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Formally, a network is modeled as a graph G, each of whose edges e is pre-sumed to fail (disappear) with some probability pe and thus to survive withprobability qe = 1� pe. Network reliability problems are concerned with deter-mining the probabilities of certain connectivity-related events in this network.The most basic question of all-terminal network reliability is determining theprobability that the network stays connected. Others include determining theprobability that two particular nodes stay connected (two-terminal reliability),and so on.Most such problems, including the two just mentioned, are ]P-complete [25,24]. That is, they are universal for a complexity class at least as intractable asNP and therefore seem unlikely to have polynomial time solutions. Attentiontherefore turned to approximation algorithms. Provan and Ball [24] proved thatit is ]P-complete even to approximate the reliability of a network to within arelative error of �. However, they posited that the approximation parameter � ispart of the input, and used an exponentially small � (which can be representedin O(n) input bits) to prove their claim. They note at the end of their articlethat \a seemingly more di�cult unsolved problem involves the case where � isconstant, i.e. is not allowed to vary as part of the input list."Their idea is formalized in the de�nition of a polynomial approximationscheme (PAS). In this de�nition, the performance measure is the running timeof the approximation algorithm as a function of the problem size n and theerror parameter �, and the goal is for a running time that is polynomial in nfor each �xed � (e.g., 21=�n). If the running time is also polynomial in 1=�,the algorithm is called a fully polynomial approximation scheme (FPAS). Analternative interpretation of an FPAS is that it has a running time polynomialin the input size when � is constrained to be input in unary rather than binarynotation. When randomization is used in an approximation scheme, we referto a polynomial randomized approximation scheme (PRAS) or fully polynomialrandomized approximation scheme (FPRAS). Such algorithms are required toprovide an �-approximation with probability at least 3=4; this probability ofsuccess can be increased signi�cantly (e.g., to 1 � 1=n or even 1 � 1=2n) byrepeating the algorithm a small number of times [23].Deterministic FPASs for nontrivial problems seem to be quite rare. How-ever, FPRASs have been given for several ]P-complete problems such as count-ing maximum matchings in dense graphs [7], measuring the volume of a con-vex polytope [6], and disjunctive normal form (DNF) counting|estimating theprobability that a given DNF formula evaluates to true if the variables are madetrue or false at random [18]. In a plenary talk, Kannan [8] raised the problemof network reliability as an important remaining open problems needing an ap-proximation scheme.1.2 Our ResultsIn this paper, we provide an FPRAS for the all-terminal network reliabilityproblem. Given a failure probability p for the edges, our algorithm, in timepolynomial in n and 1=�, returns a number P that estimates the probability2



FAIL(p) that the graph becomes disconnected. With high probability,1 P isin the range (1 � �)FAIL(p). The algorithm is Monte Carlo, meaning that theapproximation is correct with high probability but that it is not possible to verifyits correctness. It generalizes to the case where the edge failure probabilities aredi�erent, to computing the probability the graph is not k-connected (for any�xed k), and to the more general problem of approximating the Tutte Polynomialfor a large family of graphs. It can also estimate the probability that an Euleriandirected graph remains strongly connected under edge failures. Our algorithmis easy to implement and appears likely to have satisfactory time bounds inpractice [3, 16].Some care must be taken with the notion of approximation because ap-proximations are measured by relative error. We therefore get di�erent resultsdepending on whether we discuss the failure probability FAIL(p) or the relia-bility (probability of remaining connected) REL(p) = 1� FAIL(p). Consider agraph with a very low failure probability, say �. In such a graph, approximatingREL(p) by 1 gives a (1+ �)-approximation to the reliability, but approximatingthe failure probability by 0 gives a very poor (in�nite) approximation ratio forFAIL(p). Thus, the failure probability is the harder quantity to approximatewell. On the other hand, in a very unreliable graph, FAIL(p) becomes easyto approximate (by 1) while REL(p) becomes the challenging quantity. Ouralgorithm is an FPRAS for FAIL(p). This means that in extremely unreliablegraphs, it cannot approximate REL(p). However, it does solve the harder ap-proximation problem on reliable graphs, which are clearly the ones likely to beencountered in practice.The basic approach of our FPRAS is to consider two cases. When FAIL(p)is large, it can be estimated via direct Monte Carlo simulation of random edgefailures. We thus focus on the case of small FAIL(p). Note that a graph becomesdisconnected when all edges in some cut fail (a cut is a partition of the verticesinto two groups; its edges are the ones with one endpoint in each group). Themore edges cross a cut, the less likely it is that they will all fail simultaneously.We show that for small FAIL(p), only the smallest graph cuts have any signi�-cant chance of failing. We show that there is only a polynomial number of suchcuts, and that they can be enumerated in polynomial time. We then use a DNFcounting algorithm [17] to estimate the probability that one of these explicitlyenumerated cuts fails, and take this estimate as an estimate of the overall graphfailure probability.After presenting our basic FPRAS for FAIL(p) in Section 2, we present sev-eral extensions of it, all relying on our observation regarding the number ofsmall cuts a graph can have. In Section 3, we give FPRASs for the networkfailure probability when every edge has a di�erent failure probability, for theprobability that an Eulerian directed graph fails to be strongly connected un-der random edge failures, and for the probability that two particular \weaklyconnected" vertices are disconnected by random edge failures. In Section 4, we1The phrase with high probability means that the probability that it does not happen canbe made O(n�d) for any desired constant d by suitable choice of other constants (typicallyhidden in the asymptotic notation). 3



give an FPRAS for the probability that a graph partitions into more than rpieces for any �xed r. In Section 5, we give two deterministic algorithms for all-terminal reliability: a simple heuristic that provably gives good approximationson certain inputs and a deterministic PAS that applies to a somewhat broaderclass of problems. In Section 6, we show that our techniques give an FPRASfor the Tutte Polynomial on almost all graphs.1.3 Related WorkPrevious work gave algorithms for estimating FAIL(p) in certain special cases.Karp and Luby [18] showed how to estimate FAIL(p) in n-vertex planar graphswhen the expected number of edge failures is O(log n). Alon, Frieze, andWelsh [1] showed how to estimate it when the input graph is su�ciently dense(with minimum degree 
(n)). Other special case solutions are discussed in Col-bourn's survey [4]. Lomonosov [21] independently derived some of the resultspresented here.A crucial step in our algorithm is the enumeration of minimum and near-minimum cuts. Dinitz et al. [5] showed how to enumerate (and represent) allminimum cuts. Vazirani and Yannakakis [26] showed how to enumerate near-minimum cuts. Karger and Stein [15] and Karger [11] gave faster cut enu-meration algorithms as well as bounds on the number of cuts that we will useheavily.A preliminary version of this work appeared in [10]. The author's thesis [9]discusses reliability estimation in the context of a general approach to randomsampling in optimization problems involving cuts. In particular, this reliabilitywork relies on some new theorems bounding the number of small cuts in graphs;these theorems have led to other results on applications of random sampling tograph optimization problems [12, 11, 2].2 The Basic FPRASIn this section, we present an FPRAS for FAIL(p). We use two methods, de-pending on the value of FAIL(p).When FAIL(p) is large we estimate it in polynomial time by direct MonteCarlo simulation of edge failures. That is, we randomly cause edge to fail andcheck whether the graph remains connected. Since FAIL(p) is large, a smallnumber of simulations (roughly 1=FAIL(p)) gives enough data to estimate itwell.When FAIL(p) is small, we resort to cut enumeration to estimate it. A graphbecomes disconnected precisely when all of the edges in some cut of the graphfail. By a cut we mean a partition of the graph vertices into two groups. The cutedges are those with one endpoint in each group (we also refer to these edges asthe ones crossing the cut). The value of the cut is the number of edges crossingthe cut. 4



We show that when FAIL(p) is small, only cuts of small value in G have anysigni�cant chance of failing. We observe that there is only a polynomial numberof such cuts and that they can be found in polynomial time. We thereforeestimate FAIL(p) by enumerating the polynomial-size set of small cuts of G andthen estimating the probability that one of them fails.If each edge fails with probability p, then the probability that a k-edge cutfails is pk. Thus, the smaller a cut, the more likely it is to fail. It is thereforenatural to focus attention on the small graph cuts. Throughout this paper, weassume that our graph has minimum cut value c|that is, that the smallest cutin the graph has exactly c edges. Such a graph has a probability of at least pcof becoming disconnected|namely, if the minimum cut fails. That is:Fact 2.1. If each edge of a graph with minimum cut c fails independently withprobability p, then the probability that the graph becomes disconnected is at leastpc. The probability that a cut fails decreases exponentially with the number ofedges in the cut. This would suggest that a graph is most likely to fail at itssmall cuts. We formalize this intuition.De�nition 2.2. An �-minimum cut is a cut with value at most � times theminimum cut value.Below, we show how to choose between the two approaches just discussed.If pc � n�4 then, as we show in Section 2.1, we can estimate it via MonteCarlo simulation. This works because FAIL(p) � pc, so ~O(1=FAIL(p)) = ~O(n4)experiments give us enough data to deduce a good estimate ( ~O(f) denotesO(f logn)). On the other hand, when pc < n�4, we know that a given �-minimum cut fails with probability p�c = n�4�. We show in Section 2.2 thatthere are at most n2� �-minimum cuts. It follows that the probability that any�-minimum cut fails is less than n�2�|that is, exponentially decreasing with �.Thus, for a relatively small �, the probability that a greater than �-minimumcut fails is negligible. Thus (as we show in Section 2.3) we can approximateFAIL(p) by approximating the probability that some less than �-minimum cutfails. Our FPRAS (in Section 2.4) is based on enumerating these small cuts anddetermining the probability that one of them fails.2.1 Monte Carlo SimulationThe most obvious way to estimate FAIL(p) is through Monte Carlo simulations.Given the failure probability p for each edge, we can \simulate" edge failures byipping an appropriately biased random coin for each edge. We can then testwhether the resulting network is connected. If we do this many times, then thefraction of trials in which the network becomes disconnected should intuitivelyprovide a good estimate of FAIL(p). Karp and Luby [18] investigated this ideaformally, and observed (a generalization of) the following.Theorem 2.3. Performing O((log n)=(�2FAIL(p))) trials will give an estimatefor FAIL(p) accurate to within 1� � with high probability.5



Corollary 2.4. If FAIL(p) � pc � n�4, then FAIL(p) can be estimated towithin (1 + �) in ~O(mn4=�2) time using Monte Carlo simulation.The criterion that FAIL(p) not be too small can of course be replaced bya condition that implies it. For example, Alon, Frieze, and Welsh [1] showedthat for any constant p, there is an FPRAS for network reliability in densegraphs (those with minimum degree 
(n)). The reason is that as n grows and premains constant, FAIL(p) is bounded below by a constant on dense graphs andcan therefore be estimated in ~O(n2=�2) time by direct Monte Carlo simulation.The aw of the simulation approach is that it is too slow for small valuesof FAIL(p), namely those less than 1 over a polynomial in n. It is upon thissituation that we focus our attention for the remainder of this section. In thiscase, a huge number of standard simulations would have to be run before weencountered a su�ciently large number of failures to estimate FAIL(p). (Notethat we expect to run 1=FAIL(p) trials before seeing any failures. With nofailures, we have no way to measure a failure probability.) Karp and Luby [18]tackled this situation for various problems, and showed that it could be handledin some cases by biasing the simulation such that occurrences of the event beingestimated became more likely. One of their results was an FPRAS for networkreliability in planar graphs, under the assumption that the failure probability pof edges is O((logn)=n) so that the expected number of edges failing is O(log n).Their algorithm is more intricate than straightforward simulation, and, likeours, relies on identifying a small collection of \important cuts" on which toconcentrate.Another problem where direct Monte Carlo simulation breaks down, and towhich Karp and Luby [18], found a solution, is that of DNF counting: given aboolean formula in disjunctive normal form (an \or" of \and"s), and given foreach variable a probability that it is set to true, estimate the probability thatthe entire formula evaluates to true. Like estimating FAIL(p), this problem ishard when the probability being estimated is very small. Karp and Luby [18]developed an FPRAS for DNF counting using a biased Monte Carlo simulation.The running time was later improved by Karp, Luby, and Madras [17] to yieldthe following.Theorem 2.5. There is an FPRAS for the DNF counting problem that runsin ~O(s=�2) time on any size s formula.We will use the DNF counting algorithm as a subroutine in our FPRAS.2.2 Counting Near-minimum CutsHaving handled the case of pc larger, we now turn to the case of pc small. Weshow that in this case, only the smallest graph cuts have any signi�cant chanceof failure. While it is obvious that cuts with fewer edges are more likely to fail,one might think that there are so many large cuts that overall they are morelikely to fail than the small cuts. However, the following proposition lets usbound the number of large cuts and show this is not the case.6



Theorem 2.6. An undirected graph has less than n2� �-minimum cuts.Remark. Vazirani and Yannakakis [26] gave an incomparable bound on the num-ber of small cuts by rank rather than by value.In this section, we sketch a proof of Theorem 2.6. A detailed proof of thetheorem can be found in [15] and an alternative proof in [11]. Here, we sketchenough detail to allow for some of the extensions we will need later. We prove thetheorem only for unweighted multigraphs (graphs with parallel edges betweenthe same endpoints); the theorem follows for weighted graphs if we replace anyweight w edge by a set of w unweighted parallel edges.2.2.1 ContractionThe proof of the theorem is based on the idea of edge contraction. Given agraph G = (V;W ) and an edge (v; w), we de�ne a contracted graph G=(v; w)with vertex set V 0 = V [ fug � fv; wg for some new vertex u and edge setE0 = E � f(v; w)g [ f(u; x) j (v; x) 2 E or (w; x) 2 Eg:In other words, in the contracted graph, vertices v and w are replaced by asingle vertex u, and all edges originally incident on v or w are replaced byedges incident on u. We also remove self-loops formed by edges parallel to thecontracted edge since they cross no cut in the contracted graph.Fact 2.7. There is a one-to-one correspondence between cuts in G=e and cutsin G that e does not cross. Corresponding cuts have the same value.Proof. Consider a partition (A;B) of the vertices of G=(v; w). The vertex ucorresponding to contracted edge (v; w) is on one side or the other. Replacingu by v and w gives a partition of the vertices of G. The same edges cross thecorresponding partitions.2.2.2 The Contraction AlgorithmWe now use repeated edge contraction in an algorithm that selects a cut fromG. Consider the following Contraction Algorithm. While G has more than 2vertices, choose an edge e uniformly at random and set G  G=e. When thealgorithm terminates, we are left with a two-vertex graph that has a unique cut.A transitive application of Fact 2.7 shows that this cut corresponds to a uniquecut in our original graph; we will say this cut is chosen by the Contraction Al-gorithm. We show that any particular minimum cut is chosen with probabilityat least n�2. Since the choices of di�erent cuts are disjoint events whose prob-abilities add up to one, it will follow that there are at most n2 minimum cuts.We then generalize this argument to �-minimum cuts.Lemma 2.8. The Contraction Algorithm chooses any particular minimum cutwith probability at least n�2. 7



Proof. Each time we contract an edge, we reduce the number of vertices in thegraph by one. Consider the stage in which the graph has r vertices. SupposeG has minimum cut c. It must have minimum degree c, and thus at least rc=2edges. Our particular minimum cut has c edges. Thus a randomly chosen edgeis in the minimum cut with probability at most c=(rc=2) = 2=r. The probabilitythat we never contract a minimum cut edge through all n � 2 contractions isthus at least�1� 2n��1� 2n� 1� � � ��1� 23� = �n� 2n ��n� 3n� 1� � � ��24��13�= (n� 2)(n� 3) � � � (3)(2)(1)n(n� 1)(n� 2) � � � � � � (4)(3)= 2n(n� 1)= �n2��1> n�2:2.2.3 Proof of Theorem 2.6We can extend the approach above to prove Theorem 2.6. We slightly modifythe Contraction Algorithm and lower bound the probability that it chooses aparticular �-minimum cut. With r vertices remaining, the probability we choosean edge from our particular �-minimum cut is at most 2�=r. Let k = d2�e.Suppose we perform random contractions until we have a k-vertex graph. Inthis graph, choose a vertex partition (cut) uniformly at random, so that eachcut is chosen with probability 21�k. It follows that a particular �-minimum cutis chosen with probability(1� 2�n )(1� 2�(n� 1)) � � � (1� 2�k + 1)21�k = (n� 2�)!(k � 2�)! k!n! 21�k= � k2��� n2��21�k> n�2�:Note that for � not a half-integer, we are making use of generalized binomialcoe�cients which may have non-integral arguments. These are discussed byKnuth [19, Sections 1.2.5{6] (cf. Exercise 1.2.6.45). There, the Gamma functionis introduced to extend factorials to real numbers such that �! = �(��1)! for allreal � > 0. Many standard binomial identities extend to generalized binomialcoe�cients, including the facts that � n2�� < n2�=(2�)! and 22��1 � (2�)! for� � 1. 8



Remark. The Contraction Algorithm described above is used only to count cuts.An e�cient implementation given by Karger and Stein [15] can be used to �ndall �-minimum cuts in ~O(n2�) time. We use this algorithm in our FPRAS.2.3 Cut Failure BoundsUsing the cut counting theorem just given, we show that large cuts do notcontribute signi�cantly to a graph's failure probability. Consider Theorem 2.6;taking � = 1, it follows from the union bound that the probability that someminimum cut fails is at most n2pc. We now show that the probability that anycut fails is only a little bit larger.Theorem 2.9. Suppose a graph has minimum cut c and that each edge of thegraph fails independently with probability p, where pc = n�(2+�) for some � > 0.Then1. The probability that the given graph disconnects is at most n��(1 + 2=�),and2. The probability that a cut of value �c or greater fails in the graph is atmost n���(1 + 2=�).Remark. We conjecture that a probability bound of n��� can be proven (elim-inating the (1 + 2=�) term).Proof. We prove Part 1 and then note the small change needed to prove Part 2.For the graph to become disconnected, all the edges in some cut must fail.We therefore bound the failure probability by summing the probabilities thateach cut fails. Let r be the number of cuts in the graph, and let c1; : : : ; cr bethe values of the r cuts in increasing order so that c = c1 � c2 � � � � � cr.Let pk = pck be the probability that all edges in the kth cut fail. Then theprobability that the graph disconnects is at most P pk, which we proceed tobound from above.We proceed in two steps. First, consider the �rst n2 cuts in the ordering(they might not be minimum cuts). Each of them has ck � c and thus haspk � n�(2+�), so that Xk�n2 pk � (n2)(n�(2+�)) = n�� :Next, consider the remaining larger cuts. According to Theorem 2.6, there areless than n2� cuts of value at most �c. Since we have numbered the cuts inincreasing order, this means that cn2� > �c. In other words, writing k = n2�,ck > ln k2 lnn � c9



and thus pk < (pc) ln k2 lnn= (n�(2+�)) ln k2 lnn= k�(1+�=2):It follows that Xk>n2 pk < Xk>n2 k�(1+�=2)� Z 1n2 k�(1+�=2) dk� 2n��=�:Summing the bounds for the �rst n2 and for the remaining cuts gives a total ofn�� + 2n��=�, as claimed.The proof of Part 2 is the same, except that we sum only over those cuts ofvalue at least �c.Remark. A slightly stronger version of Part 1 was �rst proved by Lomonosovand Polesskii [22] using di�erent techniques that identi�ed the cycle as the mostunreliable graph for a given c and n. We sketch their result, which we need for adi�erent purpose, in Section 4.3.2. However, Part 2 is necessary for the FPRASand was not previously known.2.4 An Approximation AlgorithmOur proof that only small cuts matter leads immediately to an FPRAS. Firstwe outline our solution. Given that FAIL(p) < n�4, Theorem 2.9 shows thatthe probability that a cut of value much larger than c fails is negligible, so weneed only determine the probability that a cut of value near c fails. We do thisas follows. First, we enumerate the (polynomial size) set of near-minimum cutsthat matter. From this set we generate a polynomial size boolean expression(with a variable for each edge, true if the edge has failed) that is true if any ofour near-minimum cuts has failed. We then need to determine the probabilitythat this boolean expression is true; this can be done using the DNF countingtechniques of Karp, Luby, and Madras [18, 17]. Details are given in the followingtheorem.Theorem 2.10. When FAIL(p) < n�4, there is a (Monte Carlo) FPRAS forestimating FAIL(p) running in ~O(mn4=�3) time.Proof. Under the assumption, the probability that a particular minimum cutfails is pc � FAIL(p) � n�4. We show there is a constant � for which theprobability that any cut of value greater than �c fails is at most �FAIL(p). Thisproves that to approximate to the desired accuracy we need only determine theprobability that some cut of value less than �c fails. It remains to determine �.10



Write pc = n�(2+�); by hypothesis � � 2. Thus by Theorem 2.9, the probabilitythat a cut larger than �c fails is at most 2n���. On the other hand, we know thatn�(2+�) = pc � FAIL(p), so it su�ces to �nd an � for which 2n��� � �n�(2+�).Solving this shows that � = 1+2=��(ln(�=2))=� lnn � 2� ln(�=2)=2 lnn su�cesand that we therefore need only examine the smallest n2� = O(n4=�) cuts.We can enumerate these cuts in O(n2� log3 n) time using certain random-ized algorithms [14, 11] (a somewhat slower deterministic algorithm exists [26]).Suppose we assign a boolean variable xe to each edge e; xe is true if edge e failsand false otherwise. Therefore, the xe are independent and true with probabilityp. Let Ei be the set of edges in the ith small cut. Since the ith cut fails if andonly if all edges in it fail, the event of the ith small cut failing can be written asFi = ^e2Eixe. Then the event of at least one small cut failing can be writtenas F = _iFi. We wish to know the probability that F is true. Note that F isa formula in disjunctive normal form. The size of the formula is equal to thenumber of clauses (n2�) times the number of variables per clause (at most �c),namely O(cn2�). The FPRAS of Karp, Luby, and Madras [17] estimates thetruth probability of this formula, and thus the failure probability of the smallcuts, to within (1� �) in ~O(cn2�=�2) = ~O(cn4=�3) = ~O(mn4=�3) time.We are therefore able to estimate to within (1� �) the value of a probability(the probability that some �-minimum cut fails) that is within (1 � �) of theprobability of the event we really care about (the probability that some cut fails).This gives us an overall estimate accurate to within (1� �)2 � (1� 2�).2.5 Putting it TogetherWe now combine the above results to get an FPRAS:Corollary 2.11. There is an FPRAS for FAIL(p) running in ~O(mn4=�3) time.Proof. Suppose we wish to estimate the failure probability to within a (1 ��) ratio. If FAIL(p) > n�4, then we can estimate it in ~O(mn4=�2) time bydirect Monte Carlo simulation as in Corollary 2.4. Otherwise, we can run the~O(mn4=�3)-time algorithm of Theorem 2.10.If the graph is sparse (with O(n) edges) and the minimum cut is ~O(1) (boththese conditions apply to, e.g., planar graphs) then the time for a Monte Carlotrial is O(n), while the size of the formula for the DNF counting step above is~O(n2�). So if we use a di�erent FAIL(p) threshold for deciding which algorithmto use, we can improve the running time bound to ~O(n3:8=�2).While this time bound is still rather poor, experiments have suggestedthat performance in practice is signi�cantly better|typically ~O(n3) on sparsegraphs [16].3 ExtensionsWe now discuss several extensions of our basic FPRAS. In this section, we willconsider many cases in which it is su�cient to consider the probability that an11



�-minimum cut fails for some � = O(1� log �= logn) (as in the previous section)that is understood in context but not worth deriving explicitly. We will refer tothese �-minimum cuts as the weak cuts of the graph.3.1 Varying Failure ProbabilitiesThe analysis and algorithm given above extend to the case where each edgee has its own failure probability pe. To extend the analysis, we transforma graph with varying edge failure probabilities into one with identical failureprobabilities. Given the graph G with speci�ed edge failure probabilities, webuild a new graph H all of whose edges have the same failure probability p,but that has the same failure probability as G. Choose a small parameter �.Replace an edge e of failure probability pe by a \bundle" of ke parallel edges,each with the same endpoints as e but with failure probability 1� �, whereke = d�(ln pe)=�e :This bundle of edges keeps its endpoints connected unless all the edges in thebundle fail; this happens with probability(1� �)d�(ln pe)=�e:As � ! 0, this failure probability converges to pe. Therefore, the reliability ofH converges as � ! 0 to the reliability of G. Thus, to determine the failureprobability of G, it su�ces to determine the failure probability of H in the limitas � ! 0.Since H has all edge failure probabilities the same, our Section 2 analysisof network reliability applies to H . In particular, we know that it su�ces toenumerate the weak cuts of H and then determine the probability that oneof them fails. To implement this idea, note that changing the parameter �scales the values of cuts in H without changing their relative values (moduloa negligible rounding error). We therefore build a weighted graph F by takinggraph G and giving weight ln 1=pe to edge e. The weak cuts in F correspondto the weak cuts in H . We �nd these weak cuts in F using the ContractionAlgorithm (which works for weighted graphs [15]) as before.Given the weak cuts in H , we need to determine the limiting probabilitythat one of them fails as � ! 0. We have already argued that as � ! 0, theprobability a cut in H fails converges to the probability that the correspondingcut in G fails. Thus we actually want to determine the probability that one ofa given set of cuts in G fails. We do this as before: we build a boolean formulawith variables for the edges of G and with a clause for each weak cut that istrue if all the edges of the cut fail. The only change is that variable xe is set totrue with probability pe. The algorithm of [17] works with these varying truthprobabilities and computes the desired quantity.Theorem 3.1. There is an FPRAS for the all-terminal network reliability prob-lem with varying edge failure probabilities.12



One might be concerned by the use of logarithms to compute edge weights.However, it is easy to see that in fact approximate logarithms su�ce for thepurpose of enumerating small cuts. If we approximate each logarithm to withinrelative error :1, then every �-minimum cut in F remains an 11�=9-minimumcut in the approximation to F . Thus we can enumerate a slightly larger set ofnear-minimum cuts in order to �nd the weak cuts. Once we �nd the weak cuts,we use the original pe values in the DNF counting algorithm.In the case of varying failure probabilities, we cannot bound the number ofedges in any particular weak cut by a quantity less than m (a weak cut mayhave m � n edges with large failure probabilities). Thus the size of the DNFformula, and thus the running time of the DNF counting algorithm, may be aslarge as mn2� � mn4=�.All the other extensions described in this paper can also be modi�ed tohandle varying failure probabilities. But for simplicity, we focus on the uniformcase.3.2 Multiterminal ReliabilityThe multiterminal reliability problem is a generalization of the all-terminal re-liability problem. Instead of asking whether the graph becomes disconnected,we consider a subset K of the vertices and ask if some pair of them becomesdisconnected. If some pair of vertices in K is separated by a cut of value O(c),then we can use the same theorem on the exponential decay of cut failure prob-abilities to prove that we only need to examine the small cuts in the graph todetermine whether some pair of vertices in K becomes disconnected.Lemma 3.2. If some pair of vertices in K is separated by a cut of value O(c),then there is an FPRAS for the multiterminal reliability problem with sourcevertices K.Proof. We focus on the case of uniform failure probability p; the generalizationto arbitrary failure probabilities is as before. Suppose a cut of value �c separatesvertices in K. Then the probability that K gets disconnected when edges failwith probability p is at least p�c. If pc > n�4, then p�c > n�4� = n�O(1) andwe use Monte Carlo simulation as before to estimate the failure probability. Ifpc < n�4, then by Theorem 2.9, the probability that a cut of value exceeding�c fails is O(n�2�). Thus, choosing � such that n�2� � �p�c, we can enumeratethe weak cuts and apply DNF counting.3.3 k-ConnectivityJust as we estimated the probability that the graph fails to be connected, wecan estimate the probability that it fails to be k-edge connected for any constantk. Note that the graph fails to be k-edge connected only if some cut has lessthan k of its edges survive. The probability of this event decays exponentiallywith the value of the cut, allowing us to prove (as with Theorem 2.9) that if theprobability that fewer than k edges in a minimum cut survive isO(n�(2+�)), then13



the probability that fewer than k edges survive in a non-weak cut is negligible.Thus, if direct Monte Carlo simulation is not applicable, we need only determinethe probability that some weak cut keeps less than k of its edges. But this isanother DNF counting problem. For any particular weak cut containing C � medges, we enumerate all � CC�k+1� = O(Ck�1) = O(mk�1) sets of C�k+1 edges,and for each add a DNF clause that is true if all the given edges fail.In fact, one can also adapt the algorithm of [17] to determine the probabilitythat all but k� 1 variables in some clause of a DNF formula become true; thuswe can continue to work with the O(mn4=�)-size formula we used before.Corollary 3.3. For any constant k, there is an FPRAS for the probability thata graph with edge failure probabilities fails to be k-edge connected.3.4 Eulerian Directed GraphsA natural generalization of the all-terminal reliability problem to directed graphsis to ask for the probability that a directed graph with random edge failuresremains strongly connected. A directed graph fails to be strongly connectedprecisely when all the edges in some directed cut fail. In general, the techniquesof this paper cannot be applied to directed graphs|the main reason being thata directed graph can have exponentially many minimum directed cuts.We can, however, handle one special case. In an Eulerian directed graphG on vertex set V , the number of edges crossing from any vertex set A toV � A is equal to the number of edges crossing from V � A to A. Thus if weconstruct an undirected graph H by removing the directions from the edges ofG, we know that any (directed) cut in G has value equal to half that of thecorresponding (undirected) cut in H . It follows that the �-minimum directedcuts of G correspond to �-minimum undirected cuts of H . Therefore, thereare at most 2n2� �-minimum directed cuts in G that can be enumerated byenumerating the �-minimum cuts of H (the factor of 2 arises from consideringboth directions for each cut). As in the undirected case, if the directed failureprobability is less than n�4, an analogue of Theorem 2.9 immediately follows,showing that only weak directed cuts are likely to fail. It therefore su�ces toenumerate a polynomial number of weak directed cuts to estimate the directedfailure probability.Corollary 3.4. There is an FPRAS for the probability that a directed Euleriangraph fails to remain strongly connected under random edge failures.Corollary 3.5. For any constant k there is an FPRAS for the probability thata directed Eulerian graph fails to have directed connectivity k under random edgefailures.3.5 Random OrientationsIn a similar fashion, we can estimate the probability that, if we orient eachedge of the graph randomly, the graph fails to be strongly connected. For each14



cut, we make a DNF formula with two clauses, one of which is true if all edgespoint \left" and the other if all edges point \right." (This observation is dueto Alan Frieze.) This problem can also be phrased as estimating the numberof non-strongly connected orientations of an undirected graph; in this form,it is related to the Tutte polynomial discussed in Section 6. Similarly, we canestimate the probability that random orientations fail to produce a k-connecteddirected graph.4 Partition into r ComponentsThe quantity FAIL(p) is an estimate of the probability that the graph partitionsinto more than one connected component. We can similarly estimate the prob-ability that the graph partitions into r or more components for any constant r.Besides its intrinsic interest, the analysis of this problem will be important inour study of some heuristics and derandomizations in Section 5 and the Tuttepolynomial in Section 6.We �rst note that a graph partitions into r or more components only ifan r-way cut|the set of edges with endpoints in di�erent components of anr-way vertex partition|loses all its edges. Note that some of the vertex sets ofthe partition might induce disconnected subgraphs, so that the r-way partitionmight induce more than r connected components. However, it certainly does notinduce less. Our approach to r-way reliability is the same as for the 2-way case:we show that there are few small r-way cuts and that estimating the probabilityone fails su�ces to approximate the r-way failure probability. As a corollary,we show that the probability of r-way partition is much less than that of 2-waypartition.4.1 Counting Multiway CutsWe enumerate multiway cuts using the Contraction Algorithm as for the 2-waycase. Details can be found in [15].Lemma 4.1. In an m-edge unweighted graph the minimum r-way cut has valueat most 2m(r � 1)=n.Proof. A graph's average degree is 2m=n. Consider an r-way cut with each ofthe r� 1 vertices of smallest degree as its own singleton component and all theremaining vertices as the last component. The value of this cut is at most thesum of the singleton vertex degrees, which is at most r � 1 times the averagedegree.Corollary 4.2. There are at most � n2(r�1)� minimum r-way cuts.Proof. Suppose we �x a particular r-way minimum cut and run the ContractionAlgorithm until we have 2(r�1) vertices. By the previous lemma, the probability15



that we pick an edge of our �xed cut when k vertices remain is at most 2 r�1k .Thus the probability that our �xed minimum r-way cut is chosen isnYk=2r�1�1� 2(r � 1)k �which is analyzed exactly as in the proof of Theorem 2.6, substituting r� 1 for�.Corollary 4.3. For arbitrary � � 1, there are at most (rn)2�(r�1) �-minimumr-way cuts that can be enumerated in ~O((rn)2�(r�1)) time.Proof. First run the Contraction Algorithm until the number of vertices re-maining is d2�(r � 1)e. At this point, choose a random r-way partition of whatremains. There are at most r2�(r�1) such partitions.The time bound follows from the analysis of the Recursive Contraction Al-gorithm [15].Remark. We conjecture that in fact the correct bound is O(n�r) �-minimumr-way cuts. Section 4.3.2 shows this is true for � = 1. Proving it for general �would slightly improve our exponents in the following sections.4.2 An Approximation AlgorithmOur enumeration of multiway cuts allows an analysis and reduction to DNFcounting exactly analogous to the one performed for FAIL(p).Corollary 4.4. Suppose a graph has r-way minimum cut value cr and thateach edge fails with probability p, where pcr = (rn)�(2+�)(r�1) for some constant� > 0. Then the probability that an �-minimum r-way cut fails is at most(rn)���(r�1)(1 + 2=�)Proof. The proof is exactly as for Theorem 2.9, substituting (rn)(r�1) (drawnfrom Corollary 4.3) for n everywhere.Corollary 4.5. There is an algorithm for �-approximating the probability thata graph partitions into r or more components, running in ~O(m(rn)4(r�1)=�3)time. The algorithm is an FPRAS with running time ~O(mn4(r�1)=�3) for any�xed r.Proof. Exactly as for the 2-way cut case, with (rn)(r�1) replacing n every-where. Let cr be the r-way minimum cut value and let � be de�ned by pcr =(rn)�(2+�)(r�1). If pcr > (rn)�4(r�1), estimate the partition probability viaMonte Carlo simulation. Otherwise, it follows as in the 2-way cut case thatfor the same constant � as we chose there, the probability that a greater than�-minimum r-way cut fails is less than �pcr . Thus to estimate the partition prob-ability it su�ces to enumerate (in ~O((rn)4(r�1)=�) time) the set of �-minimumr-way cuts and perform DNF counting.16



One might wish to compute the probability that a graph partitions intoexactly r components, but it is not clear that this can be done. In particular,computing REL(p) can be reduced to this problem (for any r) by adding r � 1isolated vertices. There is at present no known FPRAS for REL(p).4.3 Comparison to 2-way CutsFor Sections 5 and 6, we need to show that the probability of partition into rcomponents is much less than that of partition into 2 components. We give twoproofs, the �rst simpler but with a slightly weaker bound. The following sectionscan use the weaker analysis at the cost of worse exponents. In this section, theterm \cut" refers exclusively to 2-way cuts unless we explicitly modify it.4.3.1 A simple argumentLemma 4.6. If pc = n�(2+�), then the probability that an r-way cut fails is atmost n��r=4(1 + 2=�).Proof. We show that any r-way cut contains the edges of a (2-way) cut of valuerc=4. Thus, if an r-way cut fails then an (r=4)-minimum 2-way cut fails. Theprobability that this happens has been upper-bounded by Theorem 2.9.To show the claim, consider an r-way cut. Contract each component of ther-way partition to a single vertex, yielding an r-vertex graph G0. All edges inthis graph correspond to edges of the r-way cut. Every cut in G0 correspondsto a cut of the same value in the original graph, so it su�ces to show that G0has a 2-way cut of value at least rc=4. To see this, note that every vertex in G0has degree at least c, so the number of edges in G0 is at least rc=2. Considera random cut of G0, generated by assigning each vertex randomly to one sideor the other. Each edge has a 1=2 chance of being cut by this partition, so theexpected value of this cut is at least rc=4. It follows that G0 has a cut of valueat least rc=4 that corresponds to a cut of value at least rc=4 in the originalgraph.4.3.2 A better argumentWe can get a slightly better bound on the probability that a graph partitionsinto r components via a small variation on an argument made by Lomonosovand Polesskii [22, 20, 4]. The better bound improves some of our exponents.Their proof uses techniques somewhat di�erent from the remainder of the paperand can safely be skipped.Lemma 4.7. Let FAILr(G; p) denote the probability that G partitions into ror more connected components when each edge fails with probability p. Let Ghave minimum cut c for some even c. Let Cn be a cycle with c=2 edges betweenadjacent vertices. Then for any r, FAILr(G; p) � FAILr(Cn; p).17



Corollary 4.8. For any graph G with minimum cut c, if edges fail with proba-bility p where pc = n�(2+�), then the probability the failed graph has r or moreconnected components is less than n��r=2.Remark. Note that for r = 2, the above result gives a slightly stronger bound onFAIL(p) than we are able to get in Theorem 2.9. Unfortunately, this argumentdoes not appear to extend to proving the bound we need on the probability thata greater than �-minimum r-way cut fails.Proof of Corollary 4.8: Thanks to Lemma 4.7, it su�ces to prove this claimfor the case of G a cycle Cn with (c=2)-edge \bundles" between adjacent vertices.The number of components into which Cn is partitioned is equal to the numberof bundles that fail, so we need only bound the probability that r or morebundles fail. The probability that a single bundle fails is pc=2 = n�(1+�=2), sothe probability that r particular bundles fail is n�r(1+�=2). There are �nr� < nrsets of exactly r bundles. It follows that the probability r or more bundles failis less than nrn�r(1+�=2) = n�r�=2.Proof of Lemma 4.7: Consider the following time-evolving version of theContraction Algorithm on a connected graph G. Each edge of G is given anarrival time chosen independently from the exponential distribution with mean1. Each time an edge arrives, we contract its endpoints if they have not alreadybeen contracted. This gives rise to a sequence of graphs G = Gn; Gn�1; : : : ; G1,where Gr has r vertices. Let G[t] be the graph that exists at time t. Thusinitially G[0] = Gn and eventually G[1] has one vertex since all edges havearrived. We draw a correspondence between this model and our edge failuremodel as follows: at time t, the failed edges are those which have not yet arrived.It follows that each vertex in G[t] corresponds to a connected component of Gwhen each edge has failed (to arrive) independently with probability e�t.We consider the random variable Tr(G) de�ned as the time at which theedge that contracts Gr to Gr�1 arrives. We show that Tr(Cn) stochasticallydominates Tr(G) for every r|that is,Pr[Tr(G) � t] � Pr[Tr(Cn) � t]:(See Motwani and Raghavan [23] for additional discussion of this de�nition.)Assuming this is true, we can prove our result as follows:Pr[G[t] has r or fewer components] = Pr[Tr(G) � t]� Pr[Tr(Cn) � t]= Pr[Cn[t] has r or fewer components]:To prove stochastic domination, let tr(G) = Tr�1(G) � Tr(G) denote thelength of time for which Gr exists before being contracted to Gr�1. Clearly,tr(G) is just the time it takes for an edge to arrive that has endpoints in di�erentconnected components of Gr. It follows that Tr(G) =Pnr0=r tr0(G). Similarly,Tr(Cn) = Pnr0=r tr0(Cn). We will show that tr(Cn) stochastically dominatestr(G) for every r. Thanks to the memoryless nature of the exponential distri-bution, the tr are mutually independent (this will be justi�ed more carefully18



later). The fact that Tr(Cn) stochastically dominates Tr(G) then follows fromthe fact that when X dominates X 0 and Y dominates Y 0 and the variables areindependent, X + Y dominates X 0 + Y 0.To analyze tr, suppose there are mr edges in Gr (note mr is a randomvariable). The arrival time of each edge in Gr measured from Tr(G) is exponen-tially distributed with mean 1. Therefore, the arrival time of the �rst such edge,namely tr(G), is exponentially distributed with mean 1=mr. Now note that Gris c-connected, so it must have mr � cr=2. It follows that tr(G) is exponentiallydistributed with mean at most 2=cr, meaning that it is stochastically dominatedby any exponentially distributed variable with mean 2=cr. On the other hand,when Cn has been reduced to r components, it is isomorphic to Cr. By thesame analysis as for G, we know tr(Cn) is exponentially distributed with mean2=cr, and thus stochastically dominates tr(G).Our glib claim that the tr are independent needs some additional justi�ca-tion. Technically, we condition on the values Gn; : : : ; G1 of the evolving graph.We show that regardless of what values Gi we condition on, Tr(Cn) stochasti-cally dominates Tr(G j Gn; : : : ; G1). Since the stochastic domination appliesregardless of our conditioning event, it follows even if we do not condition.Once we have conditioned on the value Gr, tr is just the time it takes for anedge to arrive that contractsGr to Gr�1 and is therefore independent of tr0 whenr0 6= r. But we must ask whether tr still has the right exponential distribution|the complicating factor being that we know the �rst edge to arrive at Gr mustcontract Gr to a speci�c Gr�1 and not some other graph. To see that this doesnot matter, let B be the event that �rst edge to arrive at Gr is one that createsGr�1. Then Pr[tr � t j B] = Pr[B j tr � t] Pr[tr � t]=Pr[B]= Pr[B] Pr[tr � t]=Pr[B]= Pr[tr � t]since of course, the time of arrival of the edge the contracts Gr has no impacton which of the edges of Gr is the �rst to arrive.5 Heuristics and Deterministic AlgorithmsUntil now, we have relied on the fact that the most likely way for a graph to failis for some of its near-minimum cuts to fail. We now strengthen this argumentto observe that most likely, exactly one of these near-minimum cuts fails. Thisleads to two additional results. First, we show that the sum of the individualsmall-cut failure probabilities is a reasonable approximation to the overall failureprobability. This justi�es a natural heuristic and indicates that in practice onemight not want to bother with the DNF counting phase of our algorithm. In amore theoretical vein, we also give a deterministic PAS for FAIL(p) that applieswhenever FAIL(p) < n�(2+�). We prove the following theorems.19



Theorem 5.1. When pc < n�4 (and in particular when FAIL(p) < n�4),the sum of the weak cuts' failure probabilities is a (1 + o(1)) approximationto FAIL(p).Theorem 5.2. When pc < n�(2+�) for any constant � (and in particular whenFAIL(p) < n�(2+�)), there is a deterministic PAS for FAIL(p) running in(n=�)exp(O(� logn �))time.We remark that unlike many PASs whose running times are only polynomialfor constant �, our PAS has polynomial running time so long as � = n�O(1). Butits behavior when � is tiny prevents it from being an FPAS.To prove these theorems, we argue as follows. As shown in Section 2, it issu�cient to approximate, for the given �, the probability that some �-minimumcut fails, where � = 1 + 2=� � (ln �)=� lnnLet us write these �-minimum cuts as Ci, i = 1; : : : ; n2�. Let Fi denote theevent that cut Ci fails. We can use inclusion-exclusion to write the failureprobability asPr[[Fi] =Xi1 Pr[Fi1 ]� Xi1<i2 Pr[Fi1 \ Fi2 ] + Xi1<i2<i3 Pr[Fi1 \ Fi2 \ Fi3 ] + � � � :Later terms in this summation measure events involving many cut failures. Weshow that when many cuts fail, the graph partitions into many pieces, meaninga multiway cut fails. We then argue (using Lemma 4.6 or Corollary 4.8) thatthis is so unlikely that later terms in the sum can be ignored. This immediatelyyields Theorem 5.1.To prove Theorem 5.2, we show that for any �xed � it is su�cient to considera constant number of terms (summations) on the right-hand side in order to geta good approximation. Observe that the kth term in the summation can becomputed deterministically in O(m(n2�)k) time by evaluating the probabilityof each of the (n2k�) intersection events in the sum (each can be evaluateddeterministically since it is just the probability that all edges in the speci�edcuts fail). Thus, our running time will be polynomial so long as the number ofterms we need to evaluate is constant.5.1 Inclusion-Exclusion AnalysisAs discussed above, our analyses use a truncation of the inclusion-exclusionexpression forPr[[Fi] =Xi1 Pr[Fi1 ]� Xi1<i2 Pr[Fi1 \ Fi2 ] + Xi1<i2<i3 Pr[Fi1 \ Fi2 \ Fi3 ] + � � � :20



Suppose we truncate the inclusion-exclusion, leaving out the kth and laterterms. If k is odd the truncated sum yields a lower bound; if k is even it yieldsan upper bound. We show that this bound is su�ciently tight. We do so byrewriting the inclusion-exclusion expression involving particular sets of failedcuts failing as an expression based on how many cuts fail.Lemma 5.3. Let Su be the event that u or more of the events Fi occur. If theinclusion-exclusion expansion is truncated at the kth term, the error introducedis Xu �u� 2k � 2�Pr[Su]:Proof. Let Tu be the event that exactly u of the events Fi occur. Considerthe �rst summationPFi1 in the inclusion-exclusion expansion. The event thatprecisely the events Fj1 ; : : : ; Fju occur (that is, the event that cuts Cj1 ; : : : ; Cjkfail but no others fail) contributes to the u terms Pr[Fj1 ]; : : : ;Pr[Fju ] in thesum. It follows that each sample point contributing to Tu is counted u = �u1�times in the summation. Thus,XPr[Fi1 ] =Xu �u1�Pr[Tu]:By the same reasoning,XPr[Fi1 \ Fi2 ] =Xu �u2�Pr[Tu];and so on. It follows that the error introduced by truncation at term k isXi1<i2<���<ik Pr[Fi1 \ Fi2 � � � \ Fik ]� Xi1<i2<���<ik+1 Pr[Fi1 \ Fi2 \ � � �Fik+1 ] + � � �= Xj�k(�1)k�jXu �uj�Pr[Tu]= Xu Xj�k(�1)k�j�uj�Pr[Tu]= Xu �u� 1k � 1�Pr[Tu]:Now recall that Su is the event that u or more of the Fi occur, meaning that
21



Pr[Tu] = Pr[Su]� Pr[Su+1]. Thus we can rewrite our bound above asXu �u� 1k � 1�(Pr[Su]� Pr[Su+1])= Xu �u� 1k � 1�Pr[Su]�Xu �u� 1k � 1�Pr[Su+1]= Xu �u� 1k � 1�Pr[Su]�Xu �u� 2k � 1�Pr[Su]= Xu ��u� 1k � 1���u� 2k � 1��Pr[Su]= Xu �u� 2k � 2�Pr[Su]:This completes the proof.5.2 A Simple ApproximationUsing the above error bound, we can prove Theorem 5.1. Let Fi denote theevent that the ith near-minimum cut fails. Our objective is to estimate Pr[[Fi].Summing the individual cuts' failure probabilities corresponds to truncating ourinclusion-exclusion sum at the second term, giving (by Lemma 5.3) an error ofPu�2 Su. We now bound this error by bounding the quantities Su.Lemma 5.4. If u distinct (2-way) cuts fail then a dlog(u+ 1) + 1e-way cutfails.Proof. Consider a con�guration in which u distinct cuts have failed simulta-neously. Suppose this induces k connected components. Let us contract eachconnected component in the con�guration to a single vertex. Each failed cut inthe original graph corresponds to a distinct failed cut in the contracted graph.Since the contracted graph has k vertices, we know that there are at most2k�1 � 1 ways to partition its vertices into two nonempty groups, and thus atmost this many cuts. In other words, u � 2k�1�1. Now solve for u and observeit must be integral.Corollary 5.5. If pc = n�(2+�) then Pr[Su] � n�dlog(u+1)+1e�=2:Proof. Apply Corollary 4.8 to the previous lemma.Thus, for example, S2 and S3 are upper bounded by the probability that a3-way cut fails, which by Corollary 4.8 is at most n�3�=2. More generally, all 2kvalues S2k ; : : : ; S2k+1�1 are at most n�(k+2)�=2. It follows that the error in our
22



approximation by the bound of Theorem 5.1 isXu�2Su � Xk�1 2kn�(k+2)�=2= n��Xk�1(2n��=2)k= 2n�3�=2(1 + o(1))whenever � > 0. This quantity is o(pc), and thus o(FAIL(p)), whenever n�3�=2 =o(n�(2+�)), i.e. � > 4. This proves Theorem 5.1.5.3 A PASWe now use the inclusion-exclusion analysis to give a PAS for FAIL(p) whenpc = n�(2+�) for some �xed � > 0, thus proving Theorem 5.2. We give an�-approximation algorithm with a running time of (n=�)exp(O(� logn �)), which isclearly polynomial in n for each �xed � (and in fact, for any � = n�O(1)).We must eliminate two uses of randomization: in the Contraction Algorithmfor identifying the �-minimum cuts and in the DNF counting algorithm forestimating their failure probability.The �rst step is to deterministically identify the near-minimum cuts of G.One approach is to use a derandomization of the Contraction Algorithm [13].A more e�cient approach is to use a cut enumeration scheme of Vazirani andYannakakis [26]. This scheme enumerates cuts in increasing order of value, witha \delay" of ~O(mn) per cut. From the fact that there are only n2� weak cuts, itfollows that all weak cuts (in the sense of Section 3) can be found in ~O(mn1+2�)time.We must now estimate the probability one of the near-minimum cuts fails.Let us consider truncating to the �rst k terms in the inclusion-exclusion expan-sion. From Corollary 5.5 we know that Pr[Su] � n�(log(u+1)+1)�=2. It followsfrom Lemma 5.3 that for any k � 13� logn, our error from using the k-term
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truncation of inclusion-exclusion isXu �u� 2k � 2�n�(log(u+1)+1)�=2 � n��=2Xu�k(u� 2)k�2(u+ 1)��(log n)=2� Xu�k(u+ 1)k�2��(log n)=2� Xu�k(u+ 1)�(log n)=3�2��(logn)=2� Xu�k(u+ 1)��(log n)=6�1� Z 1u=k�1(u+ 1)��(logn)=6�1 du= k��(logn)=6�(logn)=6= n��(log k)=6�(logn)=6= O(n��(log k)=6)This quantity is O(�n�(2+�)) = O(�pc) = O(�FAIL(p)) for some k = 2O(� logn �).It follows that for an �-approximation we need only evaluate the inclusion-exclusion up to the kth term. Computing the kth term requires examining everyset of k of the (n=�)O(1) �-minimum cuts; this requires (n=�)exp(O(� logn �)) time.This concludes the proof of Theorem 5.2.We can slightly improve our bound on Pr[Su], which in turn gives betterbounds on k.Lemma 5.6. If u distinct �-minimum cuts fail, then a u1=2�-way cut fails.Proof. Consider a con�guration in which u distinct cuts have failed simulta-neously. Suppose this induces k connected components. Let us contract eachconnected component in the con�guration to a single vertex. In this contractedgraph (before edges fail), the minimum cut is at least c (since contraction neverreduces the minimum cut). Furthermore, each of the u failed cuts is a cut ofvalue at most �c, and thus an �-minimum cut, in the contracted graph. Sincethe contracted graph has k vertices, we know from Theorem 2.6 that u < k2�,meaning that k > u1=2�.However, this serves only to reduce the values of our constants (and reducethe running time from an exponential to a polynomial dependence on 1=�).6 The Tutte PolynomialThe Tutte Polynomial T (G;x; y) is a polynomial in two variables de�ned by agraphG. Evaluating it at various points (x; y) on the so-calledTutte Plane yields24



various interesting quantities regarding the graph. In particular, computing thenetwork reliability REL(p) is the special case of evaluating the Tutte polynomialat the point x = 1; y = 1=p. Another special case is counting the number ofstrongly connected orientations of an undirected graph, discussed in Section 3.5.Yet another is counting the number of forests in a graph. Alon, Frieze, andWelsh [1] showed that for any dense graph (one with 
(n2) edges) and �xed xand �xed y � 1 there is an FPRAS for the Tutte polynomial.6.1 ResultsIn this section, we prove the following.Theorem 6.1. For every y > 1 there is a c = O(logy nx) (in particular, c =O(log n) for any �xed x and y) such that for all n-vertex m-edge graphs ofedge-connectivity greater than c,T (G;x; y) = ym(y � 1)n�1 (1 +O(1=n)):Thus, a good approximation can be given in constant time by ignoringG andreturning the constant ym=(y � 1)n�1. Note that almost all graphs fall underthis theorem as the minimum cut of a random graph is tightly concentratedaround n=2� c.Theorem 6.2. For every y > 1 there is a c = O(y logy nx) such that there isan FPRAS for T (G;x; y).This theorem is perhaps unsurprising given the previous theorem. But it isnot immediate since the input may specify �� 1=n. A slightly more challengingquantity is the \second-order term" saying how far a given graph diverges fromits approximation in the �rst theorem.Theorem 6.3. Let�T (G;x; y) = ym(y � 1)n�1 � T (G;x; y):For any �xed y > 1 and �xed x, there is a c = O(log n) such that there is anFPRAS for �T (G;x; y).This theorem is stronger than and implies the previous theorem. When �Tis very close to 0, ym(y�1)n�1 accurately approximates T but approximating �Twith small relative error is harder.6.2 MethodOur proofs begin with a lemma of Alon, Frieze, and Welsh [1] (which we haveslightly rephrased to include what is for them the special case of x = 1).25



Lemma 6.4 (see [1]). When y > 1,T (G;x; y) = ym(y � 1)n�1E[Q��1];where Q = (x � 1)(y � 1) and � is a random variable equal to the numberof connected components of G when each edge of G fails independently withprobability p = 1=y. (In the case Q = 0 (when x = 1), we use the fact that0r = 0 for r 6= 0 while 00 = 1.)In other words, when pr is the probability that the graph with randomedge failures partitions into exactly r components, the Tutte polynomial can beevaluated from E[Q��1] = nXk=1 prQr�1:For the remainder of this section, we normalize our analysis by consideringthe quantity T 0(G;x; y) = T (G;x; y) (y�1)n�1ym = E[Q��1]. Clearly, any resultson relative approximations to T 0 translate immediately into results on relativeapproximations to T .We begin with an intuitive argument. From Theorem 2.9, when pc = n�(2+�)(which happens for some c = O(log n) for any �xed p) we know pr is negligiblefor r � 1. Intuitively, since p1 � 1 and all other pr � 0, we might as wellapproximate T 0 by Q. Extending this argument, we know that compared to p2,all terms pr for r > 2 are negligible. Therefore, the error in the approximationof T 0 by Q is almost entirely determined by p2Q2, which we can determine bycomputing p2.To prove our results formally, we have to deal with the fact that the term Qrin the expectation increases exponentially with r. We prove that the pr decayfast enough to damp out the increasing values of Qr. We also need to be carefulthat when Q < 0, the large leading terms do not cancel each other out.6.3 ProofsFor our formal analysis, instead of the quantities pr, it is more convenient towork with quantities sr measuring the probability that the graph partitions intor or more components. Note that s1 = 1 and s2 = FAIL(p). Since pr = sr�sr+1,
26



it follows that T 0(G;x; y) = nXr=1 prQr�1= nXr=1(sr � sr+1)Qr�1= nXr=1 srQr�1 � nXr=2 srQr�2= 1 + nXr=2 sr(Qr�1 �Qr�2)= 1 + (Q� 1) nXr=2 srQr�2:Theorem 6.1 will follow directly from the last equation if we can show that thetrailing term (Q� 1)Pnr=2 srQr�2 = O(1=n). Theorem 6.3 will follow if we cangive an FPRAS for Pnr=2 srQr�2. The fact that the value of this sum is o(1)(Theorem 6.1) means that the FPRAS for it immediately yields an FPRAS forT 0, thus proving Theorem 6.2.To prove these results, �rst consider the case x = 1. In this case Q = 0,meaning Qr�2 = 1 for r = 2 and 0 for r > 2. Thus T 0(G;x; y) = 1 � s2 =1 � FAIL(p) = REL(p). We have already seen in Theorem 2.9 that wheneverpc = n�(2+�), the probability that the graph becomes disconnected is at mostn��(1+2=�). This is certainly O(1=n) if � � 1, meaning REL(p) = 1�O(1=n).But this in turn is true when pc < n�3, i.e.,c > 3 logy nThis proves Theorem 6.1 for Q = 0. On the other hand, Theorem 6.3 simplyclaims that there is an FPRAS for 1� REL(p) = FAIL(p), which is what Sec-tion 2 showed. Finally, Theorem 6.2 says that when FAIL(p) is small, we canapproximate REL(p) (by approximating FAIL(p)).We now generalize this argument to the case x > 1. To derive the appropriatelower bound on c, we state two criteria that will we need in our analysis. First,we require c to be such that pc = n�(2+�) for some � > 1. Equivalently, we have1 < � = � log(n2pc)= logn. Second, we require that Q < 14n�=4. Plugging in for�, we �nd the equivalent requirementQ < 14n�=4= 14(n2pc)�1=4(4Q)4 < 1=n2pcn2(4Q)4 < yclogy(256Q4n2) < c27



This is true for some c = O(logy(nQ)) = O(y lnnx) as claimed.Given the above relations between Q;n; and �, we can use Corollary 4.8.Since pc = n�(2+�), we deduce that sr � n�r�=2. Since Q < 14n�=4 < 12n�=2 we�nd that nXr=r0 srQr�2 � Q�2 Xr�r0(Qn��=2)r (1)� Q�2(Qn��=2)r0=(1� (Qn��=2)r0)� Q�2(Qn��=2)r0=(1� 12r0 )� 2Q�2(Qn��=2)r0 (2)Our results follow from this bound. First, taking r0 = 2, we �nd that the errorin approximating T 0(G;x; y) by 1 is at most2n�� = o(1):This proves Theorem 6.1.To prove Theorem 6.3, note that the leading term in the summation (1) iss2 � n�(2+�). We can therefore estimate the sum to within relative error O(�)by evaluating summation terms up to summation index r0 where (Qn��=2)r0 ��n�(2+�). Since the left-hand side decreases exponentially in n as a function ofr0, we can achieve this error bound by takingr0 = O(logn(n2+�=�)) = O(1 + logn 1=�):In other words, we only need to determine O(1�logn �) terms in the summation.This in turn reduces to determining the quantities sr appearing in those terms.We cannot �nd the sr exactly. However, for an �-approximation, it su�cesto approximate each relevant sr to within �. We can do so using the algorithmof Corollary 4.5. The running time of this algorithm for estimating the r-wayfailure probability to within � is (nr=�)O(1). We have argued above that we onlyneed to run the algorithm for r � r0 = O(1� logn �). It follows that the runningtime of our algorithm is nO(1�logn �)=�O(1) = (n=�)O(1), as required. This provesTheorem 6.3.Finally, we consider the case x < 1. Our argument is essentially unchangedfrom before. We need to be slightly more careful because our sum is now analternating sum, which means that the leading terms are a good approximationonly if they do not cancel each other out. To see that such cancelling doesnot occur, note that the �rst term has value s2 = n�(2+�), while the remainingterms (by the analysis above) have total (absolute) value O(n(Qn�3�=2)). If wechoose n large enough that Q < 14n�=4, then this bound is O( 14n�5�=4) < 14s2for � > 4, so the remaining terms do not cancel s2.28
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