Adding Multiple Cost Constraints
to Combinatorial Optimization Problems,
with Applications to Multicommodity Flows

David Karger* Serge Plotkin'

Abstract

Minimum cost multicommodity flow is an instance of a simpler problem (multicommodity flow)
to which a cost constraint has been added. In this paper we present a general scheme for solving
a large class of such “cost-added” problems—even if more than one cost is added. Ome of the
main applications of this method is a new deterministic algorithm for approximately solving the
minimum-cost multicommodity flow problem.

Our algorithm finds a (1 + ¢) approximation to the minimum cost flow in O(E_Skmn) time,
where k is the number of commodities, m is the number of edges, and n is the number vertices
in the input problem. This improves the previous best deterministic bounds of O(¢™*kmn?) [9]
and O(¢~2k*m?) [15] by factors of n/e and ekm/n respectively. In fact, it even dominates the best
randomized bound of O(¢~2km?) [15].

The algorithm presented in this paper efficiently solves several other interesting generalizations
of min-cost flow problems, such as one in which each commodity can have its own distinct shipping
cost per edge, or one in which there is more than one cost measure on the flows and all costs must
be kept small simultaneously. Our approach is based on an extension of the approximate packing
techniques in [15] and a generalization of the round-robin approach of [16] to multicommodity flow

without costs.

1 Introduction

1.1 The Problem

The multicommodity flow problem involves simultane-
ously shipping several different commodities from their
respective sources to their sinks in a single network so
that the total amount of commodities flowing through

*MIT Laboratory for Computer Science, Cambridge, MA 02138.

http://theory.lcs.mit.edu/ karger, karger@lcs.mit.edu.
Research performed at AT&T Bell Laboratories.

tDepartment of Computer Science, Stanford University.
http://theory.stanford.edu/people/plotkin/plotkin.html,
plotkin@cs.stanford.edu. Research supported by NSF Grant
CCR-9304971, and by Terman Fellowship.

each edge is no more than its capacity. Associated with
each commodity is a demand, which 1s the amount of
that commodity that we wish to ship. In the min-cost
multicommodity flow problem, each edge has an asso-
ciated cost and the goal is to find a flow of minimum
cost that satisfies all the demands. Multicommodity
flow arises naturally in many contexts, including vir-
tual circuit routing in communication networks, VLSI
layout, scheduling, and transportation, and hence has
been studied extensively [7, 10, 14, 17, 12, 13, 18, 2, 16].

Since multicommodity flow algorithms based on gen-
eral interior-point methods for linear programming are
slow [10, 19, 8], recent emphasis was on designing fast
combinatorial algorithms that relied on problem struc-
ture. One successful approach has been to develop ap-
proximation algorithms. If there exists a flow of cost
B that satisfies all the demands, the goal of a (1 + ¢)-
approximation algorithm is to find a flow of cost at most
(1+¢€)B that satisfies a (1 —¢) fraction of each demand.

The addition of a cost function to the unweighted
(no-cost) multicommodity flow problem has until now
strongly impacted the performance of approximation

algorithms. The minimum-cost multicommodity flow
algorithm given by Plotkin, Shmoys, and Tardos [15],
runs in O(e=2km?) expected time [15]; their determin-
istic version of this algorithm is slower by a factor of &,
running in O(e~2k*m?) time. The deterministic bound
was improved for dense graphs by Kamath, Palmon,
and Plotkin, [9] who gave an O(¢~*kmn?) algorithm,
where n is the number of nodes. This is more than n
times slower than Radzik’s deterministic algorithm [16]
for the no cost version of the problem. Even better
running times were achieved for special cases of the no-
cost problem [12]. Tt is interesting to note that adding
costs does not significantly affect the running time of
the interior-point based algorithms [8, 19].

The main contribution of this paper is a deter-
ministic minimum-cost multicommodity flow algorithm
that runs in O(e_?’kmn) time, essentially matching the
bound for the unweighted case. Ignoring the e factors,
this seems like a natural time bound since it matches
the best known bound for computing flows for the %
commodities separately.

1.2 Adding Constraints

The min-cost multicommodity flow problem consists of
an easier problem (no-cost multicommodity flow) to
which a single additional linear constraint (the cost
function) has been added. Similarly, the no-cost mul-
ticommodity flow problem can be seen in the following
way: we take a relatively easy to solve problem P (“find
an independently feasible flow for each commodity sat-
isfying the demands for that commodity”) and add to it
some constraints A that make it harder (“make sure the
sum of the flows doesn’t violate capacity constraints”).
More precisely, this is a special case of the following
packing problem: given a convex set P and a constraint
matrix A, where Az > 0 Vx € P, find € P such that
Ar < 1.

A general approach to approximately solving such
problems was studied by Plotkin, Shmoys and Tar-
dos [15] and Grigoriadis and Khachiyan [6]. They as-
sumed that there was an oracle that, given a linear cost
function over P, could find a point in P of minimum
cost. They then assigned to each point in P a potential
based on how much that solution violated the added
constraints A. The problem of finding a solution satis-
fying Az < 1 then reduces to the problem of finding a
minimum-potential point in P. The potential function
is highly non-linear and thus cannot be optimized di-
rectly by the oracle. However, the gradient of this func-

tion is linear; thus, the oracle can be used to determine
a good direction to move the point so as to decrease
its potential. For multicommodity flow the points in P
are sums of flows, so the problem of minimizing a lin-
ear potential function is simply the problem of comput-
ing several single-commodity min-cost flows—a problem
which can be approximately solved in O(mn) time per
commodity [5].

The running time of the algorithm in [15] depends on
the width of the convex set P relative to A, defined as
p = maxmaxa;.
reP %
That 1s, the width measures the extent by which any
constraint in A can be “overflowed” by a point in P. If
P consists of k flows that individually obey the capacity
constraints, then the sum of those flows can violate the
capacity constraints by a factor of at most &k, meaning
that the width of P is only k. This is essentially the
main reason that let [13] and then [3] solve the no-cost
multicommodity flow problem in expected O(e_zkmn)
time. Radzik [16] showed that randomization step in
these algorithms can be removed, leading to a deter-
ministic O(e~2kmn) algorithm.

The same approach does not seem to work directly in
the min-cost case. We can try solving the problem by
looking for the minimum “budget” B such that we can
find a multicommodity flow of total cost less than B.
This suggests adding a new constraint requiring “total
cost less than B” to the constraint matrix A. But un-
der an arbitrary cost function, a given flow can be arbi-
trarily more expensive than the minimum cost flow. In
other words, the added constraint can blow up the width
of the problem and therefore increase the running time
significantly. An alternative scheme is to add the bud-
get constraint to P: we can require that P be restricted
such that each flow individually costs no more than the
budget B. This reduces the width of the P to k, the
number of commodities, but introduces a new problem.
The optimization problem over P now becomes: find
a flow of minimum cost under one cost metric without
exceeding a given budget in some entirely different cost
metric—a sort of “two cost” min-cost flow problem, for
which no fast algorithm was previously known.

The solution proposed in [15] was to move more of
the complexity of the problem into A, and use a so-
phisticated width-reduction technique that results in a
polytope P whose width with respect to A 1s m and
whose optimization oracle involves O(k) shortest path
computations. This led to an expected running time of

O(km?).

The main contribution of this paper is development
of a new technique especially geared towards solving
“packing with budget” problems. Roughly speaking,
the technique allows us to take an {Az < 1,2 € P}
packing problem in which A has width p, add ¢ addi-
tional packing (budget) constraints of unbounded width
to the matrix A, and solve the resulting problem as
if it had width p + q/¢, even if the added constraints
are actually much wider. The original approach would
have treated the resulting problem as one of unbounded
width and thus yielded a very slow algorithm.

For example, to find a minimum-cost multicommod-
ity flow, we add the additional budget-constraint row
to the matrix A, and then use our technique to get
a randomized algorithm with an O(¢=3kmn) expected
running time. Replacing randomization by the round-
robin technique of [16] allows us to achieve the same
time bound deterministically, thus matching the natu-
ral bound of “O(mn) per commodity”. In other words,
we show that approximately computing a k-commodity
min-cost flow is not much harder than approximately
computing k single-commodity no-cost flows.

Another interesting simple application of our tech-
nique is to the “two-cost” single commodity flow prob-
lem, where the goal is to find a flow that has approxi-
mately minimum cost with respect to one metric while
its cost 1s smaller than some given budget with respect
to another, unrelated metric. We give an O(e~3mn)-
time (1 + €)-approximation algorithm for this problem.
Using this algorithm as an oracle for the multicommod-
ity flow polytope (with a per-flow budget constraint)
gives us yet another O(kmn)—time approximation algo-
rithm for the min-cost multicommodity flow problem
for constant €. We can also use this oracle to solve
a generalization of multicommodity flow in which the
cost of shipping each commodity can be different from
the cost of shipping the others—in other words, where
there are k different cost vectors, one for each commod-
ity. As discussed in [1, Reference notes to Chapter 17],
this generalization has many applications in practice,
such as multivehicle tanker scheduling, racial balancing
of schools, routing of multiple commodities, and ware-
housing of seasonal products. We approximately solve
this problem in the same O(kmn) time bound for con-
stant €.

Like all previous approximation algorithms for these
types of problems, ours uses a potential function that
1s minimized at feasible points, together with a variant
of the gradient-descent method to find that function’s
minimum. We develop a new approach that prevents

the gradient descent from considering points that violate
the added budget constraints by a large factor. This lets
us pretend that our problem actually has small width.
Our algorithm is based on a new, not-quite-exponential
potential function whose gradients behave better than
those of the purely exponential potential.

2 Fractional Packing With Budgets

2.1 Definitions and notation

The fractional packing with budget problem (PWB) is
defined as follows:

(1) min(A : Az < A fr < A, and x € P),

where A is an (m — 1) x n matrix, /5 is a budget vector,
and P is a convex set in R"™ such that Az > 0 and
Bz > 0 for each & € P. Our techniques easily extend to
the case where we have several additional budget rows
Gy for simplicity, we will concentrate on a single-budget
case in this section.

Let As be the matrix constructed by concatenating &
as an additional row to A. We shall use a; to denote the
ith row of Ag; thus a,, = #. We shall assume that we
have a fast subroutine to solve the following optimiza-
tion problem for the given convex set P:

Given an n-dimensional vector ¢, find & € P such that:

(2) ¢& = min(cx : x € P),

Let A* denote the optimum solution to the PWB
problem. For each € P, there is a corresponding min-
imum value A such that Agz < A (in each coordinate).
We shall use the notation (z, A) to denote that X is the
minimum value corresponding to x, and may also say
that @ has width A. A solution (z,A) is e-optimal if
z € Pand A < (1+e)A*. If (z,A) is an e-optimal solu-
tion with A > 1 + ¢, then we can conclude that A* > 1.

To simplify the discussion, we will assume that A* = 1
and look for a solution (z,) with A < (1 4 ¢). We will
also assume that we have a starting point g with corre-
sponding Ay < 2. The reduction to this situation is rel-
atively straightforward and changes the running time of
our algorithm by at most a polylogarithmic factor [15].

As in [15], the running time of our approximation
algorithm will depend on the widith of the polytope P
with respect to the matrix A, defined as

(3) p = Maxmaxa;z.

The key difference between this definition and the one
in [15] is that our width p is independent of 3. The
algorithm of [15] uses the width of P with respect to Ag,
which might be significantly larger than its width with
respect to A. Thus our algorithm will be much faster
than that of [15] when the width of P with respect to
A is relatively small, while its width with respect to 3
is very large.

2.2 Algorithm

Denote u;(x) = a;z, u(x) = (u1(z), ... um(x)), and let
flz) = e**/e®, where o = (1/e)In3m. To guide the
algorithm, we will use the following potential function:

6() = Y ()

(note this sum includes a term for a, = 3).

Recall that we have assumed that there exists a so-
lution to PWB problem with A = 1. Thus, there exists
x* with corresponding «* such that each v*(z) <1 and
thus ¢(2*) < m. The following simple lemma will be
used as a stopping criterion.

Lemma 2.1 If ¢(2) < 3m, then the corresponding A <
1+e

Our minimization algorithm starts with some point
(29, Ap) and proceeds in iterations, where the point con-
sidered “current” is updated at each iteration. As we
will show below, each iteration will cause a significant
decrease in the potential function ¢. The algorithm ter-
minates when the potential has become smaller than
3m, as per Lemma 2.1.

To find the next point, given a current point z € P,
consider the linear approximation to ¢ given by the first
order Taylor expansion:

l:(%) = ¢(x) + (Va0) - (T —).

Since ¢ is smooth, we know that ¢(Z) m (%) “near” x.
Therefore, if we found a point Z such that (%) < ¢(z),
we might also expect that ¢(Z) < ¢(x), i.e. that we
had found a point of much better potential. We can

minimize {;(#) over # € P, since {;(#) has the form
¢ + d and we can use the oracle to minimize cZ.

Unfortunately, the resulting point & may be so “far”
from x that the approximation of ¢ by [, fails. How-
ever, if we only move a small step towards Z, to the
point « + ¢(# —), then we know that for sufficiently
small o, we will stay in a neighborhood of & for which
the Taylor approximation holds. Since [, is linear, we
know that moving in this direction will improve /;. Un-
fortunately, since we only go a o-fraction of the way
towards &, we only earn a o-fraction of the perceived
improvement in [, and thus in the improvement to ¢.
Therefore, we would like ¢ to be as large is possible.
It turns out that we can make this approach work if
we take o proportional to the inverse of the width p of
the problem. In [15], this width is the width of P with
respect to Ag, which could be unbounded in our case.
Our improvement is to replace this parameter with the
width of P with respect to A, which we assume to be
relatively small.

The intuition behind our improvement is as follows.
Note that since ¢ is convex, (&) is always less than
(). If we simply minimize (%), we get a point such
that gz could be arbitrarily large. Suppose that we
instead minimize (&) + mfZ. We know that there
exists a feasible point z* with [;(z*) < ¢(z*) < m
and fz* < 1, so whatever minimizing point & we find
satisfies [;(Z) + mB% < 2m. Since B > 0, we know
l;(Z) < 2m, meaning that we still find a point with a
very small potential. At the same time, if [;(Z) > 0,
then mfBz < 2m, meaning that our point z does not
violate the constraint 5 by much. If we only encounter
points x with fx < 2, we can pretend that we are in
fact in a polytope with Sz < 2 everywhere. This means
in effect that 7 no longer induces unbounded width in
the polytope.

Unfortunately, our assumption that {, > 0 need
not be true. However, we can put together a slightly
more complicated function that serves the same pur-
pose. Given the current point (z, A), an iteration of our
algorithm starts by finding z that minimizes the follow-
ing expression over P:

(1) a(E) = Vao(x) - &+ (Vod(x) - 2)BE/(90)

(recall @ = (1/€In3m)).

Now we modify # to be
(5) t—(1l-0)r+oz
where o = 1/(20a%(p + «))

2.3 Analysis

To prove that each iteration results in some progress,
we first show that the point & minimizing t, has sev-
eral useful properties. First note the following: for any

(z,A),

(6) (Voo (2)) - @

> S (ui))ui(x)

> af(ui(e))ui(x)
ag(x)A,

and thus ¢, (%) < Vyé(x) - & + Ap(x)52/9 for any Z.
Also, Vzé(z) - > 0. Now we prove that minimizing
1, gives us a point whose potential function seems very
small according to the linear approximation [, and that
at the same time does not violate the constraint Sz by
much.

IN

Lemma 2.2 Let be the minimizer of .. If the current
x has a corresponding A < 3, then

IN

™) LE) < o)
(8) Bi < 10a

Proof: Consider a feasible point «* for the packing prob-
lem, and note that (by convexity) ¢(x*) > l(z*) =
é(x)+ Vyo(x) - (2" — x). Thus since ¢(z™) < ¢(x), we
know that Vy¢(z) - 2" < Vy¢(x) - .

By definition of &, ¢,(#) < ¢, (x*). Each of the two
terms defining 1, is positive. Thus, each of the two
terms in ¢, (#) is no greater than

Ua(z”) Ved(e) - 2"+ (Voo(z) - 2)/(9a)
< Veg(x) 27 + o(2)/3.

In particular, (Vzé(z) - 2)3%/(9a) < Veé(z) - 2* +
(Veé(x) - 2)/(9). Solving for f# and observing that
Veo(x) 2" < Vyé(z) -« implies Equation (8).

Proving (7) takes some added work. We have observed
that

(9) Vod(z) & < vu(#) < Vad(x) - 2 + é(2)/3.

Now observe that

I(2) = é(x)+ Veo(z) (T —2)
< o(e)+ Vao(r) - (2 — 2) + 6(2)/3
= L")+ o(x)/3

But since ¢ is a convex function, ;(2*) < ¢(z*) < m <

¢(x)/3. The result follows. |

It follows by induction that at all times, Sz < 10«.
This lets us pretend in our analysis that the constraint
Gz has width at most 10«.

We do not claim that each iteration reduces A. In
fact, A might increase as a result of a single iteration. It
will be useful to observe that this increase is very small.
This justifies the assumption of Lemma 2.2.

Lemma 2.3 If we start with a point (zg, Ag) where Ag < 2
and ¢(x) is non-increasing, then A never exceeds 3.

Now we show that as long as A is large, each iteration
of our algorithm reduces ¢. Recall that at a current
point @, one iteration determines a point & by mini-
mizing v, over P, and then updates z to a new point
t=zx+0o(f—).

Lemma 2.4 If an iteration of the algorithm starts with a
point = with ¢(z) > 3m, and ¢ = 1/(20a*(p + «)), then
() = ¢(x)(1 = A zroray)-

Proof: Linearity of [, and Lemma 2.2 imply that
(@) = L) + ol(@) — L) < (1 - a/3)e(x),
where we use the fact that [,(#) = ¢(x). Using
the second-order Taylor approximation, we proceed to
bound the error in I;(Z). To simplify the expressions,
recall w;(#) = a;z. According to the second-order Tay-
lor Theorem we have that

(&) = Lo(2) + D o (uil®) = wi())* (i),

where the vector r is a convex combination of u(x) and
w(z) 4+ o(u(z) — u(x)). We now show that the second-
order term is negligible for the given choice of ¢. Recall
that we have chosen o = 1/(200%(p + «)). Since the
width of P with respect to A is bounded by p, and
because 8z is small by Lemma 2.2, we have f(r;) <

2f"(u;(x)). Thus,

8(8) < 6(2) = 09(@)/3+2 3 o (ui(@) = (@) (w)

We now proceed to bound the second order term in the
above expression. Inductively, using Lemma 2.3, we can
assume that the A corresponding to the current z is
bounded by 3, i.e. Vi < m,u;(x) < 3. Recall that by
definition of the problem, u;(x) > 0 for all ¢ and for all

r e P. Let o/ = p+ «. Then
Z(Uz’(i‘) = ui())* " (ui ()

< Z uz(i‘)zf//(uz(x)) + Z ul(x)zf”(ul(l‘))
<o D@ (i) 493 1" (wile)
<o D n(@)af (us(@) +93 0 f(w())

<pavVee(r) - &+ 9a’s(x)

Using Lemma 2.2 to bound V,¢(z) & = [,(Z) — ¢(x) +
Veo(x)x < Vig(x) 2, we see that the above expression
is bounded by:

paV.é(x) =+ 9a6(x) < 3pa’¢(x) +9a’¢(x)
= O(p'a’¢(x))

where the inequality is implied by (6). The chosen value
of o ensures that this second order term is at most
a constant fraction of the first order term, which im-
plies that the reduction in ¢ is at least Q(o¢(z)) =

Q(mfb(l‘» i

To simplify the running times, we will use a somewhat
weaker claim than the above theorem, namely that the
reduction in ¢ is Q(1/(a®p)).

If we start from Ag < 2, we need to reduce ¢ by a
factor of at most me?®/m. Lemma 2.4 implies that this
will take O(a*p) = O(¢~*p) iterations. Observe that if
14+ ¢ <Ay <14 2¢, then

m < 6(x) < mel1+29% /¢

and hence reducing A to below 1 4 € requires at most
O(eap) iterations. This suggests the following ap-
proach: solve for some sufficiently small constant ¢, and
then repeatedly set ¢ «+ ¢/2, and solve for new ¢, until
the desired precision is reached. This gives the following
theorem:

Theorem 2.5 The PWB problem can be solved in O(e=3p)
iterations, where each iteration involves a single call to the
oracle given by (2).

3 Applications

3.1 Min-cost multicommodity flow

In this section we will sketch two approaches using
our algorithm for the PWB problem to solve the min-

cost multicommodity flow problem. Consider a min-
cost multicommodity flow problem, where the polytope
P corresponds to the conservation constraints, demand
constraints, and indiwidual capacity constraints of indi-
vidual commodities, the matrix A defines the joint ca-
pacity constraints, and B is the cost function. In other
words, P = P! x P?... x P* where P! corresponds
to feasible flows of commodity ¢ disregarding the rest
of the commodities. Fach edge has an associated cost
G, and the goal i1s to find a flow that satisfies capac-
ity constraints up to a (1 + ¢)-factor while costing less
than (1 4 €)B, where B is the given budget. A bisec-
tion search on B can be used if| instead of being given a
budget, we are told to find an approximately minimum
cost solution.

Observe that this statement of the min-cost multi-
commodity flow problem directly corresponds to the
PWB problem considered in the previous section. It
is easy to check that the width p of P with respect to A
is bounded by k, the number of commodities. However,
the width of P with respect to A3 may be unbounded,
and thus it is not possible to apply the packing algo-
rithm of [15] to this representation of the problem.

The desired oracle (2) corresponds to approximately
solving k& independent single commodity minimum
cost flow problems. This can be done by adapting
the Goldberg-Tarjan cost-scaling min-cost flow algo-
rithm [4], as in Leighton et al. [13]. (The adaptation
is needed because the costs are exponential.) The re-
sulting oracle runs in O(kmn) time. Applying Theo-
rem 2.5, we get an O(e~3k*mn) running time for solving
the problem.

To improve the running time we can use an approach
that is similar to the one developed in [15]. The idea
is to use the fact that the current point x can be rep-
resented as (z!,2%,... 2%) € P! x P2... x P where
x' € P'. At each iteration, we randomly pick 1 < i < k,
optimize over P!, and update z’ if it causes a decrease
in ¢. The expression that we minimize over P’ is ex-
actly like (4), where instead of z and #, we have z!
and #, respectively. The value of ¢ is chosen to be
o = 0(1/(p'a®)), where p' is the width of P? with re-
spect to A, which is 1 in our case. Using the fact that
Vep(z) 2 =Y, Vyid(ah) - 2%, it is possible to modify
the proof of Lemma 2.4 to show that the expected re-
duction in ¢ due to a single iteration is Q(¢(z)/(ka?®)),
which is essentially the same as the reduction due to
one iteration of the algorithm that updates all flows si-
multaneously. Roughly speaking, we loose a factor of &
due to the fact that we update only a single flow, but

gain a factor of k back due to the fact that we can use
a larger o. But now our oracle runs & times faster for
the same improvement.

Using an analysis technique due to Karp [11], this
leads to a conclusion that the algorithm will terminate
in expected O(€_3k) iterations, where the running time
of each iteration is dominated by the computation of a
single commodity minimum-cost flow. Thus, we have
the following:

Theorem 3.1 Min-cost multicommodity flow can be (1+
¢)-approximately solved in O(e=3kmn) expected time.

The basic idea involved in making the above al-
gorithm deterministic is to use the approach of
Radzik [16], who showed how to modify the no-cost mul-
ticommodity flow algorithms in [13, 3] by replacing the
random sampling with the following round robin strat-
egy: instead of picking a random polytope to improve at
each iteration, simply go through the polytopes in order,
using P! in the first iteration, P? in the second iteration,
and so on, as long as A does not decrease by a factor
of (14 ¢). At each iteration, proceed as in the random-
ized case to try to improve the given 2 € P!, Radzik
proves that this approach “works” for the unweighted
multicommodity flow problem, yielding the same run-
ning time as the randomized algorithm. We have shown
that the same holds for a general product-of-polytopes
problem, and in particular for the the min-cost multi-
commodity flow problem.

Theorem 3.2 Min-cost multicommodity flow can be (1 +
¢)-approximately solved in O(e=3kmn) time.

3.2 Two-Cost Flows

An intriguing alternative approach is to move our width
bounding technique from the algorithm to the oracle.
Suppose that, given the budget B, we modify the poly-
tope P by restricting F; to be the set of feasible flows
of commodity ¢ whose cost does not exceed the budget
i 1solation. Just as for the constraints on capacities,
we can now deduce that the sum of the flows will have
cost at most & times the budget. Therefore, the budget
constraint now has width k just like the capacity con-
straints, so we can apply the original algorithm of [15].
But now the oracle has changed: the oracle for P; is
given a linear potential function and must find a min-
imum potential feasible flow of commodity ¢ that does
not have cost exceeding the budget. Observe that the
cost function determined by the edge costs is completely

different from the potential function created by the al-
gorithm, but that the oracle must obey limits on both
cost and potential. In other words (by reduction to bi-
section search), it must solve a “two-cost” flow problem:
given two cost functions ¢; and ¢z, find a flow such that
cif < By and eaf < By,

No efficient algorithm other than general linear pro-
gramming was previously known for solving this prob-
lem. However, our PWB model can be extended to solve
it approximately. In the PWB model, we considered
adding a single unbounded-width constraint to our con-
straint matrix A. It is easy to generalize this model to
add two (or any constant number of) constraints, yield-
ing a problem of packing with two budgets (PW2B).
Given constraints Gz < 1,1 < ¢, let § = %Zﬁl and
apply the single-added-constraint approach. Two-cost
flow is an instance of PW2B whose polytope consists of
feasible flows, whose constraint matrix is empty, and
whose two unbounded-width constraints are the cost
functions. The oracle needs to minimize a potential
function over P—that is, find a min-cost flow. Thus,
applying our width bounding techniques, we can solve
the two-cost flow problem to within (1+¢) in 0(6‘3mn)
time.

Using this approximation algorithm as the oracle in
the original algorithm of [15] lets us restrict the width
to O(k) and thus solve the min-cost multicommodity
flow problem using O(k) calls to the oracle, for a total
running time of O(kmn) time for constant ¢. In addition
to being a useful oracle for the min-cost multicommodity
flow problem, we consider the two-cost flow problem to
be a natural problem in its own right, and therefore
state:

Lemma 3.3 A (14-¢)-approximation to the minimum two-
cost flow problem can be computed in O(e~3mn) time.

3.3 Per-Commodity Costs

Using our two-cost flow algorithm as the oracle in the
packing algorithm of [15]), we can solve the following
generalized version of min-cost multicommodity flow.
Rather than just taking the cost contribution on an edge
to be proportional to the total flow on that edge, we can
make it dependent on which commodities are flowing on
that edge. In particular, we have a cost vector ¢ of
edge costs for commodity i, and if we have flows (¥ for
commodity ¢, then the total flow cost is) Dz Reg-
ular min-cost multicommodity flow is the case where all
¢ are equal. This generalized version of the problem

has many practical applications to which the original
version does not seem to apply [1, References in Chap-
ter 17]. We have the following:

Theorem 3.4 Multicommodity flow with per-commodity
costs can be approximated within a (1 + €)-factor in

O(kmn) time for constant e.

References

(1]

[2]

[10]

R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Net-
work Flows. Prentice Hall, 1993.

B. Awerbuch and T. Leighton. Improved approx-
imation algorithms for the multi-commodity flow
problem and local competitive routing in dynamic
networks. In Proc. 26th Annual ACM Symposium
on Theory of Computing, pages 487-495, 1994.

A. V. Goldberg. A natural randomization strategy
for multicommodity flow and related algorithms.
Information Processing Let. 42:249-256, 1992.

A. V. Goldberg and R. E. Tarjan. Solving
minimum-cost flow problems by successive approx-
imation. In Proc. 19th Annual ACM Symposium
on Theory of Computing, pages 7-18, 1987.

A. V. Goldberg and R. E. Tarjan. Finding
minimum-cost circulations by successive approxi-

mation. Math. of Oper. Res., 15:430-466, 1990.

M. D. Grigoriadis and L. G. Khachiyan. Fast
approximation schemes for convex programs with
many blocks and coupling constraints. Technical

Report DCS-TR-273, Rutgers University, 1991.

T. C. Hu. Multi-Commodity Network Flows. J.
ORSA, 11:344-360, 1963.

A. Kamath and O. Palmon. Improved interior-
point algorithms for exact and approximate so-
lutions of multicommodity flow problems. In
Proc. 6th ACM-SIAM Symposium on Discrete Al-
gorithms, 1995.

A. Kamath, O. Palmon, and S. Plotkin. Fast ap-
proximation algorithm for min-cost multicommod-
ity flow. In Proc. 6th ACM-SIAM Symposium on
Discrete Algorithms, 1995.

S. Kapoor and P. M. Vaidya. Fast algorithms for
convex quadratic programming and multicommod-
ity flows. In Proc. 18th Annual ACM Symposium
on Theory of Computing, pages 147-159, 1986.

[11]

[15]

[17]

R.M. Karp. Probabilistic recurrence relations. In
Proc. 23rd Annual ACM Symposium on Theory of
Computing, pages 190-197, 1991.

P. Klein, S. Plotkin, C. Stein, and E. Tardos.
Faster approximation algorithms for the unit ca-
pacity concurrent flow problem with applications
to routing and finding sparse cuts. STAM Journal
on Computing, June 1994.

T. Leighton, F. Makedon, S. Plotkin, C. Stein, E.
Tardos, and S. Tragoudas. Fast approximation
algorithms for multicommodity flow problem. J.

Comp. and Syst. Sci., 1992.

T. Leighton and S. Rao. An approximate max-
flow min-cut theorem for uniform multicommodity
flow problems with applications to approximation
algorithms. In Proc. 29th IEEE Annual Symposium
on Foundations of Computer Science, pages 422—

431, 1988.

S. Plotkin, D. Shmoys, and E. Tardos. Fast ap-
proximation algorithms for fractional packing and
covering problems. Math of Oper. Research, 1994.
To appear.

T. Radzik. Fast deterministic approximation for
the multicommodity flow problem. In Proc. 6th
ACM-SIAM Symposium on Discrete Algorithms,
1995.

F. Shahrokhi and D. W. Matula. The maximum
concurrent flow problem. Technical Report CSR-
183, Department of Computer Science, New Mex-
ico Tech., 1988.

C. Stein. Approzimation algorithms for multicom-
modity flow and scheduling problems. PhD thesis,
MIT, 1992.

P. M. Vaidya. Speeding up linear programming us-
ing fast matrix multiplication. In Proc. 30th IFEE
Annual Symposium on Foundations of Computer

Science, 1989.

