
Analysis of the Evolution of Peer-to-Peer Systems

David Liben-Nowell, Hari Balakrishnan, David Karger
Laboratory for Computer Science

Massachusetts Institute of Technology
200 Technology Square

Cambridge, MA 02139 USAfdln,hari,kargerg@lcs.mit.edu
ABSTRACT
In this paper, we give a theoretical analysis of peer-to-peer (P2P)
networks operating in the face of concurrent joins and unexpected
departures. We focus on Chord, a recently developed P2P system
that implements a distributed hash table abstraction, and study the
process by which Chord maintains its distributed state as nodes join
and leave the system. We argue that traditional performancemea-
sures based on run-time are uninformative for acontinually running
P2P network, and that therate at which nodes in the network need
to participate to maintain system state is a more useful metric. We
give a general lower bound on this rate for a network to remaincon-
nected, and prove that an appropriately modified version of Chord’s
maintenance rate is within a logarithmic factor of the optimum rate.

1. INTRODUCTION
Peer-to-peer (P2P) systems are distributed systems without any cen-
tralized control or hierarchical organization, where the software
running at each node is equivalent in functionality. These sys-
tems have recently received significant attention in both academia
and industry for a number of reasons. The lack of a central server
means that individuals can cooperate to form a P2P network with-
out any investment in additional high-performance hardware to co-
ordinate it. Furthermore, P2P networks suggest a way to aggregate
and make use of the tremendous computation and storage resources
that remain unused on idle individual computers. Finally, the de-
centralized, distributed nature of P2P systems makes them robust
against certain kinds of faults, making them potentially well-suited
for long-term storage or lengthy computations.

P2P systems are, of course, distributed systems, and much tradi-
tional distributed systems research is relevant to them. Relatively
unusual, however, is the assumption in P2P systems that nodes are

This research was sponsored by the Defense Advanced Research
Projects Agency (DARPA), the Space and Naval Warfare Systems
Center, San Diego, under contract N66001-00-1-8933, and anNSF
Graduate Research Fellowship.

continuously joining and leaving the system. This makes challeng-
ing several issues which are trivial in a system with a fixed mem-
bership. In particular, data items must migrate as nodes come and
go; this makes location of a data item at any given time nontrivial.
To deal with this problem, acontent addressable network—as Rat-
nasamy et al. [10] named this concept—provides a mapping of keys
in some keyspace to machines in the network and a lookup proto-
col to allow any searcher to find the particular machine responsible
for any key. For some applications, that node might be responsi-
ble for storing a value associated with the key; for others, it might
perform computation on that key. The easiest way to implement a
content addressable network is to maintain a directory of key as-
signments; unfortunately, maintaining this directory consistently in
a distributed environment is too resource-intensive to scale.

Many P2P routing protocols—like CAN [10], Chord [12], Pastry
[3], and Tapestry [14]—induce a connected overlay network across
the Internet, with a rich structure that enables efficient key lookups.
The typical approach to the design of such overlays is roughly as
follows. First, an “ideal” overlay structure is specified, under which
key lookups are efficient. Then, a protocol is specified that allows
a node to join or leave the network, properly rearranging theideal
overlay to account for their presence or absence. One then can con-
sider the issue of fault tolerance—e.g., showing that the ideal over-
lay can still route efficiently even after the failure of somefraction
of the nodes [3, 4, 12].

The Problem. Unfortunately, the approach described above ig-
nores the fact that a P2P network is a continuously evolving system.
The join protocol may work well if joins happen sequentially, but
what if many joins happen concurrently? The ideal overlay may
tolerate faults, but once those faults occur, the overlay isno longer
ideal. What happens as the faults accumulate over time?

To cope with these problems that arise over time, any realistic P2P
system must implement some kind ofmaintenance protocolthat
continuously repairs the overlay as nodes come and go, updating
control information and routing tables to ensure that the overlay
remains globally connected and supports efficient lookups.In the
analysis, we must recognize that the systemalmost neverwill be in
its ideal state. Thus, we must show that lookups, joins, and depar-
tures (and, self-referentially, the maintenance protocolitself) be-
have correctly even in the imperfect overlay.

Evaluating maintenance protocols requires a new performance met-
ric. A P2P system is intended to be running continuously, forever,
and system membership is dynamic. Thus, one cannot properly

evaluate a maintenance protocol in terms of running time—itruns
as long as the network does—or total network bandwidth, which
is infinite if the network persists indefinitely. Similarly,the main-
tenance work done by a single node will tend to grow as the node
spends time in the system. Instead, a proper performance mea-
sure of a maintenance protocol is therate at which each node must
expend resources in the maintenance protocol. This expenditure
consumes resources that cannot be used for “real” work, so should
be kept small.

We can ask a number of questions in this framework. At what rate
must each node in the system do work in order to keep the system
in a “good” state? How much work is required to simply provide
a connected structure where lookups are correct? How much work
is required to provide a richer structure where lookups are correct
and also fast?

Our contribution. This paper investigates the per-nodenetwork
bandwidthconsumed by maintenance protocols in P2P networks.
Network bandwidth (and not storage space or computation time) is
presently the most limited resource in P2P systems. If the amount
of per-node bandwidth consumed by a maintenance protocol were
to grow fairly rapidly (e.g., linearly) as the network size increases,
then a system would quickly overwhelm the access bandwidthsof
its participants and become impractical. Although we focuson
bandwidth, both our lower and upper bounds also apply to the rate
of CPU usage and storage for maintenance.

Any node joining the network must send at least some number of
maintenance messages to let other nodes know of its presence, to
provide basic connectivity. Additional messages are usually re-
quired to update routing table information on nodes, to support
efficient lookups. Similarly, because nodes may fail without any
notification, each node must periodically monitor the stateof some
or all of its neighbors, consuming network bandwidth.1

In this paper, we quantify the above observations. First, wegive
lower bounds on the maintenance protocol bandwidth for basic
connectivity in anyN -node P2P system as nodes join and leave.
We characterize this lower bound in terms of thehalf-life of a dis-
tributed system, which essentially measures the time for replace-
ment of half the nodes in the network by new arrivals. We show that
per-node maintenance protocol bandwidth, simply to maintain con-
nectivity of the network, is lower-bounded by
(logN) per half-
life. Second, we consider the maintenance protocol used by the
Chord P2P routing protocol [12]. We modify this protocol based
on our new analysis, and show that the result consumes bandwidth
at a polylogarithmic rate, nearly matching our lower bound.Crit-
ical to this analysis is a demonstration that Chord’s join, lookup,
and (properly modified) maintenance protocols work correctly and
efficiently even when the system is not in its ideal state.

A note on our model. Our goal in the upcoming sections is to
say something formal about the behavior of our system in the real-
world setting of the Internet, where nodes can join and leaveat arbi-
trary times, and where messages can be arbitrarily lost or reordered.
At the same time, we do not want our algorithm design to overem-1Alternatively, a node may choose to detect failures only when it
actually needs to contact a neighbor; however, this merely defers
the network traffic needed to find a new node when the old one
fails. It also raises the risk that all of a node’s neighbors fail before
it notices any of the failures, permanently disconnecting that node
from the network.

phasize these worst-case scenarios, since such algorithmsare likely
to be overcautious and perform poorly in the typical case, when
the underlying network is behaving reasonably well. We therefore
focus on analyses that modelsomeof the problems we might face
(e.g., that a large number of nodes may join or fail simultaneously),
while making assumptions that preclude more serious failures (e.g.,
we assume that any two nodes attempting to exchange messages
will eventually be able to do so, and that node failures can bede-
tected by their failure to respond “for a long time”).

For simplicity, we focus in our presentations on a fail-stopmodel—
that is, we assume perfect failure detection and reliable message
delivery. In fact, many of our results apply even in weaker models.
None of our algorithms are sensitive to message loss or delivery
order; they can provably tolerate these problems to a substantial
degree. However, recurring message losses can make a node ap-
pear failed when it is actually alive, and our system does notcope
with such “false suspicions of failure.” In practice, we expect lost
messages to lead to timeouts, and consider it reasonable to con-
clude that repeated timeouts are signs of failure; however,we make
no formal claims about this scenario.

To model joins and failures, we postulate an adversary who can
specify an arbitrary sequence of node join and failure timesand
key lookups. We assume the adversary isobliviousto the random
choices that our protocols will make—that is, that this schedule of
joins and failures is specified in advance, independent of behav-
ior of the overlay network. This rules out, e.g., the possibility that
the adversary can fail all the nodes that a given node knows about.
Against such a powerful, adaptive adversary, the only way toguar-
antee complete connectivity is to maintain, at tremendous cost, a
fully-connected network. Recent work of Saia et al. [11] hasbe-
gun to tackle the challenge of proving weaker guarantees against
an adaptive adversary, e.g., that most of the network remains con-
nected.

2. RELATED WORK
The Chord P2P system was introduced to solve the lookup prob-
lem described above. Using storage logarithmic in the size of the
network, Chord provides a lookup protocol that can find, in a log-
arithmic number of routing hops, the node responsible for a given
key. Keys in the system are evenly distributed among the partici-
pating nodes, providing good load balance. The assignment of keys
changes only locally as nodes join and leave the network. Previous
publications have described the Chord protocol, theCooperative
File Systembuilt using it, and experimental results showing that it
performs well in practice [1, 2, 12, 13].

Many other recently designed P2P systems provide lookup behav-
ior similar to Chord’s. These include CAN [10], Pastry [3], and
Tapestry [6, 14] (based on meshes [9]). All offer provably fast
lookups and efficient algorithms for node joins. However, the style
of evolutionary analysis of P2P networks that we are using has not
been well-developed. Many of these P2P systems, such as those
of Plaxton et al. [9] and Fiat and Saia [4], focus on models in
which nodes join and depart only in a well-behaved fashion, al-
lowing maintenance to happen only at the time of arrival and de-
parture. We believe this kind of well-behaved model is unrealis-
tic. Other protocols such as CAN [10] and Pastry [3] allow for
the possibility of unexpected failures, and show that the system is
still well-structured after such failures occur. These analyses, how-
ever, assume that the system begins in an ideal starting state, and
do not show how the system returns to this ideal state after the fail-

ures; thus, accumulation of failures over time eventually disrupts
the system.

Recently, Saia et al. [11] have explored the use of a butterflynet-
work in a P2P setting. Their system retains good routing struc-
ture even after theadversarialremoval of a constant fraction of the
nodes, and they show how to maintain their network as nodes fail,
as long as the number of nodes joining the network is always suf-
ficiently larger than the number of failures. Their assumption is
clearly limiting since any system must eventually stop growing.

Perhaps the closest to our evolutionary analysis is the recent work
of Pandurangan et al. [8]. They study the problem of maintaining
anN -node P2P network as nodes join and depart according to a
Poisson process. By using a central server to direct new joins to
specific nodes in the network, and to update old nodes’ neighbors
as nodes depart, they are able to maintain connectivity of the P2P
network using only a constant amount of space per node (i.e.,each
node remembers the identities of onlyO(1) other nodes). Although
this compares favorably to our use ofO(logN) space per node,
space is not an expensive resource in practice (at least until we sub-
stantially exceed logarithmic space usage). Even more importantly,
their scheme does not solve the problem ofrouting within the P2P
network: to find the node responsible for a given data item, they
propose to flood the network, requiring
(N) messages, while our
lookup takesO(logN) time andO(logN) messages. Also, their
system requires a central server to guarantee connectivity, while
ours does not.

3. A HALF-LIFE LOWER BOUND
In this section, we give a general lower bound for the bandwidth of
maintenance messages in P2P systems, based on the rate of node
joins and departures.

DEFINITION 3.1. If there areN live nodes at timet, then the
doubling time from timet is the time that elapses beforeN ad-
ditional nodes arrive. Thehalving time from timet is the time
required for half of the nodes alive at timet to depart. Thehalf-life
from time t is the smaller of the doubling and halving times from
time t. Finally, thehalf-life of the entire system is the minimum
half-life over all timest.
Intuitively, a half-life of� means that after timet+ � , at most half
the state of the system can be extrapolated from its state at timet. Half-life is a coarse measure of the rate of change of a system;
it does not impose any specific conditions on the particular fine-
grained pattern of arrivals and departures. Although thereare some
pathological situations in which the half-life is not a meaningful
measure (e.g., the simultaneous failure of almost all nodesin the
system), we believe that the concept of half-life is a usefuland
general characterization of the rate of change of P2P systems in a
wide variety of circumstances.

As a specific example, consider a Poisson model of arrivals and
departures [8]: nodes arrive according to a Poisson processwith
rate�, while a node in the system departs according to an expo-
nential distribution with rate parameter� (i.e., expected node life-
time is 1=�). If there areN nodes in the system at timet, then
the expected doubling time isN=� and the expected halving time
is (1=�) ln 2. (The probabilityp that a node fails in time� is1� e��� ; setting� = (1=�) ln 2 makesp = 1=2.) The half-life is
thenmin((ln 2)=�; N=�).

If � and� are fixed and the system is in a steady state, then the ar-
rival rate of� must be balanced by the departure rate ofN� (each
of N nodes is leaving at rate�), implyingN = �=�. Then the dou-
bling time is1=� and halving time and half-life are both(1=�) ln 2.
This reflects a general property: in any system where the number
of nodes is stable, the doubling time, halving time, and half-life are
all equal up to constant factors.

Because nodes in the system are departing frequently, each surviv-
ing node must benotifiedof additional nodes in the network to stay
connected after its original neighbors fail.

THEOREM 3.2. There exists a sequence of joins and leaves such
that any node that, at any time, has received an average of fewer
thank notifications per half-life will be disconnected from the net-
work with probability at least(1� 1e�1)k � 0:418k .

COROLLARY 3.3. AnyN -node P2P network that remains con-
nected with high probability—i.e., with disconnection probabilityO(1=N)—for any sequence of joins and leaves with half-life� must
notify every node with an average of
(logN) nodes per� time.

PROOF. We consider the above Poisson model, where nodes de-
part at rate� (so the half-life is(1=�) ln 2). By changing time units,
we assume� = 1. If noden averages fewer thank notifications
per half-life then, there must be some timet at which noden has
heard about fewer thantk nodes. Consider the minimum sucht.
Let fn1; n2; : : :g be the nodes that noden has heard about by timet, including any nodes of whichn was initially aware. Letti be
the time of notification aboutni (and the last such time if there
are several—previous notifications will be irrelevant, since the last
notification ensures thatni is alive at timeti.) Index such that theti are nonincreasing, so that noden1 was the last node notification.

In our Poisson model, at timet, the probability that nodeni is
still alive is eti�t. It follows that all the nodesn has heard about
have failed, disconnectingn from the network, with probabilityP =Qi(1�eti�t). By assumption, at any timet0 < t, at leastkt0
notifications occurred. It follows that in the time interval(t� Æ; t),
fewer thanÆk notifications occurred. This observation lets us lower
boundP . SettingÆ = 1=k tells us that no notifications happened
after timet� 1=k. In other words,t1 � t� 1=k. Generalizing, we
find ti � t� i=k. It follows thatP = Yi(1� eti�t) � Yi(1� e�i=k)� �Yj�1(1� e�j)�k
where the last inequality follows by lower bounding eache�i=k bye�di=ke. Now observe that

Q(1� e�j) � 1�P e�j = 1� 1e�1 ,
and the theorem follows.

Of course, the node may exceed thek notifications per half-life for
quite some time; the theorem does not apply until the averagedrops
sufficiently far. We might worry about an initial condition in which
the node is aware of a large number of neighbors. However, the
initial number of known neighbors can be at mostN and, under the
Poisson model, all of theseN known neighbors will be gone withinO(logN) half-lives with high probability. Thus the average need
be taken only the most recentO(logN) half-lives.

// ask noden to find the successor ofid.n:�nd suessor(id)
if (id 2 (n;n:suessor ℄)
return n:suessor ;

elsen0 := losest preeding node(id);
return n0:�nd suessor(id);

// search the local table for the highest predecessor ofid.n:losest preeding node(id)
for i := m downto 1
if (�nger [i℄ 2 (n; id))
return �nger [i℄;

// join the system using information from noden0.n:join(n0)predeessor := nil;suessor := n0:�nd suessor(n);build �ngers(n0);
// update finger table via searches by noden0.n:build �ngers(n0)i0 := blog(suessor � n)+ 1; // first non-trivial finger.
for each i � i0 index into�nger [℄;�nger [i℄ := n0:�nd suessor(n+ 2i�1);

Figure 1: Pseudocode for the Chord P2P system.

Consider in particular a protocol in which the number of notifica-
tions is always bounded byk per half-life. If noden is not iso-
lated at the end of thoseO(logN) half lives, we can “restart” the
above analysis and, after at mostO(logN) additional half-lives,
test again whether noden is isolated. Even conditioned on the fact
that the node has some neighbors at the beginning of the restart,
the above theorem applies. In other words, after eachO(logN)
half-lives, the node will become isolated with probabilitye�
(k).
It follows that we expect the node to become isolated withineO(k)
half-lives. This result can be strengthened further, undersome tech-
nical conditions to ensure symmetric behavior of the nodes:given
a P2P protocol in which each node sendso(logN) notifications
per half-life in anN -node system, there is a sequence of joins and
leaves such that some node becomes isolated from the networkwith
high probability withinO(log2N) half-lives. Put more simply, any
network involvingo(logN) notifications per half-life will fall apart
almost immediately.

4. BACKGROUND ON CHORD
In this section, we outline the Chord P2P system, details of which
can be found in an earlier paper [12]. Pseudocode for the protocols
is given in Figure 1. The notationn:f(�) means that noden exe-
cutes proceduref(�), andn:x denotes the value of the variablex
stored at noden.

The Chord protocol supports a single operation: given a key,it
maps the key onto the node responsible for that key. Chord im-
plements adistributed hash table, based on consistent hashing [5,
7]; keys are mapped onto nodes by a hash function that can be re-
solved by any node in the system, via queries to other nodes. In
a steadyN -node network, each node needs “routing” information
aboutO(logN) other nodes, and resolves the hash function by
communicating withO(logN) nodes. We now discuss the map-
ping, and the mechanism for resolving it, in more detail.

Consistent hashing. Node identifiers (IP addresses) are hashed
into m-bit integers where2m � N , using some base hash func-

N8

N14

N38

N42

N51

N48

N21

K10

K24

K30

K54

N56

N32

N1

K38

Figure 2: The Chord key-node mapping.

tion (we use SHA-1); keys are mapped into the same space. A key
is assigned to itssuccessornode, the first whose hash follows it
modulo2m. Pictorially, nodes and keys are mapped onto a circle;
the key is assigned to the first node encountered moving clockwise
from it; see Figure 2. For ease of exposition, we identify nodes (and
keys) and their hashed identifiers. To maintain the mapping when a
noden joins, certain keys previously assigned ton’s successor are
reassigned ton. When noden leaves the network, all of its keys are
reassigned ton’s successor. No other changes in assignment need
to occur. Previous work [5, 7] has shown that consistent hashing
does a good job of load balancing keys onto nodes. Intuitively, this
follows since the use of an appropriate base hash function means
that node and key identifiers can be treated as independent, uni-
formly distributed random points on the circle. This intuition can
be justified formally, and we will make use of it without proofin
this paper.2

Successor pointers and fingers. Each node stores itssuccessor
node—the node immediately following it on the circle—so that the
successor of a keyk can be determined by following successors
until we reach a noden with n < k < n:suessor . Succes-
sor pointers are sufficient to guarantee correct lookup of any key’s
successor. To speed this search, we define theith finger of noden, for i = 1; : : : ; m, denotedn:�nger [i℄, the first node to succeedn+2i�1 on the circle. Every node always has some finger pointing
halfway to any destination key, so a sequence oflogN “halvings”
of the distance take us to the key [12].

Node joins and idealization. When a noden wishes to join the
system, it must be integrated into the Chord ring. Noden must setn:suessor to point at its immediate successor on the ring, andn’s
immediate predecessor must update its successor pointer topoint atn. Furthermore, noden must set its finger table entries, and certain
other nodes should update their fingers to point atn (instead ofn’s
successor).

We allow nodes to join independently without any coordination.
These simultaneous joins can destroy the invariants that wewant to2We also note that to balance load to within a constant factor,
each node must place�(logN) “virtual copies” of itself on the
ring. We ignore this issue in this paper, stating bounds per virtual
node. Our bounds are thus precise for a system that uses no vir-
tual nodes, which still yields reasonable load balance, butto within
anO(logN) factor rather than a constant factor. If a system uses
multiple virtual nodes, all of our per-node message bounds should
be multiplied by the number of virtual copies used by each node.

// periodically verifyn’s successors, and informs of n.
// do not run untiljoin() is complete.n.idealize()x := suessor :predeessor ;
if (x 2 (n; suessor))suessor := x;suessor :notify(n);

// n0 thinks it might be our predecessor.n:notify(n0)
if (predeessor = nil or n0 2 (predeessor ; n))predeessor := n0;

// periodically refresh finger table entries.n:�x �ngers()build �ngers(n);
Figure 3: Pseudocode for handling joins.

preserve, so each node periodically executes aidealizationproce-
dure that attempts to reconstruct the desired properties. To perform
idealization, each node stores an extrapredecessorpointer, used
to record the closest predecessor that the node has ever heard from.
Noden updates its successor tox = (n:suessor):predeessor ifx falls betweenn andn:suessor . Every node runsidealize() pe-
riodically; this is how older nodes learn about newly joinednodes.
Periodically fingers are updated by�x �ngers(). See Figure 3.

Departures and fault tolerance. Nodes can also depart the Chord
ring, either voluntarily or due to unexpected failures. We might
hope that nodes departing voluntarily might “clean up” before de-
parting, but since we need to plan for unexpected failures, which
cannot clean up, we make no attempt to define cleanup code for
a voluntary departure. Departing nodes simply vanish. In the de-
scription above, if a node’s successor fails, then the Chordring is
broken and proper lookups cannot take place. To avoid this prob-
lem, each node keeps asuccessor listof the firstr nodes following
it on the ring rather than keeping a single successor pointer.

In Figure 4, we give pseudocode for Chord’s operation in the pres-
ence of failures. When searching for a node, we may encounter
failed nodes along the search path, solosest preeding node()
must check that it is forwarding the search to a live node. Addi-
tionally, it must consider nodes in the successor list as candidates
for the next hop on the search path. A noden maintains its suc-
cessor list by repeatedly fetching the successor list of itsimmediate
successors, removing its last entry, and prependings to it. If nodes fails, thenn can replace its successor with the next node on its
successor list, and so on. Similarly, noden periodically confirms
that its predecessor is alive, and setsn:predeessor to nil if not.

5. AN ANALYSIS OF CHORD
As nodes join and leave the system—unexpectedly, and possibly
concurrently—theidealize() procedure attempts to reconstruct the
Chord state described in Section 4. The primary goal of idealiza-
tion is to achieve that ideal state, but this goal is possibleonly under
certain patterns of joins and leaves. In other cases, the Chord sys-
tem can only hope to “keep up” with the changes: joins and leaves
are happening at too high a rate to progress towards this ideal state,
but the system can avoid slipping farther away from ideality. In
the remainder of this section, we attempt to quantify the conditions
under which this is possible.

A note on our model. For simplicity of presentation, we consider
a synchronous model of idealization. With mild complications on

// search the local table for the highest predecessor ofid.n:losest preeding node(id)
return the largest nodeu in �nger [1 : : :m℄ or suessor list

so thatu 2 (n; id) andu is alive;

// periodically reconcile with successor’s successor list.n:�x suessor list()hs1; : : : ; sri := suessor :suessor list ;suessor list := hsuessor ; s1; s2; : : : ; sr�1i;
// periodically update failed successor pointer, if necessary.n:�x suessor()

if (suessor has failed)suessor := smallest live nodeu in�nger [1 : : :m℄ or suessor list ;
// periodically flush predecessor pointer, if necessary.n:�x predeessor()

if (predeessor has failed)predeessor := nil;
Figure 4: Pseudocode for handling failures.

the definitions that follow, we can handle (without an increase in
running time) a network with a reasonable degree of asynchrony,
where machines are operating at roughly the same rate, and mes-
sages take roughly consistent times to reach their destinations. This
is reasonable when differences among machines are small com-
pared to the time between executions ofidealize(). When the
speeds of machines or message deliveries differ by a larger fac-
tor f , we can prove analogues of the following results, weakened
by that factorf . We refer to around of idealization as theO(1)
time required for all nodes to runidealize(), disregarding any time
required for the transfer of data items.

5.1 What Could Go Wrong
First, we briefly describe some of the problems that might arise in
idealizing a network. An immediate concern is thedisconnection
of the network—by changing multiple successor pointers concur-
rently, we might cause the network to split into two or more sep-
arate components and cause any data stored in one component to
become inaccessible to nodes in the other. (Recall that we want to
use limited space per node, so the simple solution of remembering
all nodes ever encountered is infeasible.)

A more subtle difficulty is the creation of aloopy cycle. Call a
Chord networkweakly idealif, for all nodesu in the system, we
have(u:suessor):predeessor = u andstrongly idealif, in ad-
dition, for each nodeu, there is no nodev in the same component
asu so thatu < v < u:suessor . A loopynetwork is one which
is weakly but not strongly ideal. The protocols in Section 4 aim for
weak ideality only, a consistency condition that is necessary, but
not sufficient, for correct routing in a Chord network. For example,
the Chord network shown in Figure 5 is stable underidealize().
However, this network is globally inconsistent—in fact, there is no
nodeu so thatu:suessor is the first node to followu on the iden-
tifier circle. The result of this scenario is that�nd suessor (q)
searches from two different nodes in the network, but for thesame
queryq, will return two different nodes, and thus data that is avail-
able in the network will appear unavailable to some nodes. Inthe
first part of this section, we show that an initially non-loopy net-
work stays non-loopy through idealization. In Section 5.6,we give
a strong idealization algorithm to handle the loopy case if it some-
how arises.

N1

N14

N21

N48

N56

N32

N8

Figure 5: A weakly ideal loopy network. The arrows rep-
resent successor pointers, and for every nodeu, we have(u:suessor):predeessor = u. However, for every nodeu,
there is a nodevu in the network so that vu 2 (u; u:suessor).
5.2 The Ideal Chord State
In our high-level description of the Chord protocol in Section 4,
we suggested some of the details of theideal statefor Chord; here,
we formalize those conditions. Let each successor list havelength logN , for some = O(1).
Since each Chord node has exactly one successor, the graph defined
by successor pointers is apseudoforest—a graph in which all com-
ponents are directed trees pointing towards a root cycle (instead of
a root node). In connected networks, this graph is a singlepseu-
dotree. (When we consider failures, we build this graph using the
first live entry inu:suessor list for eachu.)

If this pseudotree does not consist solely of a cycle, then for some
nodesu in the cycle, there is a non-empty tree of nodes rooted atu,
consisting of nodes that have recently joined the network and are
not yet in the cycle. We refer to this rooted tree asu’s appendage,
and denote itAu. The ideal Chord state has no appendages.

DEFINITION 5.1. A Chord network is in theideal stateif:

1. [connectivity] There is a path using successor lists and fin-
ger tables connecting any two nodes.

2. [randomness]. All the nodes in the system are independently
and uniformly distributed around the identifier circle.

3. [cycle sufficiency]Every nodeu is on the cycle.
4. [non-loopiness]For any nodeu on the cycle, there is no nodev 2 (u; u:suessor).
5. [successor list validity]Everyu:suessor list contains the

first logN nodes that followu.
6. [finger validity] For every nodeu and everyi, the first node

followingu+ 2i�1 is stored asu:�nger [i℄.
Previous work [12] has established a number of good properties of
this ideal state: the procedure�nd suessor (q) returns the true
successor ofq in timeO(logN), even after all nodes fail indepen-
dently with constant probabilityp < 1; furthermore, starting from a
Chord network in an ideal state and allowing an arbitrary sequence
of possibly concurrent joins, the network eventually becomes ideal
again. In the remainder of this section, we establish that similar
properties hold even in states that are only “close” to ideal.

5.3 A Pure Failure Model
Consider anN -node Chord network in which some nodes have
failed recently, and some other nodes may fail soon. In this setting,
some of the entries in successor lists may be out of date, containing
nodes that have already failed.

Given anN -node ideal network, suppose thatN=2 nodes in the net-
work fail (obliviously to their identifier, and thus random in iden-
tifier space). With high probability, at least one of the nodes in
any givenu:suessor list does not fail; thus the network remains
connected and non-loopy, and all nodes remain on the cycle. In
fact, with high probability, at least one-third of the nodesin any
givenu:suessor list do not fail, which means that in the result-
ing state each successor list consists of at least the first(=3) logN
live nodes that followu on the cycle. (This type of argument,
which we use frequently in this paper, is based on the Chernoff
bound—in expectation, half of the�(logN) nodes in the succes-
sor list fail; thus, with high probability, no more than two-thirds
fail.) Any u:�nger [i℄ which did not fail is the first live node fol-
lowing u + 2i�1, since all fingers were correct in the ideal state.
Consider the resultingN=2-node Chord network, and suppose that
nodes continue to fail. We would like this network to retain the
good properties of the ideal state—namely, this same sort offault
tolerance, and fast and efficient lookups.

DEFINITION 5.2. A Chord network is in thecycle with failures
stateif:

1,3,4. As in Definition 5.1.
2. [randomness]

(a) As in Definition 5.1.
(b) All nodes in the system are alive with probability at

least 1=3, even conditioned on the liveness of an ar-
bitrary subset of up toN=4 other nodes.

5. [successor list validity]For every nodeu, letLu denote the
live entries inu:suessor list .
(a) EveryjLuj � (=3) logN .
(b) EveryLu contains exactly the firstjLuj live nodes that

follow the nodeu.
6. [finger validity] For every nodeu and indexi, if u:�nger [i℄

is alive, then it is the first live node followingu+ 2i�1.

Our analysis will consider starting from a network already in the
cycle with failures state, and Constraint 2(b) imposes the condi-
tion that any previous failures of nodes in the system were ran-
dom. (This is in fact somewhat stronger than we need—we only
apply this fact to show that, at every stage of a�nd suessor (q)
search, with constant probability, the query can be forwarded to the
node returned bylosest preeding node(q). Thus we only apply
2(b) to the set ofO(log2N) nodes previously encountered along a
search path.)

For intuition, consider a network in the cycle with failuresstate.
We claim that if no additional failures occur then the network will
become ideal within a small number of rounds of idealization. Each
nodeu has its true live successor as the first live entry in its suc-
cessor list, so afterr rounds of reconcilingu’s successor list withu:suessor ’s successor list, the firstr entries ofu:suessor list
will be the firstr live successors ofu. Similarly, after each fingeru:�nger [i℄ is updated by runningu:�nd suessor (u+2i�1), the
correctness of�nd suessor () ensures that all fingers will be ac-
curate. In fact, this intuition can be leveraged to show thata net-

Figure 6: A Chord network in the cycle with appendages state.
Unfilled nodes are on the cycle; filled nodes are in appendages.

work in the cycle with failures state remains in the cycle with fail-
ures state, as long sufficiently many rounds of idealizationoccur in
a halving time:

LEMMA 5.3. Consider anN -node Chord network in the cycle
with failures state, and suppose that up toN=2 oblivious failures
occur at any time during the execution of at least
(logN) rounds
of idealization. Then, with high probability,

1. Throughout this process,�nd suessor (q) returns the first
living successor ofq and runs in timeO(logN).

2. The resulting network is in the cycle with failures state.

The proof of this lemma relies on three key facts:

(1) The network remains connected with high probability—this
holds since each successor list has�(logN) live entries and
nodes fail with constant probability;

(2) �nd suessor () is efficient—this holds since, if each finger
is up with constant probability, then each forwarding halves
the distance to the query with constant probability (even con-
ditioned on the liveness of the nodes encountered so far on
the search path), so the total number of hops in the search
path isO(logN) with high probability; and

(3) Successor lists have purged all “old” failures—this holds be-
cause, afterr rounds of successor list updates, the firstr en-
tries must have been alive when the process began.

5.4 A Pure Join Model
We now shift our attention from failures to joins, and consider a
Chord network in which nodes can join the system, but no node
ever departs. Since node failures are not in our model, we will for
simplicity consider a Chord network with no successor lists.

When nodes are joining the network, we must again relax a number
of the conditions of Definition 5.1. A nodeu that has recently
joined the network may not be on the cycle because the nodes =u:suessor has not yet been informed ofu’s presence, and thusp = s:predeessor 6= u. If s andp are nodes that are already
on the cycle, then untilp learns aboutu, the nodeu will not be in
the cycle. Furthermore, successor pointers will not be correct with
respect to nodes not on the cycle. In addition, finger pointers will

not be completely up to date, since nodes may have recently joined
betweenu+ 2i�1 and the current fingeru:�nger [i℄. See Figure 6.

DEFINITION 5.4. AN -node Chord network is in thecycle with
appendages stateif:

1–2. As in Definition 5.1.
3. [cycle sufficiency]

(a) Of the nodes on the cycle, a subset of size at leastN=2
is uniformly and independently distributed around the
identifier circle.

(b) For any cycle nodeu, we havejAuj = O(logN).
4. [non-loopiness]

(a) The cycle is non-loopy.
(b) For every nodev in the appendageAu, the path of suc-

cessors fromv to u is increasing.
5. [successor validity]For every nodev:

(a) if v is on the cycle, thenv:suessor is the first cycle
node followingv.

(b) if v is in appendageAu, thenu is the first cycle node
followingv.

6. [finger validity] There is a setS of N=2 nodes on the cycle
that are uniformly and independently distributed so that, for
every nodeu and every1 � i � m, no element ofS ever
falls betweenu+ 2i�1 andu:�nger [i℄.

Constraint 3(a) guarantees that the nodes in the network are“well-
distributed” on the identifier circle: most of the nodes are in the
cycle, and at least a constant fraction of these nodes are spread ran-
domly across the identifier circle. (There will be bias in theorder in
which recently joined nodes are incorporated into the cycle—e.g.,
towards fast joining for nodes that fall nearby nodes already on the
cycle, or for nodes that fall between two nodes on the cycle which
are close to each other—so it is not the case that the distribution of
all nodes on the cycle is uniform and independent.)

Constraint 4(b) ensures that all paths leading to the cycle of the
pseudotree are non-loopy, in the sense that following them to the
cycle never goes around the identifier space more than once. This is
necessary to ensure that�nd suessor () operates correctly when
it is invoked by a node in an appendage—without this condition, a
searchv:�nd suessor (q) by a nodev 2 Au can return a result
in Au even when the correct node is in the cycle.

Constraint 6 ensures that all fingers are sufficiently accurate to al-
low fast lookups—all fingers are correct with respect to a constant
fraction of the nodes in the system.

Given anN -node network in the ideal state, ifN additional nodes
join (bootstrapping on any node in the network), then the result is
a network in the cycle with appendages state. The correctness of
search via�nd suessor () implies that a joining noden sets its
successor to either its true cycle successors, or to some other node
in As. This guarantees properties 1–2 and 4–5. For cycle suffi-
ciency, the existingN nodes form the requisite subset, and, with
high probability, onlyO(logN) joining nodes have identifiers that
fall between any two existing nodes; thus each appendage hassizeO(logN). For finger validity, the setS consists of allN existing
nodes; since all fingers are built with these already in the cycle, all
fingers are correct with respect to the elements ofS.

Similarly, consider a network in the cycle with appendages state,

and suppose that no further nodes join the system over
(log2N)
rounds of idealization. In each round of idealization, a node from
any non-empty appendageAu enters the cycle, since one cycle
nodep and at least one appendage nodepa both think thatu their
successor. The idealization procedure will then adjust thesuccessor
of the node farther fromu (which isp) to point the node closer tou (which ispa), incorporatingpa into the cycle. Thus inO(logN)
rounds, all nodes in appendages are incorporated into the cycle.
Within one subsequent full round of finger updates, all fingers are
correct with respect to all nodes. The result is an ideal network.

Again, we can combine these two intuitive arguments to show that
the cycle with appendages state can be maintained over time:

LEMMA 5.5. Consider anN -node Chord network in the cycle
with appendages state, and suppose thatN nodes join the net-
work, each using an arbitrary node to bootstrap on, over at least
(log2N) rounds of idealization. Then, with high probability,

1. Throughout this process,�nd suessor (q) returns the cy-
cle successors of q or a nodeu in As so thatq � u < s,
and runs inO(logN) time.

2. After this process, the resulting network is in the cycle with
appendages state.

We establish the efficiency of�nd suessor () by observing that
fingers are correct with respect toN=2-sized random subset on the
cycle, and the remaining nodes are randomly distributed, sowith
high probability onlyO(logN) new nodes fall between the correct
node and the result of the search using the old fingers. Thus onlyO(logN) additional steps are required to find the true cycle suc-
cessor of the query. As in the healing of a cycle with appendages
network into ideal, some appendage node is incorporated into the
cycle inO(1) rounds; since, with high probability, appendages are
onlyO(logN) in size even afterN joins, afterO(logN) rounds all
old nodes are incorporated into the cycle. Since�nd suessor ()
runs in logarithmic time and there are onlyO(logN) distinct fin-
gers with high probability, the time required to update fingers isO(log2N), so afterO(log2N) rounds of idealization after all the
old nodes are incorporated into the cycle, the network is back in the
cycle with appendages state.

5.5 A Fully Dynamic Model
Finally, we simultaneously consider joins and failures. The intu-
ition of the previous sections applies here almost directly: most
of the conditions that we impose were imposed for either the pure
join or failure case. A few conditions must be modified slightly to
account for interactions between joins and failures.

DEFINITION 5.6. AN -node Chord network is in thecycle with
failures and appendages stateif, for some constantD:

1. [connectivity]. The network is connected.
2. [randomness].

(a) All the nodes in the system are independently and uni-
formly distributed around the identifier circle.

(b) All nodes in the system are alive with probability at
least1=3, even conditioned on the liveness of an ar-
bitrary subset of up toN=4 other nodes.

3. [cycle sufficiency]

(a) Of the nodes on the cycle, a subset of size at leastN=3
is uniformly and independently distributed around the
identifier circle.

(b) For any consecutive cycle nodesu1; : : : ; ulogN , we havePlogNi=1 jAui j = O(logN).
4. [non-loopiness]

(a) The cycle is non-loopy.
(b) For every nodev in the appendageAu, the path of suc-

cessors fromv to u is increasing.
5. [successor validity]For every nodev, letLv denote the live

entries inv:suessor list .
(a) EveryjLv j � (=3) logN .
(b) if v is on the cycle, thenv:suessor is the first live

cycle node followingv.
(c) if v is in appendageAu, thenu is the first live cycle

node followingv.
(d) if the successor list ofu:suessor skips over a live

nodev, thenv is not inu:suessor list .
(e) No successor list contains nodes that failed more thanD log2N rounds ago.
(f) No successor list skips any live node that entered the

cycle more thanD log2N rounds ago.
6. [finger validity]

(a) There is a setS of at leastN=3 nodes on the cycle that
are uniformly and independently distributed so that, for
every nodeu and every1 � i � m, no element ofS
ever falls betweenu+ 2i�1 andu:�nger [i℄.

(b) For eachi, if u:�nger [i℄ is alive, then it is at least as
close tou + 2i�1 as the first live node ofS followingu+ 2i�1.

The network in Figure 6 is also in the cycle with failures and ap-
pendages state, with appropriate conditions on the state ofthe suc-
cessor lists.

Intuitively, condition 5(d) is a consistency condition between the
successor lists of adjacent nodes on the cycle; it guarantees that
nodeu only adds new nodes to its successor list by learning them
from its successor. Without this condition, the cycle may become
loopy as additional nodes fail. Conditions 5(e,f) ensure that the
successor lists are reasonably current.

THEOREM 5.7. Start with a network ofN nodes in the cycle
with failures and appendages state with successor lists of length logN , and allow up toN oblivious joins andN=2 oblivious fail-
ures at arbitrary times over at leastD log2N rounds of idealiza-
tion, forD = O(1). Then, with high probability,

1. Throughout this process,�nd suessor (q) returns the first
live cycle successors of q or a nodeu inAs so thatq � u <s, and runs inO(logN) time.

2. The resulting network is in the cycle with failures and ap-
pendages state.

PROOF. Since the joins and failures are oblivious, they corre-
spond to random identifiers in the network.

In a network with successor lists of length logN , we will say
that a nodeu is fully incorporated into the cycleiff it has been
in the cycle for at least2 logN consecutive rounds. Note that
merely having a cycle nodeu point to nodev is insufficient forv to

be robustly on the cycle, since ifu fails immediately after settingu:suessor = v, thenv will fall off the cycle.

We distinguish between “old” nodes which have been present for
longer thanD log2N rounds, “middle-aged” nodes which have
been present for less time, and the at mostN “new” nodes which
join during the currentD log2N rounds of idealization. By def-
inition of the cycle with failures and appendages state, oldnodes
are in the cycle (i.e., are reachable by successor pointers from all
nodes on the cycle). From the fact that identifiers are random, onlyO(logN) new nodes join between any two old nodes. This implies
that no node ends up with too many nodes in its appendage dur-
ing the time period being analyzed. Cycle nodes can fail, causing
their appendages to merge together, but with high probability onlyO(logN) consecutive cycle nodes fail, so the size of an appendage
is O(logN) by 3(b), with high probability, including middle-aged
and new nodes.

Unfortunately, because of failures, it is not true that a node from
each appendage (fully) enters the cycle in each round, sincethe cy-
cle node that points to it may fail immediately. However, with high
probability, within O(logN) rounds, some node from each ap-
pendage will become fully incorporated into the cycle: inO(logN)
attempts for a nodev 2 Au to become incorporated into the cy-
cle, it will begin to join the cycle when the cycle nodep that setsp:suessor = v does not fail in this entire process. Once a node
is fully incorporated into the cycle, with high probability, it never
leaves, so withinO(log2N) rounds, allO(logN) middle-aged
nodes in each appendage will join the cycle.

The correctness and efficiency of�nd suessor () follow just as
in Lemmas 5.3 and 5.5.

After all the middle-aged nodes enter the cycle, we require an addi-
tional O(log2N) rounds of idealization to ensure that all of the
fingers are correct with respect to the middle-aged nodes, since�x �ngers() runs inO(log2N) time since lookups require onlyO(logN) time, by the above.

That is, so long as Chord executesO(log2N) rounds of idealiza-
tion per half-life, the network remains in this cycle with failures
and appendages state, in which search is efficient and correct.

What we have deemed as the “correctness” of the search proce-
dure is somewhat subtle, though the returned node is correctin the
following sense: at the instant that each�nd suessor (k) termi-
nates, it yields a nodev that is responsible for a key range includingk. If v does not hold the keyk, one of the following cases holds:
(1) k is not yet available because it is being held at a node in an
appendage (but, by Condition 5(f), it will join the cycle within a
half-life); (2) v is on the ring and responsible for the keyk, but
is in the process of transferring keys from its successor (but this
transfer will complete quickly, and thenv will have keyk); or (3)v
was previously responsible for the keyk, but has since transferredk to another node. We can handle (3) by modifying the algorithm
to have each node maintain a copy of all transferred data for one
half-life after the transfer.

5.6 Loopy States
In Section 5.5, we established that, under our model of joinsand
departures, Chord’s idealization protocol maintains a state in which
routing is correct and fast with high probability; the protocols in

n:join(n0)on yle := false;predeessor := nil;s = n0:�nd suessor (n);
while (not s:on yle) dos := s:�nd suessor (n0);suessor [0℄ := s;suessor [1℄ := s;

n:update and notify(i)s := suessor [i℄x := s:predeessor ;
if (x 2 (n; s))suessor [i℄ := x;suessor [i℄:notify(n);n.idealize()u := suessor [0℄:�nd suessor(n);on yle := (u = n);

if (suessor [0℄ = suessor [1℄
and u 2 (n; suessor [1℄))suessor [1℄ := u;

for (i := 0; 1)update and notify(i);
Figure 7: Pseudocode for strong idealization.

Figure 1 maintain strong ideality in a strongly ideal network. Thus
as long as all nodes operate according to this protocol, it would
seem that our network will be strongly ideal, so that our lookups
will be correct. But, fearful of bugs in an implementation, or a
breakdown in our join/departure model, or the eventual occurrence
of low probability events, we now wish to take a more cautious
view. (For example, a node might be out of contact for so long that
some nodes believe it to have failed, while it remains convinced
that it is alive. Such inconsistent opinions could lead the system to
a strange state.)

In this section, we extend the Chord protocol to idealize thenet-
work from anarbitrary state, even one not reachable by correct
operation of the protocol. This protocol does not reconnecta dis-
connected network; we rely on some external means to do so. Our
approach is in keeping with our focus on the behavior of our sys-
tem over time—over a sufficiently long period of time, extremely
unlikely events (such as the simultaneous failure of all nodes in a
successor list) can happen; we need to cope with them.

The idealization protocol of Figure 1 guarantees that all nodes have
indegree and outdegree one, so a weakly ideal network consists of a
topological cycle, but one in which successors might be incorrect.
For a nodeu, call u’s loop the set of nodes found by following
successor pointers starting fromu and continuing until we reach a
nodew so thatw:suessor � u. In a loopy network, there is a
nodeu so thatu’s loop is a strict subset of the set of nodes in the
same component asu, and lookups may not be correct.

The fundamental idealization operation by which we unfurl aloopy
cycle is based uponself-search, wherein a nodeu searches for itself
in the network. If the network is loopy, then a self-search from u
traverses the circle once and then finds the first node on the loop
succeedingu—i.e., the first nodew with w:predeessor < u < w
found by following successor pointers. We extend our previous
idealization protocol by allowing each nodeu to maintain a second
successor pointer, generated by self-search and improved in exactly
the same way as in the previous protocol. See Figure 7.

THEOREM 5.8. Within O(N2) rounds of strong idealization,
an arbitrary connected Chord network becomes strongly ideal.

PROOF. There are two key intuitions behind the correctness of
this algorithm. Combined, they show that the only stable config-
uration of the network is the desired one. First, we show thatif
the network is weakly ideal but not strongly ideal, then at least
one node will find a improved second successor when it performs
its self-search. Having ruled out the “wrong” weak idealization,
we consider non-loops—i.e., situations in which some nodeshave
more than one successor pointer. Every node has at least one suc-
cessor pointer, meaning there are at leastN successor pointers
in the system. If even one node has two distinct pointers (withsuessor [0℄ 6= suessor [1℄) then in total there aremorethanN
distinct successor pointers. If this happens, then some node s has
two distinct other nodes pointing at it as a successor. As in weak
idealization, this is not a stable situation: the closer predecessorp
will notify s, and then the farther predecessor will hear about and
switch top. It follows that the only stable situation is when every
node has exactly one successor pointer, which points to thatnode’s
true successor in the network.

Observe that a loopy Chord network will never permit any nodes to
join until its loops merge—in a loopy network, for allu, we haveu:on yle = false, sinceu’s self-search never returnsu. Thus,
if the network somehow finds its way into a loopy state, it willheal
itself within O(N2) rounds: each of theN successor pointers can
improve at mostN times.

While the runtime of our strong idealization protocol is large, recall
that it needs to be invokedonly when the system gets into a patho-
logical state. Such pathologies ought to be extremely rare,which
means that the lengthy recovery is a small fraction of the overall
lifetime of the system. Nonetheless, it would clearly be preferable
to develop a strong idealization protocol that, like weak idealiza-
tion, simply executes at a low rate in the background, ratherthan
bringing everything else to a halt for lengthy periods.

Strong idealization in the presence of failures.As before, main-
taining a successor list of length�(logN) will ensure that our
graph, with high probability, stays connected as long as
(logN)
rounds pass beforeN=2 nodes fail. (This successor list can be
formed by following either successor pointer from each node.) Re-
call, though, at mostN failures can occur before the network is
strongly ideal (or has disappeared), since, as discussed above, no
nodes can join a loopy network. However, if one ofu’s successors
fails, then there may be a large number of nodes between the failed
successor and the first live entry inu:suessor list . So we may
slip backwards using the sense of “progress” from Theorem 5.8.
However, there are at mostN failures before the network empties.
We can only haveO(N2) improvements after any of theN failures
before we are strongly ideal, so we have the following:

THEOREM 5.9. Start from an arbitrary connected state with
successor lists of length�(logN). Allow O(N) failures over
(logN) steps. Then, with high probability, inO(N3) rounds,
the network is strongly ideal.

6. CONCLUSION
We have described the operation of Chord in a general model of
evolution involving joins and departures. We have shown that a
limited amount of housekeeping work per node allows the system
to resolve queries efficiently. There remains the possibility of re-
ducing this housekeeping work by logarithmic factors.

Our current scheme postulates that the half-life of the system is
known; an interesting question is whether the correct maintenance
rate can be learned from observation of the behavior of neighbors.
Another direction for further work is the analysis of Chord with
limited forms of message loss: the eventual idealization from any
non-loopy state into an ideal network continues to hold as long as
any two machines that attempt to communicate eventually succeed,
and we have some preliminary results suggesting that something
much like Theorem 5.7 can be extended to such a model. A signif-
icant challenge is identifying a good mildly pessimistic model for
loss of messages.

A further area to address is recovery from pathological situations.
Our protocol exhibits slow recovery from certain pathological “dis-
orderings” of the Chord ring. Although it is of course impossible to
recover from total disconnection, an ideal protocol would recover
quickly from any state in which the system remained connected.

7. REFERENCES
[1] DABEK , F., BRUNSKILL , E., KAASHOEK, M. F., KARGER, D.,

MORRIS, R., STOICA, I., AND BALAKRISHNAN , H. Building
peer-to-peer systems with Chord, a distributed location service. In
Proc. IEEE Workshop on Hot Topics in Operating Systems
(HotOS-VIII)(2001).

[2] DABEK , F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND

STOICA, I. Wide-area cooperative storage with CFS. InProc. SOSP
(2001).

[3] DRUSCHEL, P.,AND ROWSTRON, A. Past: Persistent and
anonymous storage in a peer-to-peer networking environment. In
Proceedings of the 8th IEEE Workshop on Hot Topics in Operating
Systems (HotOS-VIII)(2001), pp. 65–70.

[4] FIAT, A., AND SAIA , J. Censorship resistant peer-to-peer content
addressable networks. InProc. SODA(2002).

[5] K ARGER, D., LEHMAN , E., LEIGHTON, F., LEVINE, M., LEWIN,
D., AND PANIGRAHY, R. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the World
Wide Web. InProc. STOC(1997).

[6] K UBIATOWICZ , J., BINDEL , D., CHEN, Y., CZERWINSKI, S.,
EATON, P., GEELS, D., GUMMADI , R., RHEA, S.,
WEATHERSPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B.
OceanStore: An architecture for global-scale persistent storage. In
Proc. ASPLOS(2000).

[7] L EWIN, D. Consistent hashing and random trees: Algorithms for
caching in distributed networks. Master’s thesis, Department of
EECS, MIT, 1998. Available at the MIT Library,
http://thesis.mit.edu/.

[8] PANDURANGAN , G., RAGHAVAN , P.,AND UPFAL, E. Building
low-diameter P2P networks. InProc. FOCS(2001).

[9] PLAXTON , C., RAJARAMAN , R., AND RICHA , A. Accessing
nearby copies of replicated objects in a distributed environment. In
Proc. SPAA(1997).

[10] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND

SHENKER, S. A scalable content-addressable network. InProc.
SIGCOMM(2001).

[11] SAIA , J., FIAT, A., GRIBBLE, S., KARLIN , A. R., AND SAROIU,
S. Dynamically fault-tolerant content addressable networks. InProc.
IPTPS(2002).

[12] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND

BALAKRISHNAN , H. Chord: A scalable peer-to-peer lookup service
for internet applications. InProc. SIGCOMM(2001).

[13] STOICA, I., MORRIS, R., LIBEN-NOWELL, D., KARGER, D.,
KAASHOEK, M. F., DABEK , F., AND BALAKRISHNAN , H. Chord:
A scalable peer-to-peer lookup service for internet applications.
Tech. Rep. TR-819, MIT LCS, 2001.
http://www.pdos.lcs.mit.edu/chord/papers/.

[14] ZHAO, B., KUBIATOWICZ , J.,AND JOSEPH, A. Tapestry: An
infrastructure for fault-tolerant wide-area location androuting. Tech.
Rep. UCB/CSD-01-1141, Computer Science Division, U. C.
Berkeley, Apr. 2001.

