Finding the Hidden Path:
Time Bounds for All-Pairs Shortest Paths

David R. Karger*

Daphne Koller

Steven J. Phillips'

Department of Computer Science
Stanford University
Stanford, California 94305

Abstract

We wnvestigate the all-pairs shortest paths prob-
lem wn weighted graphs. We present an algorithm—
the Hidden Paths Algorithm—that finds these paths
in time O(m*n + n?logn), where m* is the number
of edges participating in shortest paths. Qur algo-
rithm s a practical substitute for Dikstra’s algorithm.
We argue that m™ is likely to be small in practice,
since m* = O(nlogn) with high probability for many
probability distributions on edge weights. Finally, we
prove an Q(mn) lower bound on the running time
of any path-comparison-based algorithm for the all-
pairs shortest paths problem. Path-comparison-based
algorithms form a natural class containing the Hidden
Paths Algorithm, as well as the algorithms of Dijkstra
and Floyd.

1 Introduction

Oh what a peaceful life is theirs

Who worldly strife and noise have flown

And follow the hidden path from cares

Which none but the wise of the world have known
Fray Luis de Leon, c. 1527 - 1591

Let G be a directed graph with n vertices and m
edges, with non-negative edge weights. The all-pairs
shortest paths problem is to find a shortest path be-
tween each pair of vertices in (.

Our contributions to this problem lie in two areas.
In Section 2 we present a new algorithm for all-pairs
shortest paths, called the Hidden Paths Algorithm.
Let an edge be called optimal if it 1s a shortest path,
and let m* be the number of optimal edges in the
graph. The Hidden Paths Algorithm runs in time

*Supported by a National Science Foundation Graduate
Fellowship.
tSupported by NSF PYT grant CCR-8858030-03.

O(m*n+n? logn) if we use a Fibonacci heap [8] to im-
plement a priority queue; the running time increases
to O(m*nlogn) if a standard heap is used instead.
The algorithm operates by running Dijkstra’s single-
source shortest paths algorithm [3] in parallel from all
nodes in the graph, using information gained at each
node to reduce the work done at other nodes. Our
algorithm is likely to be fast in practice, because it is
known [9, 15] that m™ = O(nlogn) with high prob-
ability when the input graph is the complete graph
with edge weights chosen independently from any of a
large class of probability distributions, including the
uniform distribution on the interval [0, 1].

Our second contribution is a new lower bound,
given in Section 3. Most algorithms for the all-
pairs shortest path problem use the edge weight func-
tion only in comparing the weights of two paths in
the graph. We call such algorithms path-comparison-
based, and prove that any path-comparison-based al-
gorithm requires £(mn) time on graphs with m edges
and n vertices. The idea of the lower bound is to con-
struct a weighted directed graph with ©(mn) directed
paths. If an algorithm A fails to examine any path,
we show how to modify the weight function so that
the path is optimal, without A detecting the change.

In proving the lower bound, we show that any path-
comparison-based algorithm requires 2(mn) time even
to verify the output of an all-pairs shortest paths algo-
rithm. Thus in the path-comparison model, verifica-
tion is as hard as finding the paths. We show a lower
bound of Q(n?) for the problem of checking that the
edge weights of a graph satisfy the triangle inequality.
These lower bounds also hold for randomized path-
comparison-based algorithms.

One can generalize the notion of path weight so that
the weight of a path may no longer be the sum of the
weights of its edges. For example, one might define the
weight of a path to be the maximum of the weights of

its edges. In Section 4 we show that many all-pairs
shortest paths algorithms work even for generalized
path weight functions. We show a lower bound of
Q(mn) on the running time of any algorithm solving
the all-pairs shortest path problem for all generalized
path weight functions.

Previous Work

The most widely known algorithms for the all-pairs
shortest paths problem are those of Dijkstra [3] and
Floyd [5]. Dijkstra’s algorithm for the single-source
shortest path problem can be run from each vertex (as
noted by Johnson [11]), resulting in a running time
of ©(mn + n?logn) if Fibonacci heaps are used to
implement priority queues. Floyd’s algorithm, which
can handle negative edge weights, works by dynamic
programming and tuns in time ©(n®). If the edge
weights are independently and identically distributed
random variables, a variant of Dijkstra’s algorithm de-
veloped by Spira [18] has an expected running time of
O(n?log® n). Bloniarz [1] provided an algorithm with
an expected running time of O(n?lognlog” n). An-
other algorithm, developed by Frieze and Grimmet [9],
achieves an expected running time of O(n?logn), but
is suitable only for random graphs. All of these al-
gorithms are path-comparison-based, so by the lower
bound of Section 3 they have a worst case running
time of Q(mn). Fast algorithms exist for special cases
of the all-pairs shortest paths problem, for instance
when the graph is unweighted [4] or planar [6].

Fredman [7] shows that O(n°/?) comparisons be-
tween sums of edge weights suffice to solve the all-
pairs shortest paths problem. He uses this fact to do
preprocessing, producing an algorithm that runs in
time O(n?(loglogn / logn)*/3). This result should be
contrasted with the lower bound in Section 3. Fred-
man’s algorithm is not path-comparison-based, since
it performs comparisons involving sums of weights of
edges that do not form a path (this capability dis-
tinguishes the algebraic decision tree model from the
path-comparison-based model). Tt is surprising that
we must allow such comparisons in order to improve
on the Q(n3) bound.

An algorithm similar to the Hidden Paths Algo-
rithm, with the same time bound, has been developed
independently by McGeoch [16]. A variant of our algo-
rithm has been developed independently by Jakobsson
[10] as a transitive closure algorithm. Both these algo-
rithms require data structures which are more complex
than those used by the Hidden Paths Algorithm.

Lower bounds on the computational complexity of
the all-pairs shortest paths problem have been proved

in some other models. If the permissible operations
are addition and minimum in a straight line compu-
tation, Kerr [12] shows that any algorithm requires
Q(n?) running time. Regarding algebraic decision tree
complexity, Spira and Pan [19] show that Q(n?) com-
parisons between sums of edge weights are necessary
to solve the single-source shortest paths problem.

2 Finding Shortest Paths

In this section, we describe an algorithm for solv-
ing the all-pairs shortest paths problem in a directed
graph G = (V, E) with nonnegative edge weights. In
order to present our algorithm, we need to make the
following definitions.

2.1 Preliminary Definitions

We use (u1,us,...,ux) to denote a path from u;
to ug going through the vertices us, ..., ug—1. An un-
specified path from u to v (which can also be an edge)
will be denoted by (u ~ v). The length of a path
(wy,...,ug) is

(w1, ..., ux)| =k—1.

Let ||(u, v)|| denote the weight of the edge (u,v). We
extend the weight function by setting ||(u,v)|] = oo,
for any (u,v) € E, so that ||(u,v)]| is defined for all
pairs u, v. The weight of a path (uy,...,ug) is

k-1
(s w)ll = Y i, wig) |
i=1

Definition 2.1 An edge e is said to be optimal if it
participates in some shortest path. Let m*(G) denote
the number of optimal edges in G.

Fact 2.1 The edge (u,v) is optimal iff (u,v) is a
shortest path from u to v.

Note that in an unweighted graph each edge is op-
timal, so m* = m and our algorithm provides no im-
provement.

2.2 The Hidden Paths Algorithm

The Hidden Paths Algorithm presented in this sec-
tion finds the shortest path between every pair of
vertices in the graph. Essentially it runs Dijkstra’s
single-source shortest paths algorithm in parallel for
all points in the graph. The different single-source

Each entry P[u,v] consists of

weight: The weight of the path.

e For each vertex v, a list E of the optimal edges directed into v that have been found so far.

e A path array P, which for every pair u,v contains the current best path from u to v.
first: The first vertex on this path (other than u itself).

opt: A flag indicating whether this path is known to be optimal.
heaptr: A pointer to the heap entry for this path, if one exists.

e A heap H of pointers to candidate paths which appear in the path array, ordered by weight.

Figure 1: Data structures maintained by the Hidden Paths Algorithm.

Initialize
For all u,v
Set Plu, v].wetght := ||(u, v)]|.

For all v, set E) to be empty.

Mark Plu,v].opt := True.
Step 2 If (u ~+ v) is an edge then
Add (u,v) to EJ.

Update(u, v, t).

For all edges (w,u) € Ey,
Update(w, u, v).

Procedure Update(z, y, z):

Set Plz,z].first:=y.

Modify P[z,z].heaptr accordingly.

Insert the pair u, v into the heap with priority P[u, v].weight.
Initialize the rest of the record Plu,v].

While (heap not empty and weight of top item # o) do
Step 1 Remove the top element (u ~+ v) from the heap.

For all ¢ such that P[v,t].opt = True

If (u ~+ v) is a path that is not an edge then

If P[z,y].weight + Ply, z].weight < P[z,z].weight then
Set Pz, z].weight := Pz, yl.weight + Ply, z].weight.

Change the priority of x, z in the heap to P[z,z].weight.

Figure 2: The Hidden Paths Algorithm.

threads are integrated in a way which allows the use
of intermediate results from one thread to reduce the
work done by another. In a sense, the algorithm dis-
covers the hidden “shortest path structure” of the
graph by pruning away the unnecessary parts. We
note that the Hidden Paths Algorithm actually con-
structs each path in reverse order; by adding edges to
the tail of the path. This facilitates forward traversal
on the constructed paths. It is simple to modify the
algorithm to construct the paths in the standard fash-
ion. An intuitive description of the algorithm is given
below. A precise presentation of the Hidden Paths

Algorithm can be found in Figures 1 and 2.

The Hidden Paths Algorithm maintains a heap con-
taining for each ordered pair of vertices u, v the best
path from u to v found so far. The heap is ordered
according to the following order on paths: p < ¢ iff
(Il 12l < (llglls lg]) according to lexicographic or-
der. We say that p = ¢ if (||pl|, [p[) = (ll4ll, l¢]). The
heap will be initialized to contain for each pair u,v a
path of weight ||(w, v)|| (recall that if (u,v) ¢ E then
[|(w, v)|] = o0). Tt will always be the case that the path
at the top of the heap will be an optimal path.

At each phase, the Hidden Paths Algorithm re-

moves a path, say (u ~ v), from the top of the heap (a
delete-min operation). This is the optimal path from
u to v. This path is now used to construct a set of
new candidate paths. If a new candidate path (w ~)
is shorter, 1t replaces the current best path from w to
t in the heap. This maintains the optimality of the
path at the top of the heap.

The complexity of the algorithm is a function of
the number of candidate paths created, so we do not
want to create too many. If (u ~ v) is an edge, then
the candidate paths are all those paths of the form
(u,v ~ t) where (v ~ t) has already been discovered
to be optimal. If (u ~» v) is a path which is not an
edge, then the candidate paths are all those of the form
(w, u ~ v) where (w,u) is an optimal edge which has
already been found. Note that in the construction of
candidate paths, the edge is always concatenated to
the tail.

The following theorem shows that this limited set of
candidate paths suffices for finding the shortest path
between each pair of vertices in the graph. The analy-
sis in Section 2.3 shows that the resulting complexity
is O(m*n + n?logn).

Theorem 2.2 The Hidden Paths Algorithm finds all
the shortest paths in the graph. Furthermore, it dis-
covers them in order of increasing weight.

Proof: Let Opt be the set of optimal paths found
so far. We prove the theorem by induction on the
size of Opt. The inductive hypothesis is that at the
beginning of each iteration,

1. If p is the item at the top of the heap, then p is an
optimal path and Opt contains all those optimal
paths ¢ such that ¢ < p (and possibly some paths
q such that ¢ = p). In particular, all subpaths of
paths in Opt are also in Opt.

2. For each pair of vertices u and v for which an op-
timal path has not yet been found, the heap con-
tains a path of minimal weight among those con-
taining only a single edge or of the form (u, w ~~
v) for (u,w) and (w ~ v) in Opt.

The inductive hypothesis holds trivially at the be-
ginning of the first iteration, since at that time, p is
the shortest edge in the graph, Opt is empty, and the
heap contains all the edges.

Assume that the inductive hypothesis holds at the
beginning of an iteration, and let p = (u ~ v) be
the item at the top of the heap. Then we know that
p is an optimal path. The construction of candidate
paths in Step 2 of the algorithm (see Figure 2) ensures
condition 2 above.

It remains only to prove that if ¢ is the next item
on top of the heap, then ¢ is optimal and every smaller
optimal path has been found. This can be false only if
there exists another optimal path r, such that r < ¢,
and r has not yet been placed into the heap. Let r
be the smallest such path. Since all edges were placed
in the heap during the initialization step, » must be a
path of length at least two. Assume r = (z,y ~ w).
But (z,y) < r and (y ~ w) < r and both are nec-
essarily optimal. Since r is the minimal optimal path
not yet in Opt, both (z,y) and (y ~ w) must be in
Opt, and therefore » must have been constructed and
inserted into the heap. This is a contradiction. There-
fore, there can be no optimal paths not in Opt which
precede ¢ under <, and ¢ must be optimal. O

Note that this algorithm works with minimal
changes for undirected graphs.

2.3 Running Time Analysis

Let us count the number of heap operations taken
by the algorithm. It should be clear that the cost
of all other operations is subsumed by the cost of the
heap operations. During the initialization step, a heap
of size O(n?) is created. Steps 1 and 2 are iterated at
most n(n— 1) times, since in each iteration an optimal
path is deleted. Therefore, the algorithm executes at
most n(n — 1) delete-min operations.

It remains to count only the time taken by Step 2.
During the execution of the algorithm, the only can-
didate paths which are created are those of the form
(u,v ~ w) where both (u,v) and (v ~ w) are opti-
mal. For each optimal edge (u,v), there are at most
n—1 such paths (one for each w). The total number of
candidate paths created is therefore O(m*n). There is
at most one priority change operation associated with
each candidate path.

The complexity of the algorithm depends on the im-
plementation of the heap (see Table 1). Using a stan-
dard heap implementation, we get a total complexity
of ©(m*nlogn). Using Fibonacci heaps (see [8]), in-
sertions and priority change operations take constant
amortized time, and we therefore get a complexity of
O(n?logn + m*n).

The Hidden Paths Algorithm is also very simple
and easy to implement, and thus provides a practical
substitute for Dijkstra’s algorithm.

2.4 m* in a Random Graph

To predict the behavior of the Hidden Paths Algo-
rithm in practice, we need to study the quantity m*
for “typical” graphs. It is easy to construct graphs for

Operation # of ops | cost for reg. heap | cost for Fib. heap
create O(n?) O(n?) O(n?)
priority change | O(m*n) | O(m*nlogn) O(m*n)
delete-min O(n?) O(n?log n) O(n?logn)
| Total | — | O(m*nlogn) | O(m*n+n?logn) |

Table 1: The running time of the Hidden Paths Algorithm

which m* = O(n), while m is ©(n?). It is also easy to
construct graphs for which m* = m. In this section we
note that for a large class of probability distributions
on random graphs, m* = O(nlogn).

Consider a distribution F' on non-negative edge
weights, which does not depend on n, such that
F'(0) > 0. In particular, the uniform distribution
on [0, 1] and the exponential distribution with mean A
both satisfy these conditions. Frieze and Grimmet [9]
prove the following result, along with some generaliza-
tions:

Theorem 2.3 (Frieze and Grimmet) Let G be a
complete directed graph, whose edge weights are cho-
sen independently according to F'. Then with probabil-
ity 1 — O(n=1), the diameter of G is O(logn/n), and
hence m*(G) = O(nlogn).

Similar results are derived in a different context
by Luby and Ragde [15]. Hassin and Zemel prove
the above theorem for both directed and undirected
graphs, when the edge weights are uniformly dis-
tributed. The constant factors given by these anal-
yses are small. In fact, empirical studies by Mc-
Geoch [16] indicate that when the edge weights are
uniformly distributed, m*(G) grows approximately as

0.5nlnn + .3n.

Corollary 2.4 If the edge weights of G are chosen
independently according to F', then with high probabil-
ity the running time of the Hidden Paths Algorithm is
O(n?logn).

This time bound is an improvement over earlier al-
gorithms by Spira [18] and Bloniarz [1], and matches
the performance of the algorithm of Frieze and Grim-
met. However, the Hidden Paths Algorithm can be ef-
fectively used in any situation where m™ is significantly
less than m, whereas the algorithm of Frieze and Grim-
met 1s designed specifically for random graphs.

2.5 Generalizations

The Hidden Paths Algorithm can easily be trans-
formed to one that finds the k shortest paths in the

graph. The revised algorithm will initialize the heap
to contain only the actual edges in the graph. Then,
when comparing candidate paths to existing paths (in
Procedure Update), the algorithm will sometimes have
to do an insert rather than a priority change operation.
The running time for this algorithm (using Fibonacci
heaps) is O(m + klogn + k?).

Finally, we note that the Hidden Paths Algorithm
considers some unnecessary candidate paths. One pos-
sible improvement, developed independently by us and
by Jakobsson [10], creates only candidate paths ev-
ery subpath of which i1s optimal. More specifically,
a path p = (u,v ~ w,?) is made a candidate path
iff (u,v ~ w) and (v ~ w,t) are already known to
be optimal. This will clearly reduce the number of
candidate paths formed, but there does not seem to
be a simple expression for the reduced running time
achieved by this algorithm.

3 A Lower Bound

Spira and Pan have shown a lower bound of Q(n?)
in the algebraic decision tree model [19]. However,
many algorithms for the shortest paths problem use
edge weights only to compute and compare the weights
of paths. It therefore seems reasonable to consider a
more restricted decision tree model for the shortest
paths problem.

Definition 3.1 A path-comparison-based all-pairs
shortest paths algorithm A accepts as input a graph
G and a weight function. The algorithm A can per-
form all standard operations. However, the only way
it can access the edge weights is to compare the weights
of two different paths.

We can think of the algorithm as accessing the path
weights only through a black-box path length com-
parator. The algorithm must output a reasonable en-
coding of the shortest paths in G.1

IWe require that the output have no information as to path
weights. For example, the graph itself is not a reasonable en-
coding of the solution.

It should be noted that the algorithms of Floyd,
Dijkstra, and Spira, as well as the Hidden Paths Algo-
rithm, all fit into this path-comparison-based model.
On the other hand, Fredman’s o(n?®) algorithm [7] is
not path-comparison-based because it adds weights of
edges which do not form a single path. Fredman’s
algorithm conforms to the more general algebraic de-
cision tree model.

We show a lower bound of Q(n?) on the running
time of any path-comparison-based shortest paths al-
gorithm running on a graph of ©(n?) edges. We then
show how the construction can be modified to yield a
lower bound of Q(mn) for graphs with m edges.

To show the Q(n?®) lower bound, we construct a
directed graph of 3n vertices on which any path-
comparison-based shortest paths algorithm must per-
form Q(n®) comparisons. The directed graph G, with
weight function | - ||, has Q(n®) paths. We show that
if A fails to examine one of these paths then we can
modify the weight function to make that path optimal
without A being able to detect it.

The graph G is a directed tripartite graph on ver-
tices u;, vj, and wy where ¢, j and k range from 0 to
n — 1. The edge set for G is {(u;,v;)} U {(v;,we)}.
Therefore, the only paths are individual edges and
paths (u;, vy, wy) of length two.

To define the weight function, we work in base n+1
notation, generalized to allow negative digits. Define

[ar,...,a0ls = Zaibi

The edge weights are

||(UZ,U])|| = [aoaiaoajaoaol]n-l-l
[l (vs, wi)ll 1

[
o=
o
>
o
|
L)
=,
s
+
-

and thus
||(uza Vi, wk)” = [1a 1a ia kaja _ja O]n+1~
The following lemma is an immediate consequence:

Lemma 3.1 Let < denote a lexicographic ordering on
tuples of integers, with the leftmost integer being the

most significant. For alli,j,7' k k" :
L1 Ca, o)l < ([Cuirs o)l aff (2, 5) < (&, 57)

2o vz w)lF < (v wrn)[| aff (k, =5) < (K, =5")
3 [[(wg, wi)ll < I(wi, vjo)]

411

|(wir, v)|l < |[(ui, v5, we)]

5 (s, vz, we) || < |[(wir, vjr, wie)|
off (i,k,j) < (i’,k’,j’).

Thus the unique optimal path from wu; to wy goes
through v, and has weight [1,1,7,k,0,0, 0],,41. Define
L to be this set of optimal paths.

Consider giving (G, ||-||) as input to A, and suppose
that A4 runs correctly. It must therefore output the set
of optimal paths L. Suppose further that a particular
path p* = (uj+, v;+, wy+) was never one of the operands
in any comparison operation which A performed. We
produce a weight function || - || in which p* is the
unique shortest path from u;+ to wg«, but the ordering
by weight of all the other paths remains the same.
If we run A on (G, || - ||), all path comparisons not
involving p* give the same result as they did using
[|]]. Therefore, since A never performed a comparison
involving p* while running on || - ||, we deduce that A
still outputs L, which is now incorrect.

The weight function || -||" is || - || with the following
modifications. For j < j*, we decrease

||(uz*av])||/ = [1a Oa ia Oa 0ajaj]n+1~

Then we decrease

||(Uj*,wk*) |/ = [Oa 1a Oa kaoa _j*a _n]n+1~

Thus

||(ui*avj*awk*) | = [1a 1ai*ak*a0a0aj* - n]n+1~
Lemma 3.2 In G, the conditions of Lemma 3.1 con-
tinue to hold for || - ||', except that the single path
(tis, v+, wy+) directly precedes (u;+, vy, wi+) in the or-
dering. Thus under || -||" the path p* is optimal.

We have therefore proved the following:

Theorem 3.3 There exists a directed graph of 3n
vertices on which any path-comparison-based shortest
paths algorithm must perform at least n®/2 path weight
COmparisons.

Note that if the path which A did not check was
(wi», vo, wy+), we can apply the above construction
with 5% = 1 and the algorithm will fail, because the
only comparison which has a different result is the
one between (u;x, vg, wi+) and (w;», vy, wy+), which by
hypothesis was not performed since (u;«, vg, wg+) was
never examined. Note also that since all edge weights
are polynomial in n, the input graph G is not in-
tractable merely because of an unusually large input
size.

We can adapt this proof to show an Q(mn) lower
bound on graphs of m edges. Assume without loss
of generality that m > 4n and that 2n divides m.
We perform the same construction, but of the middle
vertices we use only vy, ..., ¥p/2,, connecting each of
them to all the vertices u; and wg. This requires m
edges and creates mn/2 paths.

Theorem 3.4 There exists a directed graph with 2n+
m/2n wvertices and m edges, on which any path-
comparison-based shortest paths algorithm must per-
Jorm at least mn/2 path weight comparisons.

We can in fact show a stronger lower bound, namely
that even the shortest paths verification problem re-
quires 2(mn) time for path-comparison-based algo-
rithms. A verification algorithm A4 accepts as input a
graph, a weight function (which we again think of as a
black-box comparator), and an encoding L which de-
scribes, for each pair of vertices, a path between them.
Note that the standard description of shortest paths
can be encoded in O(n?) space, so the input size im-
poses no non-trivial lower bound. The algorithm .4
accepts its input if and only if each path in L is a
shortest path.

To show this bound, we use the same construction
as before. We set the encoding of shortest paths to
be L = {(u;, v, wg) | 4,k = 0...n — 1}, and provide
(G,]] -], L) as input to A.

Corollary 3.5 Any path-comparison-based algorithm
for verification of shortest paths requires time §(mn)

on G.

If we add edges from each wu; to each wyg
(thus producing Q(n?) edges), and set |[|(u;, wg)|| =
[|(w;, vo, wg)||, we can similarly deduce that

Corollary 3.6 Any path-comparison-based algorithm
for verifying that all the edge weights satisfy the tri-
angle inequality requires time Q(n3) on graphs of n
vertices.

The construction of Theorem 3.3 can be applied to
randomized algorithms for the shortest paths problem.
For suppose that the expected number of comparisons
performed by such an algorithm is o(n®). Then the
probability that a randomly selected path is checked
by the algorithm goes to 0 as n goes to co. Thus
if we took the graph G and selected a single path
(ui=, v+, wy+) uniformly at random and applied the
[| - |I' construction, the algorithm would detect our
modification with probability approaching 0. We thus
have

Theorem 3.7 If a randomized path-comparison-
based algorithm performs o(mn) expected comparisons
on graphs with m edges and n vertices then there is a
graph on which the algorithm will almost surely fail to
be correct.

More precisely, if the algorithm performs r ex-
pected comparisons then its probability of success is
O(r/mn). Modifications of the above corollaries now
follow in a similar fashion for randomized algorithms.

We conjecture that these lower bounds hold for
undirected graphs as well, but this remains to be
proved.

4 Generalizations

Many shortest paths algorithmsin fact solve a much
more general problem. In particular, we consider the
following generalized shortest paths problem: Given a
graph G, and a generalized weight function || - || which
maps every path p to a weight ||p|| in the reals, find for
each pair of vertices a path between them of minimum
weight. To make this problem tractable, we impose re-
strictions on the weight function. Generalized weight
functions have also been studied by Knuth in [13].

Definition 4.1 Consider a weight function || - ||:
e it 1s consistent if for all u,v,w,
[|(v ~ w)l| < [[(v~" w]
wmplies
[[(w~ v~)| < (1w~ v~)],
and similarly for ||(u ~ v)|] < ||(u~"v)||.
e it s monotone if for all u,v,w

[1(w ~ v~ w)| = max([|(u ~)], [|(v ~ w)]) -

e it 1s acyclic if for all u,v there exists a simple
shortest path from u to v.

Fact 4.1 Any consistent monotone weight function is
also acyelic.

We argue that consistency is the major defining
characteristic of the shortest paths problem, for it en-
sures that the shortest path between two vertices can
be constructed from other shortest paths. The prop-
erty of acyclicity is also basic, since it ensures that all

shortest paths have bounded length. We shall there-
fore restrict our attention to consistent acyclic weight
functions.

The standard shortest paths weight function is con-
sistent. It is acyclic if there are no negative weight
cycles. It is monotone if all path weights are non-
negative. An example of a consistent, monotone, non-
standard weight function is one which assigns to every
path a weight equal to the weight of the maximal edge
on the path. Solving single source shortest paths un-
der this weight function is referred to as the bottleneck
path problem in [20].

An algorithm for a generalized shortest paths prob-
lem receives as input the graph and a black box for the
weight function. We assume that the black box takes
constant time to compute the weight of any path. The
following can be shown:

Lemma 4.2 Floyd’s algorithm works on any consis-
tent and acyclic weight function.

Lemma 4.3 Dijkstra’s algorithm and the Hidden
Paths Algorithm work on any consistent monotone
weight function.

Our proof in Section 3 can be adapted to the sit-
uation of generalized weight functions, even for non-
path-comparison-basedalgorithms. We show a lower
bound for the class of consistent monotone weight
functions, even on undirected graphs.

We consider a modified version of the above con-
struction. Use the same graph G, with middle vertices
V1 ... Vp /2, but with undirected edges, and let || - || be
defined as follows:

(s, o)l =
(v, wi)ll - =

(i s v, w)||

All other paths have length 5. Suppose as before
that some path (u;», vj+, wg+) does not have its weight
queried. Change the weight of this path to be 3. It
is simple to verify that the modified weight function
remains consistent and monotone. This shows

Theorem 4.4 Any algorithm to solve the generalized
shortest paths problem for consistent monotone weight
functions requires Q(mn) path weight queries.

Corollaries parallel to those of Section 3 also hold.
Thus any subcubic solution to the standard shortest
paths problem must take advantage of the additivity
of path weights.

5 Conclusion

We have produced a new algorithm, the Hidden
Paths Algorithm, and identified a new measure m*,
the number of edges that participate in shortest paths.
The Hidden Paths Algorithm runs in time O(m*n +
n?logn). The question arises: are there finer measures
of the shortest-paths difficulty of a graph? In partic-
ular, the Hidden Paths Algorithm essentially runs in
time proportional to the number of candidate paths
formed. The improved algorithm mentioned in Sec-
tion 2.5 forms a smaller number of such paths than
the Hidden Paths Algorithm. Is there a simple mea-
sure for this quantity?

The expected value of m* has been shown to be
significantly less than m in the case of uniformly and
independently distributed edge weights. This suggests
that there are many situations in which the Hidden
Paths Algorithm will be significantly faster than Dijk-
stra’s algorithm. One can think of the optimal edges
as forming a certificate of the shortest path structure
of the graph, that must be revealed. The philosophy of
the Hidden Paths Algorithm is thus similar to recent
algorithms for connectivity, which work by first find-
ing a sparse subgraph (or certificate) with the same
connectivity [2, 17].

We have shown a lower bound of Q(mn) on the
running time of comparison based algorithms for all-
pairs shortest paths. It is of particular interest that
the construction and verification algorithms have the
same worst case complexity. Compare this to the sit-
uation for the minimum spanning tree problem, where
there is a linear-time algorithm to verify a minimum
spanning tree [14], although no algorithm is known
that finds one in linear-time. The comparison based
lower bound shows that any improvement in the worst
case complexity of shortest paths algorithms, such as
Fredman’s o(n®) algorithm, must take advantage of
the numerical aspects of the problem, in addition to
the ordering of path weights.

The obvious open problem arising from the lower
bound is to extend the construction to the case of
undirected graphs. Another goal would be to decrease
the gap in the algebraic decision tree complexity, be-
tween Spira and Pan’s Q(n?) lower bound, and Fred-
man’s O(n5/2) upper bound. Also, our lower bound
would be strengthened if we could show that it held for
all graphs of a certain structure and varying weights
rather than for a single graph.

Acknowledgements

We would like to thank Mike Luby and Cathy Mc-
Geoch for pointing out references for path lengths in
graphs with random edge weights.

References

[1] P. A. Bloniarz. “A shortest-path algorithm with
expected time O(n?lognlog™n)”. Technical Re-
port 80-3, Department of Computer Science,
State University of New York at Albany, August
1980.

[2] J. Cheriyan and R. Thurimella. “Algorithms for
parallel k-vertex connectivity and sparse certifi-
cates”. In Proceedings of the 23rd ACM Sympo-
stum on Theory of Computing, 1991.

[3] E. W. Dijkstra. “A note on two problems in con-
nection with graphs”. Numerical Mathematics, 1,

1959.

[4] T. Feder and R. Motwani. “Clique partitions,
graph compression and speeding-up algorithms”.
In Proceedings of the 23rd ACM Symposium on
Theory of Computing, 1991.

[6] R. W. Floyd. “Algorithm 97: Shortest path”.
Communications of the ACM, b, 1962.

[6] G. N. Frederickson. “Planar graph decomposi-
tion and all pairs shortest paths”. Journal of the
ACM, 38(1), 1991.

[7] M. L. Fredman. “New bounds on the complexity
of the shortest path problem”. SIAM Journal of
Computing, 5, 1976.

[8] M. L. Fredman and R. E. Tarjan. “Fibonacci
heaps and their uses in improved network opti-
mization algorithms”. Journal of the ACM, 36,
1986.

[9] A. M. Frieze and G. R. Grimmet. “The
shortest-path problem for graphs with random
arc-lengths”. Discrete Applied Mathematics, 10,
1985.

[10] H. Jakobsson. “Mixed-approach algorithms for
transitive closure”. In Proceedings of the 10th
ACM Symposium on Principles of Database Sys-
tems, 1991.

[11] D. B. Johnson. “Efficient algorithms for shortest
paths in sparse networks”. Journal of the ACM,
24(1), 1977.

[12] L. R. Kerr. The Effect of Algebraic Structure on
the Computational Complexity of Matriz Mult:-
plications. PhD thesis, Cornell University, 1970.

[13] D. E. Knuth. “A generalization of Dijkstra’s algo-
rithm”. Information Processing Letters, 6, 1977.

[14] J. Komlos. “Linear verification for spanning
trees”. Combinatorica, 5(1), 1985.

[15] M. Luby and P. Ragde. “A bidirectional shortest-
path algorithm with good average case behavior”.

Algorithmaca, 4, 1989.

[16] C. C. McGeoch. “A new all-pairs shortest-path
algorithm”. Technical Report 91-30, DIMACS,
1991.

[17] H. Nagamochi and T. Ibaraki. “Linear time algo-
rithms for finding a sparse k-connected spanning
subgraph of a k-connected graph”. Algorithmica,
to appear, 1991.

[18] P. M. Spira. “A new algorithm for finding all
shortest paths in a graph of positive arcs in aver-
age time O(n?log” n)”. SIAM Journal of Com-
puting, 2, 1973.

[19] P. M. Spira and A. Pan. “On finding and updat-
ing shortest paths and spanning trees”. In Con-
ference Record, IEEE 1/th Annual Symposium on
Switching and Automata Theory, 1973.

[20] R. E. Tarjan. Data Structures and Network Algo-
rithms, volume 44 of CBMS-NSF Regional Con-
ference Series in Applied Mathematics. Society
for Industrial and Applied Mathematics, 1983.

