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Abstract

The classic all-terminal network reliability problem posits a graph,
each of whose edges fails independently with some given probability. The
goal is to determine the probability that the network becomes discon-
nected due to edge failures. This problem has obvious applications in the
design of communication networks. Since the problem is P-complete and
thus believed hard to solve exactly, a great deal of research has been de-
voted to estimating the failure probability. In this paper, we give a fully
polynomial randomized approzimation scheme that, given any n-vertex
graph with specified failure probabilities, computes in time polynomial in
n and 1/e an estimate for the failure probability that is accurate to within
a relative error of 1+¢ with high probability. We also give a deterministic
polynomial approximation scheme for the case of small failure probabili-
ties. Some extensions to evaluating probabilities of k-connectivity, strong
connectivity in directed Eulerian graphs, and r-way disconnection, and to
evaluating the Tutte polynomial are also described.

1 Introduction

1.1 The Problem

We consider a classic problem in reliability theory: given a network on n ver-
tices, each of whose m links is assumed to fail (disappear) independently with
some probability, determine the probability that the surviving network is con-
nected. The practical applications of this question to communication networks
are obvious, and the problem has therefore been the subject of a great deal of
study. Coulbourn [4] provides a survey.
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Formally, a network is modeled as a graph G, each of whose edges e is pre-
sumed to fail (disappear) with some probability p. and thus to survive with
probability ¢ =1 — p.. Network reliability problems are concerned with deter-
mining the probabilities of certain connectivity-related events in this network.
The most basic question of all-terminal network reliability is determining the
probability that the network stays connected. Others include determining the
probability that two particular nodes stay connected (two-terminal reliability),
and so on.

Most such problems, including the two just mentioned, are §P-complete [25,
24]. That is, they are universal for a complexity class at least as intractable as
NP and therefore seem unlikely to have polynomial time solutions. Attention
therefore turned to approximation algorithms. Provan and Ball [24] proved that
it is fP-complete even to approzimate the reliability of a network to within a
relative error of €. However, they posited that the approximation parameter € is
part of the input, and used an exponentially small € (which can be represented
in O(n) input bits) to prove their claim. They note at the end of their article
that “a seemingly more difficult unsolved problem involves the case where € is
constant, i.e. is not allowed to vary as part of the input list.”

Their idea is formalized in the definition of a polynomial approximation
scheme (PAS). In this definition, the performance measure is the running time
of the approximation algorithm as a function of the problem size n and the
error parameter €, and the goal is for a running time that is polynomial in n
for each fixed € (e.g., 2'/¢n). If the running time is also polynomial in 1/e,
the algorithm is called a fully polynomial approzimation scheme (FPAS). An
alternative interpretation of an FPAS is that it has a running time polynomial
in the input size when € is constrained to be input in unary rather than binary
notation. When randomization is used in an approximation scheme, we refer
to a polynomial randomized approzimation scheme (PRAS) or fully polynomial
randomized approzimation scheme (FPRAS). Such algorithms are required to
provide an e-approximation with probability at least 3/4; this probability of
success can be increased significantly (e.g., to 1 —1/n or even 1 — 1/2") by
repeating the algorithm a small number of times [23].

Deterministic FPASs for nontrivial problems seem to be quite rare. How-
ever, FPRASs have been given for several fP-complete problems such as count-
ing maximum matchings in dense graphs [7], measuring the volume of a con-
vex polytope [6], and disjunctive normal form (DNF) counting—estimating the
probability that a given DNF formula evaluates to true if the variables are made
true or false at random [18]. In a plenary talk, Kannan [8] raised the problem
of network reliability as an important remaining open problems needing an ap-
proximation scheme.

1.2 Our Results

In this paper, we provide an FPRAS for the all-terminal network reliability
problem. Given a failure probability p for the edges, our algorithm, in time
polynomial in n and 1/¢, returns a number P that estimates the probability



FAIL(p) that the graph becomes disconnected. With high probability,! P is
in the range (1 + ¢)FAIL(p). The algorithm is Monte Carlo, meaning that the
approximation is correct with high probability but that it is not possible to verify
its correctness. It generalizes to the case where the edge failure probabilities are
different, to computing the probability the graph is not k-connected (for any
fixed k), and to the more general problem of approximating the Tutte Polynomial
for a large family of graphs. It can also estimate the probability that an Fulerian
directed graph remains strongly connected under edge failures. Our algorithm
is easy to implement and appears likely to have satisfactory time bounds in
practice [3, 16].

Some care must be taken with the notion of approximation because ap-
proximations are measured by relative error. We therefore get different results
depending on whether we discuss the failure probability FAIL(p) or the relia-
bility (probability of remaining connected) REL(p) = 1 — FAIL(p). Consider a
graph with a very low failure probability, say €. In such a graph, approximating
REL(p) by 1 gives a (1 + €)-approximation to the reliability, but approximating
the failure probability by 0 gives a very poor (infinite) approximation ratio for
FAIL(p). Thus, the failure probability is the harder quantity to approximate
well. On the other hand, in a very unreliable graph, FAIL(p) becomes easy
to approximate (by 1) while REL(p) becomes the challenging quantity. Our
algorithm is an FPRAS for FAIL(p). This means that in extremely unreliable
graphs, it cannot approximate REL(p). However, it does solve the harder ap-
proximation problem on reliable graphs, which are clearly the ones likely to be
encountered in practice.

The basic approach of our FPRAS is to consider two cases. When FAIL(p)
is large, it can be estimated via direct Monte Carlo simulation of random edge
failures. We thus focus on the case of small FAIL(p). Note that a graph becomes
disconnected when all edges in some cut fail (a cut is a partition of the vertices
into two groups; its edges are the ones with one endpoint in each group). The
more edges cross a cut, the less likely it is that they will all fail simultaneously.
We show that for small FAIL(p), only the smallest graph cuts have any signifi-
cant chance of failing. We show that there is only a polynomial number of such
cuts, and that they can be enumerated in polynomial time. We then use a DNF'
counting algorithm [17] to estimate the probability that one of these explicitly
enumerated cuts fails, and take this estimate as an estimate of the overall graph
failure probability.

After presenting our basic FPRAS for FAIL(p) in Section 2, we present sev-
eral extensions of it, all relying on our observation regarding the number of
small cuts a graph can have. In Section 3, we give FPRASs for the network
failure probability when every edge has a different failure probability, for the
probability that an Eulerian directed graph fails to be strongly connected un-
der random edge failures, and for the probability that two particular “weakly
connected” vertices are disconnected by random edge failures. In Section 4, we

IThe phrase with high probability means that the probability that it does not happen can
be made O(n~%) for any desired constant d by suitable choice of other constants (typically
hidden in the asymptotic notation).



give an FPRAS for the probability that a graph partitions into more than r
pieces for any fixed r. In Section 5, we give two deterministic algorithms for all-
terminal reliability: a simple heuristic that provably gives good approximations
on certain inputs and a deterministic PAS that applies to a somewhat broader
class of problems. In Section 6, we show that our techniques give an FPRAS
for the Tutte Polynomial on almost all graphs.

1.3 Related Work

Previous work gave algorithms for estimating FAIL(p) in certain special cases.
Karp and Luby [18] showed how to estimate FAIL(p) in n-vertex planar graphs
when the expected number of edge failures is O(logn). Alon, Frieze, and
Welsh [1] showed how to estimate it when the input graph is sufficiently dense
(with minimum degree ©(n)). Other special case solutions are discussed in Col-
bourn’s survey [4]. Lomonosov [21] independently derived some of the results
presented here.

A crucial step in our algorithm is the enumeration of minimum and near-
minimum cuts. Dinitz et al. [5] showed how to enumerate (and represent) all
minimum cuts. Vazirani and Yannakakis [26] showed how to enumerate near-
minimum cuts. Karger and Stein [15] and Karger [11] gave faster cut enu-
meration algorithms as well as bounds on the number of cuts that we will use
heavily.

A preliminary version of this work appeared in [10]. The author’s thesis [9]
discusses reliability estimation in the context of a general approach to random
sampling in optimization problems involving cuts. In particular, this reliability
work relies on some new theorems bounding the number of small cuts in graphs;
these theorems have led to other results on applications of random sampling to
graph optimization problems [12, 11, 2].

2 The Basic FPRAS

In this section, we present an FPRAS for FAIL(p). We use two methods, de-
pending on the value of FAIL(p).

When FAIL(p) is large we estimate it in polynomial time by direct Monte
Carlo simulation of edge failures. That is, we randomly cause edge to fail and
check whether the graph remains connected. Since FAIL(p) is large, a small
number of simulations (roughly 1/FAIL(p)) gives enough data to estimate it
well.

When FAIL(p) is small, we resort to cut enumeration to estimate it. A graph
becomes disconnected precisely when all of the edges in some cut of the graph
fail. By a cut we mean a partition of the graph vertices into two groups. The cut
edges are those with one endpoint in each group (we also refer to these edges as
the ones crossing the cut). The value of the cut is the number of edges crossing
the cut.



We show that when FAIL(p) is small, only cuts of small value in G have any
significant chance of failing. We observe that there is only a polynomial number
of such cuts and that they can be found in polynomial time. We therefore
estimate FAIL(p) by enumerating the polynomial-size set of small cuts of G and
then estimating the probability that one of them fails.

If each edge fails with probability p, then the probability that a k-edge cut
fails is p®. Thus, the smaller a cut, the more likely it is to fail. It is therefore
natural to focus attention on the small graph cuts. Throughout this paper, we
assume that our graph has minimum cut value c—that is, that the smallest cut
in the graph has exactly ¢ edges. Such a graph has a probability of at least p°
of becoming disconnected—namely, if the minimum cut fails. That is:

Fact 2.1. If each edge of a graph with minimum cut ¢ fails independently with
probability p, then the probability that the graph becomes disconnected is at least

C

pe.
The probability that a cut fails decreases exponentially with the number of

edges in the cut. This would suggest that a graph is most likely to fail at its
small cuts. We formalize this intuition.

Definition 2.2. An a-minimum cut is a cut with value at most « times the
minimum cut value.

Below, we show how to choose between the two approaches just discussed.
If p° > n~* then, as we show in Section 2.1, we can estimate it via Monte
Carlo simulation. This works because FAIL(p) > p¢, so O(1/FAIL(p)) = O(n?)
experiments give us enough data to deduce a good estimate (O(f) denotes
O(flogn)). On the other hand, when p¢ < n~% we know that a given a-
minimum cut fails with probability p®¢ = n=*®. We show in Section 2.2 that
there are at most n?® @-minimum cuts. It follows that the probability that any
a-minimum cut fails is less than n~2%—that is, exponentially decreasing with a.
Thus, for a relatively small a, the probability that a greater than a-minimum
cut fails is negligible. Thus (as we show in Section 2.3) we can approximate
FAIL(p) by approximating the probability that some less than a-minimum cut
fails. Our FPRAS (in Section 2.4) is based on enumerating these small cuts and
determining the probability that one of them fails.

2.1 DMonte Carlo Simulation

The most obvious way to estimate FAIL(p) is through Monte Carlo simulations.
Given the failure probability p for each edge, we can “simulate” edge failures by
flipping an appropriately biased random coin for each edge. We can then test
whether the resulting network is connected. If we do this many times, then the
fraction of trials in which the network becomes disconnected should intuitively
provide a good estimate of FAIL(p). Karp and Luby [18] investigated this idea
formally, and observed (a generalization of) the following.

Theorem 2.3. Performing O((logn)/(e*?FAIL(p))) trials will give an estimate
for FAIL(p) accurate to within 1 &+ € with high probability.



Corollary 2.4. If FAIL(p) > p° > n~%, then FAIL(p) can be estimated to
within (1+ €) in O(mn*/€e?) time using Monte Carlo simulation.

The criterion that FAIL(p) not be too small can of course be replaced by
a condition that implies it. For example, Alon, Frieze, and Welsh [1] showed
that for any constant p, there is an FPRAS for network reliability in dense
graphs (those with minimum degree 2(n)). The reason is that as n grows and p
remains constant, FAIL(p) is bounded below by a constant on dense graphs and
can therefore be estimated in O(n?/€?) time by direct Monte Carlo simulation.

The flaw of the simulation approach is that it is too slow for small values
of FAIL(p), namely those less than 1 over a polynomial in n. It is upon this
situation that we focus our attention for the remainder of this section. In this
case, a huge number of standard simulations would have to be run before we
encountered a sufficiently large number of failures to estimate FAIL(p). (Note
that we expect to run 1/FAIL(p) trials before seeing any failures. With no
failures, we have no way to measure a failure probability.) Karp and Luby [18]
tackled this situation for various problems, and showed that it could be handled
in some cases by biasing the simulation such that occurrences of the event being
estimated became more likely. One of their results was an FPRAS for network
reliability in planar graphs, under the assumption that the failure probability p
of edges is O((logn)/n) so that the expected number of edges failing is O(logn).
Their algorithm is more intricate than straightforward simulation, and, like
ours, relies on identifying a small collection of “important cuts” on which to
concentrate.

Another problem where direct Monte Carlo simulation breaks down, and to
which Karp and Luby [18], found a solution, is that of DNF counting: given a
boolean formula in disjunctive normal form (an “or” of “and”s), and given for
each variable a probability that it is set to true, estimate the probability that
the entire formula evaluates to true. Like estimating FAIL(p), this problem is
hard when the probability being estimated is very small. Karp and Luby [18]
developed an FPRAS for DNF counting using a biased Monte Carlo simulation.
The running time was later improved by Karp, Luby, and Madras [17] to yield
the following.

Theorem 2.5. There is an FPRAS for the DNF counting problem that runs
in O(s/€?) time on any size s formula.

We will use the DNF counting algorithm as a subroutine in our FPRAS.

2.2 Counting Near-minimum Cuts

Having handled the case of p¢ larger, we now turn to the case of p¢ small. We
show that in this case, only the smallest graph cuts have any significant chance
of failure. While it is obvious that cuts with fewer edges are more likely to fail,
one might think that there are so many large cuts that overall they are more
likely to fail than the small cuts. However, the following proposition lets us
bound the number of large cuts and show this is not the case.



Theorem 2.6. An undirected graph has less than n*® a-minimum cuts.

Remark. Vazirani and Yannakakis [26] gave an incomparable bound on the num-
ber of small cuts by rank rather than by value.

In this section, we sketch a proof of Theorem 2.6. A detailed proof of the
theorem can be found in [15] and an alternative proof in [11]. Here, we sketch
enough detail to allow for some of the extensions we will need later. We prove the
theorem only for unweighted multigraphs (graphs with parallel edges between
the same endpoints); the theorem follows for weighted graphs if we replace any
weight w edge by a set of w unweighted parallel edges.

2.2.1 Contraction

The proof of the theorem is based on the idea of edge contraction. Given a
graph G = (V,W) and an edge (v,w), we define a contracted graph G/(v,w)
with vertex set V' =V U {u} — {v,w} for some new vertex u and edge set

E' =FE—{(v,w)} U{(u,z) | (v,z) € E or (w,z) € E}.

In other words, in the contracted graph, vertices v and w are replaced by a
single vertex u, and all edges originally incident on v or w are replaced by
edges incident on u. We also remove self-loops formed by edges parallel to the
contracted edge since they cross no cut in the contracted graph.

Fact 2.7. There is a one-to-one correspondence between cuts in G /e and cuts
in G that e does not cross. Corresponding cuts have the same value.

Proof. Consider a partition (A, B) of the vertices of G/(v,w). The vertex u
corresponding to contracted edge (v,w) is on one side or the other. Replacing
uw by v and w gives a partition of the vertices of G. The same edges cross the
corresponding partitions. O

2.2.2 The Contraction Algorithm

We now use repeated edge contraction in an algorithm that selects a cut from
G. Counsider the following Contraction Algorithm. While G has more than 2
vertices, choose an edge e uniformly at random and set G <~ G/e. When the
algorithm terminates, we are left with a two-vertex graph that has a unique cut.
A transitive application of Fact 2.7 shows that this cut corresponds to a unique
cut in our original graph; we will say this cut is chosen by the Contraction Al-
gorithm. We show that any particular minimum cut is chosen with probability
at least n 2. Since the choices of different cuts are disjoint events whose prob-
abilities add up to one, it will follow that there are at most n? minimum cuts.
We then generalize this argument to @-minimum cuts.

Lemma 2.8. The Contraction Algorithm chooses any particular minimum cut
with probability at least n™2.



Proof. Each time we contract an edge, we reduce the number of vertices in the
graph by one. Consider the stage in which the graph has r vertices. Suppose
G has minimum cut ¢. It must have minimum degree ¢, and thus at least rc/2
edges. Our particular minimum cut has ¢ edges. Thus a randomly chosen edge
is in the minimum cut with probability at most ¢/(r¢/2) = 2/r. The probability
that we never contract a minimum cut edge through all n — 2 contractions is
thus at least

(-2 0as) 08 = () 65) () )
(n=2)(n=3)---3)2)(1)
721(” - =2 (4)(3)
n(n —1)

- ()

> n72

2.2.3 Proof of Theorem 2.6

We can extend the approach above to prove Theorem 2.6. We slightly modify
the Contraction Algorithm and lower bound the probability that it chooses a
particular a-minimum cut. With r vertices remaining, the probability we choose
an edge from our particular a-minimum cut is at most 2a/r. Let k = [2a].
Suppose we perform random contractions until we have a k-vertex graph. In
this graph, choose a vertex partition (cut) uniformly at random, so that each
cut is chosen with probability 2'—*. It follows that a particular c-minimum cut
is chosen with probability

2 2 2
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> po2e,

Note that for « not a half-integer, we are making use of generalized binomial
coefficients which may have non-integral arguments. These are discussed by
Knuth [19, Sections 1.2.5-6] (cf. Exercise 1.2.6.45). There, the Gamma function
is introduced to extend factorials to real numbers such that a! = a(a—1)! for all
real o > 0. Many standard binomial identities extend to generalized binomial
coefficients, including the facts that () < n?*/(2a)! and 22°~! < (2a)! for
a> 1.



Remark. The Contraction Algorithm described above is used only to count cuts.
An efficient implementation given by Karger and Stein [15] can be used to find
all a-minimum cuts in O(n?®) time. We use this algorithm in our FPRAS.

2.3 Cut Failure Bounds

Using the cut counting theorem just given, we show that large cuts do not
contribute significantly to a graph’s failure probability. Consider Theorem 2.6;
taking o = 1, it follows from the union bound that the probability that some
minimum cut fails is at most n?p°. We now show that the probability that any
cut fails is only a little bit larger.

Theorem 2.9. Suppose a graph has minimum cut ¢ and that each edge of the
graph fails independently with probability p, where p¢ = n~ %) for some § > 0.
Then

1. The probability that the given graph disconnects is at most n=°(1 + 2/4),
and

2. The probability that a cut of value ac or greater fails in the graph is at
most n~%(1 + 2/6).

—ad

Remark. We conjecture that a probability bound of n can be proven (elim-

inating the (1 4 2/4) term).

Proof. We prove Part 1 and then note the small change needed to prove Part 2.
For the graph to become disconnected, all the edges in some cut must fail.
We therefore bound the failure probability by summing the probabilities that
each cut fails. Let r be the number of cuts in the graph, and let ¢q,... ¢, be
the values of the r cuts in increasing order so that ¢ = ¢; < ¢2 < --- < ¢,
Let pr = p° be the probability that all edges in the k'® cut fail. Then the
probability that the graph disconnects is at most Y py, which we proceed to
bound from above.

We proceed in two steps. First, consider the first n° cuts in the ordering
(they might not be minimum cuts). Each of them has ¢; > ¢ and thus has
pr < n~ (219 5o that

2

Next, consider the remaining larger cuts. According to Theorem 2.6, there are
less than n2® cuts of value at most ac. Since we have numbered the cuts in
increasing order, this means that c¢,2« > ac. In other words, writing k = n2®,

Ink
2lnn ¢
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and thus
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It follows that
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Summing the bounds for the first n? and for the remaining cuts gives a total of
n~% +2n7%/4, as claimed.

The proof of Part 2 is the same, except that we sum only over those cuts of
value at least ac. O

Remark. A slightly stronger version of Part 1 was first proved by Lomonosov
and Polesskii [22] using different techniques that identified the cycle as the most
unreliable graph for a given ¢ and n. We sketch their result, which we need for a
different purpose, in Section 4.3.2. However, Part 2 is necessary for the FPRAS
and was not previously known.

2.4 An Approximation Algorithm

Our proof that only small cuts matter leads immediately to an FPRAS. First
we outline our solution. Given that FAIL(p) < n~%, Theorem 2.9 shows that
the probability that a cut of value much larger than c fails is negligible, so we
need only determine the probability that a cut of value near ¢ fails. We do this
as follows. First, we enumerate the (polynomial size) set of near-minimum cuts
that matter. From this set we generate a polynomial size boolean expression
(with a variable for each edge, true if the edge has failed) that is true if any of
our near-minimum cuts has failed. We then need to determine the probability
that this boolean expression is true; this can be done using the DNF counting
techniques of Karp, Luby, and Madras [18, 17]. Details are given in the following
theorem.

Theorem 2.10. When FAIL(p) < n™*, there is a (Monte Carlo) FPRAS for
estimating FAIL(p) running in O(mn*/e®) time.

Proof. Under the assumption, the probability that a particular minimum cut
fails is p¢ < FAIL(p) < n~%. We show there is a constant a for which the
probability that any cut of value greater than ac fails is at most eFAIL(p). This
proves that to approximate to the desired accuracy we need only determine the
probability that some cut of value less than «c fails. It remains to determine «.

10



Write p¢ = n~(249); by hypothesis 6 > 2. Thus by Theorem 2.9, the probability
that a cut larger than ac fails is at most 20 7°%. On the other hand, we know that
n~ (19 = p¢ < FAIL(p), so it suffices to find an « for which 2n 9% < en~(3+9),
Solving this shows that « = 14+2/5 —(In(¢/2))/dInn < 2—1n(e/2)/21Inn suffices
and that we therefore need only examine the smallest n?* = O(n/e) cuts.

We can enumerate these cuts in O(n?*log®n) time using certain random-
ized algorithms [14, 11] (a somewhat slower deterministic algorithm exists [26]).
Suppose we assign a boolean variable x, to each edge e; x. is true if edge e fails
and false otherwise. Therefore, the x, are independent and true with probability
p. Let E; be the set of edges in the i** small cut. Since the i*" cut fails if and
only if all edges in it fail, the event of the i** small cut failing can be written as
F; = Neeg;x.. Then the event of at least one small cut failing can be written
as F' = V;F;. We wish to know the probability that F'is true. Note that F' is
a formula in disjunctive normal form. The size of the formula is equal to the
number of clauses (n2%) times the number of variables per clause (at most ac),
namely O(cn?®). The FPRAS of Karp, Luby, and Madras [17] estimates the
truth probability of this formula, and thus the failure probability of the small
cuts, to within (1 +¢) in O(cn®*/e?) = O(en*/e?) = O(mn*/€?) time.

We are therefore able to estimate to within (1 £¢€) the value of a probability
(the probability that some a-minimum cut fails) that is within (1 + €) of the
probability of the event we really care about (the probability that some cut fails).
This gives us an overall estimate accurate to within (1 & €)? &~ (1 £ 2¢). O

2.5 Putting it Together
We now combine the above results to get an FPRAS:
Corollary 2.11. There is an FPRAS for FAIL(p) running in O(mn*/€e*) time.

Proof. Suppose we wish to estimate the failure probability to within a (1 +
€) ratio. If FAIL(p) > n~%, then we can estimate it in O(mn*/e?) time by
direct Monte Carlo simulation as in Corollary 2.4. Otherwise, we can run the
O(mn*/€®)-time algorithm of Theorem 2.10. O

If the graph is sparse (with O(n) edges) and the minimum cut is O(1) (both
these conditions apply to, e.g., planar graphs) then the time for a Monte Carlo
trial is O(n), while the size of the formula for the DNF counting step above is
O(n**). So if we use a different FAIL(p) threshold for deciding which algorithm
to use, we can improve the running time bound to O(n?#/e?).

While this time bound is still rather poor, experiments have suggested
that performance in practice is significantly better—typically O(n3) on sparse
graphs [16].

3 Extensions

We now discuss several extensions of our basic FPRAS. In this section, we will
consider many cases in which it is sufficient to consider the probability that an

11



a-minimum cut fails for some o = O(1—loge/logn) (as in the previous section)
that is understood in context but not worth deriving explicitly. We will refer to
these a-minimum cuts as the weak cuts of the graph.

3.1 Varying Failure Probabilities

The analysis and algorithm given above extend to the case where each edge
e has its own failure probability p.. To extend the analysis, we transform
a graph with varying edge failure probabilities into one with identical failure
probabilities. Given the graph G with specified edge failure probabilities, we
build a new graph H all of whose edges have the same failure probability p,
but that has the same failure probability as G. Choose a small parameter 6.
Replace an edge e of failure probability p. by a “bundle” of k. parallel edges,
each with the same endpoints as e but with failure probability 1 — @, where

ke = [—(Inpe)/0] .

This bundle of edges keeps its endpoints connected unless all the edges in the
bundle fail; this happens with probability

(1—-6) [—(Inpe)/07

As 0 — 0, this failure probability converges to p.. Therefore, the reliability of
H converges as # — 0 to the reliability of G. Thus, to determine the failure
probability of G, it suffices to determine the failure probability of H in the limit
as 0 — 0.

Since H has all edge failure probabilities the same, our Section 2 analysis
of network reliability applies to H. In particular, we know that it suffices to
enumerate the weak cuts of H and then determine the probability that one
of them fails. To implement this idea, note that changing the parameter 6
scales the values of cuts in H without changing their relative values (modulo
a negligible rounding error). We therefore build a weighted graph F' by taking
graph G and giving weight In1/p, to edge e. The weak cuts in F' correspond
to the weak cuts in H. We find these weak cuts in F' using the Contraction
Algorithm (which works for weighted graphs [15]) as before.

Given the weak cuts in H, we need to determine the limiting probability
that one of them fails as § — 0. We have already argued that as § — 0, the
probability a cut in H fails converges to the probability that the corresponding
cut in G fails. Thus we actually want to determine the probability that one of
a given set of cuts in G fails. We do this as before: we build a boolean formula
with variables for the edges of G and with a clause for each weak cut that is
true if all the edges of the cut fail. The only change is that variable z. is set to
true with probability p.. The algorithm of [17] works with these varying truth
probabilities and computes the desired quantity.

Theorem 3.1. There is an FPRAS for the all-terminal network reliability prob-
lem with varying edge failure probabilities.

12



One might be concerned by the use of logarithms to compute edge weights.
However, it is easy to see that in fact approximate logarithms suffice for the
purpose of enumerating small cuts. If we approximate each logarithm to within
relative error .1, then every a-minimum cut in F' remains an 1la/9-minimum
cut in the approximation to F'. Thus we can enumerate a slightly larger set of
near-minimum cuts in order to find the weak cuts. Once we find the weak cuts,
we use the original p. values in the DNF counting algorithm.

In the case of varying failure probabilities, we cannot bound the number of
edges in any particular weak cut by a quantity less than m (a weak cut may
have m — n edges with large failure probabilities). Thus the size of the DNF
formula, and thus the running time of the DNF counting algorithm, may be as
large as mn?® ~ mn*/e.

All the other extensions described in this paper can also be modified to
handle varying failure probabilities. But for simplicity, we focus on the uniform
case.

3.2 Multiterminal Reliability

The multiterminal reliability problem is a generalization of the all-terminal re-
liability problem. Instead of asking whether the graph becomes disconnected,
we consider a subset K of the vertices and ask if some pair of them becomes
disconnected. If some pair of vertices in K is separated by a cut of value O(c),
then we can use the same theorem on the exponential decay of cut failure prob-
abilities to prove that we only need to examine the small cuts in the graph to
determine whether some pair of vertices in K becomes disconnected.

Lemma 3.2. If some pair of vertices in K is separated by a cut of value O(c),
then there is an FPRAS for the multiterminal reliability problem with source
vertices K.

Proof. We focus on the case of uniform failure probability p; the generalization
to arbitrary failure probabilities is as before. Suppose a cut of value fc separates
vertices in K. Then the probability that K gets disconnected when edges fail
with probability p is at least p®c. If p > n=%, then p?¢ > n=* = n=°M and
we use Monte Carlo simulation as before to estimate the failure probability. If
p° < n~%, then by Theorem 2.9, the probability that a cut of value exceeding
ac fails is O(n=2%). Thus, choosing « such that n=2% < p’¢, we can enumerate
the weak cuts and apply DNF counting. O

3.3 k-Connectivity

Just as we estimated the probability that the graph fails to be connected, we
can estimate the probability that it fails to be k-edge connected for any constant
k. Note that the graph fails to be k-edge connected only if some cut has less
than k of its edges survive. The probability of this event decays exponentially
with the value of the cut, allowing us to prove (as with Theorem 2.9) that if the
probability that fewer than k edges in a minimum cut survive is O(n~(2%9)), then
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the probability that fewer than &k edges survive in a non-weak cut is negligible.
Thus, if direct Monte Carlo simulation is not applicable, we need only determine
the probability that some weak cut keeps less than k of its edges. But this is
another DNF counting problem. For any particular weak cut containing C' < m
edges, we enumerate all (C_C,;H) = O(C*k 1) = O(m*~1) sets of C —k+1 edges,
and for each add a DNF clause that is true if all the given edges fail.

In fact, one can also adapt the algorithm of [17] to determine the probability
that all but & — 1 variables in some clause of a DNF formula become true; thus

we can continue to work with the O(mn?/¢)-size formula we used before.

Corollary 3.3. For any constant k, there is an FPRAS for the probability that
a graph with edge failure probabilities fails to be k-edge connected.

3.4 Eulerian Directed Graphs

A natural generalization of the all-terminal reliability problem to directed graphs
is to ask for the probability that a directed graph with random edge failures
remains strongly connected. A directed graph fails to be strongly connected
precisely when all the edges in some directed cut fail. In general, the techniques
of this paper cannot be applied to directed graphs—the main reason being that
a directed graph can have exponentially many minimum directed cuts.

We can, however, handle one special case. In an Eulerian directed graph
G on vertex set V, the number of edges crossing from any vertex set A to
V — A is equal to the number of edges crossing from V — A to A. Thus if we
construct an undirected graph H by removing the directions from the edges of
G, we know that any (directed) cut in G has value equal to half that of the
corresponding (undirected) cut in H. It follows that the a-minimum directed
cuts of G correspond to a-minimum undirected cuts of H. Therefore, there
are at most 2n?® a-minimum directed cuts in G that can be enumerated by
enumerating the a-minimum cuts of H (the factor of 2 arises from considering
both directions for each cut). As in the undirected case, if the directed failure
probability is less than n~*, an analogue of Theorem 2.9 immediately follows,
showing that only weak directed cuts are likely to fail. It therefore suffices to
enumerate a polynomial number of weak directed cuts to estimate the directed
failure probability.

Corollary 3.4. There is an FPRAS for the probability that a directed Eulerian
graph fails to remain strongly connected under random edge failures.

Corollary 3.5. For any constant k there is an FPRAS for the probability that
a directed Eulerian graph fails to have directed connectivity k under random edge
failures.

3.5 Random Orientations

In a similar fashion, we can estimate the probability that, if we orient each
edge of the graph randomly, the graph fails to be strongly connected. For each
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cut, we make a DNF formula with two clauses, one of which is true if all edges
point “left” and the other if all edges point “right.” (This observation is due
to Alan Frieze.) This problem can also be phrased as estimating the number
of non-strongly connected orientations of an undirected graph; in this form,
it is related to the Tutte polynomial discussed in Section 6. Similarly, we can
estimate the probability that random orientations fail to produce a k-connected
directed graph.

4 Partition into » Components

The quantity FAIL(p) is an estimate of the probability that the graph partitions
into more than one connected component. We can similarly estimate the prob-
ability that the graph partitions into r or more components for any constant r.
Besides its intrinsic interest, the analysis of this problem will be important in
our study of some heuristics and derandomizations in Section 5 and the Tutte
polynomial in Section 6.

We first note that a graph partitions into r or more components only if
an r-way cut—the set of edges with endpoints in different components of an
r-way vertex partition—loses all its edges. Note that some of the vertex sets of
the partition might induce disconnected subgraphs, so that the r-way partition
might induce more than r connected components. However, it certainly does not
induce less. Our approach to r-way reliability is the same as for the 2-way case:
we show that there are few small r-way cuts and that estimating the probability
one fails suffices to approximate the r-way failure probability. As a corollary,
we show that the probability of r-way partition is much less than that of 2-way
partition.

4.1 Counting Multiway Cuts

We enumerate multiway cuts using the Contraction Algorithm as for the 2-way
case. Details can be found in [15].

Lemma 4.1. In an m-edge unweighted graph the minimum r-way cut has value
at most 2m(r — 1)/n.

Proof. A graph’s average degree is 2m/n. Consider an r-way cut with each of
the r — 1 vertices of smallest degree as its own singleton component and all the
remaining vertices as the last component. The value of this cut is at most the
sum of the singleton vertex degrees, which is at most r — 1 times the average
degree. O

Corollary 4.2. There are at most (2(;‘_1)) minimum r-way cuts.

Proof. Suppose we fix a particular r-way minimum cut and run the Contraction
Algorithm until we have 2(r—1) vertices. By the previous lemma, the probability
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that we pick an edge of our fixed cut when k vertices remain is at most 27"7_1.
Thus the probability that our fixed minimum r-way cut is chosen is

i (-2

k=2r—1

which is analyzed exactly as in the proof of Theorem 2.6, substituting r — 1 for
a. O

Corollary 4.3. For arbitrary o > 1, there are at most (rn)m(”*l) Q-minimum
r-way cuts that can be enumerated in O((rn)?*("=1) time.

Proof. First run the Contraction Algorithm until the number of vertices re-
maining is [2a(r — 1)]. At this point, choose a random r-way partition of what
remains. There are at most 72%("=1) such partitions.

The time bound follows from the analysis of the Recursive Contraction Al-
gorithm [15]. O

Remark. We conjecture that in fact the correct bound is O(n®") a-minimum
r-way cuts. Section 4.3.2 shows this is true for a = 1. Proving it for general «
would slightly improve our exponents in the following sections.

4.2 An Approximation Algorithm

Our enumeration of multiway cuts allows an analysis and reduction to DNF
counting exactly analogous to the one performed for FAIL(p).

Corollary 4.4. Suppose a graph has r-way minimum cut value ¢, and that
each edge fails with probability p, where pc = (rn)*(”‘s)(r’l) for some constant
6 > 0. Then the probability that an a-minimum r-way cut fails is at most
(rn) =D (1 +2/96)

Proof. The proof is exactly as for Theorem 2.9, substituting (rn)"~ (drawn
from Corollary 4.3) for n everywhere. O

Corollary 4.5. There is an algorithm for e-approzimating the probability that
a graph partitions into r or more components, running in O(m(rn)*r=1 /€)
time. The algorithm is an FPRAS with running time O(mn*"=1 /€% for any
fized r.

Proof. Exactly as for the 2-way cut case, with (rn)(r’l) replacing n every-
where. Let ¢, be the r-way minimum cut value and let § be defined by p°r =
(rn)=CGHO0=1 " If per > (rn)~4"=1) estimate the partition probability via
Monte Carlo simulation. Otherwise, it follows as in the 2-way cut case that
for the same constant a as we chose there, the probability that a greater than
a-minimum r-way cut fails is less than epr. Thus to estimate the partition prob-
ability it suffices to enumerate (in O((rn)*("=1 /) time) the set of a-minimum
r-way cuts and perform DNF counting. O
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One might wish to compute the probability that a graph partitions into
exactly r components, but it is not clear that this can be done. In particular,
computing REL(p) can be reduced to this problem (for any r) by adding » — 1
isolated vertices. There is at present no known FPRAS for REL(p).

4.3 Comparison to 2-way Cuts

For Sections 5 and 6, we need to show that the probability of partition into r
components is much less than that of partition into 2 components. We give two
proofs, the first simpler but with a slightly weaker bound. The following sections
can use the weaker analysis at the cost of worse exponents. In this section, the
term “cut” refers exclusively to 2-way cuts unless we explicitly modify it.

4.3.1 A simple argument

Lemma 4.6. If p¢ = n= 219 then the probability that an r-way cut fails is at
most n0"/4(1+2/6).

Proof. We show that any r-way cut contains the edges of a (2-way) cut of value
re/4. Thus, if an r-way cut fails then an (r/4)-minimum 2-way cut fails. The
probability that this happens has been upper-bounded by Theorem 2.9.

To show the claim, consider an r-way cut. Contract each component of the
r-way partition to a single vertex, yielding an r-vertex graph G'. All edges in
this graph correspond to edges of the r-way cut. Every cut in G' corresponds
to a cut of the same value in the original graph, so it suffices to show that G’
has a 2-way cut of value at least rc/4. To see this, note that every vertex in G’
has degree at least ¢, so the number of edges in G' is at least rc¢/2. Consider
a random cut of G', generated by assigning each vertex randomly to one side
or the other. Each edge has a 1/2 chance of being cut by this partition, so the
expected value of this cut is at least rc/4. It follows that G’ has a cut of value
at least rc/4 that corresponds to a cut of value at least r¢/4 in the original
graph. O

4.3.2 A better argument

We can get a slightly better bound on the probability that a graph partitions
into r components via a small variation on an argument made by Lomonosov
and Polesskii [22, 20, 4]. The better bound improves some of our exponents.
Their proof uses techniques somewhat different from the remainder of the paper
and can safely be skipped.

Lemma 4.7. Let FAIL,.(G,p) denote the probability that G partitions into r
or more connected components when each edge fails with probability p. Let G
have minimum cut ¢ for some even c. Let C,, be a cycle with c/2 edges between
adjacent vertices. Then for any r, FAIL,.(G,p) < FAIL,.(Cy,p).
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Corollary 4.8. For any graph G with minimum cut c, if edges fail with proba-
bility p where p° = n~ (219 then the probability the failed graph has r or more
connected components is less than n=°"/2.

Remark. Note that for r = 2, the above result gives a slightly stronger bound on
FAIL(p) than we are able to get in Theorem 2.9. Unfortunately, this argument
does not appear to extend to proving the bound we need on the probability that
a greater than -minimum r-way cut fails.

Proof of Corollary 4.8: Thanks to Lemma 4.7, it suffices to prove this claim
for the case of G a cycle C,, with (¢/2)-edge “bundles” between adjacent vertices.
The number of components into which C,, is partitioned is equal to the number
of bundles that fail, so we need only bound the probability that r or more
bundles fail. The probability that a single bundle fails is p¢/? = n~(1+9/2) o
the probability that = particular bundles fail is n="(17%/2) There are (:f) <n”
sets of exactly r bundles. It follows that the probability r or more bundles fail
is less than n/n~r(1+0/2) = p=r9/2, O
Proof of Lemma 4.7: Consider the following time-evolving version of the
Contraction Algorithm on a connected graph G. Each edge of G is given an
arrival time chosen independently from the exponential distribution with mean
1. Each time an edge arrives, we contract its endpoints if they have not already
been contracted. This gives rise to a sequence of graphs G = G, Gp—1, - -. ,G1,
where G, has r vertices. Let G[t] be the graph that exists at time ¢. Thus
initially G[0] = G, and eventually G[oo] has one vertex since all edges have
arrived. We draw a correspondence between this model and our edge failure
model as follows: at time ¢, the failed edges are those which have not yet arrived.
It follows that each vertex in G[t] corresponds to a connected component of G
when each edge has failed (to arrive) independently with probability e~*.

We consider the random variable T}.(G) defined as the time at which the
edge that contracts G, to G,._; arrives. We show that T,.(C,) stochastically
dominates T, (G) for every r—that is,

PrT,(G) > ] < PH{TH(Cp) > ).

(See Motwani and Raghavan [23] for additional discussion of this definition.)
Assuming this is true, we can prove our result as follows:

Pr[G[t] has r or fewer components] = Pr[T,.(G) <]

Pr[T(C,,) < 1]

= Pr[C,[t] has r or fewer components].

v

To prove stochastic domination, let ¢.(G) = T,_1(G) — T;-(G) denote the
length of time for which G, exists before being contracted to G,_;. Clearly,
t.(Q) is just the time it takes for an edge to arrive that has endpoints in different
connected components of G,. It follows that T,.(G) = >, _ t,+(G). Similarly,
T,(Cp) = Y0, tw(Cy). We will show that t.(C,) stochastically dominates
t,.(G) for every r. Thanks to the memoryless nature of the exponential distri-
bution, the ¢, are mutually independent (this will be justified more carefully
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later). The fact that T).(C),) stochastically dominates T}.(G) then follows from
the fact that when X dominates X' and Y dominates Y’ and the variables are
independent, X + Y dominates X' + Y.

To analyze t,, suppose there are m, edges in G, (note m, is a random
variable). The arrival time of each edge in G, measured from T,.(G) is exponen-
tially distributed with mean 1. Therefore, the arrival time of the first such edge,
namely ¢,.(G), is exponentially distributed with mean 1/m,.. Now note that G,
is c-connected, so it must have m, > c¢r/2. It follows that ¢,(G) is exponentially
distributed with mean at most 2/cr, meaning that it is stochastically dominated
by any exponentially distributed variable with mean 2/cr. On the other hand,
when (), has been reduced to r components, it is isomorphic to C,.. By the
same analysis as for G, we know ¢,.(C),) is exponentially distributed with mean
2/cr, and thus stochastically dominates ¢,(G).

Our glib claim that the ¢, are independent needs some additional justifica-
tion. Technically, we condition on the values G, ... ,G1 of the evolving graph.
We show that regardless of what values G; we condition on, 7,.(C),) stochasti-
cally dominates T,.(G | Gy,... ,G1). Since the stochastic domination applies
regardless of our conditioning event, it follows even if we do not condition.

Once we have conditioned on the value G,, t, is just the time it takes for an
edge to arrive that contracts G, to GG.—; and is therefore independent of ¢, when
r' # r. But we must ask whether ¢, still has the right exponential distribution—
the complicating factor being that we know the first edge to arrive at G, must
contract G, to a specific G,._; and not some other graph. To see that this does
not matter, let B be the event that first edge to arrive at GG, is one that creates
Gr—l- Then

Prlt, >¢|B] = Pr[B]|t. >t]Pr[t, >t]/Pr[B]
= Pr1[B]Pr[t, > t]/Pr[B]
= Prft, > 1]

since of course, the time of arrival of the edge the contracts GG, has no impact
on which of the edges of G, is the first to arrive. O

5 Heuristics and Deterministic Algorithms

Until now, we have relied on the fact that the most likely way for a graph to fail
is for some of its near-minimum cuts to fail. We now strengthen this argument
to observe that most likely, ezactly one of these near-minimum cuts fails. This
leads to two additional results. First, we show that the sum of the individual
small-cut failure probabilities is a reasonable approximation to the overall failure
probability. This justifies a natural heuristic and indicates that in practice one
might not want to bother with the DNF counting phase of our algorithm. In a
more theoretical vein, we also give a deterministic PAS for FAIL(p) that applies
whenever FAIL(p) < n~ (%), We prove the following theorems.

19



Theorem 5.1. When p¢ < n~* (and in particular when FAIL(p) < n™%),

the sum of the weak cuts’ failure probabilities is a (1 + o(1)) approzimation
to FAIL(p).

Theorem 5.2. When p¢ < n~(*9) for any constant & (and in particular when
FAIL(p) < n=(3%9))  there is a deterministic PAS for FAIL(p) running in

(n/e)>P(O(=log,. ©))

time.

We remark that unlike many PASs whose running times are only polynomial
for constant €, our PAS has polynomial running time so long as e = n~ (). But
its behavior when € is tiny prevents it from being an FPAS.

To prove these theorems, we argue as follows. As shown in Section 2, it is
sufficient to approximate, for the given €, the probability that some @-minimum
cut fails, where

a = 142/6—(Ine)/dlnn

Let us write these a-minimum cuts as C;, i = 1,...,n%% Let F; denote the
event that cut C; fails. We can use inclusion-exclusion to write the failure
probability as

= L AR CAF AF 14+,
PrlUF] =Y Pr[F;,]— Y PrF;, nF,]+ Y Pi[F, NF,NF,]+
i1

i1 <iz i1 <i2<i3

Later terms in this summation measure events involving many cut failures. We
show that when many cuts fail, the graph partitions into many pieces, meaning
a multiway cut fails. We then argue (using Lemma 4.6 or Corollary 4.8) that
this is so unlikely that later terms in the sum can be ignored. This immediately
yields Theorem 5.1.

To prove Theorem 5.2, we show that for any fixed e it is sufficient to consider
a constant number of terms (summations) on the right-hand side in order to get
a good approximation. Observe that the k" term in the summation can be
computed deterministically in O(m(n?¥)*) time by evaluating the probability
of each of the (n?*®) intersection events in the sum (each can be evaluated
deterministically since it is just the probability that all edges in the specified
cuts fail). Thus, our running time will be polynomial so long as the number of
terms we need to evaluate is constant.

5.1 Inclusion-Exclusion Analysis

As discussed above, our analyses use a truncation of the inclusion-exclusion
expression for

Pr{UF;] =Y Pr[F,]— Y Pr[F, NFy,]+ > PiF, NF,NF,]+-.
i1

i1 <iz i1 <i2<i3
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Suppose we truncate the inclusion-exclusion, leaving out the k** and later
terms. If k is odd the truncated sum yields a lower bound; if &k is even it yields
an upper bound. We show that this bound is sufficiently tight. We do so by
rewriting the inclusion-exclusion expression involving particular sets of failed
cuts failing as an expression based on how many cuts fail.

Lemma 5.3. Let S, be the event that u or more of the events F; occur. If the
inclusion-exclusion expansion is truncated at the k" term, the error introduced
18

> (5 pelsa

u

Proof. Let T, be the event that ezactly u of the events F; occur. Consider
the first summation ) F;, in the inclusion-exclusion expansion. The event that
precisely the events Fj, ,... , F};, occur (that is, the event that cuts Cj,,... ,Cj,
fail but no others fail) contributes to the w terms Pr[Fj ],... ,Pr[Fj,] in the
sum. It follows that each sample point contributing to T, is counted u = (})
times in the summation. Thus,

S P, = (?) Pr[T.].

u

By the same reasoning,

S PrF, N Fy] = ; <z> Pr[T,],

and so on. It follows that the error introduced by truncation at term k is

> PiF,NF,---nF,]- > PrE,NF,n---Fi, ]+
i <dp <---<ig i <dp < - <ipg1
_ Z(_D’H’Z(?‘) Pr[T,]
i>k v
= E Yo () )
u j>k J

3y <Z - i) Pr[T,].

u

Now recall that S, is the event that u or more of the F; occur, meaning that

21



Pr[T,] = Pr[Sy,] — Pr[Syu+1]. Thus we can rewrite our bound above as

; <Z _ i) (Pr[S] — Pr[Sus1])
Z <Z . 1) Pr{Su] = Zu: <Z _ 1) Pr(Su 1]
1) by, -3
1 ”

5 (! (=2) pus
> (
= (

(i) = (75)) s
v 2) Pr[S.].

This completes the proof. O

5.2 A Simple Approximation

Using the above error bound, we can prove Theorem 5.1. Let F; denote the
event that the i*" near-minimum cut fails. Our objective is to estimate Pr[UF;].
Summing the individual cuts’ failure probabilities corresponds to truncating our
inclusion-exclusion sum at the second term, giving (by Lemma 5.3) an error of
Y u>2 Su- We now bound this error by bounding the quantities S,,.

Lemma 5.4. If u distinct (2-way) cuts fail then a [log(u+ 1) + 1]-way cut
fails.

Proof. Consider a configuration in which w« distinct cuts have failed simulta-
neously. Suppose this induces k connected components. Let us contract each
connected component in the configuration to a single vertex. Each failed cut in
the original graph corresponds to a distinct failed cut in the contracted graph.
Since the contracted graph has k vertices, we know that there are at most
2k=1 _ 1 ways to partition its vertices into two nonempty groups, and thus at
most this many cuts. In other words, u < 28~1 —1. Now solve for u and observe
it must be integral. O

Corollary 5.5. If p¢ = n~ (%9 then Pr[S,] < n~[es(ut)+116/2
Proof. Apply Corollary 4.8 to the previous lemma. O

Thus, for example, S and S3 are upper bounded by the probability that a
3-way cut fails, which by Corollary 4.8 is at most n—3%/2, More generally, all 2
values Syx, ..., Syr+1_; are at most n~(k+2)9/2 Tt follows that the error in our
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approximation by the bound of Theorem 5.1 is

ZS“ < Zanf(chrZ)d/z

u>2 k>1

TL76 Z(2n76/2)k
k>1

= 2 %/2(1 +0(1))

whenever § > 0. This quantity is o(p°), and thus o(FAIL(p)), whenever n=30/2 =

o(n=(2+9)) ie. § > 4. This proves Theorem 5.1.

5.3 A PAS

We now use the inclusion-exclusion analysis to give a PAS for FAIL(p) when
p¢ = n~*9 for some fixed § > 0, thus proving Theorem 5.2. We give an
e-approximation algorithm with a running time of (r/€)®*P(O(=198x €)) ' which is
clearly polynomial in n for each fixed e (and in fact, for any € = n=9M).

We must eliminate two uses of randomization: in the Contraction Algorithm
for identifying the a-minimum cuts and in the DNF counting algorithm for
estimating their failure probability.

The first step is to deterministically identify the near-minimum cuts of G.
One approach is to use a derandomization of the Contraction Algorithm [13].
A more efficient approach is to use a cut enumeration scheme of Vazirani and
Yannakakis [26]. This scheme enumerates cuts in increasing order of value, with
a “delay” of O(mn) per cut. From the fact that there are only n?® weak cuts, it
follows that all weak cuts (in the sense of Section 3) can be found in O(mn!*+2®)
time.

We must now estimate the probability one of the near-minimum cuts fails.
Let us consider truncating to the first & terms in the inclusion-exclusion expan-
sion. From Corollary 5.5 we know that Pr[S,] < n~(es(w+D+1d/2 Tt follows
from Lemma 5.3 that for any £ < %(ﬂog n, our error from using the k-term
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truncation of inclusion-exclusion is

Z U= 2Y (log(ut1)+1)8/2
" k—2

IN

77,76/2 Z(U’ _ 2)k72(u + 1)76(10gn)/2
u>k

Z(u + 1)k—2—6(10gn)/2

u>k

Z(u + 1)6(10gn)/37276(10gn)/2

u>k

Z(u + 1)76(10g n)/6—1

u>k

/Oo (u 4 1)=5008)/6-1 gy,
]:—r5l(clog1n)/6

d(logn)/6

- 0(logk)/6

d(logn)/6

— O(n—é(logk)/(i)

IN

IN

IN

IN

This quantity is O(en~?t9) = O(ep®) = O(eFAIL(p)) for some k = 20(~ 108, ),
It follows that for an e-approximation we need only evaluate the inclusion-
exclusion up to the k" term. Computing the k" term requires examining every
set of k of the (n/€)°(") a-minimum cuts; this requires (n/e)™P(O(~108, ) time.
This concludes the proof of Theorem 5.2.

We can slightly improve our bound on Pr[S,], which in turn gives better
bounds on k.

1/2a

Lemma 5.6. If u distinct a-minimum cuts fail, then a u -way cut fails.

Proof. Consider a configuration in which u distinct cuts have failed simulta-
neously. Suppose this induces k connected components. Let us contract each
connected component in the configuration to a single vertex. In this contracted
graph (before edges fail), the minimum cut is at least ¢ (since contraction never
reduces the minimum cut). Furthermore, each of the u failed cuts is a cut of
value at most ac, and thus an e-minimum cut, in the contracted graph. Since
the contracted graph has k vertices, we know from Theorem 2.6 that u < k2@,
meaning that k > u!/2®, O

However, this serves only to reduce the values of our constants (and reduce
the running time from an exponential to a polynomial dependence on 1/4).

6 The Tutte Polynomial

The Tutte Polynomial T(G;x,y) is a polynomial in two variables defined by a
graph G. Evaluating it at various points (z,y) on the so-called Tutte Plane yields
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various interesting quantities regarding the graph. In particular, computing the
network reliability REL(p) is the special case of evaluating the Tutte polynomial
at the point = 1,y = 1/p. Another special case is counting the number of
strongly connected orientations of an undirected graph, discussed in Section 3.5.
Yet another is counting the number of forests in a graph. Alon, Frieze, and
Welsh [1] showed that for any dense graph (one with Q(n?) edges) and fixed =
and fixed y > 1 there is an FPRAS for the Tutte polynomial.

6.1 Results

In this section, we prove the following.

Theorem 6.1. For every y > 1 there is a ¢ = O(log, nx) (in particular, ¢ =
O(logn) for any fivzed x and y) such that for all n-vertex m-edge graphs of
edge-connectivity greater than c,

m

T(G;x,y) = —2

G+ o/,

Thus, a good approximation can be given in constant time by ignoring G and
returning the constant y™/(y — 1)"~!. Note that almost all graphs fall under
this theorem as the minimum cut of a random graph is tightly concentrated
around n/2 > c.

Theorem 6.2. For every y > 1 there is a ¢ = O(ylog, nx) such that there is
an FPRAS for T(G;x,y).

This theorem is perhaps unsurprising given the previous theorem. But it is
not immediate since the input may specify € < 1/n. A slightly more challenging
quantity is the “second-order term” saying how far a given graph diverges from
its approximation in the first theorem.

Theorem 6.3. Let

ym
AT(Giz,y) = =1t

For any fixzed y > 1 and fized x, there is a ¢ = O(logn) such that there is an
FPRAS for AT (G;z,y).

- T(G,az,y)

This theorem is stronger than and implies the previous theorem. When AT

is very close to 0, (y}lﬁ accurately approximates 7 but approximating AT

with small relative error is harder.

6.2 Method

Our proofs begin with a lemma of Alon, Frieze, and Welsh [1] (which we have
slightly rephrased to include what is for them the special case of © = 1).
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Lemma 6.4 (see [1]). Wheny > 1,

ym K—1
T(Giz,y) = ————E[Q" "],
(G5 2,y) R Q"]
where @ = (x — 1)(y — 1) and k is a random variable equal to the number

of connected components of G when each edge of G fails independently with
probability p = 1/y. (In the case Q = 0 (when x = 1), we use the fact that
0" =0 for r # 0 while 0° = 1.)

In other words, when p, is the probability that the graph with random
edge failures partitions into exactly r components, the Tutte polynomial can be
evaluated from

E[Qn—l] — ZprQr_l-

k=1

For the remainder of this section, we normalize our analysis by considering

the quantity T"(G; z,y) = T(G;ﬂf,y)% = E[Q"!]. Clearly, any results
on relative approximations to 7" translate immediately into results on relative
approximations to 7T

We begin with an intuitive argument. From Theorem 2.9, when p¢ = n~ (19
(which happens for some ¢ = O(logn) for any fixed p) we know p; is negligible
for r > 1. Intuitively, since p; =~ 1 and all other p, ~ 0, we might as well
approximate 7" by (). Extending this argument, we know that compared to po,
all terms p, for r > 2 are negligible. Therefore, the error in the approximation
of T' by @ is almost entirely determined by p»@?, which we can determine by
computing ps.

To prove our results formally, we have to deal with the fact that the term Q"
in the expectation increases exponentially with r. We prove that the p, decay
fast enough to damp out the increasing values of Q)". We also need to be careful
that when @ < 0, the large leading terms do not cancel each other out.

6.3 Proofs

For our formal analysis, instead of the quantities p,., it is more convenient to
work with quantities s, measuring the probability that the graph partitions into
r or more components. Note that s; = 1 and so = FAIL(p). Since p, = s,—$r+1,
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it follows that

T'(Gzy) = Y pQ "
r=1

= Z(Sr —5r41)Q"

r=1
n n
= D QT =) 5Q?
r=1 r=2

= 1+ Zsr(Qr_l _ Qr—2)

r=2

L+ (Q-1)) Q"
r=2

Theorem 6.1 will follow directly from the last equation if we can show that the
trailing term (Q — 1) >__, s,Q"~2 = O(1/n). Theorem 6.3 will follow if we can
give an FPRAS for "', s,Q"~2. The fact that the value of this sum is o(1)
(Theorem 6.1) means that the FPRAS for it immediately yields an FPRAS for
T', thus proving Theorem 6.2.

To prove these results, first consider the case x = 1. In this case @ =0,
meaning Q"2 = 1 for r = 2 and 0 for r > 2. Thus T'(G;z,y) = 1 — 5o =
1 — FAIL(p) = REL(p). We have already seen in Theorem 2.9 that whenever
p¢ = n~ (19 the probability that the graph becomes disconnected is at most
n~%(1+2/8). This is certainly O(1/n) if § > 1, meaning REL(p) = 1 — O(1/n).
But this in turn is true when p¢ < n73, i.e.,

c>3log,n

This proves Theorem 6.1 for Q = 0. On the other hand, Theorem 6.3 simply
claims that there is an FPRAS for 1 — REL(p) = FAIL(p), which is what Sec-
tion 2 showed. Finally, Theorem 6.2 says that when FAIL(p) is small, we can
approximate REL(p) (by approximating FAIL(p)).

We now generalize this argument to the case x > 1. To derive the appropriate
lower bound on ¢, we state two criteria that will we need in our analysis. First,
we require ¢ to be such that p¢ = n~2%9) for some § > 1. Equivalently, we have
1 < 6 = —log(n?p°)/logn. Second, we require that @ < +n/%. Plugging in for
d, we find the equivalent requirement

1
Q < Zn6/4

1, oo
= Z(nzp) Y
“Q)* < 1/n?p
n(4Q)* < y°
logy(256Q4n2) < ¢
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This is true for some ¢ = O(log, (nQ)) = O(y Innz) as claimed.

Given the above relations between @,n, and §, we can use Corollary 4.8.
Since p¢ = n~*9 | we deduce that s, < n~"/2. Since @ < 1n®/* < In°/? we
find that

i S’I"QT_2

< QY @y &
r=rQ r>ro

< Q@)1 (QnTA))

< Q@ Y- o)

S 2Q72(Qn76/2)7’0

(2)

Our results follow from this bound. First, taking ro = 2, we find that the error
in approximating 7"(G; z,y) by 1 is at most

2n7% = o(1).

This proves Theorem 6.1.

To prove Theorem 6.3, note that the leading term in the summation (1) is
sy > n~ (319 We can therefore estimate the sum to within relative error O(e)
by evaluating summation terms up to summation index 7y where (Qn=9/2)r <
en~ (219 Since the left-hand side decreases exponentially in n as a function of
ro, we can achieve this error bound by taking

ro = O(logn(n%a/e)) =0(1 +log,, 1/e).

In other words, we only need to determine O(1—log,, €) terms in the summation.
This in turn reduces to determining the quantities s, appearing in those terms.

We cannot find the s, exactly. However, for an e-approximation, it suffices
to approximate each relevant s, to within e. We can do so using the algorithm
of Corollary 4.5. The running time of this algorithm for estimating the r-way
failure probability to within € is (n”/¢)?). We have argued above that we only
need to run the algorithm for r < ro = O(1—1log,, €). It follows that the running
time of our algorithm is n@(1=198x €) /eO(1) = (1, /€)°() | as required. This proves
Theorem 6.3.

Finally, we consider the case x < 1. Our argument is essentially unchanged
from before. We need to be slightly more careful because our sum is now an
alternating sum, which means that the leading terms are a good approximation
only if they do not cancel each other out. To see that such cancelling does
not occur, note that the first term has value sy = n~(?*9) while the remaining
terms (by the analysis above) have total (absolute) value O(n(Qn=39/2)). If we
choose n large enough that @) < %n‘s/‘l, then this bound is O(%n’%/‘l) < isy
for 6 > 4, so the remaining terms do not cancel s,.
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7 Conclusion

We have given an FPRAS for the all-terminal network reliability problem and
several variants. In the case of large failure probability, the FPRAS uses
straightforward Monte Carlo simulation. For smaller failure probabilities, the
FPRAS uses an efficient reduction to DNF counting or a less efficient deter-
ministic computation. An obvious open question is whether there is also a
deterministic PAS for the case of large failure probabilities. Another is whether
there is also an FPRAS for REL(p) = 1 — FAIL(p), the question being open
only for the case REL(p) near 0.

This work has studied probabilistic edge failures; a question of equal impor-
tance is that of network reliability under vertex failures. We are aware of no
results on the structure of minimum vertex cuts that could lead to the same
results as we have derived here for edge cuts. In particular, graphs can have
exponentially many minimum vertex cuts. The same obstacle arises in directed
graphs (where we wish to measure the probability of failing to be strongly con-
nected).

Although the polynomial time bounds proven here are not extremely small,
we expect much better performance in practice since most graphs will not have
the large number of small cuts assumed for the analysis. Preliminary experi-
ments [16] have suggested that this is indeed the case.
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