
Finding the Hidden Path:Time Bounds for All-Pairs Shortest PathsDavid R. Karger� Daphne KollerDepartment of Computer ScienceStanford UniversityStanford, California 94305 Steven J. PhillipsyAbstractWe investigate the all-pairs shortest paths prob-lem in weighted graphs. We present an algorithm|the Hidden Paths Algorithm|that �nds these pathsin time O(m�n + n2 logn), where m� is the numberof edges participating in shortest paths. Our algo-rithm is a practical substitute for Dijkstra's algorithm.We argue that m� is likely to be small in practice,since m� = O(n logn) with high probability for manyprobability distributions on edge weights. Finally, weprove an
(mn) lower bound on the running timeof any path-comparison-based algorithm for the all-pairs shortest paths problem. Path-comparison-basedalgorithms form a natural class containing the HiddenPaths Algorithm, as well as the algorithms of Dijkstraand Floyd.1 IntroductionOh what a peaceful life is theirsWho worldly strife and noise have ownAnd follow the hidden path from caresWhich none but the wise of the world have knownFray Luis de Leon, c. 1527 - 1591Let G be a directed graph with n vertices and medges, with non-negative edge weights. The all-pairsshortest paths problem is to �nd a shortest path be-tween each pair of vertices in G.Our contributions to this problem lie in two areas.In Section 2 we present a new algorithm for all-pairsshortest paths, called the Hidden Paths Algorithm.Let an edge be called optimal if it is a shortest path,and let m� be the number of optimal edges in thegraph. The Hidden Paths Algorithm runs in time�Supported by a National Science Foundation GraduateFellowship.ySupported by NSF PYI grant CCR-8858030-03.

O(m�n+n2 logn) if we use a Fibonacci heap [8] to im-plement a priority queue; the running time increasesto O(m�n logn) if a standard heap is used instead.The algorithm operates by running Dijkstra's single-source shortest paths algorithm [3] in parallel from allnodes in the graph, using information gained at eachnode to reduce the work done at other nodes. Ouralgorithm is likely to be fast in practice, because it isknown [9, 15] that m� = O(n logn) with high prob-ability when the input graph is the complete graphwith edge weights chosen independently from any of alarge class of probability distributions, including theuniform distribution on the interval [0; 1].Our second contribution is a new lower bound,given in Section 3. Most algorithms for the all-pairs shortest path problem use the edge weight func-tion only in comparing the weights of two paths inthe graph. We call such algorithms path-comparison-based, and prove that any path-comparison-based al-gorithm requires
(mn) time on graphs with m edgesand n vertices. The idea of the lower bound is to con-struct a weighted directed graph with �(mn) directedpaths. If an algorithm A fails to examine any path,we show how to modify the weight function so thatthe path is optimal, without A detecting the change.In proving the lower bound, we show that any path-comparison-based algorithm requires
(mn) time evento verify the output of an all-pairs shortest paths algo-rithm. Thus in the path-comparison model, veri�ca-tion is as hard as �nding the paths. We show a lowerbound of
(n3) for the problem of checking that theedge weights of a graph satisfy the triangle inequality.These lower bounds also hold for randomized path-comparison-based algorithms.One can generalize the notion of path weight so thatthe weight of a path may no longer be the sum of theweights of its edges. For example, one might de�ne theweight of a path to be the maximum of the weights of

its edges. In Section 4 we show that many all-pairsshortest paths algorithms work even for generalizedpath weight functions. We show a lower bound of
(mn) on the running time of any algorithm solvingthe all-pairs shortest path problem for all generalizedpath weight functions.Previous WorkThe most widely known algorithms for the all-pairsshortest paths problem are those of Dijkstra [3] andFloyd [5]. Dijkstra's algorithm for the single-sourceshortest path problem can be run from each vertex (asnoted by Johnson [11]), resulting in a running timeof �(mn + n2 logn) if Fibonacci heaps are used toimplement priority queues. Floyd's algorithm, whichcan handle negative edge weights, works by dynamicprogramming and runs in time �(n3). If the edgeweights are independently and identically distributedrandom variables, a variant of Dijkstra's algorithm de-veloped by Spira [18] has an expected running time ofO(n2 log2 n). Bloniarz [1] provided an algorithm withan expected running time of O(n2 logn log� n). An-other algorithm, developed by Frieze and Grimmet [9],achieves an expected running time of O(n2 logn), butis suitable only for random graphs. All of these al-gorithms are path-comparison-based, so by the lowerbound of Section 3 they have a worst case runningtime of
(mn). Fast algorithms exist for special casesof the all-pairs shortest paths problem, for instancewhen the graph is unweighted [4] or planar [6].Fredman [7] shows that O(n5=2) comparisons be-tween sums of edge weights su�ce to solve the all-pairs shortest paths problem. He uses this fact to dopreprocessing, producing an algorithm that runs intime O(n3(log logn = logn)1=3). This result should becontrasted with the lower bound in Section 3. Fred-man's algorithm is not path-comparison-based, sinceit performs comparisons involving sums of weights ofedges that do not form a path (this capability dis-tinguishes the algebraic decision tree model from thepath-comparison-based model). It is surprising thatwe must allow such comparisons in order to improveon the
(n3) bound.An algorithm similar to the Hidden Paths Algo-rithm, with the same time bound, has been developedindependently by McGeoch [16]. A variant of our algo-rithm has been developed independently by Jakobsson[10] as a transitive closure algorithm. Both these algo-rithms require data structures which are more complexthan those used by the Hidden Paths Algorithm.Lower bounds on the computational complexity ofthe all-pairs shortest paths problem have been proved

in some other models. If the permissible operationsare addition and minimum in a straight line compu-tation, Kerr [12] shows that any algorithm requires
(n3) running time. Regarding algebraic decision treecomplexity, Spira and Pan [19] show that
(n2) com-parisons between sums of edge weights are necessaryto solve the single-source shortest paths problem.2 Finding Shortest PathsIn this section, we describe an algorithm for solv-ing the all-pairs shortest paths problem in a directedgraph G = (V;E) with nonnegative edge weights. Inorder to present our algorithm, we need to make thefollowing de�nitions.2.1 Preliminary De�nitionsWe use (u1; u2; : : : ; uk) to denote a path from u1to uk going through the vertices u2; : : : ; uk�1. An un-speci�ed path from u to v (which can also be an edge)will be denoted by (u ; v). The length of a path(u1; : : : ; uk) is j(u1; : : : ; uk)j = k � 1 :Let k(u; v)k denote the weight of the edge (u; v). Weextend the weight function by setting k(u; v)k = 1,for any (u; v) 62 E, so that k(u; v)k is de�ned for allpairs u; v. The weight of a path (u1; : : : ; uk) isk(u1; : : : ; uk)k = k�1Xi=1 k(ui; ui+1)kDe�nition 2.1 An edge e is said to be optimal if itparticipates in some shortest path. Let m�(G) denotethe number of optimal edges in G.Fact 2.1 The edge (u; v) is optimal i� (u; v) is ashortest path from u to v.Note that in an unweighted graph each edge is op-timal, so m� = m and our algorithm provides no im-provement.2.2 The Hidden Paths AlgorithmThe Hidden Paths Algorithm presented in this sec-tion �nds the shortest path between every pair ofvertices in the graph. Essentially it runs Dijkstra'ssingle-source shortest paths algorithm in parallel forall points in the graph. The di�erent single-source

� For each vertex v, a list E�v of the optimal edges directed into v that have been found so far.� A path array P , which for every pair u; v contains the current best path from u to v.Each entry P [u; v] consists of�rst: The �rst vertex on this path (other than u itself).weight: The weight of the path.opt: A ag indicating whether this path is known to be optimal.heaptr: A pointer to the heap entry for this path, if one exists.� A heap H of pointers to candidate paths which appear in the path array, ordered by weight.Figure 1: Data structures maintained by the Hidden Paths Algorithm.InitializeFor all u; vSet P [u; v]:weight := k(u; v)k.Insert the pair u; v into the heap with priority P [u; v]:weight.Initialize the rest of the record P [u; v].For all v, set E�v to be empty.While (heap not empty and weight of top item 6=1) doStep 1 Remove the top element (u; v) from the heap.Mark P [u;v]:opt := True.Step 2 If (u; v) is an edge thenAdd (u; v) to E�v .For all t such that P [v; t]:opt = TrueUpdate(u; v; t).If (u; v) is a path that is not an edge thenFor all edges (w;u) 2 E�u,Update(w;u; v).Procedure Update(x; y; z):If P [x;y]:weight+ P [y; z]:weight < P [x;z]:weight thenSet P [x; z]:weight := P [x; y]:weight+ P [y; z]:weight.Set P [x; z]:first := y.Change the priority of x; z in the heap to P [x;z]:weight.Modify P [x; z]:heaptr accordingly.Figure 2: The Hidden Paths Algorithm.threads are integrated in a way which allows the useof intermediate results from one thread to reduce thework done by another. In a sense, the algorithm dis-covers the hidden \shortest path structure" of thegraph by pruning away the unnecessary parts. Wenote that the Hidden Paths Algorithm actually con-structs each path in reverse order, by adding edges tothe tail of the path. This facilitates forward traversalon the constructed paths. It is simple to modify thealgorithm to construct the paths in the standard fash-ion. An intuitive description of the algorithm is givenbelow. A precise presentation of the Hidden Paths
Algorithm can be found in Figures 1 and 2.The Hidden Paths Algorithmmaintains a heap con-taining for each ordered pair of vertices u; v the bestpath from u to v found so far. The heap is orderedaccording to the following order on paths: p � q i�(kpk; jpj) < (kqk; jqj) according to lexicographic or-der. We say that p �= q if (kpk; jpj) = (kqk; jqj). Theheap will be initialized to contain for each pair u; v apath of weight k(u; v)k (recall that if (u; v) 62 E thenk(u; v)k =1). It will always be the case that the pathat the top of the heap will be an optimal path.At each phase, the Hidden Paths Algorithm re-

moves a path, say (u; v), from the top of the heap (adelete-min operation). This is the optimal path fromu to v. This path is now used to construct a set ofnew candidate paths. If a new candidate path (w; t)is shorter, it replaces the current best path from w tot in the heap. This maintains the optimality of thepath at the top of the heap.The complexity of the algorithm is a function ofthe number of candidate paths created, so we do notwant to create too many. If (u ; v) is an edge, thenthe candidate paths are all those paths of the form(u; v ; t) where (v ; t) has already been discoveredto be optimal. If (u ; v) is a path which is not anedge, then the candidate paths are all those of the form(w; u; v) where (w; u) is an optimal edge which hasalready been found. Note that in the construction ofcandidate paths, the edge is always concatenated tothe tail.The following theorem shows that this limited set ofcandidate paths su�ces for �nding the shortest pathbetween each pair of vertices in the graph. The analy-sis in Section 2.3 shows that the resulting complexityis O(m�n+ n2 logn).Theorem 2.2 The Hidden Paths Algorithm �nds allthe shortest paths in the graph. Furthermore, it dis-covers them in order of increasing weight.Proof: Let Opt be the set of optimal paths foundso far. We prove the theorem by induction on thesize of Opt. The inductive hypothesis is that at thebeginning of each iteration,1. If p is the item at the top of the heap, then p is anoptimal path and Opt contains all those optimalpaths q such that q � p (and possibly some pathsq such that q �= p). In particular, all subpaths ofpaths in Opt are also in Opt.2. For each pair of vertices u and v for which an op-timal path has not yet been found, the heap con-tains a path of minimal weight among those con-taining only a single edge or of the form (u;w;v) for (u;w) and (w ; v) in Opt.The inductive hypothesis holds trivially at the be-ginning of the �rst iteration, since at that time, p isthe shortest edge in the graph, Opt is empty, and theheap contains all the edges.Assume that the inductive hypothesis holds at thebeginning of an iteration, and let p = (u ; v) bethe item at the top of the heap. Then we know thatp is an optimal path. The construction of candidatepaths in Step 2 of the algorithm (see Figure 2) ensurescondition 2 above.

It remains only to prove that if q is the next itemon top of the heap, then q is optimal and every smalleroptimal path has been found. This can be false only ifthere exists another optimal path r, such that r � q,and r has not yet been placed into the heap. Let rbe the smallest such path. Since all edges were placedin the heap during the initialization step, r must be apath of length at least two. Assume r = (x; y ; w).But (x; y) � r and (y ; w) � r and both are nec-essarily optimal. Since r is the minimal optimal pathnot yet in Opt, both (x; y) and (y ; w) must be inOpt, and therefore r must have been constructed andinserted into the heap. This is a contradiction. There-fore, there can be no optimal paths not in Opt whichprecede q under �, and q must be optimal. 2Note that this algorithm works with minimalchanges for undirected graphs.2.3 Running Time AnalysisLet us count the number of heap operations takenby the algorithm. It should be clear that the costof all other operations is subsumed by the cost of theheap operations. During the initialization step, a heapof size O(n2) is created. Steps 1 and 2 are iterated atmost n(n�1) times, since in each iteration an optimalpath is deleted. Therefore, the algorithm executes atmost n(n� 1) delete-min operations.It remains to count only the time taken by Step 2.During the execution of the algorithm, the only can-didate paths which are created are those of the form(u; v ; w) where both (u; v) and (v ; w) are opti-mal. For each optimal edge (u; v), there are at mostn�1 such paths (one for each w). The total number ofcandidate paths created is therefore O(m�n). There isat most one priority change operation associated witheach candidate path.The complexity of the algorithmdepends on the im-plementation of the heap (see Table 1). Using a stan-dard heap implementation, we get a total complexityof �(m�n logn). Using Fibonacci heaps (see [8]), in-sertions and priority change operations take constantamortized time, and we therefore get a complexity of�(n2 logn+m�n).The Hidden Paths Algorithm is also very simpleand easy to implement, and thus provides a practicalsubstitute for Dijkstra's algorithm.2.4 m� in a Random GraphTo predict the behavior of the Hidden Paths Algo-rithm in practice, we need to study the quantity m�for \typical" graphs. It is easy to construct graphs for

Operation # of ops cost for reg. heap cost for Fib. heapcreate O(n2) O(n2) O(n2)priority change O(m�n) O(m�n logn) O(m�n)delete-min O(n2) O(n2 logn) O(n2 logn)Total | O(m�n logn) O(m�n+ n2 logn)Table 1: The running time of the Hidden Paths Algorithmwhich m� = O(n), while m is �(n2). It is also easy toconstruct graphs for whichm� = m. In this section wenote that for a large class of probability distributionson random graphs, m� = O(n logn).Consider a distribution F on non-negative edgeweights, which does not depend on n, such thatF 0(0) > 0. In particular, the uniform distributionon [0; 1] and the exponential distribution with mean �both satisfy these conditions. Frieze and Grimmet [9]prove the following result, along with some generaliza-tions:Theorem 2.3 (Frieze and Grimmet) Let G be acomplete directed graph, whose edge weights are cho-sen independently according to F . Then with probabil-ity 1� O(n�1), the diameter of G is O(logn=n), andhence m�(G) = O(n logn).Similar results are derived in a di�erent contextby Luby and Ragde [15]. Hassin and Zemel provethe above theorem for both directed and undirectedgraphs, when the edge weights are uniformly dis-tributed. The constant factors given by these anal-yses are small. In fact, empirical studies by Mc-Geoch [16] indicate that when the edge weights areuniformly distributed, m�(G) grows approximately as0:5n lnn + :3n.Corollary 2.4 If the edge weights of G are chosenindependently according to F , then with high probabil-ity the running time of the Hidden Paths Algorithm isO(n2 logn).This time bound is an improvement over earlier al-gorithms by Spira [18] and Bloniarz [1], and matchesthe performance of the algorithm of Frieze and Grim-met. However, the Hidden Paths Algorithm can be ef-fectively used in any situation wherem� is signi�cantlyless thanm, whereas the algorithmof Frieze and Grim-met is designed speci�cally for random graphs.2.5 GeneralizationsThe Hidden Paths Algorithm can easily be trans-formed to one that �nds the k shortest paths in the

graph. The revised algorithm will initialize the heapto contain only the actual edges in the graph. Then,when comparing candidate paths to existing paths (inProcedure Update), the algorithmwill sometimes haveto do an insert rather than a priority change operation.The running time for this algorithm (using Fibonacciheaps) is O(m + k logn+ k2).Finally, we note that the Hidden Paths Algorithmconsiders some unnecessary candidate paths. One pos-sible improvement, developed independently by us andby Jakobsson [10], creates only candidate paths ev-ery subpath of which is optimal. More speci�cally,a path p = (u; v ; w; t) is made a candidate pathi� (u; v ; w) and (v ; w; t) are already known tobe optimal. This will clearly reduce the number ofcandidate paths formed, but there does not seem tobe a simple expression for the reduced running timeachieved by this algorithm.3 A Lower BoundSpira and Pan have shown a lower bound of
(n2)in the algebraic decision tree model [19]. However,many algorithms for the shortest paths problem useedge weights only to compute and compare the weightsof paths. It therefore seems reasonable to consider amore restricted decision tree model for the shortestpaths problem.De�nition 3.1 A path-comparison-based all-pairsshortest paths algorithm A accepts as input a graphG and a weight function. The algorithm A can per-form all standard operations. However, the only wayit can access the edge weights is to compare the weightsof two di�erent paths.We can think of the algorithm as accessing the pathweights only through a black-box path length com-parator. The algorithm must output a reasonable en-coding of the shortest paths in G.11We require that the output have no information as to pathweights. For example, the graph itself is not a reasonable en-coding of the solution.

It should be noted that the algorithms of Floyd,Dijkstra, and Spira, as well as the Hidden Paths Algo-rithm, all �t into this path-comparison-based model.On the other hand, Fredman's o(n3) algorithm [7] isnot path-comparison-based because it adds weights ofedges which do not form a single path. Fredman'salgorithm conforms to the more general algebraic de-cision tree model.We show a lower bound of
(n3) on the runningtime of any path-comparison-based shortest paths al-gorithm running on a graph of �(n2) edges. We thenshow how the construction can be modi�ed to yield alower bound of
(mn) for graphs with m edges.To show the
(n3) lower bound, we construct adirected graph of 3n vertices on which any path-comparison-based shortest paths algorithm must per-form
(n3) comparisons. The directed graph G, withweight function k � k, has
(n3) paths. We show thatif A fails to examine one of these paths then we canmodify the weight function to make that path optimalwithout A being able to detect it.The graph G is a directed tripartite graph on ver-tices ui; vj; and wk where i; j and k range from 0 ton � 1: The edge set for G is f(ui; vj)g [f(vj; wk)g.Therefore, the only paths are individual edges andpaths (ui; vj; wk) of length two.To de�ne the weight function, we work in base n+1notation, generalized to allow negative digits. De�ne[ar; : : : ; a0]b = rXi=0 aibiThe edge weights arek(ui; vj)k = [1; 0; i; 0; j; 0;0]n+1k(vj ; wk)k = [0; 1; 0; k; 0;�j; 0]n+1and thusk(ui; vj; wk)k = [1; 1; i; k; j;�j; 0]n+1:The following lemma is an immediate consequence:Lemma 3.1 Let < denote a lexicographic ordering ontuples of integers, with the leftmost integer being themost signi�cant. For all i; j; j0; k; k0 :1. k(ui; vj)k < k(ui0 ; vj0)k i� (i; j) < (i0; j0)2. k(vj ; wk)k < k(vj0 ; wk0)k i� (k;�j) < (k0;�j0)3. k(vj ; wk)k < k(ui; vj0)k4. k(ui0 ; vj0)k < k(ui; vj; wk)k

5. k(ui; vj; wk)k < k(ui0 ; vj0; wk0)ki� (i; k; j) < (i0; k0; j0).Thus the unique optimal path from ui to wk goesthrough v0, and has weight [1; 1; i; k; 0; 0; 0]n+1: De�neL to be this set of optimal paths.Consider giving (G; k�k) as input to A, and supposethat A runs correctly. It must therefore output the setof optimal paths L. Suppose further that a particularpath p� = (ui� ; vj�; wk�) was never one of the operandsin any comparison operation which A performed. Weproduce a weight function k � k0 in which p� is theunique shortest path from ui� to wk� , but the orderingby weight of all the other paths remains the same.If we run A on (G; k � k0), all path comparisons notinvolving p� give the same result as they did usingk�k. Therefore, since A never performed a comparisoninvolving p� while running on k � k, we deduce that Astill outputs L, which is now incorrect.The weight function k � k0 is k � k with the followingmodi�cations. For j � j�; we decreasek(ui� ; vj)k0 = [1; 0; i; 0; 0; j; j]n+1:Then we decreasek(vj� ; wk�)k0 = [0; 1; 0; k;0;�j�;�n]n+1:Thusk(ui� ; vj�; wk�)k = [1; 1; i�; k�; 0; 0; j� � n]n+1:Lemma 3.2 In G, the conditions of Lemma 3.1 con-tinue to hold for k � k0, except that the single path(ui� ; vj�; wk�) directly precedes (ui� ; v0; wk�) in the or-dering. Thus under k � k0 the path p� is optimal.We have therefore proved the following:Theorem 3.3 There exists a directed graph of 3nvertices on which any path-comparison-based shortestpaths algorithm must perform at least n3=2 path weightcomparisons.Note that if the path which A did not check was(ui� ; v0; wk�), we can apply the above constructionwith j� = 1 and the algorithm will fail, because theonly comparison which has a di�erent result is theone between (ui� ; v0; wk�) and (ui� ; v1; wk�), which byhypothesis was not performed since (ui� ; v0; wk�) wasnever examined. Note also that since all edge weightsare polynomial in n, the input graph G is not in-tractable merely because of an unusually large inputsize.

We can adapt this proof to show an
(mn) lowerbound on graphs of m edges. Assume without lossof generality that m � 4n and that 2n divides m.We perform the same construction, but of the middlevertices we use only v1; : : : ; vm=2n, connecting each ofthem to all the vertices ui and wk. This requires medges and creates mn=2 paths.Theorem 3.4 There exists a directed graph with 2n+m=2n vertices and m edges, on which any path-comparison-based shortest paths algorithm must per-form at least mn=2 path weight comparisons.We can in fact show a stronger lower bound, namelythat even the shortest paths veri�cation problem re-quires
(mn) time for path-comparison-based algo-rithms. A veri�cation algorithm A accepts as input agraph, a weight function (which we again think of as ablack-box comparator), and an encoding L which de-scribes, for each pair of vertices, a path between them.Note that the standard description of shortest pathscan be encoded in O(n2) space, so the input size im-poses no non-trivial lower bound. The algorithm Aaccepts its input if and only if each path in L is ashortest path.To show this bound, we use the same constructionas before. We set the encoding of shortest paths tobe L = f(ui; v0; wk) j i; k = 0 : : :n � 1g, and provide(G; k � k; L) as input to A.Corollary 3.5 Any path-comparison-based algorithmfor veri�cation of shortest paths requires time
(mn)on G.If we add edges from each ui to each wk(thus producing
(n2) edges), and set k(ui; wk)k =k(ui; v0; wk)k, we can similarly deduce thatCorollary 3.6 Any path-comparison-based algorithmfor verifying that all the edge weights satisfy the tri-angle inequality requires time
(n3) on graphs of nvertices.The construction of Theorem 3.3 can be applied torandomized algorithms for the shortest paths problem.For suppose that the expected number of comparisonsperformed by such an algorithm is o(n3). Then theprobability that a randomly selected path is checkedby the algorithm goes to 0 as n goes to 1. Thusif we took the graph G and selected a single path(ui� ; vj�; wk�) uniformly at random and applied thek � k0 construction, the algorithm would detect ourmodi�cation with probability approaching 0. We thushave

Theorem 3.7 If a randomized path-comparison-based algorithm performs o(mn) expected comparisonson graphs with m edges and n vertices then there is agraph on which the algorithm will almost surely fail tobe correct.More precisely, if the algorithm performs r ex-pected comparisons then its probability of success isO(r=mn). Modi�cations of the above corollaries nowfollow in a similar fashion for randomized algorithms.We conjecture that these lower bounds hold forundirected graphs as well, but this remains to beproved.4 GeneralizationsMany shortest paths algorithms in fact solve a muchmore general problem. In particular, we consider thefollowing generalized shortest paths problem: Given agraph G, and a generalized weight function k � k whichmaps every path p to a weight kpk in the reals, �nd foreach pair of vertices a path between them of minimumweight. To make this problem tractable, we impose re-strictions on the weight function. Generalized weightfunctions have also been studied by Knuth in [13].De�nition 4.1 Consider a weight function k � k:� it is consistent if for all u; v; w,k(v ; w)k � k(v ;0 w)kimpliesk(u; v ; w)k � k(u; v ;0 w)k;and similarly for k(u; v)k � k(u;0 v)k.� it is monotone if for all u; v; wk(u; v ; w)k � max(k(u; v)k; k(v ; w)k) :� it is acyclic if for all u; v there exists a simpleshortest path from u to v.Fact 4.1 Any consistent monotone weight function isalso acyclic.We argue that consistency is the major de�ningcharacteristic of the shortest paths problem, for it en-sures that the shortest path between two vertices canbe constructed from other shortest paths. The prop-erty of acyclicity is also basic, since it ensures that all

shortest paths have bounded length. We shall there-fore restrict our attention to consistent acyclic weightfunctions.The standard shortest paths weight function is con-sistent. It is acyclic if there are no negative weightcycles. It is monotone if all path weights are non-negative. An example of a consistent, monotone, non-standard weight function is one which assigns to everypath a weight equal to the weight of the maximal edgeon the path. Solving single source shortest paths un-der this weight function is referred to as the bottleneckpath problem in [20].An algorithm for a generalized shortest paths prob-lem receives as input the graph and a black box for theweight function. We assume that the black box takesconstant time to compute the weight of any path. Thefollowing can be shown:Lemma 4.2 Floyd's algorithm works on any consis-tent and acyclic weight function.Lemma 4.3 Dijkstra's algorithm and the HiddenPaths Algorithm work on any consistent monotoneweight function.Our proof in Section 3 can be adapted to the sit-uation of generalized weight functions, even for non-path-comparison-basedalgorithms. We show a lowerbound for the class of consistent monotone weightfunctions, even on undirected graphs.We consider a modi�ed version of the above con-struction. Use the same graph G, with middle verticesv1 : : : vm=2n but with undirected edges, and let k � k bede�ned as follows: k(ui; vj)k = 2k(vj ; wk)k = 2k(ui; vj; wk)k = 4:All other paths have length 5. Suppose as beforethat some path (ui� ; vj�; wk�) does not have its weightqueried. Change the weight of this path to be 3. Itis simple to verify that the modi�ed weight functionremains consistent and monotone. This showsTheorem 4.4 Any algorithm to solve the generalizedshortest paths problem for consistent monotone weightfunctions requires
(mn) path weight queries.Corollaries parallel to those of Section 3 also hold.Thus any subcubic solution to the standard shortestpaths problem must take advantage of the additivityof path weights.

5 ConclusionWe have produced a new algorithm, the HiddenPaths Algorithm, and identi�ed a new measure m�,the number of edges that participate in shortest paths.The Hidden Paths Algorithm runs in time O(m�n +n2 logn). The question arises: are there �ner measuresof the shortest-paths di�culty of a graph? In partic-ular, the Hidden Paths Algorithm essentially runs intime proportional to the number of candidate pathsformed. The improved algorithm mentioned in Sec-tion 2.5 forms a smaller number of such paths thanthe Hidden Paths Algorithm. Is there a simple mea-sure for this quantity?The expected value of m� has been shown to besigni�cantly less than m in the case of uniformly andindependently distributed edge weights. This suggeststhat there are many situations in which the HiddenPaths Algorithm will be signi�cantly faster than Dijk-stra's algorithm. One can think of the optimal edgesas forming a certi�cate of the shortest path structureof the graph, that must be revealed. The philosophy ofthe Hidden Paths Algorithm is thus similar to recentalgorithms for connectivity, which work by �rst �nd-ing a sparse subgraph (or certi�cate) with the sameconnectivity [2, 17].We have shown a lower bound of
(mn) on therunning time of comparison based algorithms for all-pairs shortest paths. It is of particular interest thatthe construction and veri�cation algorithms have thesame worst case complexity. Compare this to the sit-uation for the minimum spanning tree problem, wherethere is a linear-time algorithm to verify a minimumspanning tree [14], although no algorithm is knownthat �nds one in linear-time. The comparison basedlower bound shows that any improvement in the worstcase complexity of shortest paths algorithms, such asFredman's o(n3) algorithm, must take advantage ofthe numerical aspects of the problem, in addition tothe ordering of path weights.The obvious open problem arising from the lowerbound is to extend the construction to the case ofundirected graphs. Another goal would be to decreasethe gap in the algebraic decision tree complexity, be-tween Spira and Pan's
(n2) lower bound, and Fred-man's O(n5=2) upper bound. Also, our lower boundwould be strengthened if we could show that it held forall graphs of a certain structure and varying weightsrather than for a single graph.

AcknowledgementsWe would like to thank Mike Luby and Cathy Mc-Geoch for pointing out references for path lengths ingraphs with random edge weights.References[1] P. A. Bloniarz. \A shortest-path algorithm withexpected time O(n2 logn log� n)". Technical Re-port 80-3, Department of Computer Science,State University of New York at Albany, August1980.[2] J. Cheriyan and R. Thurimella. \Algorithms forparallel k-vertex connectivity and sparse certi�-cates". In Proceedings of the 23rd ACM Sympo-sium on Theory of Computing, 1991.[3] E. W. Dijkstra. \A note on two problems in con-nection with graphs". Numerical Mathematics, 1,1959.[4] T. Feder and R. Motwani. \Clique partitions,graph compression and speeding-up algorithms".In Proceedings of the 23rd ACM Symposium onTheory of Computing, 1991.[5] R. W. Floyd. \Algorithm 97: Shortest path".Communications of the ACM, 5, 1962.[6] G. N. Frederickson. \Planar graph decomposi-tion and all pairs shortest paths". Journal of theACM, 38(1), 1991.[7] M. L. Fredman. \New bounds on the complexityof the shortest path problem". SIAM Journal ofComputing, 5, 1976.[8] M. L. Fredman and R. E. Tarjan. \Fibonacciheaps and their uses in improved network opti-mization algorithms". Journal of the ACM, 36,1986.[9] A. M. Frieze and G. R. Grimmet. \Theshortest-path problem for graphs with randomarc-lengths". Discrete Applied Mathematics, 10,1985.[10] H. Jakobsson. \Mixed-approach algorithms fortransitive closure". In Proceedings of the 10thACM Symposium on Principles of Database Sys-tems, 1991.

[11] D. B. Johnson. \E�cient algorithms for shortestpaths in sparse networks". Journal of the ACM,24(1), 1977.[12] L. R. Kerr. The E�ect of Algebraic Structure onthe Computational Complexity of Matrix Multi-plications. PhD thesis, Cornell University, 1970.[13] D. E. Knuth. \A generalization of Dijkstra's algo-rithm". Information Processing Letters, 6, 1977.[14] J. Komlos. \Linear veri�cation for spanningtrees". Combinatorica, 5(1), 1985.[15] M. Luby and P. Ragde. \A bidirectional shortest-path algorithmwith good average case behavior".Algorithmica, 4, 1989.[16] C. C. McGeoch. \A new all-pairs shortest-pathalgorithm". Technical Report 91-30, DIMACS,1991.[17] H. Nagamochi and T. Ibaraki. \Linear time algo-rithms for �nding a sparse k-connected spanningsubgraph of a k-connected graph". Algorithmica,to appear, 1991.[18] P. M. Spira. \A new algorithm for �nding allshortest paths in a graph of positive arcs in aver-age time O(n2 log2 n)". SIAM Journal of Com-puting, 2, 1973.[19] P. M. Spira and A. Pan. \On �nding and updat-ing shortest paths and spanning trees". In Con-ference Record, IEEE 14th Annual Symposium onSwitching and Automata Theory, 1973.[20] R. E. Tarjan. Data Structures and Network Algo-rithms, volume 44 of CBMS-NSF Regional Con-ference Series in Applied Mathematics. Societyfor Industrial and Applied Mathematics, 1983.

