
Adding Multiple Cost Constraintsto Combinatorial Optimization Problems,with Applications to Multicommodity FlowsDavid Karger� Serge PlotkinyAbstractMinimum cost multicommodity
ow is an instance of a simpler problem (multicommodity
ow)to which a cost constraint has been added. In this paper we present a general scheme for solvinga large class of such \cost-added" problems|even if more than one cost is added. One of themain applications of this method is a new deterministic algorithm for approximately solving theminimum-cost multicommodity
ow problem.Our algorithm �nds a (1 + �) approximation to the minimum cost
ow in ~O(��3kmn) time,where k is the number of commodities, m is the number of edges, and n is the number verticesin the input problem. This improves the previous best deterministic bounds of O(��4kmn2) [9]and ~O(��2k2m2) [15] by factors of n=� and �km=n respectively. In fact, it even dominates the bestrandomized bound of ~O(��2km2) [15].The algorithm presented in this paper e�ciently solves several other interesting generalizationsof min-cost
ow problems, such as one in which each commodity can have its own distinct shippingcost per edge, or one in which there is more than one cost measure on the
ows and all costs mustbe kept small simultaneously. Our approach is based on an extension of the approximate packingtechniques in [15] and a generalization of the round-robin approach of [16] to multicommodity
owwithout costs.1 Introduction1.1 The ProblemThe multicommodity
ow problem involves simultane-ously shipping several di�erent commodities from theirrespective sources to their sinks in a single network sothat the total amount of commodities
owing through�MIT Laboratory for Computer Science, Cambridge, MA 02138.http://theory.lcs.mit.edu/~karger, karger@lcs.mit.edu.Research performed at AT&T Bell Laboratories.yDepartment of Computer Science, Stanford University.http://theory.stanford.edu/people/plotkin/plotkin.html,plotkin@cs.stanford.edu. Research supported by NSF GrantCCR-9304971, and by Terman Fellowship.
each edge is no more than its capacity. Associated witheach commodity is a demand, which is the amount ofthat commodity that we wish to ship. In the min-costmulticommodity
ow problem, each edge has an asso-ciated cost and the goal is to �nd a
ow of minimumcost that satis�es all the demands. Multicommodity
ow arises naturally in many contexts, including vir-tual circuit routing in communication networks, VLSIlayout, scheduling, and transportation, and hence hasbeen studied extensively [7, 10, 14, 17, 12, 13, 18, 2, 16].Since multicommodity
ow algorithms based on gen-eral interior-point methods for linear programming areslow [10, 19, 8], recent emphasis was on designing fastcombinatorial algorithms that relied on problem struc-ture. One successful approach has been to develop ap-proximation algorithms. If there exists a
ow of costB that satis�es all the demands, the goal of a (1 + �)-approximation algorithm is to �nd a
ow of cost at most(1+ �)B that satis�es a (1� �) fraction of each demand.The addition of a cost function to the unweighted(no-cost) multicommodity
ow problem has until nowstrongly impacted the performance of approximation

algorithms. The minimum-cost multicommodity
owalgorithm given by Plotkin, Shmoys, and Tardos [15],runs in ~O(��2km2) expected time [15]; their determin-istic version of this algorithm is slower by a factor of k,running in ~O(��2k2m2) time. The deterministic boundwas improved for dense graphs by Kamath, Palmon,and Plotkin, [9] who gave an ~O(��4kmn2) algorithm,where n is the number of nodes. This is more than ntimes slower than Radzik's deterministic algorithm [16]for the no cost version of the problem. Even betterrunning times were achieved for special cases of the no-cost problem [12]. It is interesting to note that addingcosts does not signi�cantly a�ect the running time ofthe interior-point based algorithms [8, 19].The main contribution of this paper is a deter-ministic minimum-cost multicommodity
ow algorithmthat runs in ~O(��3kmn) time, essentially matching thebound for the unweighted case. Ignoring the � factors,this seems like a natural time bound since it matchesthe best known bound for computing
ows for the kcommodities separately.1.2 Adding ConstraintsThe min-cost multicommodity
ow problem consists ofan easier problem (no-cost multicommodity
ow) towhich a single additional linear constraint (the costfunction) has been added. Similarly, the no-cost mul-ticommodity
ow problem can be seen in the followingway: we take a relatively easy to solve problem P (\�ndan independently feasible
ow for each commodity sat-isfying the demands for that commodity") and add to itsome constraints A that make it harder (\make sure thesum of the
ows doesn't violate capacity constraints").More precisely, this is a special case of the followingpacking problem: given a convex set P and a constraintmatrix A, where Ax � 0 8x 2 P , �nd x 2 P such thatAx � 1.A general approach to approximately solving suchproblems was studied by Plotkin, Shmoys and Tar-dos [15] and Grigoriadis and Khachiyan [6]. They as-sumed that there was an oracle that, given a linear costfunction over P , could �nd a point in P of minimumcost. They then assigned to each point in P a potentialbased on how much that solution violated the addedconstraints A. The problem of �nding a solution satis-fying Ax � 1 then reduces to the problem of �nding aminimum-potential point in P . The potential functionis highly non-linear and thus cannot be optimized di-rectly by the oracle. However, the gradient of this func-

tion is linear; thus, the oracle can be used to determinea good direction to move the point so as to decreaseits potential. For multicommodity
ow the points in Pare sums of
ows, so the problem of minimizing a lin-ear potential function is simply the problem of comput-ing several single-commoditymin-cost
ows|a problemwhich can be approximately solved in ~O(mn) time percommodity [5].The running time of the algorithm in [15] depends onthe width of the convex set P relative to A, de�ned as� = maxx2P maxi aix:That is, the width measures the extent by which anyconstraint in A can be \over
owed" by a point in P . IfP consists of k
ows that individually obey the capacityconstraints, then the sum of those
ows can violate thecapacity constraints by a factor of at most k, meaningthat the width of P is only k. This is essentially themain reason that let [13] and then [3] solve the no-costmulticommodity
ow problem in expected ~O(��2kmn)time. Radzik [16] showed that randomization step inthese algorithms can be removed, leading to a deter-ministic ~O(��2kmn) algorithm.The same approach does not seem to work directly inthe min-cost case. We can try solving the problem bylooking for the minimum \budget" B such that we can�nd a multicommodity
ow of total cost less than B.This suggests adding a new constraint requiring \totalcost less than B" to the constraint matrix A. But un-der an arbitrary cost function, a given
ow can be arbi-trarily more expensive than the minimum cost
ow. Inother words, the added constraint can blow up the widthof the problem and therefore increase the running timesigni�cantly. An alternative scheme is to add the bud-get constraint to P : we can require that P be restrictedsuch that each
ow individually costs no more than thebudget B. This reduces the width of the P to k, thenumber of commodities, but introduces a new problem.The optimization problem over P now becomes: �nda
ow of minimum cost under one cost metric withoutexceeding a given budget in some entirely di�erent costmetric|a sort of \two cost" min-cost
ow problem, forwhich no fast algorithm was previously known.The solution proposed in [15] was to move more ofthe complexity of the problem into A, and use a so-phisticated width-reduction technique that results in apolytope P whose width with respect to A is m andwhose optimization oracle involves ~O(k) shortest pathcomputations. This led to an expected running time of~O(km2).

The main contribution of this paper is developmentof a new technique especially geared towards solving\packing with budget" problems. Roughly speaking,the technique allows us to take an fAx � 1; x 2 Pgpacking problem in which A has width �, add q addi-tional packing (budget) constraints of unbounded widthto the matrix A, and solve the resulting problem asif it had width � + q=�, even if the added constraintsare actually much wider. The original approach wouldhave treated the resulting problem as one of unboundedwidth and thus yielded a very slow algorithm.For example, to �nd a minimum-cost multicommod-ity
ow, we add the additional budget-constraint rowto the matrix A, and then use our technique to geta randomized algorithm with an ~O(��3kmn) expectedrunning time. Replacing randomization by the round-robin technique of [16] allows us to achieve the sametime bound deterministically, thus matching the natu-ral bound of \ ~O(mn) per commodity". In other words,we show that approximately computing a k-commoditymin-cost
ow is not much harder than approximatelycomputing k single-commodity no-cost
ows.Another interesting simple application of our tech-nique is to the \two-cost" single commodity
ow prob-lem, where the goal is to �nd a
ow that has approxi-mately minimum cost with respect to one metric whileits cost is smaller than some given budget with respectto another, unrelated metric. We give an ~O(��3mn)-time (1 + �)-approximation algorithm for this problem.Using this algorithm as an oracle for the multicommod-ity
ow polytope (with a per-
ow budget constraint)gives us yet another ~O(kmn)-time approximation algo-rithm for the min-cost multicommodity
ow problemfor constant �. We can also use this oracle to solvea generalization of multicommodity
ow in which thecost of shipping each commodity can be di�erent fromthe cost of shipping the others|in other words, wherethere are k di�erent cost vectors, one for each commod-ity. As discussed in [1, Reference notes to Chapter 17],this generalization has many applications in practice,such as multivehicle tanker scheduling, racial balancingof schools, routing of multiple commodities, and ware-housing of seasonal products. We approximately solvethis problem in the same ~O(kmn) time bound for con-stant �.Like all previous approximation algorithms for thesetypes of problems, ours uses a potential function thatis minimized at feasible points, together with a variantof the gradient-descent method to �nd that function'sminimum. We develop a new approach that prevents

the gradient descent from considering points that violatethe added budget constraints by a large factor. This letsus pretend that our problem actually has small width.Our algorithm is based on a new, not-quite-exponentialpotential function whose gradients behave better thanthose of the purely exponential potential.2 Fractional Packing With Budgets2.1 De�nitions and notationThe fractional packing with budget problem (PWB) isde�ned as follows:min(� : Ax � �; �x � �; and x 2 P);(1)where A is an (m� 1)� n matrix, � is a budget vector,and P is a convex set in Rn such that Ax � 0 and�x � 0 for each x 2 P . Our techniques easily extend tothe case where we have several additional budget rows�i; for simplicity, we will concentrate on a single-budgetcase in this section.Let A� be the matrix constructed by concatenating �as an additional row to A. We shall use ai to denote theith row of A� ; thus am = �. We shall assume that wehave a fast subroutine to solve the following optimiza-tion problem for the given convex set P :Given an n-dimensional vector c, �nd ~x 2 P such that:c~x = min(cx : x 2 P);(2)Let �� denote the optimum solution to the PWBproblem. For each x 2 P , there is a corresponding min-imum value � such that A�x � � (in each coordinate).We shall use the notation (x; �) to denote that � is theminimum value corresponding to x, and may also saythat x has width �. A solution (x; �) is �-optimal ifx 2 P and � � (1 + �)��. If (x; �) is an �-optimal solu-tion with � > 1 + �, then we can conclude that �� > 1.To simplify the discussion, we will assume that �� = 1and look for a solution (x; �) with � � (1 + �). We willalso assume that we have a starting point x0 with corre-sponding �0 � 2. The reduction to this situation is rel-atively straightforward and changes the running time ofour algorithm by at most a polylogarithmic factor [15].

As in [15], the running time of our approximationalgorithm will depend on the width of the polytope Pwith respect to the matrix A, de�ned as� = maxi<m maxx2P aix:(3)The key di�erence between this de�nition and the onein [15] is that our width � is independent of �. Thealgorithm of [15] uses the width of P with respect to A� ,which might be signi�cantly larger than its width withrespect to A. Thus our algorithm will be much fasterthan that of [15] when the width of P with respect toA is relatively small, while its width with respect to �is very large.2.2 AlgorithmDenote ui(x) = aix, u(x) = (u1(x); : : :um(x)), and letf(z) = e�z=e�, where � = (1=�) ln 3m. To guide thealgorithm, we will use the following potential function:�(x) =Xi f(ui(x))(note this sum includes a term for am = �).Recall that we have assumed that there exists a so-lution to PWB problem with � = 1. Thus, there existsx� with corresponding u� such that each u�(x) � 1 andthus �(x�) � m. The following simple lemma will beused as a stopping criterion.Lemma 2.1 If �(x) � 3m, then the corresponding � �1 + �.Our minimization algorithm starts with some point(x0; �0) and proceeds in iterations, where the point con-sidered \current" is updated at each iteration. As wewill show below, each iteration will cause a signi�cantdecrease in the potential function �. The algorithm ter-minates when the potential has become smaller than3m, as per Lemma 2.1.To �nd the next point, given a current point x 2 P ,consider the linear approximation to � given by the �rstorder Taylor expansion:lx(~x) = �(x) + (rx�) � (~x� x):Since � is smooth, we know that �(~x) � lx(~x) \near" x.Therefore, if we found a point ~x such that lx(~x)� �(x),we might also expect that �(~x) � �(x), i.e. that wehad found a point of much better potential. We can

minimize lx(~x) over x 2 P , since lx(~x) has the formc~x+ d and we can use the oracle to minimize c~x.Unfortunately, the resulting point ~x may be so \far"from x that the approximation of � by lx fails. How-ever, if we only move a small step towards ~x, to thepoint x + �(~x � x), then we know that for su�cientlysmall �, we will stay in a neighborhood of x for whichthe Taylor approximation holds. Since lx is linear, weknow that moving in this direction will improve lx. Un-fortunately, since we only go a �-fraction of the waytowards ~x, we only earn a �-fraction of the perceivedimprovement in lx, and thus in the improvement to �.Therefore, we would like � to be as large is possible.It turns out that we can make this approach work ifwe take � proportional to the inverse of the width � ofthe problem. In [15], this width is the width of P withrespect to A�, which could be unbounded in our case.Our improvement is to replace this parameter with thewidth of P with respect to A, which we assume to berelatively small.The intuition behind our improvement is as follows.Note that since � is convex, lx(~x) is always less than�(~x). If we simply minimize lx(~x), we get a point suchthat �~x could be arbitrarily large. Suppose that weinstead minimize lx(~x) + m�~x. We know that thereexists a feasible point x� with lx(x�) � �(x�) � mand �x� � 1, so whatever minimizing point ~x we �ndsatis�es lx(~x) + m�~x � 2m. Since �~x � 0, we knowlx(~x) � 2m, meaning that we still �nd a point with avery small potential. At the same time, if lx(~x) > 0,then m�~x � 2m, meaning that our point ~x does notviolate the constraint � by much. If we only encounterpoints x with �x � 2, we can pretend that we are infact in a polytope with �x � 2 everywhere. This meansin e�ect that � no longer induces unbounded width inthe polytope.Unfortunately, our assumption that lx � 0 neednot be true. However, we can put together a slightlymore complicated function that serves the same pur-pose. Given the current point (x; �), an iteration of ouralgorithm starts by �nding ~x that minimizes the follow-ing expression over P : x(~x) = rx�(x) � ~x+ (rx�(x) � x)�~x=(9�)(4)(recall � = (1=� ln3m)).Now we modify x to bex̂ (1� �)x + �~x(5)where � = 1=(20�2(�+ �))

2.3 AnalysisTo prove that each iteration results in some progress,we �rst show that the point ~x minimizing x has sev-eral useful properties. First note the following: for any(x; �), (rx�(x)) � x = X f 0(ui(x))ui(x)(6) = X�f(ui(x))ui(x)� ��(x)�;and thus x(~x) � rx�(x) � ~x + ��(x)�~x=9 for any ~x.Also, rx�(x) � x � 0. Now we prove that minimizing x gives us a point whose potential function seems verysmall according to the linear approximation lx, and thatat the same time does not violate the constraint �x bymuch.Lemma 2.2 Let ~x be the minimizer of x. If the currentx has a corresponding � � 3, thenlx(~x) � 23�(x)(7) �~x � 10�(8)Proof: Consider a feasible point x� for the packing prob-lem, and note that (by convexity) �(x�) � lx(x�) =�(x) +rx�(x) � (x� � x). Thus since �(x�) < �(x), weknow that rx�(x) � x� < rx�(x) � x:By de�nition of ~x, x(~x) < x(x�). Each of the twoterms de�ning x is positive. Thus, each of the twoterms in x(~x) is no greater than x(x�) = rx�(x) � x� + (rx�(x) � x)=(9�)� rx�(x) � x� + �(x)=3:In particular, (rx�(x) � x)�~x=(9�) � rx�(x) � x� +(rx�(x) � x)=(9�): Solving for �~x and observing thatrx�(x) � x� � rx�(x) � x implies Equation (8).Proving (7) takes some added work. We have observedthatrx�(x) � ~x � x(~x) � rx�(x) � x� + �(x)=3:(9)Now observe thatlx(~x) = �(x) +rx�(x) � (~x� x)� �(x) +rx�(x) � (x� � x) + �(x)=3= lx(x�) + �(x)=3

But since � is a convex function, lx(x�) � �(x�) � m ��(x)=3. The result follows.It follows by induction that at all times, �x � 10�.This lets us pretend in our analysis that the constraint�x has width at most 10�.We do not claim that each iteration reduces �. Infact, � might increase as a result of a single iteration. Itwill be useful to observe that this increase is very small.This justi�es the assumption of Lemma 2.2.Lemma 2.3 If we start with a point (x0; �0) where �0 � 2and �(x) is non-increasing, then � never exceeds 3.Now we show that as long as � is large, each iterationof our algorithm reduces �. Recall that at a currentpoint x, one iteration determines a point ~x by mini-mizing x over P , and then updates x to a new pointx̂ = x+ �(~x� x).Lemma 2.4 If an iteration of the algorithm starts with apoint x with �(x) � 3m, and � = 1=(20�2(� + �)), then�(x̂) = �(x)(1�
(1�2(�+�))).Proof: Linearity of lx and Lemma 2.2 imply thatlx(x̂) = lx(x) + �(lx(~x) � lx(x)) � (1 � �=3)�(x),where we use the fact that lx(x) = �(x). Usingthe second-order Taylor approximation, we proceed tobound the error in lx(x̂). To simplify the expressions,recall ui(x) = aix. According to the second-order Tay-lor Theorem we have that�(x̂) = lx(x̂) +X�2(ui(~x) � ui(x))2f 00(ri);where the vector r is a convex combination of u(x) andu(x) + �(u(~x) � u(x)). We now show that the second-order term is negligible for the given choice of �. Recallthat we have chosen � = 1=(20�2(� + �)). Since thewidth of P with respect to A is bounded by �, andbecause �~x is small by Lemma 2.2, we have f 00(ri) <2f 00(ui(x)). Thus,�(x̂) � �(x)���(x)=3+2Xi �2(ui(~x)�ui(x))2f 00(ui):We now proceed to bound the second order term in theabove expression. Inductively, using Lemma 2.3, we canassume that the � corresponding to the current x isbounded by 3, i.e. 8i � m;ui(x) � 3. Recall that byde�nition of the problem, ui(x) � 0 for all i and for all

x 2 P . Let �0 = �+ �. ThenXi (ui(~x)� ui(x))2f 00(ui(x))�Xi ui(~x)2f 00(ui(x)) +Xui(x)2f 00(ui(x))� �0Xi ui(~x)f 00(ui(x)) + 9Xi f 00(ui(x))� �0Xi (ui(~x)�f 0(ui(x)) + 9Xi �2f(ui(x))� �0�rx�(x) � ~x+ 9�2�(x)Using Lemma 2.2 to bound rx�(x) � ~x = lx(~x)��(x)+rx�(x)�x � rx�(x)�x, we see that the above expressionis bounded by:�0�rx�(x) � x+ 9�2�(x) � 3�0�2�(x) + 9�2�(x)= O(�0�2�(x))where the inequality is implied by (6). The chosen valueof � ensures that this second order term is at mosta constant fraction of the �rst order term, which im-plies that the reduction in � is at least
(��(x)) =
(1�2(�+�)�(x)).To simplify the running times, we will use a somewhatweaker claim than the above theorem, namely that thereduction in � is
(1=(�3�)).If we start from �0 � 2, we need to reduce � by afactor of at most me2�=m. Lemma 2.4 implies that thiswill take O(�4�) = ~O(��4�) iterations. Observe that if1 + � � �0 � 1 + 2�, thenm � �(x) � me(1+2�)�=e�and hence reducing � to below 1 + � requires at mostO(��4�) iterations. This suggests the following ap-proach: solve for some su�ciently small constant �, andthen repeatedly set � �=2, and solve for new �, untilthe desired precision is reached. This gives the followingtheorem:Theorem 2.5 The PWB problem can be solved in ~O(��3�)iterations, where each iteration involves a single call to theoracle given by (2).3 Applications3.1 Min-cost multicommodity
owIn this section we will sketch two approaches usingour algorithm for the PWB problem to solve the min-

cost multicommodity
ow problem. Consider a min-cost multicommodity
ow problem, where the polytopeP corresponds to the conservation constraints, demandconstraints, and individual capacity constraints of indi-vidual commodities, the matrix A de�nes the joint ca-pacity constraints, and � is the cost function. In otherwords, P = P 1 � P 2 � � � � P k, where P i correspondsto feasible
ows of commodity i disregarding the restof the commodities. Each edge has an associated cost�e and the goal is to �nd a
ow that satis�es capac-ity constraints up to a (1 + �)-factor while costing lessthan (1 + �)B, where B is the given budget. A bisec-tion search on B can be used if, instead of being given abudget, we are told to �nd an approximately minimumcost solution.Observe that this statement of the min-cost multi-commodity
ow problem directly corresponds to thePWB problem considered in the previous section. Itis easy to check that the width � of P with respect to Ais bounded by k, the number of commodities. However,the width of P with respect to A� may be unbounded,and thus it is not possible to apply the packing algo-rithm of [15] to this representation of the problem.The desired oracle (2) corresponds to approximatelysolving k independent single commodity minimumcost
ow problems. This can be done by adaptingthe Goldberg-Tarjan cost-scaling min-cost
ow algo-rithm [4], as in Leighton et al. [13]. (The adaptationis needed because the costs are exponential.) The re-sulting oracle runs in ~O(kmn) time. Applying Theo-rem 2.5, we get an ~O(��3k2mn) running time for solvingthe problem.To improve the running time we can use an approachthat is similar to the one developed in [15]. The ideais to use the fact that the current point x can be rep-resented as (x1; x2; : : : ; xk) 2 P 1 � P 2 � � � � P k, wherexi 2 P i. At each iteration, we randomly pick 1 � i � k,optimize over P i, and update xi if it causes a decreasein �. The expression that we minimize over P i is ex-actly like (4), where instead of x and ~x, we have xiand ~xi, respectively. The value of � is chosen to be� = �(1=(�i�3)), where �i is the width of P i with re-spect to A, which is 1 in our case. Using the fact thatrx�(x) � x = Pirxi�(xi) � xi, it is possible to modifythe proof of Lemma 2.4 to show that the expected re-duction in � due to a single iteration is
(�(x)=(k�3)),which is essentially the same as the reduction due toone iteration of the algorithm that updates all
ows si-multaneously. Roughly speaking, we loose a factor of kdue to the fact that we update only a single
ow, but

gain a factor of k back due to the fact that we can usea larger �. But now our oracle runs k times faster forthe same improvement.Using an analysis technique due to Karp [11], thisleads to a conclusion that the algorithm will terminatein expected ~O(��3k) iterations, where the running timeof each iteration is dominated by the computation of asingle commodity minimum-cost
ow. Thus, we havethe following:Theorem 3.1 Min-cost multicommodity
ow can be (1 +�)-approximately solved in ~O(��3kmn) expected time.The basic idea involved in making the above al-gorithm deterministic is to use the approach ofRadzik [16], who showed how to modify the no-cost mul-ticommodity
ow algorithms in [13, 3] by replacing therandom sampling with the following round robin strat-egy: instead of picking a random polytope to improve ateach iteration, simply go through the polytopes in order,using P 1 in the �rst iteration, P 2 in the second iteration,and so on, as long as � does not decrease by a factorof (1 + �). At each iteration, proceed as in the random-ized case to try to improve the given xi 2 P i. Radzikproves that this approach \works" for the unweightedmulticommodity
ow problem, yielding the same run-ning time as the randomized algorithm. We have shownthat the same holds for a general product-of-polytopesproblem, and in particular for the the min-cost multi-commodity
ow problem.Theorem 3.2 Min-cost multicommodity
ow can be (1 +�)-approximately solved in ~O(��3kmn) time.3.2 Two-Cost FlowsAn intriguing alternative approach is to move our widthbounding technique from the algorithm to the oracle.Suppose that, given the budget B, we modify the poly-tope P by restricting Pi to be the set of feasible
owsof commodity i whose cost does not exceed the budgetin isolation. Just as for the constraints on capacities,we can now deduce that the sum of the
ows will havecost at most k times the budget. Therefore, the budgetconstraint now has width k just like the capacity con-straints, so we can apply the original algorithm of [15].But now the oracle has changed: the oracle for Pi isgiven a linear potential function and must �nd a min-imum potential feasible
ow of commodity i that doesnot have cost exceeding the budget. Observe that thecost function determined by the edge costs is completely

di�erent from the potential function created by the al-gorithm, but that the oracle must obey limits on bothcost and potential. In other words (by reduction to bi-section search), it must solve a \two-cost"
ow problem:given two cost functions c1 and c2, �nd a
ow such thatc1f � B1 and c2f � B2.No e�cient algorithm other than general linear pro-gramming was previously known for solving this prob-lem. However, our PWB model can be extended to solveit approximately. In the PWB model, we consideredadding a single unbounded-width constraint to our con-straint matrix A. It is easy to generalize this model toadd two (or any constant number of) constraints, yield-ing a problem of packing with two budgets (PW2B).Given constraints �ix � 1, i � t, let � = 1tP �i andapply the single-added-constraint approach. Two-cost
ow is an instance of PW2B whose polytope consists offeasible
ows, whose constraint matrix is empty, andwhose two unbounded-width constraints are the costfunctions. The oracle needs to minimize a potentialfunction over P|that is, �nd a min-cost
ow. Thus,applying our width bounding techniques, we can solvethe two-cost
ow problem to within (1+�) in ~O(��3mn)time.Using this approximation algorithm as the oracle inthe original algorithm of [15] lets us restrict the widthto O(k) and thus solve the min-cost multicommodity
ow problem using ~O(k) calls to the oracle, for a totalrunning time of ~O(kmn) time for constant �. In additionto being a useful oracle for the min-cost multicommodity
ow problem, we consider the two-cost
ow problem tobe a natural problem in its own right, and thereforestate:Lemma 3.3 A (1+�)-approximation to the minimumtwo-cost
ow problem can be computed in ~O(��3mn) time.3.3 Per-Commodity CostsUsing our two-cost
ow algorithm as the oracle in thepacking algorithm of [15]), we can solve the followinggeneralized version of min-cost multicommodity
ow.Rather than just taking the cost contribution on an edgeto be proportional to the total
ow on that edge, we canmake it dependent on which commodities are
owing onthat edge. In particular, we have a cost vector c(i) ofedge costs for commodity i, and if we have
ows x(i) forcommodity i, then the total
ow cost isP c(i)x(i). Reg-ular min-cost multicommodity
ow is the case where allc(i) are equal. This generalized version of the problem

has many practical applications to which the originalversion does not seem to apply [1, References in Chap-ter 17]. We have the following:Theorem 3.4 Multicommodity
ow with per-commoditycosts can be approximated within a (1 + �)-factor in~O(kmn) time for constant �.References[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Net-work Flows. Prentice Hall, 1993.[2] B. Awerbuch and T. Leighton. Improved approx-imation algorithms for the multi-commodity
owproblem and local competitive routing in dynamicnetworks. In Proc. 26th Annual ACM Symposiumon Theory of Computing, pages 487{495, 1994.[3] A. V. Goldberg. A natural randomization strategyfor multicommodity
ow and related algorithms.Information Processing Let., 42:249{256, 1992.[4] A. V. Goldberg and R. E. Tarjan. Solvingminimum-cost
ow problems by successive approx-imation. In Proc. 19th Annual ACM Symposiumon Theory of Computing, pages 7{18, 1987.[5] A. V. Goldberg and R. E. Tarjan. Findingminimum-cost circulations by successive approxi-mation. Math. of Oper. Res., 15:430{466, 1990.[6] M. D. Grigoriadis and L. G. Khachiyan. Fastapproximation schemes for convex programs withmany blocks and coupling constraints. TechnicalReport DCS-TR-273, Rutgers University, 1991.[7] T. C. Hu. Multi-Commodity Network Flows. J.ORSA, 11:344{360, 1963.[8] A. Kamath and O. Palmon. Improved interior-point algorithms for exact and approximate so-lutions of multicommodity
ow problems. InProc. 6th ACM-SIAM Symposium on Discrete Al-gorithms, 1995.[9] A. Kamath, O. Palmon, and S. Plotkin. Fast ap-proximation algorithm for min-cost multicommod-ity
ow. In Proc. 6th ACM-SIAM Symposium onDiscrete Algorithms, 1995.[10] S. Kapoor and P. M. Vaidya. Fast algorithms forconvex quadratic programming and multicommod-ity
ows. In Proc. 18th Annual ACM Symposiumon Theory of Computing, pages 147{159, 1986.

[11] R.M. Karp. Probabilistic recurrence relations. InProc. 23rd Annual ACM Symposium on Theory ofComputing, pages 190{197, 1991.[12] P. Klein, S. Plotkin, C. Stein, and �E. Tardos.Faster approximation algorithms for the unit ca-pacity concurrent
ow problem with applicationsto routing and �nding sparse cuts. SIAM Journalon Computing, June 1994.[13] T. Leighton, F. Makedon, S. Plotkin, C. Stein, �E.Tardos, and S. Tragoudas. Fast approximationalgorithms for multicommodity
ow problem. J.Comp. and Syst. Sci., 1992.[14] T. Leighton and S. Rao. An approximate max-
ow min-cut theorem for uniform multicommodity
ow problems with applications to approximationalgorithms. In Proc. 29th IEEE Annual Symposiumon Foundations of Computer Science, pages 422{431, 1988.[15] S. Plotkin, D. Shmoys, and �E. Tardos. Fast ap-proximation algorithms for fractional packing andcovering problems. Math of Oper. Research, 1994.To appear.[16] T. Radzik. Fast deterministic approximation forthe multicommodity
ow problem. In Proc. 6thACM-SIAM Symposium on Discrete Algorithms,1995.[17] F. Shahrokhi and D. W. Matula. The maximumconcurrent
ow problem. Technical Report CSR-183, Department of Computer Science, New Mex-ico Tech., 1988.[18] C. Stein. Approximation algorithms for multicom-modity
ow and scheduling problems. PhD thesis,MIT, 1992.[19] P. M. Vaidya. Speeding up linear programming us-ing fast matrix multiplication. In Proc. 30th IEEEAnnual Symposium on Foundations of ComputerScience, 1989.

