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Abstract

We consider the problem of schedulingn jobs with re-
lease dates onm machines so as to minimize their average
weighted completion time. We present the first known poly-
nomial time approximation schemes for several variants of
this problem. Our results include PTASs for the case of
identical parallel machines and a constant number of unre-
lated machines with and without preemption allowed. Our
schemes are efficient: for all variants the running time for
a (1 + �) approximation is of the formf(1=�;m)poly(n).
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1. Introduction

Recently, there has been a great deal of study of schedul-
ing problems in which the objective is to minimize the aver-
age (weighted) completion time. Until about five years ago,
almost nothing was known about the approximability of
these problems. But since that time constant factor approx-
imation algorithms were found for many variants involving
one, identical parallel or unrelated parallel machines, with
and without release dates, precedence constraints, and pre-
emption. The techniques introduced in these algorithms are
powerful and elegant, but do not seem to lead to the design
of polynomial-time approximation schemes(PTASs): algo-
rithms that, for any fixed� > 0, find a solution within a(1 + �) factor of the optimum in polynomial time. In this
paper, we present the first PTASs for scheduling to mini-
mize average weighted completion time in the presence of
release dates in various machine models.

Formally, we are given a set ofn jobs where jobj has a
processing timepj , a positive weightwj and a release daterj before which it cannot be scheduled. The objective is to
schedule the jobs on a set ofm machines so as to minimizePj wjCj , whereCj denotes the completion time of jobj
in the schedule. This objective function is referred to as the
average weighted completion timeor sum of weighted com-
pletion times;when allwj = 1 it is referred to as theaver-
age or total completion time. We will consider three dif-
ferent machine environments: one machine, identical paral-
lel machines, and a fixed number of unrelated parallel ma-
chines (on unrelated machines the processing time of a job
depends on which machine processes it). We consider vari-
ants with and without preemption. In the scheduling nota-
tion introduced by Graham et al. [10], a scheduling prob-
lem is denoted by a 3-tuple� j� j , where� denotes the
machine environment,� denotes the additional constraints
on the jobs, and denotes the objective function. In this pa-
per� will take on the values1, P ,R, andRm denoting one
machine, parallel (identical) machines, unrelated machines,



and a fixed numberm (not part of the input) of unrelated
machines, respectively. The field� will contain valuerj
(meaning the problem has release dates). Preemption is per-
mitted if and only ifpmtn is part of�. The final field will
take on the values

PwjCj and
PCj to denote the objec-

tive functions average weighted and total completion time,
respectively.

1.1 New Results

In this paper we introduce the first PTASs for scheduling
to minimize average weighted completion time with release
dates. In particular, we give PTASs for each of the following
problems:� 1j rj jPCj� P j rj jPwjCj andP j rj ; pmtn jPwjCj .� Rm j rj jPwjCj andRm j rj ; pmtn jPwjCj .
The second and third results include the first result as a spe-
cial case, however the PTAS presented for the first problem
is much simpler and hence of independent interest. The run-
ning time of our algorithm for identical machines is poly-
nomial in the number of machinesm, while that of our al-
gorithm for unrelated machines is exponential inm. We
summarize our results in Table 1.

We note, with some surprise, that our algorithms for
these long-open problems are not based on poweful new
techniques that have recently advanced approximation algo-
rithms but instead use (carefully) rounding and enumeration
ideas which are well understood by now.

1.2 Previous Results

Several of the simplest average completion time schedul-
ing problems have polynomial time algorithms. The prob-
lem P j jPCj can be solved by the greedyshortest pro-
cessing time first(SPT) rule: schedule the jobs in order
of increasing processing time. Generalizing, the prob-
lem 1j jPwjCj can be solvedSmith’s rule: schedule the
jobs in order of non-decreasingpj=wj [27]. The problemR j jPCj can be solved by matching techniques [3, 14].

With the addition of release dates, these rules no longer
yield optimal schedules, and almost all such problems in
the set we consider are strongly NP-hard. The two ex-
ceptions are1j rj ; pmtn jPCj , which can be solved via
the shortest remaining processing timerule (SRPT) [2],
andR j pmtn jPCj , whose polynomial time solvability is
open.

It is therefore natural to consider approximation algo-
rithms for these problems. We define a�-approximation

algorithm to be one that, in polynomial time, returns a so-
lution whose objective value is at most� times the optimal
objective value.

Many researchers have givenO(1)-approximation algo-
rithms for average completion time scheduling problems
[19, 11, 4, 5, 7, 22, 8, 9, 18, 24, 6, 21, 25]. All these al-
gorithms first formulate a (polynomial-time solvable) re-
laxation of the problem. They solve this relaxation and
use information from the relaxation to obtain an ordering
on the jobs and/or an assignment of the jobs to machines.
The jobs are then scheduled accordingly on the machines.
The relaxations used include preemptive schedules and var-
ious linear and convex programs, and the ordering and as-
signment rules include both deterministic and randomized
rules. A series of ideas along these lines have led to many
nice algorithms with successively smaller constant factor
approximation bounds (see Table 1 for the best bounds),
and there is evidence in practice of the power of these tech-
niques [20, 29].

Unfortunately, there seem to be fundamental barriers to
turning these algorithms into approximation schemes. First,
there are gaps between the objective value of the relaxation
and the average completion time of the optimal schedule.
Any algorithm that compares itself to the fractional opti-
mum inherits this gap and so cannot be a PTAS. Also, a
recent result of Torng and Uthaisombut [28] shows that any
algorithm for1j rj jPCj that starts with the preemptive re-
laxation created by the shortest remaining processing time
algorithm cannot find an approximation ratio better thane=(e� 1), matching the best known upper bound [5].

The technique of time-partitioning was used by Hall et
al. [11] and refined by Chakrabati et al [4] to approximate
average completion time. The idea is to divide time into ge-
ometrically increasing intervals, and in each interval sched-
ule all jobs that, by a certain time, had been released but not
yet been processed. Thus the overall problem can be solved
by solving a series of subproblems, each of which involves
scheduling in an interval a set of jobs without release dates.
This idea is a basic building block of our algorithms.

The only PTAS for a strongly NP-hard problem involv-
ing average completion time is the recent result of Skutella
and Woeginger [26] who give a PTAS for the problemP j jPwjCj . Their algorithm, generalizing a result of
Alon et al. [1], is based on ratio-partitioning. Jobs are
grouped according to theirpj=wj ratios, which are then ge-
ometrically rounded. A near optimal schedule is computed
for each group, and the schedules are concatenated accord-
ing to Smith’s rule. Since this technique relies on the fact
that sequencing is easy on each machine in the absence of
release dates, it cannot be easily generalized to scheduling
problems involving release dates. Time-partitioning is bet-
ter suited to our goals.

Recently, Hoogeveen, Schuurman, and Woeginger [12]



Problem Previous Best PTAS Running Time1j rj jPCj 1:58 [5] O(n log n + 2poly(1=�))1j rj jPwjCj 1:69 [8] O(2poly(1=�)n+ n log n)1j rj ; pmtn jPwjCj 4=3 [21] O(2poly(1=�)n+ n log n)P j rj jPwjCj 2 [22] O((m+ 1)poly(1=�)n+ n log n)P j rj ; pmtn jPwjCj 2 [22] O(2poly(1=�)n+ n log n)Rm j rj jPwjCj 2 [25] O(f(m; 1=�)poly(n))Rm j rj ; pmtn jPwjCj 3 [25] O(f(m; 1=�)n + n log n)Rm j jPwjCj 3=2 [24] O(f(m; 1=�)n + n log n)
Table 1. Summary of results.

showed a number of non-approximability results for av-
erage completion time scheduling problems. In partic-
ular, they showed that the problemsR j rj jPCj andR j jPwjCj do not have a PTAS unless P=NP. They also
conjectured that1j rj jPCj and P j jPwjCj do have
PTASs butP j rj jPCj does not.

1.3 Our Approach

Our approach to approximation is to perform several
transformations that simplify the input problem without
dramatically increasing the objective value, such that thefi-
nal result is amenable to a fast dynamic programming solu-
tion. Many of our transformations are thought experiments
applied to the optimal solution to argue that some solution
nearly as good has very simple structure. Others are actual
simplifying transformations of the input that do not signifi-
cantly increase the objective value.

The first transformation isgeometric rounding: we
round processing times and release dates to integral pow-
ers of(1+ �). This changes no quantity by more than1+ �,
ensuring a small change in the objective function. How-
ever, rounding guarantees that there are only a small num-
ber of distinct processing times and release dates to worry
about. Since (as we will see) release dates are the only
places where scheduling decisions really need to be made,
having few of them simplifies the problem. Rounding lets
us break time into geometrically increasing intervals, where
intervals start and end at release dates, which is useful for
dynamic programming.

Our second transformation istime stretching. We add
small amounts of idle time spread throughout the schedule.
These additions change completion times only slightly, but
can be used to “clean up” the schedule. In particular, if a job
is “large” compared to an interval in which it executes, we
can advance it into the idle time in a later interval where it is
small. This lets us assume that most jobs are small. Small
jobs are a lot like fractional jobs, and fractional problem
solutions are often easier to find.

A careful application of these first two techniques en-

ables us to prove that a surprisingly simple algorithm is in
fact a PTAS for the one machine, unweighted case: this al-
gorithm is in essence SPT except for exhaustive search on
the last few jobs scheduled. The ideas of enumerating the
schedules of the jobs at the end of the schedule (as opposed
to enumerating “large” jobs throughout the schedule), and
enumerating after scheduling the other jobs are, to the best
of our knowledge, new. This approach can be extended to
the multi-machine setting but not to weighted completion
times.

For the problems with job weights, the algorithms are
more sophisticated. A simple observation is that whenever
two small jobs are available we can execute them in the
order of increasingpj=wj (Smith’s rule). However large
and small jobs interact in complex ways when weights are
present and we use structured enumeration to explore these
interactions.

Our third transformation,weight-shifting,compacts the
set of jobs released at any point in time and helps in the
above mentioned enumeration. If many jobs are released
at once, we know that some of them will have to wait to
be processed. Shifting refers to the process of moving the
excess jobs to the next interval. For small jobs this can be
done by prioritizing them bypj=wj and retaining only those
that can be executed in the current interval. For large jobs
of each particular size, we order them in decreasing weight
and simply retain the maximum number that could be po-
tentially scheduled in the given interval. After the transfor-
mation, the processing time of the jobs released in any inter-
val is a small multiple of the length of the interval. Though
simple, this transformation is a key idea. Coupled with time
stretching it shows that every job can be scheduled withinO(1=�3) intervals after its release date. Thus, our dynamic
program only needs to remember limited history, which re-
duces the state space.

When multiple machines are present the above transfor-
mations can still be applied. However several other aspects
become complex and we defer the details till Section 4.



1.4 History of this Work and Overview of Paper

As mentioned above, the design of algorithms to mini-
mize average completion time has been a very active area
of research over the last five years. However, prior to
this work, no PTAS existed for any problem with release
dates; the design of a PTAS for the simplest such prob-
lem, 1j rj jPCj , was a natural next question. No fewer
than five groups of authors (Afrati, Bampis, Kenyon and
Milis; Chekuri and Khanna; Karger and Stein; Queyranne
and Sviridenko; Skutella) independently discovered a PTAS
for the problem1j rj jPCj . All five groups used the natu-
ral idea of geometric rounding, but with variations that are
more or less amenable to generalizations such as handling
weights, preemption, and multiple machines. In Section 3
we present the algorithm due to Karger and Stein, which is
by far the simplest but unfortunately cannot be extended to
handle job weights.

In Section 4 we present the most general algorithm,
due to Chekuri and Khanna. It handles an arbitrary num-
ber of identical machines, with release dates, job weights,
and with or without preemption, i.e.,P jrj jPwjCj andP jrj ; pmtnjPwjCj .

In Section 5 we present PTASs for a fixed num-
ber of unrelated machines,Rmjrj jPwjCj andRmjrj ; pmtnjPwjCj . Skutella obtained the first
PTAS for the problemRmjrj jPCj (no weights), and
Afrati et al. obtained the first PTAS for the problemRmjjPwjCj (no release dates), but here we present the
general algorithm due to Chekuri and Khanna, which builds
upon the ideas used in Section 4.

2. Preliminaries

In this section we discuss some general techniques and
lemmas that apply throughout our paper. We aim to trans-
form any input into one with simple structure. This will
help for efficient enumeration and dynamic programming
techniques.

Our approach is to sequence several transformations of
the input problem. Some transformations are actual changes
to simplify the input, while others are applied as thought
experiments to the optimum solution to prove there is a
near-optimum solution with nice structure. Each transfor-
mation potentially increases the objective function valueby1 + O(�), so we can perform a constant number of them
while still staying within1+O(�) of the original optimum.
When we describe such a transformation, we shall say it
produces1 +O(�) loss.

To simplify notation we will assume throughout the pa-
per that1=� is integral (and in particular that� � 1=4). We
useCj andSj to denote the completion and start time re-
spectively of jobj, OPT to denote the objective value of the

optimal schedule.
The properties we prove in this section pertain to the case

of single or identical parallel machines, but the ideas will
be used in modified or generalized form for unrelated ma-
chines as well.

2.1 Geometric Rounding

Our first simplification creates a well-structured set of
possible processing times and release dates.

Lemma 2.1 With 1 + � loss, we can assume that all pro-
cessing times and release dates are integer powers of1+ �.
Proof Sketch. We round up in two steps. First multiply ev-
ery release date and processing time by1+ �; this increases
the objective by the same amount (we are simply changing
time units). Thendecreaseeach date and time to the next
lower integer power of1 + � (which is still greater than the
original value). This can only improve things. 2

For an arbitrary integerx, we defineRx := (1 + �)x.
As a result of Lemma 2.1 we can assume that all release
dates are of the formRx for some integerx. We partition
the time interval(0;1) into disjoint intervals of the formIx := [Rx; Rx+1) (Lemma 2.2 below ensures that no jobs
are released at time 0). We will useIx to refer to both the
interval and the size(Rx+1 � Rx) of the interval. We will
often use the fact thatIx = �Rx, i. e., the length of an inter-
val is � times its start time.

2.2 Large and Small Jobs

In all of our algorithms, jobs that are much smaller than
the interval in which they run are essentially negligible and
easy to deal with. The difficulty comes from jobs that are
large—taking up a substantial portion of the interval. Our
notion of small versus large changes from algorithm to algo-
rithm. We say that a job issmallwith respect to an interval
if its size is less than� (in the single-machine case),�2 (in
the parallel case), or�3 (in the unrelated case) times the size
of the interval where it runs. It is useful to show that jobs
are not arbitrarily large:

Lemma 2.2 With 1 + � loss, we can enforcerj � �pj for
all jobs j.
Proof Sketch. Multiply everycompletiontime by1+ � and
increase start times to match (without changing job sizes).
It is easy to verify that this gives a feasible schedule. If jobj completed at timet > pj then it now completes at time(1 + �)t and therefore does not start until time�t � �pj .

It follows that we can increase release dates to enforcerj � �pj , and still have a(1 + �)-optimal schedule. 2



2.3 Crossing Jobs

While most jobs run completely inside one interval,
some jobscrossover multiple intervals, creating complex-
ity we would like to avoid. The next two lemmas simplify
this problem: we can assume that no job crosses too many
intervals, and we can assume there are no small crossing
jobs at all.

Lemma 2.3 Each job crosses at mosts := dlog1+�(1+ 1� )e
intervals.

Proof Sketch. Suppose jobj starts in intervalIx =[Rx; Rx+1). SinceRx � rj � �pj (Lemma 2.2), we haveIx = �Rx � �2pj . Thes intervals followingx sum in size
to Ix=�2 � pj . 2

To prove the second lemma, we make first use oftime-
stretching, a technique mentioned in the Introduction that
is used often in subsequent sections. We describe the tech-
nique in some detail in this first use of it; later, similar, uses
will be abbreviated due to space limitations.

Lemma 2.4 With 1 + � loss we restrict attention to sched-
ules in which no small job crosses an interval.

Proof. Suppose we increase the size of each of our geomet-
rically increasing time intervals by1+ �. We can move jobs
with the increase so that they continue to execute in or cross
the same intervals. This stretching of intervals increasesthe
completion time of each job by at most a1+ � factor, so the
increase in objective value is bounded by the same factor.

At most one jobj can cross out of any given intervalIx; suppose it is small (size at most�Ix). Since at mostIx
units of work are processed in intervalIx, the expansion of
the interval creates�Ix units of empty space in the interval.
The newly created empty space can be used to completely
process jobj, so it need no longer cross the interval. Thus
we have given a1+ � times optimal schedule with no small
crossing jobs. 2
3. Scheduling on a single machine with unit

weights

In this section we present a very simple and easy to an-
alyze approximation scheme for the problem1j rj jPCj .
In the end of the section, we sketch how a somewhat more
involved analysis can lead to a better dependence on�.

Recall that SPT as the algorithm that repeatedly chooses,
among all jobs that have been released but not processed,
the one with the smallest processing time and runs this job
to completion. Our PTAS is as follows:

1. Run SPT until at most3�7 jobs are left; during the run
assume that each jobj is released at timemaxfrj ; pj�2 g,
and that time has been stretched by a(1 + 3�)-factor.

2. Enumerate all orderings of the remaining jobs to find
the best one.

The running time of this algorithm isO(n logn) (to sort
the jobs for SPT) plus(3=�7)!. A tighter analysis of the first
part (and corresponding change in the threshold for end-
ing SPT) can improve the enumeration time to1=�5!. A
more careful enumeration technique improves the enumer-
ation time to2o(1=�3).

In the remainder of this section, we prove that the algo-
rithm yields a1+ � approximation to the optimum. For this
section we say that a jobj running in intervalIx is small ifpj � �Ix, and large otherwise. We motivate our algorithm
with the following simple lemma.

Lemma 3.1 If in the optimum schedule all jobs are small,
then the above algorithm gives a(1 + �) times optimum
solution.

Proof. Consider the optimum schedule. The fact that all
jobs are small means that jobj running in intervalIx sat-
isfiesSj � Rx = Ix=� � pj=�2. Thus increasing release
dates as in the algorithm does not change the feasibility (and
optimality) of the optimum schedule. With these new re-
lease dates, consider thepreemptiveversion of the problem,
which can be solved optimally using the shortestremain-
ing processing time first (SRPT) rule (this algorithm runs
like SPT, but may preempt a running job when a shorter job
than it is released). This solution’s objective value is clearly
no more than the non-preemptive optimum. To convert this
solution into a non-preemptive schedule, note that preemp-
tions only happen at release dates, which occur at the ends
of intervals. For an intervalIx, whichever job (if any) is
preempted at the end ofIx is small inIx (since it is small
when released). Thus, by stretching each interval by a1+ �
factor, we add an extra�Ix space, which is enough to let
that job complete without being preempted.

Stretching the intervals only increased completion times,
and thus the objective, by at most a1+ � factor, giving us a
non-preemptive schedule that is within1+� of the optimum
preemptive schedule, and thus within1 + � of the optimum
non-preemptive schedule. 2

Our only problem, then, is that the optimum schedule
may require some jobs to run when they are large. We use
time stretching to modify the optimum schedule to make
most of these large jobs small, and apply enumeration to
the remaining few large jobs. This essentially lets us reduce
to the case covered by the previous lemma. For a given
instance of this problem, letOPT be the value of the opti-
mal schedule. Clearly, at most1�7 jobs can complete after



a thresholdtime t := �7OPT. We now show that all large
jobs that run before timet in the optimum solution can be
delayed until they are small with only(1 + �) loss.

Our proof uses time-stretching heavily. We will expand
each interval by a1+O(�) factor, adding idle time into each
interval. This idle time will provide room for jobs that were
large in their optimally scheduled interval to advance to an
interval where they are small.

Lemma 3.2 There exists a(1 + 3�)–optimal schedule in
which, for each jobj, Sj � minfpj�2 ; tg.

Note thatSj � pj=�2 means that jobj is small when it
runs.
Proof. Consider an optimal schedule and letx(j) be the in-
dex of the interval in which jobj starts. Since small jobs
havepj � �Ix(j) = �2Rx(j) � �2Sj , they satisfy the
lemma; the large jobs, however, may not. We will show
that we can move the large jobs later, so that the resulting
schedule is both feasible and(1 + 3�) optimal.

To deal with the large jobs, move each large job that
starts beforet forward fork := dlog1+� 1�4 e intervals. For
any jobj, let x0(j) = x(j) + k andS0j be the new starting
time of jobj. Thenpj � rj� � Rx(j)� � �3Rx0(j) � �3S0j ; (1)

and the condition of the lemma is fulfilled—jobj is small.
Of course we need to make room for the jobs moved for-

ward to run in their new locations. To do so, increase the
size of every interval by a1+� factor. There are at most1=�
large jobs that landed in intervalIx0 , since each one origi-
nated in intervalIx0�k and hadpj > �Ix0�k. Each, by (1),
haspj � �3Rx0 = �2Ix0 . Therefore, the total processing
time of these jobs is at most�Ix0 , and all these jobs can fit
into the extra�Ix0 space created by stretching the interval.

One thing can go wrong: intervalIx0 might be entirely
covered by a crossing job, preventing us from inserting
the extra�Ix0 units of space. However, we can instead place
this extra space (and all the jobs that want to land in it)
immediatelybefore. This does not increase the completion
time of any job. By Lemma 2.3, we know that crosses at
mosts = log1+�(1=�) intervals, so our new space “backs
up” by at mosts intervals to an intervalIy0 � �Ix0 . Since
the jobs that wanted to land inIx0 had size at most�2Ix0 ,
they will have size at most�Iy0 and will therefore be small
in the interval where they run.

It remains to bound the cost of the new solution. Expand-
ing the schedule by1+� increased all costs by1+�. Now we
need only bound the added cost of the large jobs we moved
forward. Jobs advancing fromIx end up in intervalIx+k
with completion time at mostRx+k+1 = (1+�)Rx=�4, and
there are at most1=� of them. The last interval from which

we advance jobs ends at timet. Thus the total completion
time of the advanced jobs isXRx<t 1� (1 + �)Rx�4 � t�5 Xi�0 1=(1 + �)i= t�5 (1 + �)2�= � � OPT(1 + �)2 � 2�OPT

as desired. Since we stretched by a1 + �-factor and then
added an additional2� � OPT cost, the resulting schedule is(1 + 3�)-optimal. 2

We combine the previous two lemmas to bound the per-
formance of our algorithm. Consider the input modified as
in Lemma 3.2. Its optimum schedule has large jobs only af-
ter timet. We now argue as in Lemma 3.1 that all the small
jobs can be rescheduled to run in SPT order with1+ � loss.
To see this, fix the large jobs in place and reorder all the
small jobs around them using SRPT. This schedule is pre-
emptively optimal (SRPT is still optimal in the presence of
the fixed large jobs) and can be made non-preemptive with1 + � loss.

In sum, by manipulating the release dates we lose at most
a factor(1 + 3�) before timet; by the argument above, we
might loose another(1+ �) factor due to the SPT rule. As a
result, there can be at most(1+ �)(1+3�) 1�7 � 3�7 jobs left
at timet = �7OPT; thus the first step ends before timet as
required to apply Lemma 3.2. In the second step we have at
most 3�7 jobs remaining; hence we can simply enumerate all
possible orderings and take the smallest one. Thus we have
shown the following

Theorem 3.3 We can find a(1 + �)–optimal solution to1j rj jPCj in O(n logn+ 3�7 !) time.

By a more involved analysis, a better dependence on�
is possible. First, we notice that while there can be at most1=� large jobs in each interval, at most one of these is a
crossing job. We can bound the sum of the sizes of all the
non-crossing large jobs by the size of the interval; this al-
lows us to move them forward only1�2 intervals. Second, for
the large crossing jobs, we can try to move them forward by
the minimum amount necessary to make them small. This
may result in too many jobs arriving in any one interval,
however, by scheduling them in SPT order, we can achieve
better bounds (based on a potential function). Using both
these ideas lets us continue running SPT until only1=�5
jobs remain. This improves the running time to��5!.

We can also improve the time cost of the enumeration
step. After timet, there are onlyO(log1+� 1=�) time inter-
vals where jobs can run and onlyO(log1+� 1=�) distinct job
sizes that are large enough to be hard to schedule. Instead of



enumerating all possible orderings we can simply enumer-
ate over how many jobs of each size are executed in each
interval. This improves the time of the enumeration step to2o(1=�3).
4. Scheduling on identical parallel machines

In this section we sketch an approximation scheme
for the scheduling problemsP j rj jPwjCj andP j rj ; pmtn jPwjCj . The approximation schemes
presented here contain our central ideas for the parallel and
weighted case; in the next section, we build on the ideas
and techniques presented here to develop approximation
schemes for models with a constant number of unrelated
parallel machines. Our approach is based on dividing the
time horizon into a sequence of blocks, each containing a
constant number of intervals dates, and then using dynamic
programming over the blocks. There are three main ideas
needed to make this approach work. First, we show that
there exists a(1 + �)-approximate schedule such that any
two consecutive blocks interact with each other in onlymO(1) different ways. Second, we show that there exists a(1 + �)-approximate schedule such that one can represent
compactlyat each block the information about jobs that
were released earlier and have not been yet completed.
Finally, we show that there exists a(1 + �)-approximate
procedure for scheduling jobs within a block, subject
to constraints specifying interactions between the block
and its neighboring blocks. Put together, these elements
give us our approximation scheme. We start with the
non-preemptive case and then sketch in Subsection 4.5 the
modifications needed for the preemptive case.

4.1. The structure of parallel schedules

Lemma 4.1 Consider an instance ofP j rj jPwjCj orP j rj ; pmtn jPwjCj with two small jobsj and k such
that rj � rk and pjwj � pkwk . There exists a(1 + �)–
approximate schedule in whichSj � Sk for all such pairs
of jobs and no small job is ever preempted.

Proof Sketch. As in Lemma 3.1, we can consider expand-
ing time by1 + � and running the small jobs (without pre-
empting) using Smith’s rule. 2

As a result of Lemma 4.1 we can order all small jobs re-
leased atRx according to their ratiopjwj and consider them
for scheduling only in that order. LetTx andHx denote the
small and large jobs released atRx (T for tiny andH for
huge). Note that in this section small means an�2 fraction
of the interval. Letp(S) denote the sum of the processing
times of the jobs in setS. The next lemma says that any in-
put instanceI can be modified with1+ � loss to an instance

I 0 so that the total size of the small and large jobs released
at any release dateRx is O(mIx). This lemma plays an
important role in our implementation of the dynamic pro-
gramming framework since it allows us to represent com-
pactly information about unfinished jobs as we move from
one block to the next.

Lemma 4.2 An instance ofP j rj jPwjCj can be modi-
fied with1 + O(�) loss to an instanceI 0 such that the fol-
lowing conditions hold.� p(T 0x) � 2mIx for all x.� The number of distinct job sizes inH 0x is at mostb1 +4 log1+� 1� .� The number of jobs of each distinct size inH 0x is at

mostm�2 .

Proof. Consider the input instanceI . The total processing
time available in intervalIx ismIx. Order the small jobs inTx by non-decreasing ratiospjwj and pick jobs according to
this order until the processing time of jobs picked just ex-
ceedsmIx. Picking jobs according to this order is justified
by Lemma 4.1. The remaining jobs, which are released atRx but cannot be processed inIx, can safely be moved to
the next release dateRx+1.

For each jobj in Hx, Lemma 2.2 yieldsRx � �pj . On
the other hand, sincej is large we getpj � �2Ix = �3Rx.
Since all job sizes are powers of1+�, the number of distinct
job sizes inHx is as claimed. Within a particular size we
can order jobs by non-increasing weights. The number of
jobs of each size class that can be executed in the current
interval is limited to mIx�3Rx = m�2 . 2
4.2. The dynamic programming framework

We now present an overview of our dynamic program-
ming framework. The implementation of this framework
for the parallel machine case requires additional ideas, pre-
sented in Subsections 4.3 and 4.4. However, as we sketch
at the end of this subsection, an approximation scheme for1 j rj jPwjCj immediately follows from our framework.

The basic idea is to decompose the time horizon into a
sequence ofblocks. A block is a set ofs = dlog1+�(1+ 1� )e
consecutive intervals. LetB0;B1; : : : ;B` be the partition
of the time interval[minj rj ; D) into blocks whereD is an
upper bound on the schedule makespan (we can boundD
crudely by(Pj pj +maxj rj)). Our goal is to do dynamic
programming with blocks as units. There is interaction be-
tween blocks since jobs from an earlier block can cross into
the current block. However by the choice of the block size
and Lemma 2.3, no job crosses an entire block. In other
words jobs that start inBi finish either inBi or Bi+1. A



frontier describes the potential ways that jobs in one block
finish in the next. An incoming frontier for a blockBi spec-
ifies for each machine the time at which the crossing job
fromBi�1 finishes on that machine.

Lemma 4.3 There exists a(1 + �)-approximate schedule
which considers only(m+ 1)s=� feasible frontiers between
any two blocks.

Proof. By Lemma 2.4 we can restrict attention to sched-
ules in which small jobs never cross an interval. Each block
consists of a fixed numbers of intervals. Fix an optimal
schedule and consider any machine in a blockBi. A large
job j continuing from the preceding block finishes in one of
the s intervals of blockBi which we denote byIx(j). We
can round upCj to C 0j whereC 0j = Rx(j) + i � �Ix(j) for
some integer0 � i � 1� �1. This will increase the schedule
value by only a1 + � factor. Thus we can restrict the com-
pletion times of crossing jobs tos� discrete time instants.
Each machine realizes one of these possibilities. A fron-
tier can thus be described as a tuple(m1; : : : ;ms=�) wheremi is the number of machines with crossing jobs finishing
at theith discrete time instant. Therefore there are at most(m+ 1)s=� frontiers to consider. 2

Let F denote the possible set of frontiers between
blocks. The high level idea behind the dynamic program-
ming is now easy to describe. The dynamic programming
table entryO(i; F; U) stores the minimum weighted com-
pletion time achievable by starting the setU of jobs before
the end of blockBi while leaving a frontier ofF 2 F for
blockBi+1. Given all the table entries for somei, the values
for i+ 1 can be computed as follows. LetW (i; F1; F2; V )
be the minimum weighted completion time achievable by
scheduling the set of jobsV in blockBi, with F1 as the in-
coming frontier from blockBi�1 andF2 the outgoing fron-
tier to blockBi+1. We obtain the following equation.O(i+1; F; U) = minF 02F;V�U�O(i; F 0; V )+W (i+1; F 0; F; U�V )�
There are two difficulties in implementing the dynamic pro-
gramming. First, we cannot maintain the table entries for
each possible subset of jobs in polynomial time. Therefore
we need to show the existence of approximate schedules
that have compact representations for the set of subsets of
jobs remaining after each block. Second, we need a proce-
dure that computes the quantityW (i; F1; F2; V ). The next
two subsections describe how to achieve these two objec-
tives. However, at this point, we can already sketch an ap-
proximation scheme for1 j rj jPwjCj .

By Lemma 4.2 we know that the processing time of all
the jobs released at any release dateRx is O(Ix). If we
stretch our intervals by1 + �, we create enough idle space
in interval Ix+O(s) to execute all this work. Thus we can

assume that all work finishes withinO(s) intervals of its
release. This means that we can explicitly maintain a list of
large jobs that remain to be scheduled as we move from one
block to the next.

To maintain information about small jobs, we use the fact
that the small jobs arriving at any given release date are ex-
ecuted in the order specified by Smith’s ratio rule. We par-
tition thisorderedlist intoO(1=�2) pieces of roughly equal
size and show that time stretching lets us schedule an inte-
gral number of these pieces in each block. Thus information
can be compactly maintained for small jobs as well. Finally,
the procedure for computingW (i; F1; F2; V ) is trivial for a
single machine; simply try all possible ways of scheduling
the large jobs inV (there are onlyO(1=�4) large jobs to be
considered), and place the small jobs inV in accordance
with Smith’s ratio rule. However, as we see in the next two
subsections, both these steps require significant additional
ideas for the parallel machine case.

4.3. Compact representation of job subsets

The difficult part in the dynamic programming is to show
that it is sufficient to maintain information in the table for
only a few (polynomial) subsets of jobs. Recall thatHx
andTx denote the large and small jobs released atRx. LetXxi andYxi denote the set of small and large jobs released
atRx that are scheduled in blockBi. Let Uxi andVxi de-
note the set of small and big jobs among jobs released atRx
that remainafter blockBi. Our goal is to show that there
exist(1+�)–approximate schedules with compact represen-
tations for these sets. Letb(x) denote the block containing
the intervalIx.

We start with small jobs. Recall that we ordered the setTx using Smith’s ratio rule. The lemma below shows that
each blockBi has enough space to execute a constant frac-
tion of small jobs released at each of the release dates in the
preceding blocksB1; : : : ;Bi�1.

Lemma 4.4 There is a(1+2�)–approximate schedule such
that for each release dateRx and eachi > b(x), either� p(Xxi) � �2mIx, or� p(Xxi) < �2mIx andp(Xxk) = 0 for all k > i.
Proof. Consider an optimal schedule that does not sat-
isfy the properties of the lemma. Fix a release dateRx
for which the conditions of the lemma are violated. Letk be the smallest index such thatp(Xxk) < �2mIx and letl be the smallest index greater thank with p(Xxl) > 0.
We simply move jobs fromXxl to block Bk until either�2mIx � p(X 0xk) � �2mIx + �2Ix, or p(X 0xl) = 0 . This
is possible since jobs inXxl are small. We repeat the pro-
cedure until the conditions of the lemma are satisfied forRx.



It is clear that the procedure terminates. The processing
time of the new jobs assigned to a block fromTx cannot
be more than�2mIx. We apply a similar transformation for
eachRx. A simple volume summation argument shows thatXx:b(x)<i �2mIx � �mIy (2)

whereIy is the first interval in blockBi. Now we have for
each block a set of new jobs that are assigned to it from later
blocks but have not been scheduled. We schedule these as
follows. In blockBi on machineMj let tj be the first time
at which a job can be started. Note thattj exists since no job
spans a block. We create a space of2�Iy at the pointtj by
pushing forward the previously scheduled job. We use this
space to greedily fill the new jobs assigned to each block.
This is possible by (2). The new jobs have their completion
time reduced and the old jobs have their completion time
increased by at most a1 + 2� factor. 2

Using the same idea as in the proof of Lemma 4.4, we
can partition the ordered setTx intoO( 1�2 ) sets such that in
every block, an integral number of these sets is scheduled.
Thus we can captureUxi for i > b(x) by specifying the
number of these sets that have been scheduled. Observe that
this is only a constant amount of information. We however
did not deal with the case ofi = b(x). We again use the idea
in the proof of Lemma 4.4 but now we can only show thatp(Xxi) � minfp(Tx); �2Ixg for i = b(x). This involves
scheduling small jobs at the end of the frontier of blockBi,
in particular right after the crossing job with the smallest
finish time among all crossing jobs. This violates our earlier
property that jobs inXxi start inBi. We treat these jobs as
a special case and for simplicity of presentation we ignore
the full details in this extended abstract. To summarize, we
can specifyUxi by an integer in[0; 1�2 ℄ for i > b(x) and by
an integer in[0; m�2 ℄ for i = b(x).

We now turn our attention to big jobs. By Lemma 4.2,
there areO( 1� log 1� ) distinct size classes inHx. We order
jobs of the same size by decreasing weights. It is easy to
see that jobs inHx can be treated as small jobs from blockBb(x)+3 on. For i = b(x); b(x) + 1; b(x) + 2, we spec-
ify the setYxi by explicitly listing the number of jobs from
each size class ofHx. From Lemma 4.2 it is easy to see that
there are onlymO(1) distinct possibilities. Fori > b(x)+2,
we treat jobs inHx as small. Using ideas similar to those
in Lemma 4.4, it suffices to use only a coarse precision ofO(1). However, for ease of exposition, we maintain sepa-
rate information for each different size class ofHx.

In summary, for a blockBi the setsUxi andVxi such thatb(x) � i� 2�2 are specified by:� Uxi is specified by an integer in[0; 1�2 ℄ for i > b(x)
and by an integer in[0; m�2 ℄ for i = b(x).

� For i = b(x); : : : ; b(x) + 2, Vxi is specified byb1 +4 log1+� 1�  integers each in the range[0; m�2 ℄.� For i > b(x) + 2, Vxi is specified byb1 + 4 log1+� 1� 
integers each in the range[0; 1�2 ℄.

We summarize our considerations and results of this sub-
section in the following lemma.

Lemma 4.5 There is a(1 + �)–approximate scheduleS
such that for each blockBi the following is true:� There arek = (m�2 )O(1=�4) setsG1i ; : : : ; Gki that can

be constructed in polynomial time, and� Gi, the set of jobs remaining inS after blockBi, is one
of fG1i ; : : : ; Gki g.

4.4. Scheduling jobs within a block

We now describe how to computeW (i; F1; F2; V ).
Since this is itself an NP-hard problem we settle for a
relaxation. A 1 + � decision procedure for computingW (i; F1; F2; V ) outputs a schedule that is within1 + � ofW (i; F1; F2; V ) and shifts the frontierF2 by at most a1+�
factor. Clearly such a procedure suffices in order to com-
pute a(1+O(�))–optimal solution to the dynamic program
given above. We now describe a1 + � decision procedure
that runs in polynomial time for each fixed�.

We partition the job setV into small and large as before.
Our objective is to enumerate over all potential schedules of
large jobs. In particular, we restrict ourselves to schedules
where, in each intervalIx, a large job starts only at one of
the 1�3 times specified byRx+ i�3Ix, for i = 0; : : : ; 1�3 � 1.
Furthermore, in our enumeration of large job schedules we
will only specify the sizes and the start times of the large
jobs scheduled. This is sufficient information to reconstruct
their schedule: whenever we have two jobs of same size
available, we always schedule the one with the larger weight
first. With these restrictions, the schedule of large jobs ona
machine within a block is completely determined by three
things: its incoming frontier, its outgoing frontier, and the
sizes of jobs started at each of the discrete time units in
each of thes intervals. By arguments similar to those in
the previous section, the number of different possibilities isk = 2O(1=�5). Thus the configurations of all machines is
from one of(m + 1)k possibilities. Out of these we con-
sider only those that are compatible with the incoming and
outgoing frontiersF1 andF2 and have a feasible schedule
for the large jobs inV . Both conditions can be checked in a
straightforward way. We schedule the small jobs in a greedy
fashion in the spaces left by the large jobs. We move all the
large jobs that start and finish in an interval to the end of
the interval. We enlarge each of the spaces by a1 + � fac-
tor to accommodate all the small jobs. Thus we have the
following lemma.



Lemma 4.6 There is a1 + � decision procedure to com-
puteW (i; F1; F2; V ) that runs in time(m + k)k wherek = 2O(1=�5).

We remark that the running time of the procedure can
be improved by doing dynamic programming between in-
tervals of the block instead of brute force enumeration of
all large job schedules. The improved running time will bempoly(1=�). However in interests of space we omit the de-
tails and give our main result.

Theorem 4.7 There is a PTAS forP j rj jPwjCj that
constructs a (1 + �)–approximation in timeO((m +1)poly(1=�) � n+ n logn).

The number of potential blocks for the dynamic pro-
gramming isO(logD) whereD is an upper bound on the
schedule makespan. However there are onlyO(n=�3) inter-
esting blocks since each jobj finishes byrj=�4.
4.5. Scheduling with preemption

In the preemptive case, several computational aspects of
the preceding algorithm can be simplified, leading to an ap-
proximation scheme with a better running time. Specif-
ically, since large jobs can be executed fractionally, we
do not need to keep track of the frontier formed by the
crossing jobs. Moreover, we can do dynamic program-
ming directly with intervals instead of blocks and an ap-
proximate schedule can be specified by the fractions of jobs
that are processed in any interval. This significantly re-
duces the amount of enumeration needed in the dynamic
programming. For instance, since there are no release dates
within an interval, we can use McNaughton’s wrap around
rule [17] to compute a preemptive schedule with optimal
makespan inO(n) time. Thus if we knew the job fragments
that execute within an interval, they can be efficiently sched-
uled. We omit here the various technical details involved
and summarize below the running time of our approxima-
tion scheme.

Theorem 4.8 There is a PTAS forP j rj ; pmtn jPwjCj
that constructs a (1 + �)–approximation in timeO(2poly(1=�) � n+ n logn).
5. Scheduling on a constant number of unre-

lated machines

We now treat the unrelated parallel machine case where
job j has processing timepij on machinei. It is easy to see
that Lemma 2.1 still applies and that Lemma 2.2 applies if
we now definepj := mini pij . We refer topj as thesize
of job j. Moreover, we use the notationa(j) to denote the
machine to which jobj is assigned.

The following observation is crucial to dealing with un-
related machines. One would like to claim that, in an op-
timal schedule, each jobj will be processed on a machine
on which it does not take much more processing time thanpj , i.e. thatpa(j)j = O�;m(pj). Although this is true in
the preemptive case or when there are no release dates,
it is not true for instances ofRm j rj jPwjCj . For ex-
ample, consider the 2-machine case. Take one job withr1 = 0; w1 = 1; p11 = 4 andp21 = 1, and another job
with r2 = 2; w2 = 1; p12 = 0 andp22 = 1. Here machine
2 is extremely slow for job 2, and yet it is appropriate to
schedule job 2 on machine 2 instead of waiting for machine
1 to become available. The typical such situation is when,
at the release date of a job, all its fast machines are busy
processing different large jobs; however then as soon as a
fast machine becomes available after the release date of a
job, there is no more need to process it on a slow machine.
We capture this in the following lemma.

We change the notion of small and large jobs slightly
to adapt to this setting: here a jobj is said to besmall ifpj � �3mrj , otherwise it islarge.

Lemma 5.1 For instances ofRm j rj jPwjCj , there ex-
ists a(1 + �)–approximate schedule such that, for each jobj, eitherpa(j)j � m� pj or Cj � rj=�.
Proof Sketch. Given a scheduleS, let j be a job whose
fastest machine is machinei, but which is scheduled on ma-
chinel; if j violates the conditions of the lemma, then we
removej from machinel and place it on machinei, right be-
fore the first job oni whose completion time is greater thanCj ; this creates a delay on machinei of up torj+pj , which
is negligible. One can check that when this is done for ev-
ery job ofS which violates the conditions of the lemma, the
delays incurred by any jobk do not exceed2�Ck. 2

We note that the special casepa(j)j > m� pj only occurs
when, at timerj = Rx, job j’s fastest machine is busy pro-
cessing a very large job, whose processing time spans all of
the intervalIx and beyond. Thus, if we know the schedule
of the large jobs, we can, for each small job, replacepj byminfpij jmachinei is not busy at timerj with a large job
spanning all ofIxg. Although we do not know ahead of
time the schedule of the large jobs, the dynamic program
will perform these updates dynamically.

For simplicity, in the remainder of this section
we only discuss the problemsRm j jPwjCj andRm j rj ; pmtn jPwjCj , for whichpa(j)j � m=�pj . Thus
we can setpij = 1 wheneverpij > m� pj . Now, define the
execution profileof a jobj to be anm-tuple< i1; : : : ; im >
such thatpij = pj � (1 + �)ik . We adopt the convention thatik = 1 if pij = 1.

Corollary 5.2 The number of distinct profiles is bounded
by ` := b2 + log1+� m�2 m.



Let Tx(t) andHx(t) denote the set of small and large
jobs released atRx with profile t. The next lemma is an
adaptation of Lemma 4.2 to the unrelated machine case.

Lemma 5.3 The input instanceI can be modified to an in-
stanceI 0 with OPT(I 0) � (1 + �)OPT(I) such that the fol-
lowing conditions hold.� For every profilet, we havep(T 0x(t)) � 2mIx.� For every profilet, the number of distinct job sizes inH 0x(t) is at mostb1 + log1+� m�4 . The number of jobs

of each distinct size is at most(m� )2.

We can now pursue an approach similar to that in Sec-
tion 4. Thus, we do dynamic programming over the blocks,
keeping track of incoming and outgoing frontiers, enumer-
ate the schedules of large jobs in each block, and fill in the
block with small jobs for each profile. However another
difficulty of unrelated machines is that we cannot schedule
small jobs greedily by Smith’s rule, since Lemma 4.1 no
longer applies. Instead, we use LP techniques, more pre-
cisely use the result of Shmoys and Tardos [23] for the gen-
eralized assignment problem.

Notice that the amount of information that has to be
maintained is multiplied by a factor of roughlỳsince we
have to treat jobs with distinct profiles separately. We omit
the details and claim the following:

Theorem 5.4 There is a PTAS for the problemRm j rj jPwjCj . For instances ofRm j jPwjCj
and Rm j rj ; pmtn jPwjCj there is a PTAS that con-
structs a (1 + �)–approximation in timeO(n logn) for
each fixed� andm.

Remark. When there are no release dates, i.e. in the caseRm j jPwjCj , it is possible to take a slightly different
approach to obtain a PTAS, based on ratiospijwj instead of
time. One can then use ratio-stretching and ratio-rounding
to prove a variant of the preliminary Lemma 2.1 and sim-
plify the input jobs. From this viewpoint, the profile of a job
is just them-tuple of its ratios on themmachines. The main
simplification in the absence of release dates is that on each
machine, Smith’s ratio rule applies. To bound the number of
jobs of each profile, it is possible to merge jobs with identi-
cal profiles when their processing time is very short, which
further simplifies the input (and altogether gets rid of the
“small jobs” issue). Moreover, a variant of Lemma 5.1 also
implies a bound on the number of profiles with the same
minimum ratio, so that, if one defines intervals on the ratio
scale, there are only a constant number of jobs in each inter-
val. To complete the dynamic program, all that remains is to
show that each interval only needs to interact with a neigh-
boring block of intervals. This is done by showing, via an
elementary calculation, that if two jobs have very different

ratios, then, even if they are scheduled on the same machine,
the earlier job will only have a marginal effect on the later
job’s completion time (an observation which is perhaps of
independent interest). It is then easy to perform dynamic
programming on the ratio scale.

Because the above approach does not have to deal with
the placement of many small jobs and appeal to LP tech-
niques, it leads to a slightly simpler algorithm for the prob-
lem Rm j jPwjCj ; unfortunately this approach breaks
down completely when jobs have release dates.
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