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Abstract

We consider the problem of schedulingobs with re-
lease dates om machines so as to minimize their average

1. Introduction

Recently, there has been a great deal of study of schedul-
ing problems in which the objective is to minimize the aver-

weighted completion time. We present the first known poly-age (weighted) completion time. Until about five years ago,
nomial time approximation schemes for several variants of almost nothing was known about the approximability of
this problem. Our results include PTASs for the case of these problems. But since that time constant factor approx-

identical parallel machines and a constant number of unre-

lated machines with and without preemption allowed. Our
schemes are efficient: for all variants the running time for
a (1 + €) approximation is of the fornf(1/¢, m)poly(n).
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imation algorithms were found for many variants involving
one, identical parallel or unrelated parallel machinesh wi
and without release dates, precedence constraints, and pre
emption. The techniques introduced in these algorithms are
powerful and elegant, but do not seem to lead to the design
of polynomial-time approximation schem@sTASs): algo-
rithms that, for any fixed > 0, find a solution within a
(1 + €) factor of the optimum in polynomial time. In this
paper, we present the first PTASs for scheduling to mini-
mize average weighted completion time in the presence of
release dates in various machine models.

Formally, we are given a set afjobs where joly has a
processing time;, a positive weightv; and a release date
r; before which it cannot be scheduled. The objective is to
schedule the jobs on a setiafmachines so as to minimize
Zj w;C;, whereC; denotes the completion time of jgb
in the schedule. This objective function is referred to &s th
average weighted completion timesum of weighted com-
pletion timeswhen allw; = 1itis referred to as thaver-
age or total completion time. We will consider three dif-
ferent machine environments: one machine, identical paral
lel machines, and a fixed number of unrelated parallel ma-
chines (on unrelated machines the processing time of a job
depends on which machine processes it). We consider vari-
ants with and without preemption. In the scheduling nota-
tion introduced by Graham et al. [10], a scheduling prob-
lem is denoted by a 3-tuple| 3 | v, wherea denotes the
machine environmenff denotes the additional constraints
on the jobs, andg denotes the objective function. In this pa-
pera will take on the valueg, P, R, andRm denoting one
machine, parallel (identical) machines, unrelated maz)in



and a fixed numbem (not part of the input) of unrelated algorithm to be one that, in polynomial time, returns a so-

machines, respectively. The fielwill contain valuer; lution whose objective value is at mgstimes the optimal
(meaning the problem has release dates). Preemption is pemwbjective value.
mitted if and only ifpmin is part of 5. The final fieldy will Many researchers have givél(1)-approximation algo-

take on the valuey_ w;C; and} C; to denote the objec-  rithms for average completion time scheduling problems
tive functions average weighted and total completion time, [19, 11, 4, 5, 7, 22, 8, 9, 18, 24, 6, 21, 25]. All these al-

respectively. gorithms first formulate a (polynomial-time solvable) re-
laxation of the problem. They solve this relaxation and
1.1 New Results use information from the relaxation to obtain an ordering

on the jobs and/or an assignment of the jobs to machines.
The jobs are then scheduled accordingly on the machines.
The relaxations used include preemptive schedules and var-

ious linear and convex programs, and the ordering and as-
signment rules include both deterministic and randomized

In this paper we introduce the first PTASs for scheduling
to minimize average weighted completion time with release
dates. In particular, we give PTASs for each of the following

problems: ) _ X
rules. A series of ideas along these lines have led to many
o 17| 3C; nice algorithms with successively smaller constant factor
approximation bounds (see Table 1 for the best bounds),
e P|rj| > w;CjandP|r;, pmin|> w;C;. and there is evidence in practice of the power of these tech-
niques [20, 29].
e Rm|r;| > w;C;andRm |r;, pmin |} w;Cj. Unfortunately, there seem to be fundamental barriers to

) ] ] turning these algorithms into approximation schemest,Firs

The second and third results include the first result as a spespere are gaps between the objective value of the relaxation
eial case,.howeverthe PTAS presented for.the first problemgpng the average completion time of the optimal schedule.
is much simpler and hence of independentinterest. The run-apny aigorithm that compares itself to the fractional opti-
nlng_tlme of our algorithm for .|dent|cal_ machines is poly- um inherits this gap and so cannot be a PTAS. Also, a
nomial in the number of machines, while that of our al-  yacent result of Torng and Uthaisombut [28] shows that any
gorithm for unrelated machines is exponentiabin We  gigorithm for1|r; | 3 C; that starts with the preemptive re-
summarize our results in Table 1. laxation created by the shortest remaining processing time

We note, with some surprise, that our algorithms for gigorithm cannot find an approximation ratio better than
these long-open problems are not based on poweful NeW, /(e — 1), matching the best known upper bound [5].
techniques that have recently advanced approximatioralgo 4 technique of time-partitioning was used by Hall et

rithms bu.t instead use (carefully) rounding and enumematio [11] and refined by Chakrabati et al [4] to approximate
ideas which are well understood by now. average completion time. The idea is to divide time into ge-
ometrically increasing intervals, and in each intervaksth
1.2 PreviousResults ule all jobs that, by a certain time, had been released but not
yet been processed. Thus the overall problem can be solved
Several of the simplest average completion time schedul-by solving a series of subproblems, each of which involves
ing problems have polynomial time algorithms. The prob- scheduling in an interval a set of jobs without release dates
lem P| | C; can be solved by the greedjiortest pro- This idea is a basic building block of our algorithms.
cessing time firs{SPT) rule: schedule the jobs in order The only PTAS for a strongly NP-hard problem involv-
of increasing processing time. Generalizing, the prob- ing average completion time is the recent result of Skutella
lem1| | Y w;C; can be solve®mith’s rule schedule the  and Woeginger [26] who give a PTAS for the problem
jobs in order of non-decreasing/w; [27]. The problem  P| |} w;C;. Their algorithm, generalizing a result of
R| | Cj can be solved by matching techniques [3, 14].  Alon et al. [1], is based on ratio-partitioning. Jobs are
With the addition of release dates, these rules no longergrouped according to thejr; /w; ratios, which are then ge-
yield optimal schedules, and almost all such problems in ometrically rounded. A near optimal schedule is computed
the set we consider are strongly NP-hard. The two ex-for each group, and the schedules are concatenated accord-
ceptions arel|r;, pmin|)_ C;, which can be solved via ing to Smith’s rule. Since this technique relies on the fact
the shortest remaining processing tinmale (SRPT) [2], that sequencing is easy on each machine in the absence of
andR | pmin | C;, whose polynomial time solvability is ~ release dates, it cannot be easily generalized to schegdulin
open. problems involving release dates. Time-partitioning is be
It is therefore natural to consider approximation algo- ter suited to our goals.
rithms for these problems. We definepaapproximation Recently, Hoogeveen, Schuurman, and Woeginger [12]



| Problem | Previous Best] PTAS Running Time |

r >0 1.58 [5] O(nlogn + 2P°YU/9)
1r; | > w;Cy 1.69 [8] 0(2P°Y 9 + nlogn)
1|7y, pmin| > w;C; 4/3 [21] 0(2P°Y 9 + nlogn)
Plrj|> w;C; 2[22] O((m + 1)*P°YI 9 4 nlogn)
Plr;, pmin|d w;C; 2[22] 0(2P°Y 1y 4 nlogn)
Rm|r;|) w;C; 2 [25] O(f(m, 1/€)poly(n))
Rm/|r;, pmin|) w;C; 3 [25] O(f(m,1/e)n + nlogn)
Rm||> w;C; 3/2 [24] O(f(m,1/e)n + nlogn)

Table 1. Summary of results.

showed a number of non-approximability results for av- ables us to prove that a surprisingly simple algorithm is in
erage completion time scheduling problems. In partic- fact a PTAS for the one machine, unweighted case: this al-
ular, they showed that the problent®|r; | C; and gorithm is in essence SPT except for exhaustive search on
R| | > w;C; do not have a PTAS unless P=NP. They also the last few jobs scheduled. The ideas of enumerating the
conjectured thatl|r; | > C; and P| | > w;C; do have  schedules of the jobs at the end of the schedule (as opposed

PTASs butP | r; | >~ C; does not. to enumerating “large” jobs throughout the schedule), and
enumerating after scheduling the other jobs are, to the best
1.3 Our Approach of our knowledge, new. This approach can be extended to
the multi-machine setting but not to weighted completion
| times.

Our approach to approximation is to perform several
transformations that simplify the input problem without
dramatically increasing the objective value, such thafithe
nal result is amenable to a fast dynamic programming solu-
tion. Many of our transformations are thought experiments . . -

. . ; .~ order of increasing; /w; (Smith’s rule). However large
applied to the optimal solution to argue that some solution

: nd small jobs interact in complex ways when weights are
nearly as good has very simple structure. Others are actua :
N ; . -~ present and we use structured enumeration to explore these
simplifying transformations of the input that do not signifi

) o interactions.
cantly increase the objective value.

For the problems with job weights, the algorithms are
more sophisticated. A simple observation is that whenever
two small jobs are available we can execute them in the

The first transformation isgeometric rounding: we Our third transformationweight-shifting,compacts the
round processing times and releasg dates to integral powszet of jobs released at any point in time and helps in the
ers of(1 + ¢). This changes no quantity by more this e, above mentioned enumeration. If many jobs are released

ensuring a _smaII change in the objective function. How- gt once, we know that some of them will have to wait to
ever, rounding guarantees that there are only a small numye processed. Shifting refers to the process of moving the
ber of distinct processing times and release dates t0 WOrTyaycess jobs to the next interval. For small jobs this can be
about. Since (as we will see) release dates are the onlyjone by prioritizing them by; /w; and retaining only those
places where scheduling decisions really need to be madeyhat can be executed in the current interval. For large jobs
having few of them simplifies the problem. Rounding lets of each particular size, we order them in decreasing weight
us break time into geometrically increasing intervals, ihe g, q simply retain the maximum number that could be po-
intervals start and end at release dates, which is useful fortentially scheduled in the given interval. After the traorsf
dynamic programming. mation, the processing time of the jobs released in any-inter
Our second transformation téne stretching. We add v is a small multiple of the length of the interval. Though
small amounts of idle time spread throughout the schedule.sjmple, this transformation is a key idea. Coupled with time
These additions change completion times only slightly, but stretching it shows that every job can be scheduled within
can be used to “clean up” the schedule. In particular, if ajob ()(1/¢3) intervals after its release date. Thus, our dynamic

is “large” compared to an interval in which it executes, we program only needs to remember limited history, which re-
can advance itinto the idle time in a later interval whers iti  qyces the state space.

small. This lets us assume that most jobs are small. Small

jobs are a lot like fractional jobs, and fractional problem  When multiple machines are present the above transfor-

solutions are often easier to find. mations can still be applied. However several other aspects
A careful application of these first two techniques en- become complex and we defer the details till Section 4.



1.4 History of thisWork and Overview of Paper optimal schedule.
The properties we prove in this section pertain to the case

As mentioned above, the design of algorithms to mini- of single or identical parallel machines, but the ideas will
mize average completion time has been a very active aregpe used in modified or generalized form for unrelated ma-
of research over the last five years. However, prior to chines as well.
this work, no PTAS existed for any problem with release
dates; the design of a PTAS for the simplest such prob-2.1 Geometric Rounding
lem, 1|7;| > C;, was a natural next question. No fewer
than five groups of authors (Afrati, Bampis, Kenyon and  Our first simplification creates a well-structured set of
Milis; Chekuri and Khanna; Karger and Stein; Queyranne possible processing times and release dates.
and Sviridenko; Skutella) independently discovered a PTAS
for the problemt|r; | >~ C;. All five groups used the natu-
ral idea of geometric rounding, but with variations that are
more or less amenable to generalizations such as handlingproof Sketch. We round up in two steps. First multiply ev-
weights, preemption, and multiple machines. In Section 3 ery release date and processing time bye; this increases
we present the algorithm due to Karger and Stein, which is the objective by the same amount (we are simply changing
by far the simplest but unfortunately cannot be extended totime units). Therdecreaseeach date and time to the next
handle job weights. lowerinteger power ofl + € (which is still greater than the

In Section 4 we present the most general algorithm, original value). This can only improve things. O
due to Chekuri and Khanna. It handles an arbitrary num-

ber of identical machines, with release dates, job weights, For an arbitrary integer, we defineR, := (1 + €)®.
and with or without preemption, i.eP|r;| > w;C; and  As a result of Lemma 2.1 we can assume that all release
Plr;, pmtn| Y w;C;. dates are of the fornk, for some integer:. We partition

In Section 5 we present PTASs for a fixed num- the time interval(0, c0) into disjoint intervals of the form
ber of unrelated machines, Rm|r;|) w;C; and I, .= [R;,R,+1) (Lemma 2.2 below ensures that no jobs
Rm|r;,pmtn| > w;C;.  Skutella obtained the first are released at time 0). We will ugg to refer to both the
PTAS for the problemRm|r;|>  C; (no weights), and interval and the siz¢R,.; — R,) of the interval. We will
Afrati et al. obtained the first PTAS for the problem often use the fact thdt, = eR,, i. ., the length of an inter-
Rm|| Y w;C; (no release dates), but here we present theval ise times its start time.
general algorithm due to Chekuri and Khanna, which builds
upon the ideas used in Section 4. 2.2 Largeand Small Jobs

Lemma 2.1 With 1 + € loss, we can assume that all pro-
cessing times and release dates are integer powerstof.

2. Preliminaries In all of our algorithms, jobs that are much smaller than
the interval in which they run are essentially negligiblelan

In this section we discuss some general techniques ancfasy to deal with. ‘The difficulty comes from jobs that are

lemmas that apply throughout our paper. We aim to trans- arge—taking up a substantial portion of the inFervaI. Our
form any input into one with simple structure. This will notion of small versus large changes from algorithm to algo-

help for efficient enumeration and dynamic programming .r|t.hm..We. say that ajo.b |smaII_W|th respe(_:t to an mterval
techniques. if its size is less thanm (in the single-machine case}, (in

Our approach is to sequence several transformations oithe paraliel case), af (in the unrelated case) times the size

the input problem. Some transformations are actual changeé”c the Lntel;_\;al V_\llh?re |t.runs. Itis useful to show that jobs

to simplify the input, while others are applied as thought are not arbitrarily farge-

experiments to the optimum solution to prove there is a | gmma 2.2 With 1 + ¢ loss, we can enforce; > ep; for

near-optimum solution with nice structure. Each transfor- || jobs ;.

mation potentially increases the objective function vddye . o

1 + O(e), so we can perform a constant number of them Proof Sketch. Multiply every completiortime by1 + ¢ and

while still staying withinl + O(e) of the original optimum. ~ increase start times to match (without changing job sizes).

When we describe such a transformation, we shall say itltis easy to verify that this gives a feasible schedule. if jo

produced + O(e) loss j completed at time > p; then it now completes at time
To simplify notation we will assume throughout the pa- (1 + €)¢ and therefore does not start until tiree> ep;.

per thatl /¢ is integral (and in particular that< 1/4). We It follows that we can increase release dates to enforce

useC; andS; to denote the completion and start time re- 7j = €p;, and still have 41 + ¢)-optimal schedule. O

spectively of jobj, opTto denote the objective value of the



2.3 Crossing Jobs

While most jobs run completely inside one interval,
some jobsrossover multiple intervals, creating complex-
ity we would like to avoid. The next two lemmas simplify

1. Run SPT until at mosf? jobs are left; during the run
assume that each jghis released at timmax{r;, %},
and that time has been stretched kit a 3¢)-factor.

2. Enumerate all orderings of the remaining jobs to find
the best one.

this problem: we can assume that no job crosses too many
intervals, and we can assume there are no small crossing The running time of this algorithm ©(nlogn) (to sort

jobs at all.

Lemma 2.3 Each job crosses atmost= [log, . (1+1)]
intervals.

Proof Sketch. Suppose jobj starts in intervall, =
[Rs, Ryt1). SinceR, > r; > ep; (Lemma 2.2), we have
I, = €R, > €’p;. Thes intervals followingz sum in size
to I, /€ > pj. O

To prove the second lemma, we make first uséirogé-
stretching a technique mentioned in the Introduction that

the jobs for SPT) plug3/e")!. A tighter analysis of the first
part (and corresponding change in the threshold for end-
ing SPT) can improve the enumeration timelt®!. A
more careful enumeration technique improves the enumer-
ation time to20(1/¢").

In the remainder of this section, we prove that the algo-
rithm yields al + ¢ approximation to the optimum. For this
section we say that a joprunning in intervall,, is smallif
p;j < el,, and large otherwise. We motivate our algorithm
with the following simple lemma.

Lemma 3.1 If in the optimum schedule all jobs are small,

is used often in subsequent sections. We describe the techthen the above algorithm gives @ + ¢) times optimum

nigue in some detail in this first use of it; later, similaress
will be abbreviated due to space limitations.

Lemma 2.4 With 1 + ¢ loss we restrict attention to sched-
ules in which no small job crosses an interval.

solution.

Proof. Consider the optimum schedule. The fact that all
jobs are small means that jgbrunning in intervall, sat-
isfiesS; > R, = I,/e > p;/€*. Thus increasing release
dates as in the algorithm does not change the feasibility (an

Proof. Suppose we increase the size of each of our geometOptimality) of the optimum schedule. With these new re-

rically increasing time intervals b+ ¢. We can move jobs

lease dates, consider theeemptiveversion of the problem,

with the increase so that they continue to execute in or crosswvhich can be solved optimally using the shortesnain-

the same intervals. This stretching of intervals increttses
completion time of each job by at most & ¢ factor, so the
increase in objective value is bounded by the same factor.
At most one jobj can cross out of any given interval
I,,; suppose it is small (size at mast,). Since at most,,
units of work are processed in intervigl, the expansion of
the interval createsl,. units of empty space in the interval.

ing processing time first (SRPT) rule (this algorithm runs
like SPT, but may preempt a running job when a shorter job
than it is released). This solution’s objective value iadie

no more than the non-preemptive optimum. To convert this
solution into a non-preemptive schedule, note that preemp-
tions only happen at release dates, which occur at the ends
of intervals. For an interval,, whichever job (if any) is

The newly created empty space can be used to completelpreempted at the end @f is small inZ,, (since it is small

process joly, so it need no longer cross the interval. Thus
we have given d + ¢ times optimal schedule with no small
crossing jobs. m|

3. Scheduling on a single machine with unit
weights

In this section we present a very simple and easy to an-
alyze approximation scheme for the problém; | > C;.

when released). Thus, by stretching each interval by-a&
factor, we add an extral, space, which is enough to let
that job complete without being preempted.

Stretching the intervals only increased completion times,
and thus the objective, by at most & ¢ factor, giving us a
non-preemptive schedule that is within- e of the optimum
preemptive schedule, and thus witHir- € of the optimum
non-preemptive schedule. O

Our only problem, then, is that the optimum schedule
may require some jobs to run when they are large. We use

In the end of the section, we sketch how a somewhat moretime stretching to modify the optimum schedule to make

involved analysis can lead to a better dependence on
Recall that SPT as the algorithm that repeatedly chooses

most of these large jobs small, and apply enumeration to
the remaining few large jobs. This essentially lets us reduc

among all jobs that have been released but not processedp the case covered by the previous lemma. For a given

the one with the smallest processing time and runs this job
to completion. Our PTAS is as follows:

instance of this problem, lePT be the value of the opti-
mal schedule. Clearly, at moeéI jobs can complete after



athresholdtime ¢t := ¢’0oPT. We now show that all large  we advance jobs ends at time Thus the total completion
jobs that run before timein the optimum solution can be time of the advanced jobs is
delayed until they are small with on[yt + ¢) loss.

Ou_r proof uses time-stretching h_ea\{ily. We vyill expand Z 1 (1+e)R, < t Z 1/(1+€)f
each interval by 4+ O(¢) factor, adding idle time into each Roet € et € =
interval. This idle time will provide room for jobs that were ¢ (I ey
large in their optimally scheduled interval to advance to an = —
interval where they are small.

e €
= ¢-0PT(1+¢)* < 2¢0PT
Lemma3.2 There exists g1 + 3e)—optimal schedule in

which, for each joby, S; > min{Z%, ¢}. as desired. Since we stretched by a e-factor and then

added an addition&e - OPT cost, the resulting schedule is

Note thatS; > p;/e? means that jolj is small when it (1 + 3¢)-optimal. =
runs.

Proof. Consider an optimal schedule and:¢§) be the in- We combine the previous two lemmas to bound the per-

dex of the interval in which jolj starts. Since small jobs formance of our algorithm. Consider the input modified as
havep; < el = €Ry; < €S;, they satisfy the in Lemma 3.2. Its optimum schedule has large jobs only af-
Iemmaj' the Iazr(g;()a jobs h(g'.c)g/{/)evgr maj); not. We will show t€r timet. We now argue as in Lemma 3.1 that all the small

that we can move the large jobs later, so that the resultingloPS ¢an be rescheduled to run in SPT order Withe loss.
schedule is both feasible aftl+ 3¢) optimal. To see this, fix the large jobs in place and reorder all the

To deal with the large jobs, move each large job that smaII_jobs ar(_)und them u_sing_ SRP_T. This schedule is pre-
starts before forward fork := [log, , 17 intervals. For emp_t|vely opt|mal (SRPT is still optimal in the presence qf
any jobj, leta'(j) = z(j) + k ande'. be the new starting the fixed large jobs) and can be made non-preemptive with

time of jobj. Then 1+ eloss.
g In sum, by manipulating the release dates we lose at most

r; R 5 5o a factor(1 + 3¢) before timet; by the argument above, we
Pi < S = SRy S €S (1) mightloose anothefl + ¢) factor due to the SPT rule. As a
result, there can be at madt+ €)(1 + 3¢) & < 5 jobs left
and the condition of the lemma is fulfilled—jgtis small. at timet = 0OPT, thus the first step ends before timas

Of course we need to make room for the jobs moved for- required to apply Lemma 3.2. In the second step we have at
ward to run in their new locations. To do so, increase the most-% jobs remaining; hence we can simply enumerate all
size of every interval by &+ e factor. There are at mosfe possible orderings and take the smallest one. Thus we have
large jobs that landed in interva)., since each one origi-  shown the following
nated in interval,,_;, and hadp; > el _j. Each, by (1),
hasp; < €’R,» = €’I,,. Therefore, the total processing Theorem 3.3 We can find a(1 + €)-optimal solution to
time of these jobs is at most,, and all these jobs can fit  1|r;| Y C;in O(nlogn + 2!) time.
into the extraI,. space created by stretching the interval.

One thing can go wrong: intervdl. might be entirely By a more involved analysis, a better dependence on
covered by a crossing joly preventing us from inserting is possible. First, we notice that while there can be at most
the extra I, units of space. However, we can instead place 1/¢ large jobs in each interval, at most one of these is a
this extra space (and all the jobs that want to land in it) crossing job. We can bound the sum of the sizes of all the
immediatelybeforec. This does notincrease the completion non-crossing large jobs by the size of the interval; this al-
time of any job. By Lemma 2.3, we know thatrosses at  lows us to move them forward 0n5¢ intervals. Second, for
mosts = log, . (1/¢) intervals, so our new space “backs the large crossing jobs, we can try to move them forward by
up” by at mosts intervals to an interval,, > el,/. Since the minimum amount necessary to make them small. This

the jobs that wanted to land iR, had size at mos#?I,., may result in too many jobs arriving in any one interval,

they will have size at mostl,, and will therefore be small  however, by scheduling them in SPT order, we can achieve

in the interval where they run. better bounds (based on a potential function). Using both
It remains to bound the cost of the new solution. Expand- these ideas lets us continue running SPT until anfy’

ing the schedule by+e¢ increased all costs by+e. Now we jobs remain. This improves the running timecto’!.

need only bound the added cost of the large jobs we moved We can also improve the time cost of the enumeration

forward. Jobs advancing from, end up in intervall, ., step. After timet, there are only)(log, | . 1/¢) time inter-

with completion time at Mok, 11 = (1+¢)R, /e, and vals where jobs can run and or)(log, , . 1/¢) distinct job
there are at mosit/e of them. The last interval from which  sizes that are large enough to be hard to schedule. Instead of



enumerating all possible orderings we can simply enumer-1’ so that the total size of the small and large jobs released
ate over how many jobs of each size are executed in eachat any release datg, is O(ml,). This lemma plays an
interval. This improves the time of the enumeration step to important role in our implementation of the dynamic pro-
90(1/¢%) gramming framework since it allows us to represent com-
pactly information about unfinished jobs as we move from

4. Scheduling on identical parallel machines one block to the next.

Lemma4.2 An instance ofP |r; | > w;C; can be modi-

In this section we sketch an approximation scheme fied with1 + O(e) loss to an instancé’ such that the fol-
for the scheduling problemsP|r;|) w;C; and lowing conditions hold.

P|rj, pmtn| ) w;C;.  The approximation schemes

presented here contain our central ideas for the paraltel an  ® p(1}) < 2ml, forall z.

weighted case; in the next section, we build on the_ |de§s « The number of distinct job sizes i, is at most|1 +

and techniques presented here to develop approximation Alo 1]

schemes for models with a constant number of unrelated Blte el

parallel machines. Our approach is based on dividing the e The number of jobs of each distinct sizefiH} is at

time horizon into a sequence of blocks, each containing a mostZ%.

constant number of intervals dates, and then using dynamic

programming over the blocks. There are three main ideasProof. Consider the input instande The total processing

needed to make this approach work. First, we show thattime available in interval,, is mI,. Order the small jobs in

there exists 41 + ¢)-approximate schedule such that any 7, by non-decreasing ratlo@ and pick jobs according to

two consecutive blocks interact with each other in only this order until the processmg time of jobs picked just ex-
o) different ways. Second, we show that there exists a ceedsnI,. Picking jobs according to this order is justified

(1 + ¢)-approximate schedule such that one can represenby Lemma 4.1. The remaining jobs, which are released at

compactlyat each block the information about jobs that R, but cannot be processed Ip, can safely be moved to

were released earlier and have not been yet completedthe next release dafe, ;.

Finally, we show that there exists(a + ¢)-approximate For each joly in H,, Lemma 2.2 yield€?, > ep;. On

procedure for scheduling jobs within a block, subject the other hand, sincgis large we gep; > €I, = €3R,.

to constraints specifying interactions between the block Since all job sizes are powersb#¢, the number of distinct

and its neighboring blocks. Put together, these elementgob sizes inH, is as claimed. Within a particular size we

give us our approximation scheme. We start with the can order jobs by non-increasing weights. The number of

non-preemptive case and then sketch in Subsection 4.5 théobs of each size class that can be executed in the current

modifications needed for the preemptive case. interval is limited toe’géz = 3. |

4.1. Thestructure of parallel schedules
4.2. Thedynamic programming framewor k

Lemma4.1 Consider an instance of |r; | > w;C; or

P|rj, pmtn| ) w;C; with two small jobsj and k such We now present an overview of our dynamic program-
that r; < 4 and ”( < pk. There exists g1 + ¢)— ming framework. The implementation of this framework
approximate schedule in Wh'm < Sy, for all such pairs for the parallel machine case requires additional ideas, pr
of jobs and no small job is ever preempted. sented in Subsections 4.3 and 4.4. However, as we sketch

at the end of this subsection, an approximation scheme for
Proof Sketch. As in Lemma 3.1, we can consider expand- 1|r;|>" w;C; immediately follows from our framework.

ing time by1 + e and running the small jobs (without pre- The basic idea is to decompose the time horizon into a
empting) using Smith’s rule. a sequence dblocks A block is a set of = [log, . (1+ %)]
consecutive intervals. Ldfy, By, ..., B, be the partition

As aresult of Lemma 4.1 we can order all small jobs re- of the time interva[min; r;, D) into blocks whereD is an
leased af?, according to their ra'ue”— and consider them  upper bound on the schedule makespan (we can béund
for scheduling only in that order. LQL andH, denotethe  crudely by(}; p; + max; r;)). Our goal is to do dynamic
small and large jobs released it (1" for tiny and H for programming with blocks as units. There is interaction be-
huge). Note that in this section small meanssaffraction tween blocks since jobs from an earlier block can cross into
of the interval. Letp(S) denote the sum of the processing the current block. However by the choice of the block size
times of the jobs in sef. The next lemma says that any in- and Lemma 2.3, no job crosses an entire block. In other
putinstancd can be modified with + € loss to an instance ~ words jobs that start it8; finish either inB; or B;;. A



frontier describes the potential ways that jobs in one block assume that all work finishes withifi(s) intervals of its

finish in the next. An incoming frontier for a blodk; spec- release. This means that we can explicitly maintain a list of
ifies for each machine the time at which the crossing job large jobs that remain to be scheduled as we move from one
from B;_; finishes on that machine. block to the next.

To maintain information about small jobs, we use the fact
Lemma4.3 There exists g1 + ¢)-approximate schedule  that the small jobs arriving at any given release date are ex-
which considers onlym + 1)*/ feasible frontiers between  ecuted in the order specified by Smith’s ratio rule. We par-
any two blocks. tition this orderedlist into O(1/€?) pieces of roughly equal
size and show that time stretching lets us schedule an inte-
gral number of these pieces in each block. Thus information
can be compactly maintained for small jobs as well. Finally,

Proof. By Lemma 2.4 we can restrict attention to sched-
ules in which small jobs never cross an interval. Each block

consists of a fixed _numbef of inte_rva!s. Fix an optimal 14 procedure for computin@ (i, i, F», V) is trivial for a
schedule and consider any machine in a biBgkA large gingle machine; simply try all possible ways of scheduling
jobj gontmumg from the pre(_:edmg block finishes in one of o large jobs iV’ (there are only)(1/¢*) large jobs to be
the s intervals of blockB; which we denote by..(;). We  cgnsjdered), and place the small jobsvinin accordance
can round up’; to € whereC = Ry(j) + i - ely(j) for — \ith smith's ratio rule. However, as we see in the next two

some integed < i < ¢ — L. This will increase the schedule  sypsections, both these steps require significant addlition
value by only al + € factor. Thus we can restrict the com- jgeas for the parallel machine case.

pletion times of crossing jobs t§ discrete time instants.

Each machine realizes one of these possibilities. A fron- 4.3 Compact representation of job subsets
tier can thus be described as a tupte,, ..., m,,.) where

my; IS the n_umber (_)f mgchines with crossing jobs finishing  The difficult part in the dynamic programming is to show
at thei'" discrete time instant. Therefore there are at most ihat it is sufficient to maintain information in the table for
(m + 1)*/< frontiers to consider. O only a few (polynomial) subsets of jobs. Recall that
) ) andT, denote the large and small jobs release at Let

Let 7 denote the possible set of frontiers between x - andy,. denote the set of small and large jobs released
blocks. The high level idea behind the dynamic program- R, that are scheduled in blod. LetU,; andV,; de-
ming is now easy to describe. The dynamic programming note the set of small and big jobs among jobs releas&d at
table entryO(i, F, U) stores the minimum weighted com- 4t remainafter block B;. Our goal is to show that there
pletion time achievable by starting the $€0f jobs before gyt (1 1 ¢)—approximate schedules with compact represen-
the end of blockB; while leaving a frontier off” € F for  taions for these sets. Létz) denote the block containing
blockB;1. Given all the table entries for somghe values 0 intervall, .

fori + 1 can be computed as follows. LBE(i, F1, F», V') We start with small jobs. Recall that we ordered the set
be the minimum weighted completion time achievable by 1 ysing Smith's ratio rule. The lemma below shows that
scheduling the set of jolis in block B;, with £ as the in- gach plock; has enough space to execute a constant frac-

coming frontier from block3;_, and > the outgoing fron- o, of small jobs released at each of the release dates in the
tier to blockB; 1. We obtain the following equation. preceding block®, , ..., Bi 1.

O(i+1,F,U) = F,G@i‘l}cU(O(iy F\,V)+W(i+1,F,F,U-V))  Lemma4.4 Thereis a1+ 2¢)-approximate schedule such
’ that for each release dat®, and each > b(x), either

There are two difficulties in implementing the dynamic pro- .

gramming. First, we cannot maintain the table entries for ® P(Xei) > €ml,, o

each possible subset ofjpbs in polynomial _time. Therefore p(Xui) < €2ml, andp(X,;) = 0 forall k > i.

we need to show the existence of approximate schedules

that have compact representations for the set of subsets oProof. Consider an optimal schedule that does not sat-

jobs remaining after each block. Second, we need a proceisfy the properties of the lemma. Fix a release dRie

dure that computes the quantiy (i, Fi, F», V). The next for which the conditions of the lemma are violated. Let

two subsections describe how to achieve these two objec+ be the smallest index such thatX ) < ¢>mlI, and let

tives. However, at this point, we can already sketch an ap-I be the smallest index greater tharwith p(X,;) > 0.

proximation scheme for | r; | > w,; C;. We simply move jobs fromX,,; to block By until either
By Lemma 4.2 we know that the processing time of all e?ml, < p(X.,) < €*ml, + €’ I,, orp(X.,) = 0. This
the jobs released at any release d&teis O(I,). If we is possible since jobs iX,; are small. We repeat the pro-

stretch our intervals by + €, we create enough idle space cedure until the conditions of the lemma are satisfied for
in interval I, o(,) to execute all this work. Thus we can R,.



Itis clear that the procedure terminates. The processing

time of the new jobs assigned to a block frdh cannot
be more thar?mI,. We apply a similar transformation for
eachR,. A simple volume summation argument shows that

Z e2ml$ < emly,
z:b(z)<i

)

wherel, is the first interval in block3;. Now we have for

e Fori = b(x),...,b(z) + 2, V,; is specified by{1 +
4log, .. 1| integers each in the rangé Z%|.

o Fori > b(z) + 2, V,, is specified by 1 + 4log; | %]
integers each in the rang %|.

We summarize our considerations and results of this sub-
section in the following lemma.

Lemma4.5 There is a(l + e)—approximate schedul§

each block a set of new jobs that are assigned to it from latersuch that for each block; the following is true:

blocks but have not been scheduled. We schedule these as

follows. In blockB; on machinel; let ¢; be the first time
atwhich a job can be started. Note thaéxists since no job
spans a block. We create a spac@«f, at the point; by

pushing forward the previously scheduled job. We use this
space to greedily fill the new jobs assigned to each block.

o There arek = (2)001/<) setsG!,...,G¥ that can
be constructed in polynomial time, and

e (5;, the set of jobs remaining ifi after blocks;, is one
of {G},...,GF}.

This is possible by (2). The new jobs have their completion 4.4. Scheduling jobswithin a block

time reduced and the old jobs have their completion time

increased by at mostla+ 2¢ factor. a

Using the same idea as in the proof of Lemma 4.4, we relaxation.

can partition the ordered s&} into O(Z) sets such that in

We now describe how to computd’ (i, Fy, F», V).
Since this is itself an NP-hard problem we settle for a
A1l + e decision procedure for computing
W (i, F1, F», V) outputs a schedule that is within+ € of

every block, an integral number of these sets is scheduledV (i, F1, F», V') and shifts the frontieF, by at mosta +

Thus we can captur&,; for i > b(x) by specifying the

factor. Clearly such a procedure suffices in order to com-

number of these sets that have been scheduled. Observe thatite a(1 + O(¢e))—optimal solution to the dynamic program

this is only a constant amount of information. We however
did not deal with the case éf= b(z). We again use the idea
in the proof of Lemma 4.4 but now we can only show that
p(Xzi) > min{p(T,),€*1,} for i = b(z). This involves
scheduling small jobs at the end of the frontier of bldtk

in particular right after the crossing job with the smallest
finish time among all crossing jobs. This violates our earlie
property that jobs inX,; start inB;. We treat these jobs as

given above. We now describelat e decision procedure
that runs in polynomial time for each fixed

We partition the job sel’ into small and large as before.
Our objective is to enumerate over all potential schedules o
large jobs. In particular, we restrict ourselves to schesiul
where, in each interval,, a large job starts only at one of
the & times specified byz, +ie*I,, fori = 0,..., & — 1.
Furthermore, in our enumeration of large job schedules we

a special case and for simplicity of presentation we ignore will only specify the sizes and the start times of the large
the full details in this extended abstract. To summarize, wejobs scheduled. This is sufficient information to recondtru

can specifyU,; by an integer irf0, }2] fori > b(z) and by
an integer in0, %] for i = b(x).

We now turn our attention to big jobs. By Lemma 4.2,
there areD(* log £) distinct size classes iff,. We order

their schedule: whenever we have two jobs of same size
available, we always schedule the one with the larger weight
first. With these restrictions, the schedule of large jobaon
machine within a block is completely determined by three

jobs of the same size by decreasing weights. It is easy tothings: its incoming frontier, its outgoing frontier, arfuet

see that jobs i, can be treated as small jobs from block
By(z)43 on. Fori = b(x),b(z) + 1,b(z) + 2, we spec-
ify the setY; by explicitly listing the number of jobs from
each size class df,. From Lemma 4.2 itis easy to see that
there are onlyn®(!) distinct possibilities. Foi > b(z) + 2,

we treat jobs inH, as small. Using ideas similar to those

sizes of jobs started at each of the discrete time units in
each of thes intervals. By arguments similar to those in
the previous section, the number of different possibditse

k = 200/¢) Thus the configurations of all machines is
from one of(m + 1)* possibilities. Out of these we con-
sider only those that are compatible with the incoming and

in Lemma 4.4, it suffices to use only a coarse precision of outgoing frontiersF; and F5> and have a feasible schedule
O(1). However, for ease of exposition, we maintain sepa- for the large jobs ifi’. Both conditions can be checked in a

rate information for each different size classif.
In summary, for a bloclB; the setd/,,; andV,; such that
b(z) > i — % are specified by:

e U, is specified by an integer ifo, %] for i > b(z)
and by an integer if0, ] fori = b(x).

straightforward way. We schedule the small jobs in a greedy
fashion in the spaces left by the large jobs. We move all the
large jobs that start and finish in an interval to the end of
the interval. We enlarge each of the spaces ly+ae fac-

tor to accommodate all the small jobs. Thus we have the
following lemma.



Lemma4.6 There is al + € decision procedure to com- The following observation is crucial to dealing with un-

pute W (i, Fy, F», V) that runs in time(m + k)* where related machines. One would like to claim that, in an op-

k= 20(1/¢%) timal schedule, each jopwill be processed on a machine

o on which it does not take much more processing time than

We remark that _the running time of the_ procedure can p;, i.e. thatp,j); = Ocm(p;). Although this is true in

be improved by doing dynamic programming between in- the preemptive case or when there are no release dates,

tervals of the block instead of brute force enumeration of it is not true for instances oRm |r; | w;C;. For ex-

all Iarge JOb schedules. The improved running time will be amp|e, consider the 2-machine case. Take one ]Ob with

mPo¥(1/9) However in interests of space we omit the de- ;- = 0w, = 1,p;; = 4 andps; = oo, and another job

tails and give our main result. with 7y = 2,ws = 1, p12 = 0 andps2 = 1. Here machine
. 2 is extremely slow for job 2, and yet it is appropriate to
-Cr:r?(sjtrre'ztg]a-rlhere IS aa T;Ai;?ﬁ | Trjl' |t'2r':n1:60j that ¢ chedule job 2 on machine 2 instead of waiting for machine
1 poly(?/e) ( Jlr €)-approximation in (m + 1 to become available. The typical such situation is when,
) ~n+nlogn). at the release date of a job, all its fast machines are busy

The number of potential blocks for the dynamic pro- Processing different large jobs; however then as soon as a
gramming isO(log D) whereD is an upper bound on the ~fast machine becomes available after the release date of a

schedule makespan. However there are 6Hly/*) inter- job, there is no more need to process it on a slow machine.
esting blocks since each jgtfinishes byr; /€. We capture this in the following lemma. _ _

We change the notion of small and large jobs slightly
4.5. Scheduling with preemption to adapt to this setting: here a jghis said to besmall if

pj < grj, otherwise it idarge.

In the preemptive case, several computational aspects of amyma 5.1 For instances ofim |r; | 32 w;C;, there ex-

the preceding algorithm can be simplified, leading t0 an ap-sts a(1 + ¢)-approximate schedule such that, for each job
proximation scheme with a better running time. Specif- j, eitherp,j); < Zp; or Cj < r;/e.

ically, since large jobs can be executed fractionally, we

do not need to keep track of the frontier formed by the Proof Sketch. Given a schedulé, let j be a job whose
Crossing jobs_ Moreover’ we can do dynamic program- fastest machine is maChilil,dDUt which is scheduled on ma-
ming directly with intervals instead of blocks and an ap- chinel; if j violates the conditions of the lemma, then we
proximate schedule can be specified by the fractions of jobsfemovej from machiné and place it on machingright be-
that are processed in any interval. This significantly re- fore the first job on whose completion time is greater than
duces the amount of enumeration needed in the dynamicCj; this creates a delay on machinef up tor; + p;, which
programming. For instance, since there are no release dateis negligible. One can check that when this is done for ev-
within an interval, we can use McNaughton's wrap around €ry job ofS which violates the conditions of the lemma, the

rule [17] to compute a preemptive schedule with optimal delays incurred by any job do not excee@eC. 0
makespan i (n) time. Thus if we knew the job fragments ) .
that execute within an interval, they can be efficiently sehe ~ We note that the special cagg;); > “*p; only occurs

uled. We omit here the various technical details involved When, at time; = R, job j's fastest machine is busy pro-
and summarize below the running time of our approxima- €€ssing a very large job, whose processing time spans all of

tion scheme. the intervall, and beyond. Thus, if we know the schedule
of the large jobs, we can, for each small job, replacby

Theorem 4.8 There is a PTAS foP |r;, pmtn | w;C; min{p;;|machinei is not busy at time; with a large job

that constructs a (1 + e)—approximation in time  spanningall off,}. Although we do not know ahead of

O(2row(/9) .y + nlogn). time the schedule of the large jobs, the dynamic program
will perform these updates dynamically.

5. Scheduling on a constant number of unre- For simplicity, in the remainder of this section

we only discuss the problem&m| |> w;C; and
Rm |7, pmtn| ) w;Cj, forwhichp,;); < m/ep;. Thus

. we can sep;; = oo whenevemp;; > Zp;. Now, define the
We now treat the unrelated parallel machine case where bij Pij > °CPj

job j has processing time,; on machine. It is easy to see execution profilef a jobj to be anm-tuple< iy,...,i,, >
J : —m. . 2 i
that Lemma 2.1 still applies and that Lemma 2.2 applies if §UCh tha@” p; - (1+¢€)™. We adopt the convention that
. . . k= 00 if Pij = 0.
we now definep; := min; p;;. We refer top; as thesize
of job j. Moreover, we use the notatiait;) to denote the  Corollary 5.2 The number of distinct profiles is bounded

machine to which jolj is assigned. byl :=[2+log . 2 ]™.

lated machines



Let T..(¢t) and H,(t) denote the set of small and large
jobs released aR, with profile t. The next lemma is an
adaptation of Lemma 4.2 to the unrelated machine case.

Lemma 5.3 The input instancé can be modified to an in-
stancel” with opT(I"') < (1 + €)oPT(I) such that the fol-
lowing conditions hold.

e For every profilet, we havep(T)(t)) < 2ml1,.

e For every profilet, the number of distinct job sizes in
H,(t) is at most[1 + log, , . 7% |. The number of jobs
of each distinct size is at mogt ).

We can now pursue an approach similar to that in Sec-
tion 4. Thus, we do dynamic programming over the blocks,
keeping track of incoming and outgoing frontiers, enumer-
ate the schedules of large jobs in each block, and fill in the
block with small jobs for each profile. However another
difficulty of unrelated machines is that we cannot schedule
small jobs greedily by Smith’s rule, since Lemma 4.1 no
longer applies. Instead, we use LP techniques, more pre
cisely use the result of Shmoys and Tardos [23] for the gen-
eralized assignment problem.

Notice that the amount of information that has to be
maintained is multiplied by a factor of roughfysince we
have to treat jobs with distinct profiles separately. We omit
the details and claim the following:

Theorem 5.4 There is a PTAS for the problem
Rm|rj|> w;C;. For instances ofRm| |> w;C;
and Rm |r;, pmitn|) w;C; there is a PTAS that con-
structs a (1 + e)—approximation in timeO(nlogn) for
each fixed andm.

Remark. When there are no release dates, i.e. in the case

Rm| | > w;Cj, it is possible to take a slightly different
approach to obtain a PTAS, based on ra%ésinstead of
time. One can then use ratio-stretching and ratio-rounding
to prove a variant of the preliminary Lemma 2.1 and sim-
plify the input jobs. From this viewpoint, the profile of a job
is just them-tuple of its ratios on the: machines. The main

simplification in the absence of release dates is that on each

machine, Smith’s ratio rule applies. To bound the number of
jobs of each profile, it is possible to merge jobs with identi-
cal profiles when their processing time is very short, which
further simplifies the input (and altogether gets rid of the
“small jobs” issue). Moreover, a variant of Lemma 5.1 also
implies a bound on the number of profiles with the same
minimum ratio, so that, if one defines intervals on the ratio

scale, there are only a constant number of jobs in each inter-

val. To complete the dynamic program, all that remainsis to
show that each interval only needs to interact with a neigh-
boring block of intervals. This is done by showing, via an
elementary calculation, that if two jobs have very diffdren

ratios, then, even if they are scheduled on the same machine,
the earlier job will only have a marginal effect on the later
job’s completion time (an observation which is perhaps of
independent interest). It is then easy to perform dynamic
programming on the ratio scale.

Because the above approach does not have to deal with
the placement of many small jobs and appeal to LP tech-
nigues, it leads to a slightly simpler algorithm for the prob
lem Rm| | > w;C;; unfortunately this approach breaks
down completely when jobs have release dates.
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