplicity of presentation, we consider
a synchronous model of idealization. With mild complicaimn

the Chord network shown in Figure 5 is stable undétalize().
However, this network is globally inconsistent—in facieté is no
nodew so thatu.successor is the first node to follow, on the iden-
tifier circle. The result of this scenario is thétd_successor(q)
searches from two different nodes in the network, but forsémae
queryq, will return two different nodes, and thus data that is avail
able in the network will appear unavailable to some nodeghén
first part of this section, we show that an initially non-lgopet-
work stays non-loopy through idealization. In Section W6,give
a strong idealization algorithm to handle the loopy casesbme-
how arises.

Figure 5: A weakly ideal loopy network. The arrows rep-
resent successor pointers, and for every node, we have
(u.successor).predecessor = u. However, for every nodew,
there is a nodev,, in the network so thatv,, € (u, u.successor).

5.2 The Ideal Chord State

In our high-level description of the Chord protocol in Sent#,
we suggested some of the details of itheal statefor Chord; here,
we formalize those conditions. Let each successor list length
clog N, for somec = O(1).

Since each Chord node has exactly one successor, the gifapddde
by successor pointers igpgeudoforest-a graph in which all com-
ponents are directed trees pointing towards a root cyctte@u of

a root node). In connected networks, this graph is a sipgéai-
dotree (When we consider failures, we build this graph using the
first live entry inu.successor _list for eachu.)

If this pseudotree does not consist solely of a cycle, theisdme
nodesy in the cycle, there is a non-empty tree of nodes rooted at
consisting of nodes that have recently joined the networkae
not yet in the cycle. We refer to this rooted treeussappendage
and denote it4,,. The ideal Chord state has no appendages.

DEFINITION 5.1. A Chord network is in thaleal statef:

1. [connectivity] There is a path using successor lists and fin-
ger tables connecting any two nodes.

2. [randomness] All the nodes in the system are independently
and uniformly distributed around the identifier circle.

3. [cycle sufficiency]Every nodeu is on the cycle.

4. [non-loopiness]For any nodex on the cycle, there is no node
v € (u, u.successor).

5. [successor list validity]Everyu. successor _list contains the
first clog N nodes that follow.

6. [finger validity] For every node: and everyi, the first node
followingu + 2! is stored asu.finger[i].

Previous work [12] has established a number of good prased
this ideal state: the proceduf@id_successor(q) returns the true
successor of in time O(log V), even after all nodes fail indepen-
dently with constant probability < 1; furthermore, starting from a
Chord network in an ideal state and allowing an arbitraryisege
of possibly concurrent joins, the network eventually beeerndeal
again. In the remainder of this section, we establish thatlai
properties hold even in states that are only “close” to ideal

5.3 A Pure Failure Model

Consider anV-node Chord network in which some nodes have
failed recently, and some other nodes may fail soon. In #tisng),
some of the entries in successor lists may be out of dateaicimg
nodes that have already failed.

Given anN-node ideal network, suppose tiféf2 nodes in the net-
work fail (obliviously to their identifier, and thus random iden-
tifier space). With high probability, at least one of the rodte
any givenu.successor _list does not fail; thus the network remains
connected and non-loopy, and all nodes remain on the cyde. |
fact, with high probability, at least one-third of the nodesany
givenu.successor _list do not fail, which means that in the result-
ing state each successor list consists of at least thédjt3} log NV

live nodes that followu on the cycle. (This type of argument,
which we use frequently in this paper, is based on the Chernof
bound—in expectation, half of th®(log V) nodes in the succes-
sor list fail; thus, with high probability, no more than twids
fail.) Any wu.finger[i] which did not fail is the first live node fol-
lowing w 4+ 2°~*, since all fingers were correct in the ideal state.
Consider the resultingy/2-node Chord network, and suppose that
nodes continue to fail. We would like this network to retdie t
good properties of the ideal state—namely, this same sdeutif
tolerance, and fast and efficient lookups.

DEFINITION 5.2. A Chord network is in theycle with failures
stateif:

1,3,4. Asin Definition 5.1.
2. [randomness]

() As in Definition 5.1.

(b) All nodes in the system are alive with probability at
least1/3, even conditioned on the liveness of an ar-
bitrary subset of up t@V/4 other nodes.

5. [successor list validity] For every nodeu, let L,, denote the
live entries inu.successor _list.

(a) Every|Ly| > (¢/3)log N.

(b) EveryL, contains exactly the fir§i, | live nodes that
follow the nodeu.

6. [finger validity] For every node: and index, if u.finger|i]
is alive, then it is the first live node following+ 2¢ 1.

Our analysis will consider starting from a network alreadythe
cycle with failures state, and Constraint 2(b) imposes thede

tion that any previous failures of nodes in the system were ra
dom. (This is in fact somewhat stronger than we need—we only
apply this fact to show that, at every stage dfral_successor(q)
search, with constant probability, the query can be foredito the
node returned bylosest_preceding-node(q). Thus we only apply
2(b) to the set oD (log® N) nodes previously encountered along a
search path.)

For intuition, consider a network in the cycle with failurstte.
We claim that if no additional failures occur then the netivaill
become ideal within a small number of rounds of idealizatlBach
nodew has its true live successor as the first live entry in its suc-
cessor list, so after rounds of reconciling:’s successor list with
u.successor's successor list, the firstentries ofu.successor _list

will be the firstr live successors of. Similarly, after each finger
u.finger[i] is updated by running. find_successor (u+2""1), the
correctness ofind_successor () ensures that all fingers will be ac-
curate. In fact, this intuition can be leveraged to show thaet-

Figure 6: A Chord network in the cycle with appendages state.
Unfilled nodes are on the cycle; filled nodes are in appendages

work in the cycle with failures state remains in the cyclehiil-
ures state, as long sufficiently many rounds of idealizaticeur in
a halving time:

LEMMA 5.3. Consider anV-node Chord network in the cycle
with failures state, and suppose that upXg'2 oblivious failures
occur at any time during the execution of at leB$tog V') rounds
of idealization. Then, with high probability,

1. Throughout this procesgind _successor (q) returns the first
living successor of and runs in timeJ(log IV).
2. The resulting network is in the cycle with failures state.

The proof of this lemma relies on three key facts:

(1) The network remains connected with high probabilityis-th
holds since each successor list kdog V) live entries and
nodes fail with constant probability;

(2) find_successor() is efficient—this holds since, if each finger
is up with constant probability, then each forwarding halve
the distance to the query with constant probability (evem co

not be completely up to date, since nodes may have receitggo
betweeru + 2°~* and the current finger. finger[i]. See Figure 6.

DEFINITION 5.4. A N-node Chord network is in theycle with
appendages staife

1-2. Asin Definition 5.1.

3. [cycle sufficiency]

(a) Of the nodes on the cycle, a subset of size at IBgat
is uniformly and independently distributed around the
identifier circle.

(b) For any cycle node, we havg.A,| = O(log N).

. [non-loopiness]

(a) The cycle is non-loopy.

(b) For every node in the appendaged.,, the path of suc-
cessors fromv to « is increasing.

. [successor validity]For every nodey:

(a) if v is on the cycle, them.successor is the first cycle
node followingv.

(b) if v is in appendageA,,, thenw is the first cycle node
following v.

. [finger validity] There is a sef of N/2 nodes on the cycle
that are uniformly and independently distributed so that, f
every nodex and everyl < i < m, no element of ever
falls betweeru + 2°=" andwu. finger[i].

Constraint 3(a) guarantees that the nodes in the networlnaie
distributed” on the identifier circle: most of the nodes ardlie
cycle, and at least a constant fraction of these nodes azadpan-
domly across the identifier circle. (There will be bias in tinder in
which recently joined nodes are incorporated into the eydeg.,
towards fast joining for nodes that fall nearby nodes alyeadthe
cycle, or for nodes that fall between two nodes on the cyclielwh
are close to each other—so it is not the case that the digtibof
all nodes on the cycle is uniform and independent.)

Constraint 4(b) ensures that all paths leading to the cytkhe
pseudotree are non-loopy, in the sense that following thethd
cycle never goes around the identifier space more than omiisT
necessary to ensure thatd_successor () operates correctly when
it is invoked by a node in an appendage—without this conaljtéo

ditioned on the liveness of the nodes encounte_red so far on searchy. find_successor(q) by a nodev € A, can return a result
the search path), so the total number of hops in the search;, A, even when the correct node is in the cycle.

path isO(log IV) with high probability; and

(3) Successor lists have purged all “old” failures—thisdsabe-
cause, after rounds of successor list updates, the firsh-
tries must have been alive when the process began.

5.4 A Pure Join Model

We now shift our attention from failures to joins, and coesia
Chord network in which nodes can join the system, but no node
ever departs. Since node failures are not in our model, weail
simplicity consider a Chord network with no successor lists

When nodes are joining the network, we must again relax a pumb
of the conditions of Definition 5.1. A node that has recently
joined the network may not be on the cycle because the node
u.successor has not yet been informed afs presence, and thus
p = s.predecessor # u. If s andp are nodes that are already
on the cycle, then untjp learns about, the nodeu will not be in
the cycle. Furthermore, successor pointers will not bescomvith
respect to nodes not on the cycle. In addition, finger pasnie

Constraint 6 ensures that all fingers are sufficiently adceuxaal-
low fast lookups—all fingers are correct with respect to astamt
fraction of the nodes in the system.

Given anN-node network in the ideal state,f additional nodes
join (bootstrapping on any node in the network), then thelteés

a network in the cycle with appendages state. The correxiofes
search vigfind_successor () implies that a joining node sets its
successor to either its true cycle successar to some other node
in A;. This guarantees properties 1-2 and 4-5. For cycle suffi-
ciency, the existingV nodes form the requisite subset, and, with
high probability, onlyO(log V) joining nodes have identifiers that
fall between any two existing nodes; thus each appendagsizes
O(log N). For finger validity, the sef consists of allV existing
nodes; since all fingers are built with these already in ttodecyall
fingers are correct with respect to the element§.of

Similarly, consider a network in the cycle with appendageses

and suppose that no further nodes join the system Qykrg> N)
rounds of idealization. In each round of idealization, aené@m
any non-empty appendagé, enters the cycle, since one cycle
nodep. and at least one appendage npgdéoth think thatu their
successor. The idealization procedure will then adjusstiveessor
of the node farther froma. (which isp.) to point the node closer to
u (which isp,), incorporatingp,, into the cycle. Thus i (log V)
rounds, all nodes in appendages are incorporated into ttle.cy
Within one subsequent full round of finger updates, all fisgae
correct with respect to all nodes. The result is an ideal agtw

Again, we can combine these two intuitive arguments to shaw t
the cycle with appendages state can be maintained over time:

LEMMA 5.5. Consider anV-node Chord network in the cycle
with appendages state, and suppose thanodes join the net-
work, each using an arbitrary node to bootstrap on, over aste
Q(log® N) rounds of idealization. Then, with high probability,

1. Throughout this procesgnd_successor(q) returns the cy-
cle successos of g or a nodew in A so thatg < u < s,
and runs inO(log N) time.

2. After this process, the resulting network is in the cydkl w
appendages state. []

We establish the efficiency gind_successor() by observing that
fingers are correct with respect A6/2-sized random subset on the
cycle, and the remaining nodes are randomly distributedyito
high probability onlyO(log V') new nodes fall between the correct

node and the result of the search using the old fingers. Thys on
O(log N) additional steps are required to find the true cycle suc-

cessor of the query. As in the healing of a cycle with appeeslag
network into ideal, some appendage node is incorporateck!iret

cycle inO(1) rounds; since, with high probability, appendages are

only O(log V) in size even afteN joins, afterO(log V) rounds all
old nodes are incorporated into the cycle. Sifie@_successor ()
runs in logarithmic time and there are or)(log V) distinct fin-
gers with high probability, the time required to update fisgis
O(log® N), so afterO(log® N) rounds of idealization after all the
old nodes are incorporated into the cycle, the network i& bathe
cycle with appendages state.

5.5 A Fully Dynamic Model

Finally, we simultaneously consider joins and failures.e Thtu-
ition of the previous sections applies here almost directhost
of the conditions that we impose were imposed for either tive p
join or failure case. A few conditions must be modified slighb
account for interactions between joins and failures.

DEFINITION 5.6. A N-node Chord network is in theycle with
failures and appendages stifdor some constanb:

1. [connectivity]. The network is connected.
2. [randomness].

(a) Allthe nodes in the system are independently and uni-

formly distributed around the identifier circle.

(b) All nodes in the system are alive with probability at
least1/3, even conditioned on the liveness of an ar-
bitrary subset of up taV/4 other nodes.

3. [cycle sufficiency]

(a) Of the nodes on the cycle, a subset of size at IB&St
is uniformly and independently distributed around the
identifier circle.

(b) For any consecutive cycle nodes . .., uiog v, We have
SN | Au; | = OQlog N).

4. [non-loopiness]

(a) The cycle is non-loopy.

(b) For every node in the appendagel.., the path of suc-
cessors fromv to « is increasing.

5. [successor validity]For every node, let L, denote the live
entries inv.successor _list.

(a) Every|L,| > (¢/3)log N.

(b) if v is on the cycle, them.successor is the first live
cycle node following.

(c) if v is in appendageA,, thenu is the first live cycle
node followingv.

(d) if the successor list ofi.successor skips over a live
nodew, thenw is not inu. successor _list.

(e) No successor list contains nodes that failed more than
D1log? N rounds ago.

(f) No successor list skips any live node that entered the
cycle more tharD log? N rounds ago.

6. [finger validity]

(a) There is a sef of at least/V/3 nodes on the cycle that
are uniformly and independently distributed so that, for
every nodeu and everyl < i < m, no element of
ever falls between + 2°~! and u.finger [i].

(b) For eachi, if u.finger[d] is alive, then it is at least as
close tou 4 2'~* as the first live node of following
uw+ 200

The network in Figure 6 is also in the cycle with failures apd a
pendages state, with appropriate conditions on the stateauc-
cessor lists.

Intuitively, condition 5(d) is a consistency condition Wween the
successor lists of adjacent nodes on the cycle; it guarantes
nodew only adds new nodes to its successor list by learning them
from its successor. Without this condition, the cycle magdmee
loopy as additional nodes fail. Conditions 5(e,f) ensura the
successor lists are reasonably current.

THEOREM 5.7. Start with a network ofV nodes in the cycle
with failures and appendages state with successor listemgth
clog N, and allow up taV oblivious joins andV/2 oblivious fail-
ures at arbitrary times over at leadd log® N rounds of idealiza-
tion, for D = O(1). Then, with high probability,

1. Throughout this procesgnd_successor(q) returns the first
live cycle successarof g or a nodeu in A; so thatg < u <
s, and runs inO(log V) time.

2. The resulting network is in the cycle with failures and ap-
pendages state.

PROOF Since the joins and failures are oblivious, they corre-
spond to random identifiers in the network.

In a network with successor lists of lengtfiog vV, we will say
that a nodeu is fully incorporated into the cycléf it has been
in the cycle for at least” log N consecutive rounds. Note that
merely having a cycle nodepoint to nodev is insufficient forv to

be robustly on the cycle, sinceiif fails immediately after setting
u.successor = v, thenv will fall off the cycle.

We distinguish between “old” nodes which have been presant f
longer thanD1log? N rounds, “middle-aged” nodes which have
been present for less time, and the at my¥stnew” nodes which

join during the curreniD log? N rounds of idealization. By def-
inition of the cycle with failures and appendages state,nuldes

are in the cycle (i.e., are reachable by successor poiriams dll
nodes on the cycle). From the fact that identifiers are randoiy
O(log N) new nodes join between any two old nodes. This implies
that no node ends up with too many nodes in its appendage dur-
ing the time period being analyzed. Cycle nodes can failsicau
their appendages to merge together, but with high prolbaloitily
O(log N) consecutive cycle nodes fail, so the size of an appendage
is O(log) by 3(b), with high probability, including middle-aged
and new nodes.

Unfortunately, because of failures, it is not true that aenédm
each appendage (fully) enters the cycle in each round, Hiecey-
cle node that points to it may fail immediately. However,liigh
probability, within O(log V) rounds, some node from each ap-
pendage will become fully incorporated into the cycleCiflog V)
attempts for a node € 4, to become incorporated into the cy-
cle, it will begin to join the cycle when the cycle nogéehat sets
p.successor = v does not fail in this entire process. Once a node
is fully incorporated into the cycle, with high probability never
leaves, so withinO(log? N) rounds, allO(log N) middle-aged
nodes in each appendage will join the cycle.

The correctness and efficiency fid _successor () follow just as
in Lemmas 5.3 and 5.5.

After all the middle-aged nodes enter the cycle, we requiradli-
tional O(log® N) rounds of idealization to ensure that all of the
fingers are correct with respect to the middle-aged nodesgsi
fiz_fingers() runs inO(log? N) time since lookups require only
O(log N) time, by the above. [

That is, so long as Chord execut®$log” N) rounds of idealiza-
tion per half-life, the network remains in this cycle withlfaes
and appendages state, in which search is efficient and torrec

What we have deemed as the “correctness” of the search proce
dure is somewhat subtle, though the returned node is comréug
following sense: at the instant that eghd _successor (k) termi-
nates, it yields a nodethat is responsible for a key range including
k. If v does not hold the kek, one of the following cases holds:
(1) k£ is not yet available because it is being held at a node in an
appendage (but, by Condition 5(f), it will join the cycle hiih a
half-life); (2) v is on the ring and responsible for the kky but

is in the process of transferring keys from its successor tfiig
transfer will complete quickly, and thenwill have keyk); or (3)v

was previously responsible for the kkybut has since transferred

k to another node. We can handle (3) by modifying the algorithm
to have each node maintain a copy of all transferred datarfer o
half-life after the transfer.

5.6 Loopy States

In Section 5.5, we established that, under our model of jaimd
departures, Chord’s idealization protocol maintains gestewhich
routing is correct and fast with high probability; the prodts in

n.join(n')
on_cycle := false;
predecessor := nil;
s = n'.find_successor (n);
while (not s.on_cycle) do
s 1= s.find_successor(n');

n.update_and_notify (i)
s := successor[i]
T := s.predecessor;
if (z € (n,s))
successor[i] := x;
successor[t].notify(n);

successor[0] 1= s;
successor[l] :=s;
n.idealize()

u 1= successor|[0].find_successor(n);
on_cycle := (u = n);
if (successor[0] = successor[1]
andu € (n, successor[1]))
successor(l] := u;
for (¢ :=0,1)
update_and_notify(i);

Figure 7: Pseudocode for strong idealization.

Figure 1 maintain strong ideality in a strongly ideal netkvdFhus

as long as all nodes operate according to this protocol, itldvo
seem that our network will be strongly ideal, so that our lguk
will be correct. But, fearful of bugs in an implementatiomn, 2
breakdown in our join/departure model, or the eventual vetice

of low probability events, we now wish to take a more cautious
view. (For example, a node might be out of contact for so Idvag t
some nodes believe it to have failed, while it remains caredh
that it is alive. Such inconsistent opinions could lead tystem to

a strange state.)

In this section, we extend the Chord protocol to idealizerée
work from anarbitrary state, even one not reachable by correct
operation of the protocol. This protocol does not reconaedis-
connected network; we rely on some external means to do so. Ou
approach is in keeping with our focus on the behavior of osr sy
tem over time—over a sufficiently long period of time, extremely
unlikely events (such as the simultaneous failure of allasoih a
successor list) can happen; we need to cope with them.

The idealization protocol of Figure 1 guarantees that allaschave
indegree and outdegree one, so a weakly ideal network ¢sdia
topological cycle, but one in which successors might berireob.
For a nodeu, call u's loop the set of nodes found by following

successor pointers starting framand continuing until we reach a
nodew so thatw.successor > u. In a loopy network, there is a
nodew so thatu's loop is a strict subset of the set of nodes in the
same component as and lookups may not be correct.

The fundamental idealization operation by which we unfudapy
cycle is based upoself-searchwherein a node searches for itself
in the network. If the network is loopy, then a self-seardnfr
traverses the circle once and then finds the first node on te lo
succeedingi—i.e., the first nodev with w.predecessor < u < w
found by following successor pointers. We extend our previo
idealization protocol by allowing each nodd¢o maintain a second
successor pointer, generated by self-search and improweactly
the same way as in the previous protocol. See Figure 7.

THEOREM 5.8. Within O(N?) rounds of strong idealization,
an arbitrary connected Chord network becomes stronglylidea

PROOF. There are two key intuitions behind the correctness of
this algorithm. Combined, they show that the only stablefigen
uration of the network is the desired one. First, we show ithat
the network is weakly ideal but not strongly ideal, then atste
one node will find a improved second successor when it pegform
its self-search. Having ruled out the “wrong” weak idedtiza,
we consider non-loops—i.e., situations in which some nddes
more than one successor pointer. Every node has at leastione s
cessor pointer, meaning there are at lessuccessor pointers
in the system. If even one node has two distinct pointersh(wit
successor[0] # successor[1]) then in total there armorethan v
distinct successor pointers. If this happens, then some nbes
two distinct other nodes pointing at it as a successor. Asaakwv
idealization, this is not a stable situation: the closedpoessop

will notify s, and then the farther predecessor will hear about and

switch top. It follows that the only stable situation is when every
node has exactly one successor pointer, which points totus's
true successor in the network.

Observe that a loopy Chord network will never permit any rscide
join until its loops merge—in a loopy network, for all we have
u.on_cycle = false, sinceu’s self-search never returns Thus,

if the network somehow finds its way into a loopy state, it \Wwékl
itself within O(N?) rounds: each of thé' successor pointers can
improve at mostV times. [

While the runtime of our strong idealization protocol isjeyrecall
that it needs to be invokeahly when the system gets into a patho-
logical state. Such pathologies ought to be extremely ranich
means that the lengthy recovery is a small fraction of theallve
lifetime of the system. Nonetheless, it would clearly befgnable

to develop a strong idealization protocol that, like weaaiiza-
tion, simply executes at a low rate in the background, ratten
bringing everything else to a halt for lengthy periods.

Strong idealization in the presence of failures.As before, main-
taining a successor list of lengf®(log V) will ensure that our
graph, with high probability, stays connected as lon@éeg V)
rounds pass befor&’/2 nodes fail. (This successor list can be
formed by following either successor pointer from each npBe-
call, though, at mosiV failures can occur before the network is
strongly ideal (or has disappeared), since, as discussaaaho
nodes can join a loopy network. However, if oneud successors
fails, then there may be a large number of nodes betweenitbd fa
successor and the first live entry insuccessor_list. SO we may
slip backwards using the sense of “progress” from Theoren 5.
However, there are at mo3i failures before the network empties.
We can only havé)(IN?) improvements after any of th¥ failures
before we are strongly ideal, so we have the following:

THEOREM 5.9. Start from an arbitrary connected state with
successor lists of lengt®(log N). Allow O(N) failures over
Q(log N) steps. Then, with high probability, i@(N?) rounds,
the network is strongly ideal.

6. CONCLUSION

We have described the operation of Chord in a general model of (14]

evolution involving joins and departures. We have shown ¢ha
limited amount of housekeeping work per node allows theesyst
to resolve queries efficiently. There remains the possibdf re-
ducing this housekeeping work by logarithmic factors.

Our current scheme postulates that the half-life of theesysis
known; an interesting question is whether the correct maerice
rate can be learned from observation of the behavior of heigh
Another direction for further work is the analysis of Chordéthw
limited forms of message loss: the eventual idealizatiomfany
non-loopy state into an ideal network continues to hold ag las
any two machines that attempt to communicate eventuallyemd;
and we have some preliminary results suggesting that samgeth
much like Theorem 5.7 can be extended to such a model. A signif
icant challenge is identifying a good mildly pessimisticdebfor
loss of messages.

A further area to address is recovery from pathologicabsitns.
Our protocol exhibits slow recovery from certain pathobtagi‘dis-
orderings” of the Chord ring. Although it is of course impits to
recover from total disconnection, an ideal protocol wowddaver
quickly from any state in which the system remained conmecte

7. REFERENCES

[1] DABEK, F., BRUNSKILL, E., KAASHOEK, M. F., KARGER, D.,
MORRIS, R., STOICA, |., AND BALAKRISHNAN, H. Building
peer-to-peer systems with Chord, a distributed locationic In
Proc. IEEE Workshop on Hot Topics in Operating Systems
(HotOS-VII1)(2001).

DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R.,AND
SToICA, |. Wide-area cooperative storage with CFSPhoc. SOSP
(2001).

DRUSCHEL, P.,AND ROWSTRON A. Past: Persistent and
anonymous storage in a peer-to-peer networking envirohriren
Proceedings of the 8th IEEE Workshop on Hot Topics in Opegati
Systems (HotOS-VII[R001), pp. 65-70.

FIAT, A., AND SAIA, J. Censorship resistant peer-to-peer content
addressable networks. Rroc. SODA(2002).

KARGER, D., LEHMAN, E., LEIGHTON, F., LEVINE, M., LEWIN,
D., AND PANIGRAHY, R. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots oa YKorld
Wide Web. InProc. STO(Q1997).

KuBlaTOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI, S.,
EATON, P., GEELS, D., GUMMADI, R., RHEA, S.,
WEATHERSPOON H., WEIMER, W., WELLS, C.,AND ZHAO, B.
OceanStore: An architecture for global-scale persistiemage. In
Proc. ASPLO$2000).

L EWIN, D. Consistent hashing and random trees: Algorithms for
caching in distributed networks. Master’s thesis, Departiof
EECS, MIT, 1998. Available at the MIT Library,
http://thesis. mt.edu/.

PANDURANGAN, G., RAGHAVAN, P.,AND UPFAL, E. Building
low-diameter P2P networks. Proc. FOCS(2001).

PLAXTON, C., RAJARAMAN, R.,AND RICHA, A. Accessing
nearby copies of replicated objects in a distributed envirent. In
Proc. SPAA1997).

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R.,AND
SHENKER, S. A scalable content-addressable networleroc.
SIGCOMM(2001).

SAlA, J., HAT, A., GRIBBLE, S., KARLIN, A. R.,AND SAROIU,
S. Dynamically fault-tolerant content addressable netaidin Proc.
IPTPS(2002).

STOICA, |., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND
BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup service
for internet applications. IRroc. SIGCOMM(2001).

STOICA, |I., MORRIS, R., LIBEN-NOWELL, D., KARGER, D.,
KAASHOEK, M. F., DABEK, F.,AND BALAKRISHNAN, H. Chord:
A scalable peer-to-peer lookup service for internet apgibos.
Tech. Rep. TR-819, MIT LCS, 2001.

http://ww. pdos. | cs. mt.edu/ chord/ papers/.
ZHAO, B., KuBlaTowicz, J.,AND JOSEPH A. Tapestry: An
infrastructure for fault-tolerant wide-area location andting. Tech.
Rep. UCB/CSD-01-1141, Computer Science Division, U. C.
Berkeley, Apr. 2001.

(2]

(3]

(4]
(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

