
FINDING THE HIDDEN PATH:TIME BOUNDS FOR ALL-PAIRS SHORTEST PATHSDAVID R. KARGER�, DAPHNE KOLLERy AND STEVEN J. PHILLIPSzAbstract. We investigate the all-pairs shortest paths problem in weighted graphs. We presentan algorithm|theHidden Paths Algorithm|that �nds these paths in timeO(m�n+n2 logn), wherem� is the number of edges participating in shortest paths. Our algorithm is a practical substitutefor Dijkstra's algorithm. We argue that m� is likely to be small in practice, since m� = O(n logn)with high probability for many probability distributions on edge weights. We also prove an
(mn)lower bound on the running time of any path-comparison based algorithm for the all-pairs shortestpaths problem. Path-comparison based algorithms form a natural class containing the Hidden PathsAlgorithm, as well as the algorithms of Dijkstra and Floyd. Lastly, we consider generalized formsof the shortest paths problem, and show that many of the standard shortest paths algorithms aree�ective in this more general setting.1. Introduction.Oh what a peaceful life is theirsWho worldly strife and noise have ownAnd follow the hidden path from caresWhich none but the wise of the world have known Fray Luis de Leon, c. 1527 - 1591Let G be a weighted directed graph with n vertices and m edges. The all-pairsshortest paths problem is to �nd a shortest path between each pair of vertices in G.Our contributions to this problem lie in three areas. In Section 2 we present anew algorithm for all-pairs shortest paths, called the Hidden Paths Algorithm, whichworks on graphs with non-negative edge weights. Let an edge be called optimalif it is a shortest path, and let m� be the number of optimal edges in the graph.The Hidden Paths Algorithm runs in time O(m�n + n2 logn) if we use a Fibonacciheap [12] to implement a priority queue; the running time increases to O(m�n logn)if a standard heap is used instead. The algorithm operates by running Dijkstra'ssingle-source shortest paths algorithm [7] in parallel from all nodes in the graph,using information gained at one node to reduce the work done at other nodes. Ouralgorithm is practical and simple to implement. Is is also likely to be fast in practice,because it is known [14, 18, 27] that m� = O(n logn) with high probability when theinput graph is the complete graph with edge weights chosen independently from anyof a large class of probability distributions, including the uniform distribution on thereal interval [0; 1] or the uniform distribution on the range f1; : : : ; n2g. The HiddenPaths Algorithm is also useful when the graph has (possibly negative) integer edgeweights. Such a graph can be reweighted using an o(mn) runtime scaling algorithmfor single-source shortest paths (for example, Gabow and Tarjan [15], Goldberg [16])before applying the Hidden Paths Algorithm. If the edge weights are polynomial sizedintegers, the combined running time of Goldberg's scaling algorithm and the HiddenPaths Algorithm is O(m�n+ n2 logn+pnm logn).Our second contribution is a new lower bound, given in Section 3. Many algo-rithms for the all-pairs shortest paths problem use the edge weight function only incomparing the weights of paths in the graph. We call such algorithms path-comparison� Department of Computer Science, Stanford University, Stanford, California. Supported by aNational Science Foundation Graduate Fellowship.y Department of Computer Science, Stanford University, Stanford, California, and IBM AlmadenResearch Center, San Jose, California.z Department of Computer Science, Stanford University, Stanford, California. Supported by NSFgrants CCR-8858030-03 and CCR-9010517. 1

based, and prove that on directed graphs any path-comparison based algorithm re-quires
(mn) time in the worst case (in the worst case m� = m). The idea of thelower bound is to construct a weighted directed graph with �(mn) directed paths. Ifan algorithm A fails to examine any path, we show how to modify the weight func-tion so that the unexamined path is optimal, without A detecting the change. Thedirected graph we use is acyclic, so the lower bound holds even for this restricted classof directed graphs.In proving the lower bound, we show that any path-comparison based algorithmrequires
(mn) time even to verify the output of an all-pairs shortest paths algorithm.Thus, in the path-comparison model, veri�cation is as hard as �nding the paths. Wealso show a lower bound of
(n3) for verifying that the edge weights of a graph satisfythe triangle inequality. These lower bounds also hold for randomized path-comparisonbased algorithms.Finally, we investigate generalized shortest paths problems where the weight of apath is not necessarily the sum of the weights of its edges. For example, one mightde�ne the weight of a path to be the maximumof the weights of its edges. In Section 4we show that many all-pairs shortest paths algorithms work even for generalized pathweight functions, in their normal time bounds. We also extend our lower bound proofto show an
(mn) lower bound on the running time of any algorithm which solvesthe all-pairs shortest paths problem for certain generalized path weight functions.Previous Work. The most widely known algorithms for the all-pairs shortestpaths problem are those of Floyd [9] and Dijkstra [7]. Floyd's algorithm worksby dynamic programming and runs in time �(n3). On graphs with non-negativeedge weights, Dijkstra's algorithm for the single-source shortest path problem canbe run from each vertex (as noted by Johnson [21]), resulting in a running time of�(mn + n2 logn) if Fibonacci heaps [12] are used to implement priority queues. Avariant of Dijkstra's algorithm developed by Spira [31] has an expected running timeof O(n2 log2 n) if the edge weights are independently and identically distributed ran-dom variables. Bloniarz [3] provided an algorithm with an expected running time ofO(n2 logn log� n). Another algorithm, developed by Frieze and Grimmet [14], achievesan expected running time of O(n2 logn), but is suitable only for random graphs. Allof these algorithms are path-comparison based, so by the lower bound of Section 3they have a worst case running time of
(mn). Fast algorithms exist for special casesof the all-pairs shortest paths problem, for instance when the graph is unweighted [8]or planar [10].Other researchers have looked at shortest paths from the perspective of matrixmultiplication. Fredman [11] shows that O(n5=2) comparisons between sums of edgeweights su�ce to solve the all-pairs shortest paths problem. He uses this fact to dopreprocessing, producing an algorithm that runs in time O(n3(log logn = logn)1=3).Fredman's algorithm was simpli�ed and the running time was decreased slightly byTakaoka [33]. For the important special cases where the graph is unweighted or theedge-weights are bounded integers, the algorithms of Alon, Galil, and Margalit [1]and Seidel [30] use fast matrix multiplication to �nd all-pairs shortest distances veryquickly. For example, Seidel's algorithm �nds all-pairs shortest distances in an un-weighted undirected graph in time n! logn, where ! is the exponent of matrix mul-tiplication (the current bound is ! < 2:376, due to Coppersmith and Winograd [5]).Alon, Galil, Margalit and Naor [2] show how to extend these algorithms to �nd thepaths, rather than just the distances, with a polylogarithmic slowdown. These resultsfor matrix-based algorithms should be contrasted with the lower bound in Section 3;2

such algorithms are not path-comparison based, since they perform comparisons in-volving sums of weights of edges that do not form a path. The use of such comparisonsdistinguishes the algebraic decision tree model from the path-comparison based model.It is surprising that one must allow such comparisons in order to improve on the
(n3)bound.An algorithm similar to the Hidden Paths Algorithm, with the same time bound,has been developed independently by McGeoch [28]. A variant of our algorithm hasbeen developed independently by Jakobsson [20] as a transitive closure algorithm.Both these algorithms require more complex data structures than those used by theHidden Paths Algorithm.Lower bounds on the computational complexity of the all-pairs shortest pathsproblem have been proved in some other models. If the permissible operations areaddition and minimum in a straight line computation, Kerr [23] shows that any al-gorithm requires
(n3) running time. Regarding algebraic decision tree complexity,Spira and Pan [32] show that
(n2) comparisons between sums of edge weights arenecessary to solve the single-source shortest paths problem.Generalized weight functions have been studied extensively in various contexts,and standard algorithms have been extended to work in generalized settings (see,for example, Frieze [13]). In particular, the all-pairs shortest path problem has beenstudied in arbitrary semirings, generalizing the semiring of reals with minimum andaddition (see Zimmerman [35] for a survey and further references). This generaliza-tion provides a common framework for such problems as the construction of regularexpressions for the languages accepted by �nite automata [19]. Lengauer and The-une [26] extend standard algorithms to a yet more general framework. Knuth [24],generalizes the notion of paths to allow for compound edges, extending Dijkstra'salgorithm to apply to derivations in context-free grammars.2. The Hidden Paths Algorithm. In this section we describe the HiddenPaths Algorithm, which solves the all-pairs shortest paths problem in a directed graphG = (V;E) with nonnegative edge weights. In order to present our algorithm, we needto make the following de�nitions.2.1. Preliminary De�nitions. We use (u1; u2; : : : ; uk) to denote a path fromu1 to uk going through the vertices u2; : : : ; uk�1. The symbol (u; v) denotes somepath from u to v (which may be the edge (u; v) if it exists). The symbol (u; v ; w)denotes the concatenation of the paths represented by (u ; v) and (v ; w), and(u; v ; w) denotes the concatenation of the edge (u; v) to the path (v ; w). Thelength of a path (u1; : : : ; uk) is j(u1; : : : ; uk)j = k � 1 :Let k(u; v)k denote the weight of the edge (u; v). We extend the weight function bysetting k(u; v)k = 1 for any (u; v) 62 E, and by setting k(u; u)k = 0, so that k(u; v)kis de�ned for all pairs u; v. The weight of a path (u1; : : : ; uk) isk(u1; : : : ; uk)k = k�1Xi=1 k(ui; ui+1)kDefinition 1. A path (u ; v) is optimal if for any other path (u ;0 v),k(u; v)k � k(u;0 v)k.Definition 2. An edge is optimal if it is an optimal path between its endpoints.3

Definition 3. The number of optimal edges in G is denoted by m�(G).Fact 2.1. An edge is optimal i� it participates in some shortest path.Note that in an unweighted graph each edge is optimal, so m� = m and ouralgorithm provides no improvement.Definition 4. The distance d(u; v) between two vertices u and v is the weightof an optimal path between them.2.2. Description of the Algorithm. The Hidden Paths Algorithm presentedin this section �nds a shortest path between every pair of vertices in a directed graph.Essentially it runs Dijkstra's single-source shortest paths algorithm in parallel for allpoints in the graph. The di�erent single-source threads are integrated in a way whichallows the use of intermediate results from one thread to reduce the work done byanother. There is a similarity here to the all-pairs min-cut algorithm of Gomoryand Hu [17], which uses the information gained during one min-cut computation tospeed up the other computations. In a sense, the Hidden Paths Algorithm discoversthe hidden \shortest path structure" of the graph by pruning away the unnecessaryedges. We note that the algorithm actually constructs each path in reverse order,by adding edges to the tail of the path. This facilitates forward traversal on theconstructed paths. It is simple to modify the algorithm to construct the paths in theform typically used in Dijkstra's algorithm. Here we give an intuitive description ofthe Hidden Paths Algorithm; a precise presentation can be found in Figures 1 and 2.� For each vertex v, a list E�v of the optimal edges directed into v that have beenfound so far.� A path array P , which for every pair u; v describes the current best path from uto v.Each entry P [u; v] consists of�rst The �rst vertex on this path (other than u itself).weight The weight of the path.heaptr A pointer to the heap entry for this path, if one exists.� A heap H of pointers to candidate paths which appear in the path array, orderedby weight.Fig. 1. Data structures maintained by the Hidden Paths Algorithm.The Hidden Paths Algorithm maintains a heap containing, for every two verticesu 6= v, the best path from u to v found so far. The heap is ordered according to pathweight. It is initialized to contain for each pair u 6= v a path of weight k(u; v)k (recallthat if (u; v) 62 E then k(u; v)k = 1). The path at the top of the heap is always anoptimal path.At each iteration, the algorithm removes a path, say (u ; v), from the top ofthe heap (a delete-min operation). This is an optimal path from u to v. This path isnow used to construct a set of new candidate paths. If a new candidate path (x; z)is shorter, it replaces the current best path from x to z in the heap. This maintainsthe optimality of the path at the top of the heap.The complexity of the algorithm is a function of the number of candidate pathscreated, so we do not want to create too many. If (u ; v) is an edge, then thecandidate paths are all those paths of the form (u; v ; w).1 If (u ; v) is a pathwhich is not an edge, then the candidate paths are all those of the form (t; u ; v)1 A minor optimization is to consider only vertices w such that (v ; w) has already been discov-ered to be optimal. The algorithm remains correct, and fewer arithmetic operations are performed.4

InitializeInitialize the heap of pairs u 6= v ordered by the weight k(u; v)k.For all u; vSet P [u; v]:weight := k(u; v)k.Set P [u; v]:heaptr to point to appropriate heap entry.For all v, set E�v to be empty.While (heap not empty and weight of top item 6=1) doStep 1 Remove the top element (u; v) from the heap.Step 2 If (u; v) is an edge, thenAdd (u; v) to E�v .For each w, Update(u; v;w).Step 3 For all edges (t; u) 2 E�u,Update(t; u; v).Procedure Update(x; y; z):If P [x;y]:weight+ P [y; z]:weight< P [x; z]:weight thenSet P [x; z]:weight := P [x;y]:weight+ P [y; z]:weight.Set P [x; z]:�rst := y.Change the priority of x; z in the heap to P [x;z]:weight.Modify P [x; z]:heaptr accordingly.Fig. 2. The Hidden Paths Algorithm.where (t; u) is an optimal edge which has already been found. Note that in theconstruction of candidate paths, the edge is always concatenated to the tail.The following theorem shows that constructing this limited set of candidate pathssu�ces for �nding a shortest path between each pair of vertices in the graph. Theanalysis in Section 2.3 shows that the resulting complexity is O(m�n+ n2 logn).Before stating the theorem, it is convenient to make one more de�nition.Definition 5. For any two paths p and q, p � q if (kpk; jpj) < (kqk; jqj) accordingto lexicographic order.Theorem 2.2. The Hidden Paths Algorithm �nds an optimal path between everyconnected pair of vertices in the graph. Furthermore, it discovers them in order ofincreasing weight.Proof. Let Opt be the set of optimal paths found so far. We prove the theoremby induction on the size of Opt. The inductive hypothesis is that at the beginning ofeach iteration, when p is the item at the top if the heap1. p is an optimal path.2. Opt contains an optimal path between each pair of vertices of distance lessthan kpk.3. For each pair of vertices u and v for which an optimal path has not yet beenfound, the heap contains a path of minimal weight among those of the form(i) the edge (u; v) and (ii) paths having the form (u;w ; v) for (u;w) and(w ; v) in Opt.The inductive hypothesis holds trivially at the beginning of the �rst iteration,since at that time p is the shortest edge in the graph, Opt is empty, and the heapAn extra �eld opt in the path array P can be used to mark whether or not a path has already beenfound to be optimal. 5

Operation # of ops cost for reg. heap cost for Fib. heapcreate O(n2) O(n2) O(n2)priority change O(m�n) O(m�n logn) O(m�n)delete-min O(n2) O(n2 logn) O(n2 logn)Total | O(m�n logn) O(m�n+ n2 logn)Table 1The running time of the Hidden Paths Algorithmcontains all the edges. The construction of candidate paths in Steps 2 and 3 of thealgorithm (see Figure 2) ensures that condition 3 always holds at the beginning of aniteration.It remains to prove that when p = (u ; v) is the item on top of the heap,conditions 1 and 2 hold for p. This can be false only if there exists an optimal pathr = (w ; y), such that krk < kpk, and no optimal path from w to y has been placedin the heap. Condition 1 is violated if w = u and y = v; condition 2 is violatedotherwise. Let r be a smallest such path according to �. Since all edges were placedin the heap during the initialization step, r must be a path of length at least two.Assume r = (w; x ; y). It is clear that (w; x) � r and (x ; y) � r and that bothare necessarily optimal. By our choice of r, some optimal path (x ;0 y) must havebeen placed in the heap. The edge (w; x) was placed in the heap during initialization,and is never replaced by a shorter path. Since k(x;0 y)k = k(x; y)k � krk < kpk,the path (x ;0 y) must have already been deleted from the heap, and placed inOpt. Similarly, the edge (w; x) must also be in Opt. Therefore, by condition 3 of theinductive hypothesis, the path (w; x;0 y), whose weight is equal to krk, must havebeen constructed as a candidate path, and thus a path from w to y of no greaterweight must be in the heap. This path is an optimal path from w to y, contradictingthe assumption that no such path was placed in the heap.2.3. Running Time Analysis. Let us count the number of operations used bythe algorithm. In the initialization step, a heap of size O(n2) is created; it is clearthat the cost of the other operations in this step is subsumed by the cost of the heapoperations. The while loop is iterated at most n(n�1) times, since in each iteration anoptimal path is found. Therefore, the algorithm executes at most n(n�1) delete-minoperations in Step 1.It remains to count only the time taken by Steps 2 and 3. Note that in each ofthese steps the calls to Procedure Update subsume all other operations. It thereforesu�ces to count calls to Procedure Update. We amortize the calls over the edges ofthe graph. In Step 2, charge the O(n) calls to the edge (u; v). In Step 3, charge acall to Update(t; u; v) to the edge (t; u). Observe that, in either case, it is an optimaledge which is being charged. We claim that in fact only O(n) updates are charged toany edge. This is clear for Step 2, since no edge is removed from the heap more thanonce. For Step 3, note that at most n � 1 optimal paths (u ; v) are found leavingany particular vertex u, and that Procedure Update is only called when (u ; v) issuch an optimal path. Since only optimal edges are charged, and each is chargedO(n) updates, the total number of updates charged is O(m�n). Procedure Updaterequires a constant number of primitive operations, plus at most one priority changeoperation.The complexity of the algorithm depends on the implementation of the heap (seeTable 1). Using a standard heap implementation, the time for a priority change6

operation is O(logn) and we get a total complexity of �(m�n logn). Using Fibonacciheaps (described in [12]), priority change operations take constant amortized time,and we therefore get a complexity of �(n2 logn+m�n).The Hidden Paths Algorithm is also very simple and easy to implement, and thusprovides a practical substitute for Dijkstra's algorithm.2.4. Extensions and Re�nements. The Hidden Paths Algorithm can easilybe transformed to one that �nds the k nearest pairs of vertices in the graph. Therevised algorithmwill initialize the heap to contain only the actual edges in the graph.Then, when comparing candidate paths to existing paths (in Procedure Update),the algorithm will sometimes have to do an insert rather than a priority changeoperation. The algorithm terminates when jOptj reaches k. Because at most k2candidate paths are created, the running time of this algorithm (using Fibonacciheaps) is O(m + k logn+ k2).The Hidden Paths Algorithm requires that the graph have non-negative edgeweights. However, in the case of an integer edge weight function, several scalingalgorithms (such as Gabow, Tarjan [15] and Goldberg [16]) transform the weightfunction into a non-negative weight function, which induces the same shortest pathsstructure on the graph. We can solve the shortest paths problem on such graphsby �rst using one of these algorithms to make the edge weights positive, and thenapplying the Hidden Paths Algorithm. Let �N , N > 0, be the weight of the smallest(most negative) edge in the graph. The combined running time of Goldberg's scalingalgorithm and the Hidden Paths Algorithm is O(m�n+ n2 logn+pnm logN). Thusthe Hidden Paths Algorithm may also improve on the O(mn) upper bound in graphswith negative edge weights.Although Fibonacci heaps have a better asymptotic running time than standardheaps, they may be undesirable in applications due to their increased complexity.It is therefore useful to point out cases in which the Hidden Paths Algorithm canbe used with regular heaps without increasing the asymptotic complexity. This canhappen if not every candidate path created necessitates a priority change operation.We show below that this situation occurs when the edge weights in the graph are smallintegers.2 Such graphs are an interesting special case which can occur frequently inpractice.Lemma 2.3. Let (u; v) be a non-edge candidate path in the heap. Let a be theweight of the longest optimal edge in the graph. Thenk(u; v)k � d(u; v) + a :Proof. This is clear if (u; v) is optimal. On the other hand, a non-optimal path(u ; v) = (u;w ; v) can become a path in the heap only if at some stage of thealgorithm (u;w) and (w; v) are in Opt but no optimal u; v path is in Opt. The edge(u;w) is optimal and therefore k(u;w)k � a. Since (w ; v) is optimal and in Opt,and since optimal paths are discovered in increasing order, we conclude thatk(w; v)k � d(u; v) :Therefore k(u; v)k = k(u;w)k+ k(w; v)k � a+ d(u; v) :2 It actually su�ces that the weights of the optimal edges be small integers.7

Theorem 2.4. If the edge weights are integers, and a is the largest weight of anoptimal edge, then there can be at most (a + 1)n2 priority changes, and the HiddenPaths Algorithm has a running time of O(an2 logn+m�n), using an ordinary heap.Proof. We will prove that for any pair of vertices u and v, the entry for u; v inthe heap can be modi�ed at most a+ 1 times. The original entry for u; v in the heapis the edge (u; v). This entry can only be replaced by a non-edge path (u ; v). ByLemma 2.4, k(u ; v)k is at most d(u; v) + a. By integrality, the priority of (u; v)can then be decreased at most a times. Overall, there can be at most a + 1 prioritychange operations for the pair u; v.In fact, an even better bound can be achieved if we modify the algorithm slightly.The modi�ed algorithm is similar to Dial's implementation [6] of Dijkstra's algorithm.Note that if the maximum edge weight is a, the weight of any optimal path is at mosta(n � 1). Rather than using a heap to store candidate paths, we can use an arrayof size a(n � 1) + 1. Paths of weight w will be kept in a bucket at index w of thearray. Initially only edges are inserted. Later, each time a candidate path (u ; v)improves the path from u to v, we remove the old path from the array and insertthe new path at index k(u ; v)k. Rather than iteratively deleting entries from theheap, we traverse the array from index 0 to index a(n � 1). As before, each pathwhich we encounter as we traverse the array will be an optimal path. Also as before,we construct O(m�n) candidate paths. Thus the total running time of this modi�edalgorithm is O(an+m�n).If space is a concern, it can be conserved in the following fashion. It is easy toprove, using the techniques of lemma 2.3, that if p is the path at the top of the heap,then there is no non-edge path of weight exceeding kpk + a in the heap. It followsthat at any given time, we need only use a+1 buckets of our array to store candidatepaths. Therefore our array can be mapped onto a circular array of size a + 1 suchthat no collisions of buckets ever take place. It follows that only a+1 space is neededto store the buckets. If a = O(n2), it follows that the space used is no more thanthat needed in the heap implementation; if in addition the diameter by weight of thegraph is O(m�n) (and certainly if a = O(m�)), then the running time of the algorithmremains O(m�n).Another easy consequence is the following:Lemma 2.5. If (u ; v) is a non-edge non-optimal candidate path in the heap,then k(u; v)k � 2 d(u; v) :Proof. As in Lemma 2.3, the path (u ; v) = (u;w ; v) can be placed in theheap only if (u;w) and (w ; v) were both found before any optimal u; v path. Thisimplies that k(u;w)k � d(u; v)k(w; v)k � d(u; v)and therefore that k(u; v)k = k(u;w)k+ k(w ; v)k � 2 d(u; v) :8

This shows that at any stage in the algorithm, any non-edge path in the heap hasat most twice the optimal weight. This property is useful for \anytime" applications,which might require the algorithm to be stopped in the middle of execution with goodintermediate results.Finally, we note that the Hidden Paths Algorithm considers some unnecessarycandidate paths. One possible improvement, which was also developed independentlyby Jakobsson [20], creates only candidate paths of which every subpath is optimal.More speci�cally, a path p = (u; v ; w; t) is made a candidate path i� (u; v ; w)and (v ; w; t) are already known to be optimal. This will clearly reduce the numberof candidate paths formed, but there does not seem to be a simple expression for thereduced running time achieved by this algorithm. More complex data structures arerequired, but it is still possible to achieve a running time of �(c + n2 logn), where cis the number of candidate paths formed.2.5. m� in a Random Graph. To predict the behavior of the Hidden PathsAlgorithm in practice, we need to study the quantity m� for \typical" graphs. It iseasy to construct graphs for which m� = O(n), while m is �(n2). It is also easy toconstruct graphs for which m� = m. In this section we note that for a large class ofprobability distributions on random graphs, m� = O(n logn) with high probability.Consider a distribution F on non-negative edge weights, which does not dependon n, such that F (0) = 0, and F 0(0) exists and is positive. In particular, the uniformdistribution on [0; 1] and the exponential distribution with mean � both satisfy theseconditions. The work of Frieze and Grimmet [14] implies that m�(G) = O(n logn)with high probability. In particular, they prove the following result:Theorem 2.6 (Frieze and Grimmet). Let G be a complete directed graph,whose edge weights are chosen independently according to F . Consider the set S ofedges de�ned by placing (v; w) in S i� it is one of the p shortest edges originatingat v, where p = minfn� 1; 20 log2 ng. Then with probability 1 � O(n�1), S containsevery optimal edge in G.Hence, under the conditions of the theorem, m�(G) = O(n logn) with probability1 � O(n�1) (and therefore E[m�(G)] = O(n logn)). Similar results are derived ina di�erent context by Luby and Ragde [27]. Hassin and Zemel [18] prove a similartheorem (with a di�erent constant) for both directed and undirected graphs, whenthe edge weights are uniformly distributed. The constant factors given by theseanalyses are small. In fact, empirical studies by McGeoch [28] indicate that whenthe edge weights are uniformly distributed, m�(G) grows approximately as 0:5n lnn+0:3n. Furthermore, Theorem 2.6 holds for some discrete edge weight distributions,for instance if the edge weights are integers chosen uniformly and independently fromthe range 1; : : : ; n2.Corollary 2.7. If the edge weights of G are chosen independently accordingto F , then with high probability the running time of the Hidden Paths Algorithm isO(n2 logn).This time bound is an improvement over earlier algorithms by Spira [31] andBloniarz [3], and matches the performance of the algorithm of Frieze and Grimmet.However, the Hidden Paths Algorithm can be e�ectively used in any situation wherem� is signi�cantly less than m, whereas the algorithm of Frieze and Grimmet isdesigned speci�cally for random graphs.3. A Lower Bound. Many algorithms for the shortest paths problem use edgeweights only to compute and compare the weights of paths. We therefore de�ne aversion of the decision tree model which captures this behavior.9

Definition 6. A path-comparison based all-pairs shortest paths algorithm Aaccepts as input a graph G and a weight function. The algorithm A can performall standard operations. However, the only way it can access the edge weights is tocompare the weights of two di�erent paths. We can think of a path-comparison basedalgorithm as being given only the graph and a black-box path weight comparator. Thepath weights can be accessed only through the black box. The algorithmmust outputa reasonable encoding of the shortest paths in G.3It should be noted that the algorithms of Floyd, Dijkstra, Spira, Bloniarz, andFrieze & Grimmet, as well as the Hidden Paths Algorithm, all �t into this path-comparison based model. On the other hand, Fredman's o(n3) algorithm [11] is notpath-comparison based because it adds weights of edges which do not form a singlepath. This algorithm conform to the more general algebraic decision tree model.We show a lower bound of
(mn) on the running time of any path-comparisonbased algorithm running on a graph with n vertices and m edges. For simplicity, we�rst show a lower bound of
(n3) on the running time of any path-comparison basedshortest paths algorithm running on a certain graph of �(n2) edges. We then showhow the construction can be modi�ed to yield a lower bound of
(mn) for a graphwith m edges, where on these graphs m = m�. An obvious modi�cation allows us toconstruct graphs with arbitrary values of m� and m (m� � m), for which
(m�n)time would be required.To show the
(n3) lower bound, we construct a directed graph of 3n verticeson which any path-comparison based shortest paths algorithm must perform
(n3)comparisons. The directed graph G has
(n3) paths. We show that if A fails toexamine one of these paths, then we can modify the weight function to make thatpath optimal without A being able to detect the change.The graph G is a directed tripartite graph on vertices ui; vj; and wk where i; j;and k range from 0 to n�1: The edge set for G is f(ui; vj)g[f(vj; wk)g (see Figure 3).Therefore, the only paths are individual edges and paths (ui; vj; wk) of length two.To de�ne the weight function, we work in base n+1 notation, generalized to allownegative digits. De�ne [ar; : : : ; a0]b = rXi=0 aibiThe edge weights arek(ui; vj)k = [1; 0; i; 0; j; 0; 0]n+1k(vj ; wk)k = [0; 1; 0; k; 0; �j; 0]n+1and thus k(ui; vj; wk)k = [1; 1; i; k; j; �j; 0]n+1:Note that we allow negative digits to appear in the numbers. The standard positivedigit representation of these numbers would require that a carry be taken from thenext number to the left. This does not a�ect the correctness of the upcoming proofs.The following lemma is an immediate consequence of the de�nitions:Lemma 3.1. Let < denote the lexicographic ordering on tuples of integers, withthe leftmost integer being the most signi�cant. For all i; j; j0; k; k0 :3 We require that the output have no information about path weights. For example, the weightedgraph itself is not a reasonable encoding of the solution.10

i
u

*j
v

k
w

*k
w

j
v

*i
u

Fig. 3. The graph used in the lower bound1. k(ui; vj)k < k(ui0 ; vj0)k i� (i; j) < (i0; j0)2. k(vj ; wk)k < k(vj0 ; wk0)k i� (k;�j) < (k0;�j0)3. k(vj ; wk)k < k(ui; vj0)k4. k(ui0 ; vj0)k < k(ui; vj; wk)k5. k(ui; vj ; wk)k < k(ui0 ; vj0; wk0)k i� (i; k; j) < (i0; k0; j0).Proof. Immediate from the base n+1 notation. For example, item 3 follows fromthe fact that k(vj ; wk)k < [1; 0; 0; 0;0;0;0]n+1 � k(ui; vj)k.It follows that the unique optimal path from ui to wk goes through v0, and hasweight [1; 1; i; k; 0; 0; 0]n+1: De�ne L to be the set of optimal paths.Consider providing (G; k � k) as input to A, and suppose that A runs correctly.It must therefore output the set of optimal paths L. Suppose further that a non-optimal path p� = (ui� ; vj� ; wk�) with j� > 0 was never one of the operands in anycomparison operation performed by A. We de�ne a weight function k � k0 in which p�is the unique shortest path from ui� to wk�, but the ordering by weight of all the otherpaths remains the same. If we run A on (G; k � k0), all path comparisons not involving11

p� give the same result as they did using k � k. Therefore, since A never performed acomparison involving p� while running on k�k, we deduce that A still outputs L, whichis now incorrect. If A never examined an optimal path (ui� ; v0; wk�), we can applythe above construction with j� = 1. The algorithm will then fail because the onlycomparison which has a di�erent result is between (ui� ; v0; wk�) and (ui� ; v1; wk�),which by hypothesis was not performed.The weight function k � k0 is k � k with the following modi�cations (in Figure 3, theedges with modi�ed weights are marked by thicker lines). For all j � j�; we decreasethe weight of the edge (ui� ; vj):k(ui� ; vj)k0 = [1; 0; i�; 0; 0; j; j]n+1 :We also decrease the weight of the edge (vj� ; wk�):k(vj� ; wk�)k0 = [0; 1; 0; k�; 0;�j�;�n]n+1 :Thus k(ui�; vj� ; wk�)k0 = [1; 1; i�; k�; 0; 0; j� � n]n+1 < k(ui� ; v0; wk�)k0 :Lemma 3.2. In G, the conditions of Lemma 3.1 continue to hold for k � k0, exceptthat the single path p� = (ui� ; vj� ; wk�) directly precedes (ui� ; v0; wk�) in the ordering.Thus, under k � k0 the path p� is optimal.Proof. We show the conditions of Lemma 3.1 one at a time. Clearly we needonly consider comparisons for which one or both operands have changed; e.g. onlycomparisons between operands involving i�, j�, or k�.1. The four most signi�cant digits of the base n+1 representation of the weightsremain unchanged and the three least signi�cant digits still increase with j.2. Only k(vj� ; wk�)k has changed, and only by n; but the edge whose weight wasclosest di�ered by n + 1.3. The two most signi�cant digits are unchanged.4. This also is enforced by the two most signi�cant digits.5. If i 6= i0 or k 6= k0, the inequality is enforced by the four most signi�cantdigits. It is also simple to verify that for each i and k, k(ui; vj; wk)k increaseswith j (with the exception of (ui� ; vj�; wk�)).We have therefore proved the following:Theorem 3.3. There exists a directed graph of 3n vertices on which any path-comparison based shortest paths algorithm must perform at least n3=2 path weightcomparisons.Note that since all edge weights are polynomial in n, the input graph G is nothard merely because unusually large edge weights increase the input size. As thegraph constructed is a directed acyclic graph, the lower bound holds even for thisrestricted class of graphs.We now adapt the above proof to show an
(mn) lower bound for graphs ofm edges. Let m � 4n, and assume without loss of generality that 2n divides m.We perform the same construction as before, but of the middle vertices we use onlyv0; : : : ; vm=2n�1, connecting each of them to all the vertices ui and wk. This requiresm edges and creates mn=2 two-edge paths. We also use the same weight function asbefore, restricted to the edges we include.12

Theorem 3.4. There exists a directed graph with 2n + m=2n vertices and medges, on which any path-comparison based shortest paths algorithm must perform atleast mn=2 path weight comparisons.Corollary 3.5. If m =
(n) then there exists a directed graph G with n ver-tices and m edges on which any path-comparison based shortest paths algorithm mustperform
(mn) path weight comparisons.For m =
(n logn) this lower bound is tight, since it matches the upper boundachieved by Dijkstra's algorithm.We can in fact show that even the shortest paths veri�cation problem requires
(mn) time for path-comparison based algorithms. A veri�cation algorithm A ac-cepts as input a graph, a weight function (which we again think of as a black-boxcomparator), and an encoding L which describes, for each pair of vertices, a pathbetween them. Note that the standard description of shortest paths can be encodedin O(n2) space, so the input size imposes no non-trivial lower bound. The algorithmA accepts its input if and only if each path in L is a shortest path.To show the lower bound, we use the same construction as before. We let L bethe shortest paths under k � k, i.e. L = f(ui; v0; wk) j i; k = 0 : : :n � 1g, and provide(G; k � k; L) as input to A. If A accepts using fewer than mn comparisons, we use thesame modi�cation as before and pass (G; k � k0; L) to A, which will incorrectly acceptthis modi�ed input.Corollary 3.6. Any path-comparison based algorithm for veri�cation of shortestpaths requires time
(mn) on G.If we add edges from each ui to each wk (thus producing
(n2) edges), and setk(ui; wk)k = k(ui; v0; wk)k, we can similarly deduce thatCorollary 3.7. Any path-comparison based algorithm for verifying that the edgeweights satisfy the triangle inequality requires time
(n3) on graphs of n vertices.The construction of Theorem 3.4 can be applied to randomized algorithms forthe shortest paths problem. For suppose that the expected number of comparisonsperformed by such an algorithm is o(mn). Then the probability that a randomlyselected path is checked by the algorithm approaches 0 as n goes to 1. Thus if wetake the graph G and select a single path (ui� ; vj� ; wk�) uniformly at random andapply the k � k0 construction, the algorithm detects our modi�cation with probabilityapproaching 0. We thus haveTheorem 3.8. If a randomized path-comparison based shortest paths algorithmperforms o(mn) expected comparisons on graphs with m edges and n vertices thenthere is a weighted graph on which the algorithm will almost surely fail to be correct.The following corollaries are randomized counterparts of Corollaries 3.6 and 3.7:Corollary 3.9. Any randomized path-comparison based shortest paths veri�ca-tion algorithm must perform
(mn) expected comparisons.Corollary 3.10. Any randomized path-comparison based algorithm for verify-ing that all edge weights satisfy the triangle inequality must perform
(n3) expectedcomparisons.We conjecture that the lower bounds in this section also hold for path-comparisonbased algorithms running on undirected graphs, but this remains to be proved.4. Generalized Weight Functions.4.1. De�nitions and Basic Properties. Many shortest paths algorithms infact solve a much more general problem. In particular, we consider the following gen-eralized shortest paths problem: Given a graph G, and a generalized weight functionk � k which maps every path p to a weight kpk in some totally ordered set (with the13

ordering denoted by �), �nd for each pair of vertices a path between them of mini-mum weight. To make this problem tractable, we impose restrictions on the weightfunction.Definition 7. Consider a weight function k � k:� it is monotonic if for all u; v; w,k(v ; w)k � k(v ;0 w)k =) k(u; v ; w)k � k(u; v ;0 w)k;and similarly for k(u; v)k � k(u;0 v)k.� it is non-negative if for all u; v; wk(u; v ; w)k � max(k(u; v)k; k(v ; w)k) :� it is acyclic if for all v the empty path from v to v, denoted v ;; v, is optimal.� it is inductive if there exists a concatenation function f such that for allu; v; w, k(u; v ; w)k = f(ku; vk; kv; wk):The standard path weight function is monotonic and inductive. It is acyclic ifthere are no negative weight cycles. It is non-negative if all path weights are non-negative. An example of a monotonic, non-negative, inductive, nonstandard weightfunction is one which assigns to every path a weight equal to the weight of the maximaledge on the path. Solving single-source shortest paths under this weight function isreferred to as the bottleneck path problem in [34].In the literature on generalizing shortest paths to semirings (see [35]), the semiringaxioms imply both inductiveness and monotonicity of the weight function. Frieze [13]restricts to a narrower class, which essentially consists of monotonic, acyclic, inductiveweight functions over the reals. Lengauer and Theune [26] study extensions of theshortest paths problem to situations where the path weights are only partially ordered;this allows them to deal with certain non-monotonic weight functions.Fact 4.1. Any non-negative weight function is also acyclic.Proof. Let v be any vertex, and (v ; v) any cycle. Thenk(v ; v)k = k(v ; v ;; v)k� max(kv ; vk; kv ;; vk) by non-negativity� k(v ;; v)k :Therefore, (v ;; v) is optimal.Fact 4.2. If k � k is monotonic and acyclic, then any path can be trimmed, byremoving cycles, to obtain a simple path of smaller or equal weight.Proof. If a path p contains a cycle, replace the cycle with the appropriate emptypath, which by acyclicity has no greater weight than the cycle; by monotonicity thisreplacement does not increase the weight of the path. Continue this procedure untilno cycles remain.Fact 4.3. Under a monotonic and acyclic weight function, any connected pairof vertices is connected by a simple optimal path.Proof. If two vertices are connected, the set of simple paths between them isnonempty and �nite, and thus must contain some path of minimalweight. By Fact 4.2,14

this path is also shorter than all non-simple paths between these vertices, and is thusoptimal.Fact 4.4. The shortest paths under any monotonic acyclic weight function canbe encoded in the standard manner in O(n2) space.Proof. In the (u; v) entry, store the �rst edge on any minimal length shortest pathfrom u to v.We argue that monotonicity is the major de�ning characteristic of the shortestpaths problem, for it ensures that the shortest path between two vertices can be con-structed from other shortest paths. The property of acyclicity is also important, sinceit ensures that a simple optimal path exists between every pair of connected vertices.We shall therefore restrict our attention to monotonic acyclic weight functions.The following theorem will be used in our extention of the Hidden Paths Algorithmto generalized weight functions.Definition 8. A path is taut if every edge in it is optimal. A weight function istaut if every connected pair of vertices is connected by a taut optimal path.Lemma 4.5. Any monotonic and acyclic weight function is taut.Proof. De�ne a non-optimal edge (u; v) to be strongly non-optimal if there isno taut optimal path from u to v, i.e. if every optimal path from u to v contains anon-optimal edge. For the lemma to be false, there must be some pair of verticesall of whose optimal paths contain a strongly non-optimal edge. Otherwise, usingthe monotonicity condition, we could take a path containing no strongly non-optimaledge, and replace each non-optimal edge with a taut optimal subpath, thus producinga taut optimal path. It therefore su�ces to prove that no strongly non-optimal edgesexist.Assume that there exists some strongly non-optimal edge (u; v). By the sameargument as above, an edge is strongly non-optimal if and only if every optimal pathbetween its endpoints contains a strongly non-optimal edge. Since, by Fact 4.3, thereexists an optimal path between every pair of connected vertices, we can construct anin�nite sequence of edges f(u; v) = (u0; v0); (u1; v1); (u2; v2); : : :g such that (ui+1; vi+1)is a strongly non-optimal edge contained in some optimal path (ui i; ui+1; vi+1 i; vi)from ui to vi. Since the set of edges is �nite, we have that (ui; vi) = (ui+k; vi+k) forsome i; k. Now observe that by induction on j, using the monotonicity condition,(ui i; ui+1 i+1; : : : i+j�1; ui+j; vi+j i+j�1; : : : i+1; vi+1 i; vi) is an optimal path. Inparticular, this is true for j = k. Since ui+k = ui, this means we have an optimalpath of the form (ui ; ui; vi ; vi). By the conditions of monotonicity and acyclicity,this implies that (ui ;; ui; vi ;; vi) = (ui; vi) must be optimal, contradicting the factthat (ui; vi) is strongly non-optimal.4.2. Algorithms. An algorithm for a generalized shortest paths problem re-ceives as input the graph and a black box for the weight function. We assume thatthe black box takes constant time to compute the weight of any path. Many path-comparison based shortest paths algorithms also work for generalized weight functions.We consider here Floyd's algorithm, Dijkstra's algorithm, and the Hidden Paths Al-gorithm.Theorem 4.6. Floyd's algorithm works on any monotonic and acyclic weightfunction.Proof. Recall that Floyd's algorithm iteratively �nds for each i the best pathbetween every pair of vertices u; v which uses (except for the endpoints) only the �rsti vertices in the graph. It does this by comparing, at stage i, the best path which15

uses only the �rst i � 1 vertices with all paths of the form (u ; w ; v) where w isthe i'th vertex, and both (u; w) and (w ; v) use only the �rst i� 1 vertices.The proof is by induction on i. The inductive hypothesis is that after stage i, thealgorithm has found for every pair of vertices u; v a best path among those using onlythe �rst i vertices. Note that once an optimal path is found, it is never replaced.The base case, i = 0, is obvious. Assume that the inductive hypothesis holdsfor stage i � 1, and let w be the i'th vertex. Let u; v be a pair of vertices for whichany best path which uses only the �rst i vertices uses the vertex w. Let this pathbe (u ; v) = (u ; w ; v). By Fact 4.2, any cycle in a path can be eliminatedwithout increasing the weight of the path, so we may assume that neither (u ; w)nor (w ; v) contains w as an interior point. In other words, the paths (u; w) and(w ; v) use only the �rst i � 1 vertices. By the inductive hypothesis, by the end ofstage i� 1 Floyd's algorithm found a best path (u;0 w) among all the paths from uto w using only the �rst i � 1 vertices. Therefore,k(u;0 w)k � k(u; w)k :Similarly, the algorithm found a path (w ;0 v) such thatk(w;0 v)k � k(w; v)k :Using monotonicity, we deduce thatk(u;0 w ;0 v)k � k(u; w;0 v)k � k(u; w; v)k :Therefore, in phase i Floyd's algorithm �nds a path from u to v which is optimalamong paths using only the �rst i vertices.At the conclusion of stage n, the algorithm has found for each pair u; v a pathwhich is best among those using all vertices, i.e. an optimal path.Note as well that Floyd's algorithm can be used to verify the acyclicity of a pathweight function, since it will �nd a cycle which is better than an empty path if sucha cycle exists.Theorem 4.7. Dijkstra's algorithm works on any monotonic non-negative weightfunction.Proof. Dijkstra's algorithm is run from a single source vertex s, and can bethought of as maintaining a set Opt of optimal paths (s ; v) from s to some ofthe other vertices in the graph. Let V (Opt) denote the set of endpoints of paths inOpt. At each iteration the algorithm adds to Opt a path (s ; u; v) which minimizesfk(s ;0 u; v)k j (s ;0 u) 2 Opt; (u; v) 2 E; v 62 V (Opt)g. It su�ces to show byinduction that the path (s; u; v) is in fact an optimal path. To show this, considersome other path from s to v, (s; x; y ; v), where (x; y) is the �rst edge on the pathsuch that x 2 V (Opt) and y 62 V (Opt). Such an edge must exist since s 2 V (Opt)and v 62 V (Opt). As x 2 V (Opt), there exists an optimal path (s;0 x) 2 Opt. Thenk(s; x; y; v)k � k(s; x; y)k by non-negativity� k(s;0 x; y)k by monotonicity� k(s;0 u; v)k by choice of u; v:Thus k(s;0 u; v)k is in fact optimal, as desired.Theorem 4.8. The Hidden Paths Algorithm works on any monotonic non-negative weight function.Proof. We modify the inductive hypothesis in the proof of Theorem 2.2 as follows:16

1. If p is the item at the top of the heap, then p is an optimal path.2. Opt contains a taut optimal path between each pair of vertices of distanceless than kpk.3. For each pair of vertices u and v for which an optimal path has not yet beenfound, the heap contains a path of minimal weight among those of the form(i) the edge (u; v) and (ii) taut paths having the form (u;w ; v) for (u;w)and (w; v) in Opt.An examination of the proof shows that the nature of the weight function isused only in the proof of Conditions 1 and 2. Assume one of them to be false and letr = (x; w) be a minimal (under �) taut path such that no optimal path from x to whas yet been placed in the heap. As before, r cannot consist of a single edge, so assumethat r = (x; y ; w). Due to non-negativity, (x; y) � r and (y ; w) � r. Therefore,d(y; w) � krk. If d(y; w) < krk, then by the minimality of r and Lemma 4.5, thereexists an optimal path (y ;0 w) in Opt. If d(y; w) = krk, then (y ; w) is taut andoptimal, and we can again deduce by the choice of r and the de�nition of � that anoptimal path (y ;0 w) must already be in Opt. The edge (x; y) � r and is optimal bythe tautness of r, and must therefore also be in Opt. But then (x; y ;0 w), which dueto monotonicity is also an optimal path from x to w, must have been placed in theheap. This contradicts the assumption that no optimal path from x to w has beenfound.4.3. Lower Bounds. The lower bound in Section 3 can be adapted to the situa-tion of generalized weight functions. We show a lower bound for the class of monotonicnon-negative weight functions, even on undirected graphs.Theorem 4.9. Any algorithm to solve the generalized shortest paths problemfor arbitrary monotonic non-negative weight functions requires
(mn) path weightqueries.Proof. We consider a modi�ed version of the construction from Section 3. Usethe same graph G, with middle vertices v0; : : : ; vm=2n�1 but with undirected edges,and let k � k be de�ned as follows:k(v; v)k = 0 for all vertices vk(ui; vj)k = 2k(vj ; wk)k = 2k(ui; vj; wk)k = 4 :All other paths have length 5. Suppose as before that some path (ui� ; vj�; wk�) doesnot have its weight queried. Change the weight of this path to be 3. It is simple toverify that the modi�ed weight function remains monotonic and non-negative.This lower bound can also be extended to the case of inductive weight functionsstudied in [13]. To do this, assign to each edge e in the graph a unique weight kek. Weare then free to assign arbitrary weights to paths of length 2, because each such pathcontains a di�erent pair of subpath weights. Our concatenation function is de�nedby the weights we want to assign to these length 2 paths. To assign weight ! to thepath (u ; v ; w), set f(ku ; vk; kv ; wk) = !. We can now proceed almostexactly in the previous case. Assign weights 1; : : : ; n2 to the individual edges. Assignweight 4n2 to all paths of length 2, and 5n2 to all other paths (so that f(4n2; y) =f(x; 4n2) = 5n2). If any path of length 2 is not examined, change the weight of thispath to be 3n2. It is trivial to verify that these weight functions are inductive (as wellas non-negative and monotonic). We have proved the following theorem:17

Theorem 4.10. Any algorithm to solve the generalized shortest paths problemfor arbitrary monotonic non-negative inductive weight functions requires
(mn) pathweight queries. Note that Theorem 4.9 holds true even when the weight function isrestricted to take integer values in a bounded range. It is easy to see that Theorem 4.10requires unbounded edge weights.Corollaries parallel to Corollaries 3.6 and 3.7 also hold. Thus any subcubic so-lution to the standard shortest paths problem must take advantage of more speci�cproperties of path weights than monotonicity, acyclicity, non-negativity, and induc-tion.5. Conclusion. We have produced a new algorithm, the Hidden Paths Algo-rithm, and identi�ed a new measure m�|the number of edges that participate inshortest paths. The Hidden Paths Algorithm runs in time O(m�n + n2 logn). Thequestion arises: are there �ner measures of the shortest-paths di�culty of a graph? Inparticular, the Hidden Paths Algorithm essentially runs in time proportional to thenumber of candidate paths formed. The improved algorithmmentioned in Section 2.4forms fewer such paths than the Hidden Paths Algorithm. Is there a simple measurefor this quantity? We conjecture that no path-comparison based algorithm for all-pairs shortest paths can perform fewer path weight comparisons than the improvedalgorithm.The expected value of m� has been shown to be signi�cantly less than m in thecase of independent uniformly distributed edge weights. This suggests that there aremany situations in which the Hidden Paths Algorithm will be signi�cantly faster thanDijkstra's algorithm. One can think of the optimal edges as forming a certi�cate ofthe shortest path structure of the graph, that must be revealed. The philosophy of theHidden Paths Algorithm is thus similar to recent algorithms for connectivity, whichwork by �rst �nding a sparse subgraph (or certi�cate) with the same connectivity [4,29]. We have shown a lower bound of
(mn) on the running time of path-comparisonbased algorithms for all-pairs shortest paths. It is of particular interest that theconstruction and veri�cation algorithms have the same worst case complexity. Com-pare this to the situation for the minimum spanning tree problem, where there is alinear-time algorithm to verify a minimum spanning tree [25], although no algorithmis known that �nds one in linear-time. The comparison based lower bound showsthat any improvement in the worst case complexity of shortest paths algorithms, suchas Fredman's o(n3) algorithm, must take advantage of the numerical aspects of theproblem, in addition to the ordering of path weights.The obvious open problem arising from the lower bound is to extend the construc-tion to the case of undirected graphs. Another goal would be to decrease the gap inthe algebraic decision tree complexity, between Spira and Pan's
(n2) lower bound,and Fredman's O(n5=2) upper bound. Also, our lower bound would be strengthenedif we could show that it held for all graphs of a certain structure and varying weightsrather than for a single graph.Finally, in Section 4 we introduced the notion of a generalized weight function, andde�ned some natural properties of such functions. We showed that the
(mn) lowerbound also holds for a certain class of generalized weight functions, even for undirectedgraphs. It would be interesting to �nd tighter classes of weight functions for whichthe lower bound still holds. We have shown that many existing all-pairs shortestpaths algorithms make little use of numerical properties of path weights, and hencework even for generalized weight functions. These algorithms are all path-comparison18

based. We feel that there is a strong connection between the algorithmic property ofbeing path-comparison based, and the ability of an algorithm to work on generalizedweight functions. Further work on this topic could lead to a better understanding ofhow properties of a path weight function a�ect the complexity of graph algorithms,and what properties of the standard weight function allow the path-comparison basedlower bound to be circumvented.Acknowledgements. We would like to thank M. Luby and C. McGeoch forpointing out references to work on expected shortest path lengths in graphs withrandom edge weights. REFERENCES[1] N. Alon, Z. Galil, and O. Margalit, \On the exponent of the all pairs shortest path prob-lem", in Proceedings of the 32nd Annual Symposiumon Foundations of Computer Science,1991, pp. 569{575.[2] N. Alon, Z. Galil, O. Margalit, and M. Naor, \Witnesses for boolean matrix multiplicationand for shortest paths", Tech. Report RJ 8744, IBM, 1992.[3] P. A. Bloniarz, \A shortest-path algorithm with expected time O(n2 logn log� n)", Tech. Re-port 80-3, Department of Computer Science, State University of New York at Albany, Aug.1980.[4] J. Cheriyan and R. Thurimella, \Algorithms for parallel k-vertex connectivity and sparsecerti�cates", in Proceedings of the 23rd ACM Symposium on Theory of Computing, 1991,pp. 391{401.[5] D. Coppersmith and S. Winograd, \Matrix multiplication via arithmetic progressions", Jour-nal of Symbolic Computation, 9 (1990), pp. 251{280.[6] R. B. Dial, \Algorithm 360: Shortest path forest with topological ordering", Communicationsof the ACM, 12 (1969), pp. 632{633.[7] E. W. Dijkstra, \A note on two problems in connection with graphs", Numerische Mathe-matik, 1 (1959), pp. 260{271.[8] T. Feder and R. Motwani, \Clique partitions, graph compression and speeding-up algo-rithms", in Proceedings of the 23rd ACM Symposium on Theory of Computing, 1991,pp. 123{133.[9] R. W. Floyd, \Algorithm 97: Shortest path", Communications of the ACM, 5 (1962), p. 345.[10] G. N. Frederickson, \Planar graph decomposition and all pairs shortest paths", Journal ofthe ACM, 38 (1991), pp. 162{204.[11] M. L. Fredman, \New bounds on the complexity of the shortest path problem", SIAM Journalon Computing, 5 (1976), pp. 83{89.[12] M. L. Fredman and R. E. Tarjan, \Fibonacci heaps and their uses in improved networkoptimization algorithms", Journal of the ACM, 36 (1986), pp. 596{615.[13] A. Frieze, \Minimum paths in directed graphs", Operations Research Quarterly, (1977).[14] A. M. Frieze and G. R. Grimmet, \The shortest-path problem for graphs with random arc-lengths", Discrete Applied Mathematics, 10 (1985), pp. 57{77.[15] H. N. Gabow and R. E. Tarjan, \Faster scaling algorithms for network problems", SIAMJournal on Computing, (1989), pp. 1013{1036.[16] A. V. Goldberg, \Scaling algorithms for the shortest paths problem", Tech. Report STAN-CS-92-1429, Stanford University, 1992.[17] R. E. Gomory and T. C. Hu, \Multi-terminal network ows", SIAM Journal on AppliedMathematics, 9 (1961), pp. 551{570.[18] R. Hassin and E. Zemel, \On shortest paths in graphs with random weights", Mathematicsof Operations Research, 10 (1985), pp. 557{564.[19] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Com-putation, Series in Computer Science, Addison-Wesley, 1979.[20] H. Jakobsson, \Mixed-approach algorithms for transitive closure", in Proceedings of the 10thACM Symposium on Principles of Database Systems, 1991, pp. 199{205.[21] D. B. Johnson, \E�cient algorithms for shortest paths in sparse networks", Journal of theACM, 24 (1977), pp. 1{13.[22] D. R. Karger, D. Koller, and S. J. Phillips, \Finding the hidden path: Time bounds forall-pairs shortest paths, in Proceedings of the 32nd Annual Symposium on Foundations of19

Computer Science, 1991, pp. 560{568.[23] L. R. Kerr, The E�ect of Algebraic Structure on the Computational Complexity of MatrixMultiplications, PhD thesis, Cornell University, 1970.[24] D. E. Knuth, \A generalization of Dijkstra's algorithm", Information Processing Letters, 6(1977), pp. 1{5.[25] J. Komlos, \Linear veri�cation for spanning trees", Combinatorica, 5 (1985), pp. 57{65.[26] T. Lengauer and D. Theune, \E�cient algorithms for path problems with general cost cri-teria", in Proceedings of the 18th International Colloquium on Automata, Languages andProgramming, 1991, pp. 314{326.[27] M. Luby and P. Ragde, \A bidirectional shortest-path algorithm with good average case be-havior", Algorithmica, 4 (1989), pp. 551{567.[28] C. C. McGeoch, \A new all-pairs shortest-path algorithm", Tech. Report 91-30, DIMACS,1991. to appear in Algorithmica.[29] H. Nagamochi and T. Ibaraki, \Linear time algorithms for �nding a sparse k-connectedspanning subgraph of a k-connected graph", Algorithmica, to appear, (1991).[30] R. Seidel, \On the all-pairs-shortest-path problem", in Proceedings of the 24th ACM Sympo-sium on Theory of Computing, 1992, pp. 745{749.[31] P. M. Spira, \A new algorithm for �nding all shortest paths in a graph of positive arcs inaverage time O(n2 log2 n)", SIAM Journal on Computing, 2 (1973), pp. 28{32.[32] P. M. Spira and A. Pan, \On �nding and updating shortest paths and spanning trees", inConference Record, IEEE 14th Annual Symposium on Switching and Automata Theory,1973.[33] T. Takaoka, \A new upper bound on the complexity of the all pairs shortest path problem", inProceedingsof the 17th InternationalWorkshop onGraph-TheoreticConcepts in ComputerScience, 1991, pp. 209{213.[34] R. E. Tarjan, Data Structures and Network Algorithms, vol. 44 of CBMS-NSF Regional Con-ference Series in Applied Mathematics, Society for Industrial and Applied Mathematics,1983.[35] U. Zimmerman, Linear and Combinatorial Optimization in Ordered Algebraic Structures,vol. 10 of Annals of Discrete Mathematics, North-Holland Publishing Company, 1981.

20

