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Abstrat. The lassi all-terminal network reliability problem posits a graph, eah of whoseedges fails independently with some given probability. The goal is to determine the probability thatthe network beomes disonneted due to edge failures. This problem has obvious appliations inthe design of ommuniation networks. Sine the problem is ℄P-omplete and thus believed hardto solve exatly, a great deal of researh has been devoted to estimating the failure probability. Inthis paper, we give a fully polynomial randomized approximation sheme that, given any n-vertexgraph with spei�ed failure probabilities, omputes in time polynomial in n and 1=� an estimate forthe failure probability that is aurate to within a relative error of 1 � � with high probability. Wealso give a deterministi polynomial approximation sheme for the ase of small failure probabilities.Some extensions to evaluating probabilities of k-onnetivity, strong onnetivity in direted Euleriangraphs and r-way disonnetion, and to evaluating the Tutte polynomial are also desribed.This version of the paper orrets several errata that appeared in the previous journal publiation[D. R. Karger, SIAM J. Comput., 29 (1999), pp. 492{514℄.Key words. network reliability, approximation sheme, minimum utAMS subjet lassi�ations. 05C40, 05C80, 05C85, 68Q25, 68R10, 90B25, 68M15PII. S00361445013871411. Introdution.1.1. The problem. We onsider a lassi problem in reliability theory: given anetwork on n verties, eah of whose m links is assumed to fail (disappear) indepen-dently with some probability, determine the probability that the surviving networkis onneted. The pratial appliations of this question to ommuniation networksare obvious, and the problem has therefore been the subjet of a great deal of study.Coulbourn [4℄ provides a survey.Formally, a network is modeled as a graph G, eah of whose edges e is presumedto fail (disappear) with some probability pe and thus to survive with probability qe =1� pe. Network reliability problems are onerned with determining the probabilitiesof ertain onnetivity-related events in this network. The most basi question ofall-terminal network reliability is determining the probability that the network staysonneted. Others inlude determining the probability that two partiular nodes stayonneted (two-terminal reliability), and so on.Most suh problems, inluding the two just mentioned, are ℄P-omplete [28, 26℄.That is, they are universal for a omplexity lass at least as intratable as NP andtherefore seem unlikely to have polynomial time solutions. Attention therefore turnedto approximation algorithms. Provan and Ball [26℄ proved that it is ℄P-omplete evento approximate the reliability of a network to within a relative error of �. However,they posited that the approximation parameter � is part of the input, and used anexponentially small � (whih an be represented in O(n) input bits) to prove their�Published eletronially August 1, 2001. This paper originally appeared in SIAM Journal onComputing, Volume 29, Number 2, 1999, pages 492{514.http://www.siam.org/journals/sirev/43-3/38714.htmlyMIT Laboratory for Computer Siene, Massahusetts Institute of Tehnology, Room NE43-321, Cambridge, MA 02138 (karger�ls.mit.edu). Parts of this work were done at AT&T BellLaboratories. 1



2 DAVID R. KARGERlaim. They note at the end of their artile that \a seemingly more diÆult unsolvedproblem involves the ase where � is onstant, i.e., is not allowed to vary as part ofthe input list."Their idea is formalized in the de�nition of a polynomial approximation sheme(PAS). In this de�nition, the performane measure is the running time of the approx-imation algorithm as a funtion of the problem size n and the error parameter �, andthe goal is for a running time that is polynomial in n for eah �xed � (e.g., 21=�n). Ifthe running time is also polynomial in 1=�, the algorithm is alled a fully polynomialapproximation sheme (FPAS). An alternative interpretation of an FPAS is that ithas a running time polynomial in the input size when � is onstrained to be inputin unary rather than binary notation. When randomization is used in an approxi-mation sheme, we refer to a polynomial randomized approximation sheme (PRAS)or fully polynomial randomized approximation sheme (FPRAS). Suh algorithms arerequired to provide an �-approximation with probability at least 3=4; this probabilityof suess an be inreased signi�antly (e.g., to 1�1=n or even 1�1=2n) by repeatingthe algorithm a small number of times [25℄.Deterministi FPASs for nontrivial problems seem to be quite rare. However,FPRASs have been given for several ℄P-omplete problems suh as ounting maximummathings in dense graphs [8℄, measuring the volume of a onvex polytope [6℄, anddisjuntive normal form (DNF) ounting|estimating the probability that a givenDNF formula evaluates to true if the variables are made true or false at random [20℄.In a plenary talk, Kannan [9℄ raised the problem of network reliability as an importantremaining open problems needing an approximation sheme.1.2. Our results. In this paper, we provide an FPRAS for the all-terminalnetwork reliability problem. Given a failure probability p for the edges, our algorithm,in time polynomial in n and 1=�, returns a number P that estimates the probabilityFAIL(p) that the graph beomes disonneted. With high probability,1 P is in therange (1��)FAIL(p). The algorithm is Monte Carlo, meaning that the approximationis orret with high probability but that it is not possible to verify its orretness. Itgeneralizes to the ase where the edge failure probabilities are di�erent, to omputingthe probability the graph is not k-onneted (for any �xed k), and to the more generalproblem of approximating the Tutte polynomial for a large family of graphs. Itan also estimate the probability that an Eulerian direted graph remains stronglyonneted under edge failures. Our algorithm is easy to implement and appears likelyto have satisfatory time bounds in pratie [3, 18℄.Some are must be taken with the notion of approximation beause approxima-tions are measured by relative error. We therefore get di�erent results dependingon whether we disuss the failure probability FAIL(p) or the reliability (probabilityof remaining onneted) REL(p) = 1 � FAIL(p). Consider a graph with a very lowfailure probability, say �. In suh a graph, approximating REL(p) by 1 gives a (1+ �)-approximation to the reliability, but approximating the failure probability by 0 givesa very poor (in�nite) approximation ratio for FAIL(p). Thus, the failure probabilityis the harder quantity to approximate well. On the other hand, in a very unreli-able graph, FAIL(p) beomes easy to approximate (by 1) while REL(p) beomes thehallenging quantity. Our algorithm is an FPRAS for FAIL(p). This means that inextremely unreliable graphs, it annot approximate REL(p). However, it does solve1The phrase with high probability means that the probability that it does not happen an bemade O(n�d) for any desired onstant d by suitable hoie of other onstants (typially hidden inthe asymptoti notation).



AN APPROXIMATION SCHEME FOR NETWORK RELIABILITY 3the harder approximation problem on reliable graphs, whih are learly the ones likelyto be enountered in pratie.The basi approah of our FPRAS is to onsider two ases. When FAIL(p) islarge, it an be estimated via diret Monte Carlo simulation of random edge failures.We thus fous on the ase of small FAIL(p). Note that a graph beomes disonnetedwhen all edges in some ut fail (a ut is a partition of the verties into two groups; itsedges are the ones with one endpoint in eah group). The more edges ross a ut, theless likely it is that they will all fail simultaneously. We show that for small FAIL(p),only the smallest graph uts have any signi�ant hane of failing. We show thatthere is only a polynomial number of suh uts, and that they an be enumeratedin polynomial time. We then use a DNF ounting algorithm [19℄ to estimate theprobability that one of these expliitly enumerated uts fails, and take this estimateas an estimate of the overall graph failure probability.After presenting our basi FPRAS for FAIL(p) in setion 2, we present severalextensions of it, all relying on our observation regarding the number of small utsa graph an have. In setion 3, we give FPRASs for the network failure probabilitywhen every edge has a di�erent failure probability, for the probability that an Euleriandireted graph fails to be strongly onneted under random edge failures, and forthe probability that two partiular \weakly onneted" verties are disonneted byrandom edge failures. In setion 4, we give an FPRAS for the probability that agraph partitions into more than r piees for any �xed r. In setion 5, we give twodeterministi algorithms for all-terminal reliability: a simple heuristi that provablygives good approximations on ertain inputs and a deterministi PAS that applies toa somewhat broader lass of problems. In setion 6, we show that our tehniques givean FPRAS for the Tutte polynomial on almost all graphs.1.3. Related work. Previous work gave algorithms for estimating FAIL(p) inertain speial ases. Karp and Luby [20℄ showed how to estimate FAIL(p) in n-vertexplanar graphs when the expeted number of edge failures is O(log n). Alon, Frieze,and Welsh [1℄ showed how to estimate it when the input graph is suÆiently dense(with minimum degree 
(n)). Other speial ase solutions are disussed in Colbourn'ssurvey [4℄. Lomonosov [23℄ independently derived some of the results presented here.A ruial step in our algorithm is the enumeration of minimum and near-minimumuts. Dinitz et al. [5℄ showed how to enumerate (and represent) all minimum uts.Vazirani and Yannakakis [29℄ showed how to enumerate near-minimum uts. Kargerand Stein [17℄ and Karger [14℄ gave faster ut enumeration algorithms as well asbounds on the number of uts that we will use heavily.A preliminary version of this work appeared in [11℄. The author's thesis [10℄ dis-usses reliability estimation in the ontext of a general approah to random samplingin optimization problems involving uts. In partiular, this reliability work relies onsome new theorems bounding the number of small uts in graphs; these theoremshave led to other results on appliations of random sampling to graph optimizationproblems [12, 14, 2℄.2. The basi FPRAS. In this setion, we present an FPRAS for FAIL(p). Weuse two methods, depending on the value of FAIL(p).When FAIL(p) is large we estimate it in polynomial time by diret Monte Carlosimulation of edge failures. That is, we randomly ause edges to fail and hek whetherthe graph remains onneted. Sine FAIL(p) is large, a small number of simulations(roughly 1=FAIL(p)) gives enough data to estimate it well.When FAIL(p) is small, we resort to ut enumeration to estimate it. A graph



4 DAVID R. KARGERbeomes disonneted preisely when all of the edges in some ut of the graph fail.By a ut we mean a partition of the graph verties into two groups. The ut edgesare those with one endpoint in eah group (we also refer to these edges as the onesrossing the ut). The value of the ut is the number of edges rossing the ut.We show that when FAIL(p) is small, only uts of small value in G have anysigni�ant hane of failing. We observe that there is only a polynomial numberof suh uts and that they an be found in polynomial time. We therefore estimateFAIL(p) by enumerating the polynomial-size set of small uts of G and then estimatingthe probability that one of them fails.2.1. Preliminary Observations. We begin by formalizing our idea of the smalluts on whih we will onentrate.If eah edge fails with probability p, then the probability that a k-edge ut fails ispk. Thus, the smaller a ut, the more likely it is to fail. It is therefore natural to fousattention on the small graph uts. Throughout this paper, we assume that our graphhas minimum ut value |that is, that the smallest ut in the graph has exatly edges. Suh a graph has a probability of at least p of beoming disonneted|namely,if the minimum ut fails. This implies the following:Fat 2.1. If eah edge of a graph with minimum ut  fails independently withprobability p, then the probability that the graph beomes disonneted is at least p.The probability that a ut fails dereases exponentially with the number of edgesin the ut. This would suggest that a graph is most likely to fail at its small uts. Weformalize this intuition.Definition 2.2. An �-minimum ut is a ut with value at most � times theminimum ut value.Below, we show how to hoose between the two approahes just disussed. If p �n�4 then, as we show in subsetion 2.2, we an estimate it via Monte Carlo simulation.This works beause FAIL(p) � p, so ~O(1=FAIL(p)) = ~O(n4) experiments give usenough data to dedue a good estimate ( ~O(f) denotes O(f logn)). On the otherhand, when p < n�4, we know that a given �-minimum ut fails with probabilityp� = n�4�. We show in subsetion 2.3 that there are at most n2� �-minimum uts.It follows that the probability that any �-minimum ut fails is less than n�2�|that is,exponentially dereasing with �. Thus, for a relatively small �, the probability thata greater than �-minimum ut fails is negligible. Thus (as we show in subsetion 2.4)we an approximate FAIL(p) by approximating the probability that some less than�-minimum ut fails. Our FPRAS (in subsetion 2.5) is based on enumerating thesesmall uts and determining the probability that one of them fails.2.2. Monte Carlo simulation. The most obvious way to estimate FAIL(p) isthrough Monte Carlo simulations. Given the failure probability p for eah edge, wean \simulate" edge failures by ipping an appropriately biased random oin for eahedge. We an then test whether the resulting network is onneted. If we do this manytimes, then the fration of trials in whih the network beomes disonneted shouldintuitively provide a good estimate of FAIL(p). Karp and Luby [20℄ investigated thisidea formally, and observed (a generalization of) the following.Theorem 2.3. Performing O((logn)=(�2FAIL(p))) trials will give an estimatefor FAIL(p) aurate to within 1� � with high probability.Corollary 2.4. If FAIL(p) � p � n�4, then FAIL(p) an be estimated towithin (1 + �) in ~O(mn4=�2) time using Monte Carlo simulation.The riterion that FAIL(p) not be too small an of ourse be replaed by a on-dition that implies it. For example, Alon, Frieze, and Welsh [1℄ showed that for any



AN APPROXIMATION SCHEME FOR NETWORK RELIABILITY 5onstant p, there is an FPRAS for network reliability in dense graphs (those with min-imum degree 
(n)). The reason is that as n grows and p remains onstant, FAIL(p)is bounded below by a onstant on dense graphs and an therefore be estimated in~O(n2=�2) time by diret Monte Carlo simulation.The aw of the simulation approah is that it is too slow for small values ofFAIL(p), namely those less than 1 over a polynomial in n. It is upon this situation thatwe fous our attention for the remainder of this setion. In this ase, a huge number ofstandard simulations would have to be run before we enountered a suÆiently largenumber of failures to estimate FAIL(p). (Note that we expet to run 1=FAIL(p) trialsbefore seeing any failures. With no failures, we have no way to measure a failureprobability.) Karp and Luby [20℄ takled this situation for various problems, andshowed that it ould be handled in some ases by biasing the simulation suh thatourrenes of the event being estimated beame more likely. One of their results wasan FPRAS for network reliability in planar graphs, under the assumption that thefailure probability p of edges is O((log n)=n) so that the expeted number of edgesfailing is O(log n). Their algorithm is more intriate than straightforward simulation,and, like ours, relies on identifying a small olletion of \important uts" on whih toonentrate.Another problem where diret Monte Carlo simulation breaks down, and to whihKarp and Luby [20℄, found a solution, is that of DNF ounting: given a booleanformula in disjuntive normal form (an \or" of \and"s), and given for eah variablea probability that it is set to true, estimate the probability that the entire formulaevaluates to true. Like estimating FAIL(p), this problem is hard when the probabilitybeing estimated is very small. Karp and Luby [20℄ developed an FPRAS for DNFounting using a biased Monte Carlo simulation. The running time was later improvedby Karp, Luby, and Madras [19℄ to yield the following.Theorem 2.5. There is an FPRAS for the DNF ounting problem that runs in~O(s=�2) time on any size s formula.We will use the DNF ounting algorithm as a subroutine in our FPRAS.2.3. Counting near-minimum uts. Having handled the ase of p large, wenow turn to the ase of p small. We show that in this ase, only the smallest graphuts have any signi�ant hane of failure. While it is obvious that uts with feweredges are more likely to fail, one might think that there are so many large utsthat overall they are more likely to fail than the small uts. However, the followingproposition lets us bound the number of large uts and show this is not the ase.Theorem 2.6. An undireted graph has less than n2� �-minimum uts.Remark. Vazirani and Yannakakis [29℄ gave an inomparable bound on the num-ber of small uts by rank rather than by value.In this subsetion, we sketh a proof of Theorem 2.6. A detailed proof of thetheorem an be found in [17℄ and an alternative proof in [14℄. Here, we sketh enoughdetail to allow for some of the extensions we will need later. We prove the theorem onlyfor unweighted multigraphs (graphs with parallel edges between the same endpoints);the theorem follows for weighted graphs if we replae any weight w edge by a set ofw unweighted parallel edges.2.3.1. Contration. The proof of the theorem is based on the idea of edgeontration. Given a graph G = (V;W ) and an edge (v; w), we de�ne a ontratedgraph G=(v; w) with vertex set V 0 = V [fug�fv; wg for some new vertex u and edge



6 DAVID R. KARGERset E0 = E � f(v; w)g [ f(u; x) j (v; x) 2 E or (w; x) 2 Eg:In other words, in the ontrated graph, verties v and w are replaed by a singlevertex u, and all edges originally inident on v or w are replaed by edges inidenton u. We also remove self-loops formed by edges parallel to the ontrated edge sinethey ross no ut in the ontrated graph.Fat 2.7. There is a one-to-one orrespondene between uts in G=e and uts inG that e does not ross. Corresponding uts have the same value.Proof. Consider a partition (A;B) of the verties of G=(v; w). The vertex uorresponding to ontrated edge (v; w) is on one side or the other. Replaing u by vand w gives a partition of the verties of G. The same edges ross the orrespondingpartitions.2.3.2. The ontration algorithm. We now use repeated edge ontration inan algorithm that selets a ut from G. Consider the following ontration algorithm.While G has more than 2 verties, hoose an edge e uniformly at random and setG  G=e. When the algorithm terminates, we are left with a two-vertex graph thathas a unique ut. A transitive appliation of Fat 2.7 shows that this ut orrespondsto a unique ut in our original graph; we will say this ut is hosen by the ontrationalgorithm. We show that any partiular minimum ut is hosen with probability atleast n�2. Sine the hoies of di�erent uts are disjoint events whose probabilitiesadd up to one, it will follow that there are at most n2 minimum uts. We thengeneralize this argument to �-minimum uts.Lemma 2.8. The ontration algorithm hooses any partiular minimum ut withprobability at least n�2.Proof. Eah time we ontrat an edge, we redue the number of verties in thegraph by one. Consider the stage in whih the graph has r verties. Suppose G hasminimum ut . It must have minimum degree , and thus at least r=2 edges. Ourpartiular minimum ut has  edges. Thus a randomly hosen edge is in the minimumut with probability at most =(r=2) = 2=r. The probability that we never ontrata minimum ut edge through all n� 2 ontrations is thus at least�1� 2n��1� 2n� 1� � � ��1� 23� = �n� 2n ��n� 3n� 1� � � ��24��13�= (n� 2)(n� 3) � � � (3)(2)(1)n(n� 1)(n� 2) � � � � � � (4)(3)= 2n(n� 1)= �n2��1> n�2:2.3.3. Proof of Theorem 2.6. We an extend the approah above to proveTheorem 2.6. We slightly modify the ontration algorithm and lower bound theprobability that the modi�ation hooses a partiular �-minimum ut. With r vertiesremaining, the probability we hoose an edge from our partiular �-minimum ut is atmost 2�=r. Let k = d2�e. Suppose we perform random ontrations until we have ak-vertex graph. In this graph, hoose a vertex partition (ut) uniformly at random, so



AN APPROXIMATION SCHEME FOR NETWORK RELIABILITY 7that eah ut is hosen with probability 21�k. It follows that a partiular �-minimumut is hosen with probability�1� 2�n ��1� 2�n� 1� � � ��1� 2�k + 1� 21�k = (n� 2�)!(k � 2�)! k!n! 21�k= � k2��� n2��21�k> n�2�:Note that for � not a half-integer, we are making use of generalized binomial oef-�ients whih may have nonintegral arguments. These are disussed by Knuth [21,Setions 1.2.5{6℄; f. Exerise 1.2.6.45. There, the Gamma funtion is introdued toextend fatorials to real numbers suh that �! = �(� � 1)! for all real � > 0. Manystandard binomial identities extend to generalized binomial oeÆients, inluding thefats that � n2�� < n2�=(2�)! and 22��1 � (2�)! for � � 1.Remark. The ontration algorithm desribed above is used only to ount uts.An eÆient implementation given by Karger and Stein [17℄ an be used to �nd all�-minimum uts in ~O(n2�) time. We use this algorithm in our FPRAS.2.4. Cut failure bounds. Using the ut ounting theorem just given, we showthat large uts do not ontribute signi�antly to a graph's failure probability. ConsiderTheorem 2.6; taking � = 1, it follows from the union bound that the probability thatsome minimum ut fails is at most n2p. We now show that the probability that anyut fails is only a little bit larger.Theorem 2.9. Suppose a graph has minimum ut  and that eah edge of thegraph fails independently with probability p, where p = n�(2+Æ) for some Æ > 0. Then1. the probability that the given graph disonnets is at most n�Æ(1 + 2=Æ), and2. the probability that a ut of value � or greater fails in the graph is at mostn��Æ(1 + 2=Æ).Remark. We onjeture that a probability bound of n��Æ an be proven (elimi-nating the (1 + 2=Æ) term).Proof. We prove part 1 and then note the small hange needed to prove part 2. Forthe graph to beome disonneted, all the edges in some ut must fail. We thereforebound the failure probability by summing the probabilities that eah ut fails. Let rbe the number of uts in the graph, and let 1; : : : ; r be the values of the r uts ininreasing order so that  = 1 � 2 � � � � � r. Let pk = pk be the probability thatall edges in the kth ut fail. Then the probability that the graph disonnets is atmost P pk, whih we proeed to bound from above.We proeed in two steps. First, onsider the �rst n2 uts in the ordering (theymight not be minimum uts). Eah of them has k �  and thus has pk � n�(2+Æ),so that Xk�n2 pk � (n2)(n�(2+Æ)) = n�Æ:Next, onsider the remaining larger uts. Aording to Theorem 2.6, there are lessthan n2� uts of value at most �. Sine we have numbered the uts in inreasingorder, this means that n2� > �. In other words, writing k = n2�,k > ln k2 lnn � 



8 DAVID R. KARGERand thus pk < (p) ln k2 lnn= (n�(2+Æ)) ln k2 lnn= k�(1+Æ=2):It follows that Xk>n2 pk < Xk>n2 k�(1+Æ=2)� Z 1n2 k�(1+Æ=2) dk� 2n�Æ=Æ:Summing the bounds for the �rst n2 and for the remaining uts gives a total ofn�Æ + 2n�Æ=Æ, as laimed.The proof of part 2 is the same, exept that we sum only over those uts of valueat least �.Remark. A slightly stronger version of part 1 was �rst proved by Lomonosovand Polesskii [24℄ using di�erent tehniques that identi�ed the yle as the mostunreliable graph for a given  and n. We sketh their result, whih we need for adi�erent purpose, in subsetion 4.3.2. However, part 2 is neessary for the FPRASand was not previously known.2.5. An approximation algorithm for small probabilities. Our proof thatonly small uts matter leads immediately to an FPRAS. First we outline our solution.Given that FAIL(p) < n�4, Theorem 2.9 shows that the probability that a ut of valuemuh larger than  fails is negligible, so we need only determine the probability thata ut of value near  fails. We do this as follows. First, we enumerate the (polynomialsize) set of near-minimum uts that matter. From this set we generate a polynomialsize boolean expression (with a variable for eah edge, true if the edge has failed)that is true if any of our near-minimum uts has failed. We then need to determinethe probability that this boolean expression is true; this an be done using the DNFounting tehniques of Karp, Luby, and Madras [20, 19℄. Details are given in thefollowing theorem.Theorem 2.10. When FAIL(p) < n�4, there is a (Monte Carlo) FPRAS forestimating FAIL(p) running in ~O(mn4=�3) time.Proof. Under the assumption, the probability that a partiular minimum ut failsis p � FAIL(p) � n�4. We show there is a onstant � for whih the probabilitythat any ut of value greater than � fails is at most � � FAIL(p). This proves thatto approximate to the desired auray we need only determine the probability thatsome ut of value less than � fails. It remains to determine �. Write p = n�(2+Æ);by hypothesis Æ � 2. Thus by Theorem 2.9, the probability that a ut larger than �fails is at most 2n�Æ�. On the other hand, we know that n�(2+Æ) = p � FAIL(p),so it suÆes to �nd an � for whih 2n�Æ� � �n�(2+Æ). Solving this shows that� = 1+2=Æ� (ln(�=2))=Æ lnn � 2� ln(�=2)=2 lnn suÆes and that we therefore needonly examine the smallest n2� = O(n4=�) uts.We an enumerate these uts in O(n2� log3 n) time using ertain randomizedalgorithms [16, 14℄ (a somewhat slower deterministi algorithm exists [29℄). Supposewe assign a boolean variable xe to eah edge e; xe is true if edge e fails and false



AN APPROXIMATION SCHEME FOR NETWORK RELIABILITY 9otherwise. Therefore, the xe are independent and true with probability p. Let Ei bethe set of edges in the ith small ut. Sine the ith ut fails if and only if all edges init fail, the event of the ith small ut failing an be written as Fi = ^e2Eixe. Then theevent of at least one small ut failing an be written as F = _iFi. We wish to know theprobability that F is true. Note that F is a formula in disjuntive normal form. Thesize of the formula is equal to the number of lauses (n2�) times the number of variablesper lause (at most �), namely, O(n2�). The FPRAS of Karp, Luby, and Madras [19℄estimates the truth probability of this formula, and thus the failure probability of thesmall uts, to within (1� �) in ~O(n2�=�2) = ~O(n4=�3) = ~O(mn4=�3) time.We are therefore able to estimate to within (1� �) the value of a probability (theprobability that some �-minimum ut fails) that is within (1 � �) of the probabilityof the event we really are about (the probability that some ut fails). This gives usan overall estimate aurate to within (1� �)2 � (1� 2�).2.6. Putting the piees together. We now ombine the above results to getan FPRAS.Corollary 2.11. There is an FPRAS for FAIL(p) running in ~O(mn4=�3) time.Proof. Suppose we wish to estimate the failure probability to within a (1 � �)ratio. If FAIL(p) > n�4, then we an estimate it in ~O(mn4=�2) time by diret MonteCarlo simulation as in Corollary 2.4. Otherwise, we an run the ~O(mn4=�3)-timealgorithm of Theorem 2.10.While this time bound is quite poor, experiments have suggested that performanein pratie is signi�antly better|typially ~O(n3) on sparse graphs [18℄.3. Extensions. We now disuss several extensions of our basi FPRAS. In thissetion, we will onsider many ases in whih it is suÆient to onsider the probabilitythat an �-minimum ut fails for some � = O(1 � log �= logn) (as in the previoussetion) that is understood in ontext but not worth deriving expliitly. We will referto these �-minimum uts as the weak uts of the graph.3.1. Varying failure probabilities. The analysis and algorithm given aboveextend to the ase where eah edge e has its own failure probability pe. To extend theanalysis, we transform a graph with varying edge failure probabilities into one withidential failure probabilities. Given the graph G with spei�ed edge failure probabil-ities, we build a new graph H all of whose edges have the same failure probability p,but that has the same failure probability as G. Choose a small parameter �. Replaean edge e of failure probability pe by a \bundle" of ke parallel edges, eah with thesame endpoints as e but with failure probability 1� �, whereke = d�(ln pe)=�e :This bundle of edges keeps its endpoints onneted unless all the edges in the bundlefail; this happens with probability(1� �)d�(ln pe)=�e:As � ! 0, this failure probability onverges to pe. Therefore, the reliability of Honverges as � ! 0 to the reliability of G. Thus, to determine the failure probabilityof G, we need determine only the failure probability of H in the limit as � ! 0.Sine H has all edge failure probabilities the same, our setion 2 analysis ofnetwork reliability applies to H . In partiular, we know that it suÆes to enumeratethe weak uts of H and then determine the probability that one of them fails. To



10 DAVID R. KARGERimplement this idea, note that hanging the parameter � sales the values of uts inH without hanging their relative values (modulo a negligible rounding error). Wetherefore build a weighted graph F by taking graph G and giving a weight ln 1=pe toedge e. The weak uts in F orrespond to the weak uts in H . We �nd these weakuts in F using the ontration algorithm (whih works for weighted graphs [17℄) asbefore.Given the weak uts in H , we need to determine the limiting probability that oneof them fails as � ! 0. We have already argued that as � ! 0, the probability a utin H fails onverges to the probability that the orresponding ut in G fails. Thus weatually want to determine the probability that one of a given set of uts in G fails.We do this as before. We build a boolean formula with variables for the edges of Gand with a lause for eah weak ut that is true if all the edges of the ut fail. Theonly hange is that variable xe is set to true with probability pe. The algorithm of [19℄works with these varying truth probabilities and omputes the desired quantity.Theorem 3.1. There is an FPRAS for the all-terminal network reliability prob-lem with varying edge failure probabilities.One might be onerned by the omplexity-theoreti impat of using logarithms toompute edge weights. However, it is easy to see that in fat approximate logarithmssuÆe for the purpose of enumerating small uts. If we approximate eah logarithm towithin relative error :1, then every �-minimum ut in F remains an 11�=9-minimumut in the approximation to F . Thus we an enumerate a slightly larger set of near-minimum uts in order to �nd the weak uts. One we �nd the weak uts, we use theoriginal pe values in the DNF ounting algorithm.All the other extensions desribed in this paper an be modi�ed to handle varyingfailure probabilities. But for simpliity, we fous on the uniform ase.3.2. A Faster Algorithm. Our analysis of the struture of small uts an alsobe applied to the diret Monte-Carlo simulation that is used when FAIL(p) is large.We show that by transforming the input, we an ensure that the number of edges inour graph is O(n). In partiular, we show that all but O(n logn) edges of G are insidesubgraphs of G that are so unlikely to disonnet that we an ontrat them away andignore them. Sine the running time of the Monte Carlo simulation is proportionalto the number of edges in the graph, this transformation improves its running time.This in turn improves the running time of the overall approximation algorithm.Consider �rst the ase where p > 1��. In this ase we also have FAIL(p) > 1��,whih means that we an return the value 1 as an �-approximation to the probabilityof graph failure. This simply requires heking the value of the minimum ut, in~O(n2) time using the ontration algorithm.Now onsider the ase where p < (1� �). Suppose that we an identify a vertex-indued subgraph G0 of G whose minimum ut exeeds �, where � = ��1 log(2n7=�).Then sine p� = (1��)log(2n7=�)=� � �=2n7, we know fromTheorem 2.9 that the graphG0 (onsidered on its own) beomes disonneted by edge failures with probability atmost 2�n�5 � � �FAIL(p)=n. Let A denote the event that G beomes disonneted (soPr[A℄ = FAIL(p)), and let B denote the event that G0 beomes disonneted. ThenPr[A℄ = Pr[A j B℄ Pr[B℄ + Pr[A j B℄ Pr[B℄� Pr[A j B℄ + Pr[B℄� Pr[A j B℄ + �Pr[A℄=nwhih means that Pr[A℄ � Pr[A j B℄=(1 � �=n). In other words, Pr[A j B℄ is an



AN APPROXIMATION SCHEME FOR NETWORK RELIABILITY 11aurate approximation to Pr[A℄ = FAIL(p).Of ourse, if we wish to ompute Pr[A j B℄, we an assume that the subgraph G0of G is not disonneted by edge failures. In other words, ontrating the verties ofG0 to a single vertex hanges (dereases) the failure probability of G by at most an�=n fator.In an earlier paper, Benzur and Karger [2℄ showed how to ompute, in ~O(m)time, a so-alled k-strong partition of any graph G. This is a partition of the vertiesof G with two properties:� All verties in the same blok of the partition are inside a single k-onnetedindued subgraph of G.� At most O(kn) edges of G have endpoints in di�erent bloks of the partition.Suppose that we set k = (log 2n7=�) and ompute this k-strong partition. As weargued above, all verties of a k-onneted indued subgraph of G an be ontratedwithout hanging the failure probability by more than an �=n fator. The samefollows for any set of verties ontained in a single k-onneted indued subgraph. Inother words, eah blok of the partition an be ontrated to a single vertex withouta�eting the failure probability by a more than �=n fator. Sine there are most nbloks (eah ontains at least one vertex) they an all be ontrated simultaneouslywhile hanges the failure probability by only an � fator.In the ontrated graph, only the O(kn) = O(n log(n=�)) edges that had endpointsin di�erent bloks will remain. If we now apply our approximation algorithm, we knowthat m = ~O(n). Thus, the running time of our algorithm is ~O(n5=�3).If we know that the minimum ut involves ~O(1) edges (as in planar graphs, forexample) then the size of the formula for the DNF ounting step above is ~O(n2�).Thus if we use a di�erent threshold of p <> n�3:57 for deiding whih algorithm touse, we an improve the running time bound to ~O(n4:57=�3).Even with varying failure probabilities, we an use the Benzur-Karger sparsi�a-tion algorithm to redue the number of edges in the graph to O(n). This an be seenfrom the previous setion, where we modeled of edges with varying failure probabilitiesby bundles of edges with the same failure probability. Applying the Benzur-Kargeralgorithm to these bundled edges produes a graph with ~O(n=�) edges from the bun-dles, whih of ourse an be part of at most ~O(n=�) real edges. For implementation,rather than atually generating in�nitesimal edges, we apply the Benzur-Karger al-gorithm (whih works for weighted graphs) to the graph with edge weights ln 1=pe.On the other hand, our proposed improvement for graph with few edges in theminimum ut does not arry over. Even if the number of edges in one partiularminimum ut is O(1), some other near minimum ut (by edge weight) might utnearly all the edges in the graph.3.3. Multiterminal reliability. The multiterminal reliability problem is a gen-eralization of the all-terminal reliability problem. Instead of asking whether the graphbeomes disonneted, we onsider a subset K of the verties and ask if some pair ofthem beomes disonneted. If some pair of verties in K is separated by a ut ofvalue O(), then we an use the same theorem on the exponential deay of ut failureprobabilities to prove that we need only to examine the small uts in the graph todetermine whether some pair of verties in K beomes disonneted.Lemma 3.2. If some pair of verties in K is separated by a ut of value O(),then there is an FPRAS for the multiterminal reliability problem with soure vertiesK.



12 DAVID R. KARGERProof. We fous on the ase of uniform failure probability p; the generalizationto arbitrary failure probabilities is as before. Suppose a ut of value � separatesverties in K. Then the probability that K gets disonneted when edges fail withprobability p is at least p�. If p > n�4, then p� > n�4� = n�O(1) and we use MonteCarlo simulation as before to estimate the failure probability. If p < n�4, then byTheorem 2.9, the probability that a ut of value exeeding � fails is O(n�2�). Thus,hoosing � suh that n�2� � �p�, we an enumerate the weak uts and apply DNFounting.3.4. k-onnetivity. Just as we estimated the probability that the graph fails tobe onneted, we an estimate the probability that it fails to be k-edge onneted forany onstant k. Note that the graph fails to be k-edge onneted only if some ut hasless than k of its edges survive. The probability of this event deays exponentially withthe value of the ut, allowing us to prove (as with Theorem 2.9) that if the probabilitythat fewer than k edges in a minimum ut survive is O(n�(2+Æ)), then the probabilitythat fewer than k edges survive in a nonweak ut is negligible. Thus, if diret MonteCarlo simulation is not appliable, we need only determine the probability that someweak ut keeps less than k of its edges. But this is another DNF ounting problem.For any partiular weak ut ontaining C � m edges, we enumerate all � CC�k+1� =O(Ck�1) = O(mk�1) sets of C � k + 1 edges, and for eah add a DNF lause that istrue if all the given edges fail.In fat, one an also adapt the algorithm of Karp et al. [19℄ to determine theprobability that all but k� 1 variables in some lause of a DNF formula beome true;thus we an ontinue to work with the O(mn4=�)-size formula we used before.Corollary 3.3. For any onstant k, there is an FPRAS for the probability thata graph with edge failure probabilities fails to be k-edge onneted.3.5. Eulerian direted graphs. A natural generalization of the all-terminalreliability problem to direted graphs is to ask for the probability that a diretedgraph with random edge failures remains strongly onneted. A direted graph failsto be strongly onneted preisely when all the edges in some direted ut fail. Ingeneral, the tehniques of this paper annot be applied to direted graphs|the mainreason being that a direted graph an have exponentially many minimum direteduts.We an, however, handle one speial ase. In an Eulerian direted graph G onvertex set V , the number of edges rossing from any vertex set A to V � A is equalto the number of edges rossing from V �A to A. Thus if we onstrut an undiretedgraph H by removing the diretions from the edges of G, we know that any (direted)ut in G has value equal to half that of the orresponding (undireted) ut in H . Itfollows that the �-minimum direted uts of G orrespond to �-minimum undireteduts of H . Therefore, there are at most 2n2� �-minimum direted uts in G thatan be enumerated by enumerating the �-minimum uts of H (the fator of 2 arisesfrom onsidering both diretions for eah ut). As in the undireted ase, if thedireted failure probability is less than n�4, an analogue of Theorem 2.9 immediatelyfollows, showing that only weak direted uts are likely to fail. It therefore suÆes toenumerate a polynomial number of weak direted uts to estimate the direted failureprobability.Corollary 3.4. There is an FPRAS for the probability that a direted Euleriangraph fails to remain strongly onneted under random edge failures.Corollary 3.5. For any onstant k there is an FPRAS for the probability that



AN APPROXIMATION SCHEME FOR NETWORK RELIABILITY 13a direted Eulerian graph fails to have direted onnetivity k under random edgefailures.3.6. Random orientations. In a similar fashion, we an estimate the proba-bility that, if we orient randomly eah edge of an undireted graph, the graph fails tobe strongly onneted. This problem an also be phrased as estimating the number ofnon-strongly onneted orientations of an undireted graph; in this form, it is relatedto the Tutte polynomial disussed in setion 6. For eah ut, we make a DNF formulawith two lauses, one of whih is true if all edges point \left" and the other if all edgespoint \right." (This observation is due to Alan Frieze.) Similarly, we an estimate theprobability that random orientations fail to produe a k-onneted direted graph.4. Partition into r omponents. The quantity FAIL(p) is an estimate ofthe probability that the graph partitions into more than one onneted omponent.We an similarly estimate the probability that the graph partitions into r or moreomponents for any onstant r. Besides its intrinsi interest, the analysis of thisproblem will be important in our study of some heuristis and derandomizations insetion 5 and the Tutte polynomial in setion 6.We �rst note that a graph partitions into r or more omponents only if an r-way ut|the set of edges with endpoints in di�erent omponents of an r-way vertexpartition|loses all its edges. Note that some of the vertex sets of the partition mightindue disonneted subgraphs, so that the r-way partition might indue more thanr onneted omponents. However, it ertainly does not indue less. Our approahto r-way reliability is the same as for the 2-way ase. We show that there are fewsmall r-way uts and that estimating the probability one fails suÆes to approximatethe r-way failure probability. As a orollary, we show that the probability of r-waypartition is muh less than that of 2-way partition.4.1. Counting multiway uts. We enumerate multiway uts using the on-tration algorithm as for the 2-way ase. Details an be found in [17℄.Lemma 4.1. In an m-edge unweighted graph the minimum r-way ut has valueat most 2m(r � 1)=n.Proof. A graph's average degree is 2m=n. Consider an r-way ut with eah of ther�1 verties of smallest degree as its own singleton omponent and all the remainingverties as the last omponent. The value of this ut is at most the sum of thesingleton vertex degrees, whih is at most r � 1 times the average degree.Corollary 4.2. There are at most � n2(r�1)� minimum r-way uts.Proof. Suppose we �x a partiular r-way minimum ut and run the ontrationalgorithmuntil we have 2(r�1) verties. By the previous lemma, the probability thatwe pik an edge of our �xed ut when k verties remain is at most 2 r�1k . Thus theprobability that our �xed minimum r-way ut is hosen isnYk=2r�1�1� 2(r � 1)k � ;whih is analyzed as in the proof of Theorem 2.6, substituting r � 1 for �.Corollary 4.3. For arbitrary � � 1, there are at most (rn)2�(r�1) �-minimumr-way uts that an be enumerated in ~O((rn)2�(r�1)) time.Proof. First run the ontration algorithm until the number of verties remainingis d2�(r � 1)e. At this point, hoose a random r-way partition of what remains. Thereare at most r2�(r�1) suh partitions.



14 DAVID R. KARGERThe time bound follows from the analysis of the ontration algorithm [17℄.Remark. We onjeture that in fat the orret bound is O(n�r) �-minimumr-way uts. Subsetion 4.3.2 shows this is true for � = 1. Proving it for general �would slightly improve our exponents in the following setions.4.2. An approximation algorithm. Our enumeration of multiway uts allowsan analysis and redution to DNF ounting exatly analogous to the one performedfor FAIL(p).Corollary 4.4. Suppose that a graph has r-way minimum ut value r, andsuppose that eah edge fails with probability p, where pr = (rn)�(2+Æ)(r�1) for someonstant Æ > 0. Then the probability that an �-minimum r-way ut fails is at most(rn)��Æ(r�1) (1 + 2=Æ):Proof. The proof is exatly as for Theorem 2.9, substituting (rn)(r�1) (drawnfrom Corollary 4.3) for n everywhere.Corollary 4.5. There is an algorithm for �-approximating the probability thata graph partitions into r or more omponents, running in ~O(m(rn)4(r�1)=�3) time.The algorithm is an FPRAS with running time ~O(mn4(r�1)=�3) for any �xed r.Proof. Exatly as for the 2-way ut ase, with (rn)(r�1) replaing n everywhere.Let r be the r-way minimum ut value and let Æ be de�ned by pr = (rn)�(2+Æ)(r�1).If pr > (rn)�4(r�1), estimate the partition probability via Monte Carlo simulation.Otherwise, it follows as in the 2-way ut ase that for the same onstant � as we hosethere, the probability that a greater than �-minimum r-way ut fails is less than �pr .Thus to estimate the partition probability it suÆes to enumerate (in ~O((rn)4(r�1)=�)time) the set of �-minimum r-way uts and perform DNF ounting.One might wish to ompute the probability that a graph partitions into exatlyr omponents, but it is not lear that this an be done. In partiular, omputingREL(p) an be redued to this problem (for any r) by adding r � 1 isolated verties.There is at present no known FPRAS for REL(p).4.3. Comparison to 2-way uts. For setions 5 and 6, we need to show thatthe probability of partition into r omponents is muh less than that of partitioninto 2 omponents. We give two proofs, the �rst simpler but with a slightly weakerbound. The remainder of the paper an use the weaker analysis at the ost of worseexponents. In this setion, the term \ut" refers exlusively to 2-way uts unless weexpliitly modify it.4.3.1. A simple argument.Lemma 4.6. If p = n�(2+Æ), then the probability that an r-way ut fails is atmost n�Ær=4(1 + 2=Æ).Proof. We show that any r-way ut ontains the edges of a (2-way) ut of valuer=4. Thus, if an r-way ut fails then an (r=4)-minimum 2-way ut fails. The proba-bility that this happens has been upper-bounded by Theorem 2.9.To show the laim, onsider an r-way ut. Contrat eah omponent of the r-waypartition to a single vertex, yielding an r-vertex graph G0. All edges in this graphorrespond to edges of the r-way ut. Every ut in G0 orresponds to a ut of thesame value in the original graph, so it suÆes to show that G0 has a 2-way ut ofvalue at least r=4. To see this, note that every vertex in G0 has degree at least , sothe number of edges in G0 is at least r=2. Consider a random ut of G0, generated byassigning eah vertex randomly to one side or the other. Eah edge has a 1=2 haneof being ut by this partition, so the expeted value of this ut is at least r=4. Itfollows that G0 has a ut of value at least r=4 that orresponds to a ut of value at



AN APPROXIMATION SCHEME FOR NETWORK RELIABILITY 15least r=4 in the original graph.4.3.2. A better argument. We an get a slightly better bound on the proba-bility that a graph partitions into r omponents via a small variation on an argumentmade by Lomonosov and Polesskii [24, 22, 4℄. The better bound improves some ofour exponents. Their proof uses tehniques somewhat di�erent from the remainderof the paper and an safely be skipped.Lemma 4.7. Let FAILr(G; p) denote the probability that G partitions into ror more onneted omponents when eah edge fails with probability p. Let G haveminimum ut  for some even . Let Cn be a yle with =2 edges between adjaentverties. Then for any r, FAILr(G; p) � FAILr(Cn; p).Corollary 4.8. For any graph G with minimum ut , if edges fail withprobability p where p = n�(2+Æ), then the probability the failed graph has r or moreonneted omponents is less than n�Ær=2.Remark. Note that for r = 2, the above result gives a slightly stronger bound onFAIL(p) than we are able to get in Theorem 2.9. Unfortunately, this argument doesnot appear to extend to proving the bound we need on the probability that a greaterthan �-minimum r-way ut fails.Proof of Corollary 4.8. Thanks to Lemma 4.7, it suÆes to prove this laim forthe ase of G a yle Cn with (=2)-edge \bundles" between adjaent verties. Thenumber of omponents into whih Cn is partitioned is equal to the number of bundlesthat fail, so we need only bound the probability that r or more bundles fail. Theprobability that a single bundle fails is p=2 = n�(1+Æ=2), so the probability that rpartiular bundles fail is n�r(1+Æ=2). There are �nr� < nr sets of exatly r bundles.It follows that the probability r or more bundles fail is less than nrn�r(1+Æ=2) =n�rÆ=2.Proof of Lemma 4.7. Consider the following time-evolving version of the ontra-tion algorithm on a onneted graph G. Eah edge of G is given an arrival timehosen independently from the exponential distribution with mean 1. Eah time anedge arrives, we ontrat its endpoints if they have not already been ontrated. Thisgives rise to a sequene of graphs G = Gn; Gn�1; : : : ; G1, where Gr has r verties. LetG[t℄ be the graph that exists at time t. Thus initially G[0℄ = Gn and eventually G[1℄has one vertex sine all edges have arrived. We draw a orrespondene between thismodel and our edge failure model as follows: at time t, the failed edges are those whihhave not yet arrived. It follows that eah vertex in G[t℄ orresponds to a onnetedomponent of G when eah edge has failed (to arrive) independently with probabilitye�t.We onsider the random variable Tr(G) de�ned as the time at whih the edgethat ontrats Gr to Gr�1 arrives. We show that Tr(Cn) stohastially dominatesTr(G) for every r|that is,Pr[Tr(G) � t℄ � Pr[Tr(Cn) � t℄:(See Motwani and Raghavan [25℄ for additional disussion of this de�nition.) Assum-ing this is true, we an prove our result as follows:Pr[G[t℄ has r or fewer omponents℄ = Pr[Tr(G) � t℄� Pr[Tr(Cn) � t℄= Pr[Cn[t℄ has r or fewer omponents℄:To prove stohasti domination, let tr(G) = Tr�1(G) � Tr(G) denote the lengthof time for whih Gr exists before being ontrated to Gr�1. Clearly, tr(G) is just the



16 DAVID R. KARGERtime it takes for an edge to arrive that has endpoints in di�erent onneted ompo-nents of Gr. It follows that Tr(G) =Pnr0=r tr0(G). Similarly, Tr(Cn) =Pnr0=r tr0(Cn).Thanks to the memoryless nature of the exponential distribution, the tr are mutuallyindependent (this will be justi�ed more arefully later). We will show that tr(Cn)stohastially dominates tr(G) for every r. The fat that Tr(Cn) stohastially dom-inates Tr(G) then follows from the fat that when X dominates X 0 and Y dominatesY 0 and the variables are independent, X + Y dominates X 0 + Y 0.To analyze tr, suppose there are mr edges in Gr (note mr is a random variable).The arrival time of eah edge in Gr measured from Tr(G) is exponentially distributedwith mean 1. Therefore, the arrival time of the �rst suh edge, namely tr(G), isexponentially distributed with mean 1=mr. Now note that Gr is -onneted, soit must have mr � r=2. It follows that tr(G) is exponentially distributed withmean at most 2=r, meaning that it is stohastially dominated by any exponentiallydistributed variable with mean 2=r. On the other hand, when Cn has been redued tor omponents, it is isomorphi to Cr. By the same analysis as for G, we know tr(Cn)is exponentially distributed with mean 2=r, and thus stohastially dominates tr(G).Our glib laim that the tr are independent needs some additional justi�ation.Tehnially, we ondition on the values Gn; : : : ; G1 of the evolving graph. We showthat regardless of what values Gi we ondition on, Tr(Cn) stohastially dominatesTr(G j Gn; : : : ; G1). Sine the stohasti domination applies regardless of our ondi-tioning event, it follows even if we do not ondition.One we have onditioned on the value Gr, tr is just the time it takes for anedge to arrive that ontrats Gr to Gr�1 and is therefore independent of tr0 whenr0 6= r. But we must ask whether tr still has the right exponential distribution|theompliating fator being that we know the �rst edge to arrive at Gr must ontratGr to a spei� Gr�1 and not some other graph. To see that this does not matter,let B be the event that the �rst edge to arrive at Gr is one that reates Gr�1. ThenPr[tr � t j B℄ = Pr[B j tr � t℄ Pr[tr � t℄=Pr[B℄= Pr[B℄ Pr[tr � t℄=Pr[B℄= Pr[tr � t℄sine, of ourse, the time of arrival of the edge the ontrats Gr has no impat onwhih of the edges of Gr is the �rst to arrive.5. Heuristis and deterministi algorithms. Until now, we have relied onthe fat that the most likely way for a graph to fail is for some of its near-minimumuts to fail. We now strengthen this argument to observe that most likely, exatlyone of these near-minimum uts fails. This leads to two additional results. First,we show that the sum of the individual small-ut failure probabilities is a reasonableapproximation to the overall failure probability. This justi�es a natural heuristi andindiates that in pratie one might not want to bother with the DNF ounting phaseof our algorithm. In a more theoretial vein, we also give a deterministi PAS forFAIL(p) that applies whenever FAIL(p) < n�(2+Æ). We prove the following theorems.Theorem 5.1. When p < n�4 (and in partiular when FAIL(p) < n�4), thesum of the weak uts' failure probabilities is a (1 + o(1)) approximation to FAIL(p).Theorem 5.2. When p < n�(2+Æ) for any onstant Æ (and in partiular whenFAIL(p) < n�(2+Æ)), there is a deterministi PAS for FAIL(p) running in(n=�)exp(O(� logn �)) time.We remark that unlike many PASs whose running times are only polynomial for



AN APPROXIMATION SCHEME FOR NETWORK RELIABILITY 17onstant �, our PAS has polynomial running time so long as � = n�O(1). Its behaviorwhen � is tiny prevents it from being an FPAS, however.To prove these theorems, we argue as follows. As shown in setion 2, it is suÆientto approximate, for the given �, the probability that some �-minimum ut fails, where� = 1 + 2=Æ � (ln �)=Æ lnn:Let us write these �-minimum uts as Ci, i = 1; : : : ; n2�. Let Fi denote the eventthat ut Ci fails. We an use inlusion-exlusion to write the failure probability asPr[[Fi℄ =Xi1 Pr[Fi1 ℄� Xi1<i2 Pr[Fi1 \ Fi2 ℄ + Xi1<i2<i3 Pr[Fi1 \ Fi2 \ Fi3 ℄ + � � � :Later terms in this summation measure events involving many ut failures. We showthat when many uts fail, the graph partitions into many piees, meaning a multiwayut fails. We then argue (using Lemma 4.6 or Corollary 4.8) that this is so unlikelythat later terms in the sum an be ignored. This immediately yields Theorem 5.1.To prove Theorem 5.2, we show that for any �xed � it is suÆient to onsidera onstant number of terms (summations) on the right-hand side in order to get agood approximation. Observe that the kth term in the summation an be omputeddeterministially in O(m(n2�)k) time by evaluating the probability of eah of the(n2k�) intersetion events in the sum (eah an be evaluated deterministially sine itis just the probability that all edges in the spei�ed uts fail). Thus, our running timewill be polynomial so long as the number of terms we need to evaluate is onstant.5.1. Inlusion-exlusion analysis. As disussed above, our analyses use atrunation of the inlusion-exlusion expression forPr[[Fi℄ =Xi1 Pr[Fi1 ℄� Xi1<i2 Pr[Fi1 \ Fi2 ℄ + Xi1<i2<i3 Pr[Fi1 \ Fi2 \ Fi3 ℄ + � � � :Suppose we trunate the inlusion-exlusion, leaving out the kth and later terms.If k is odd the trunated sum yields a lower bound; if k is even it yields an upperbound. We show that this bound is suÆiently tight. We do so by rewriting theinlusion-exlusion expression involving partiular sets of failed uts failing as anexpression based on how many uts fail.Lemma 5.3. Let Su be the event that u or more of the events Fi our. If theinlusion-exlusion expansion is trunated at the kth term, the error introdued isXu �u� 2k � 2�Pr[Su℄:Proof. Let Tu be the event that exatly u of the events Fi our. Consider the �rstsummation PFi1 in the inlusion-exlusion expansion. The event that preisely theevents Fj1 ; : : : ; Fju our (that is, the event that uts Cj1 ; : : : ; Cjk fail but no othersfail) ontributes to the u terms Pr[Fj1 ℄; : : : ;Pr[Fju ℄ in the sum. It follows that eahsample point ontributing to Tu is ounted u = �u1� times in the summation. Thus,XPr[Fi1 ℄ =Xu �u1�Pr[Tu℄:By the same reasoning, XPr[Fi1 \ Fi2 ℄ =Xu �u2�Pr[Tu℄;



18 DAVID R. KARGERand so on. It follows that the error introdued by trunation at term k isXi1<i2<���<ik Pr[Fi1 \ Fi2 \ � � � \ Fik ℄� Xi1<i2<���<ik+1 Pr[Fi1 \ Fi2 \ � � � \ Fik+1 ℄ + � � �=Xj�k(�1)k�jXu �uj�Pr[Tu℄=Xu Xj�k(�1)k�j�uj�Pr[Tu℄=Xu �u� 1k � 1�Pr[Tu℄:Now reall that Su is the event that u or more of the Fi our, meaning that Pr[Tu℄ =Pr[Su℄� Pr[Su+1℄. Thus we an rewrite our bound above asXu �u� 1k � 1�(Pr[Su℄� Pr[Su+1℄)=Xu �u� 1k � 1�Pr[Su℄�Xu �u� 1k � 1�Pr[Su+1℄=Xu �u� 1k � 1�Pr[Su℄�Xu �u� 2k � 1�Pr[Su℄=Xu ��u� 1k � 1���u� 2k � 1��Pr[Su℄=Xu �u� 2k � 2�Pr[Su℄:This ompletes the proof.5.2. A simple approximation. Using the above error bound, we an proveTheorem 5.1. Let Fi denote the event that the ith near-minimum ut fails. Ourobjetive is to estimate Pr[[Fi℄. Summing the individual uts' failure probabilitiesorresponds to trunating our inlusion-exlusion sum at the seond term, giving (byLemma 5.3) an error ofPu�2 Su. We now bound this error by bounding the quantitiesSu. Lemma 5.4. If u distint (2-way) uts fail then a dlog(u+ 1) + 1e-way ut fails.Proof. Consider a on�guration in whih u distint uts have failed simultane-ously. Suppose this indues k onneted omponents. Let us ontrat eah onnetedomponent in the on�guration to a single vertex. Eah failed ut in the original graphorresponds to a distint failed ut in the ontrated graph. Sine the ontratedgraph has k verties, we know that there are at most 2k�1 � 1 ways to partition itsverties into two nonempty groups, and thus at most this many uts. In other words,u � 2k�1 � 1. Now solve for u and observe it must be integral.Corollary 5.5. If p = n�(2+Æ) then Pr[Su℄ � n�dlog(u+1)+1eÆ=2:Proof. Apply Corollary 4.8 to the previous lemma.Thus, for example, S2 and S3 are upper bounded by the probability that a 3-way ut fails, whih by Corollary 4.8 is at most n�3Æ=2. More generally, all 2k valuesS2k ; : : : ; S2k+1�1 are at most n�(k+2)Æ=2. It follows that the error in our approximation



AN APPROXIMATION SCHEME FOR NETWORK RELIABILITY 19by the bound of Theorem 5.1 isXu�2Su �Xk�1 2kn�(k+2)Æ=2= n�ÆXk�1(2n�Æ=2)k= 2n�3Æ=2(1 + o(1));whenever Æ > 0. This quantity is o(p), and thus o(FAIL(p)), whenever n�3Æ=2 =o(n�(2+Æ)), i.e. Æ > 4. This proves Theorem 5.1.5.3. A PAS. We now use the inlusion-exlusion analysis to give a PAS forFAIL(p) when p = n�(2+Æ) for some �xed Æ > 0, thus proving Theorem 5.2. Wegive an �-approximation algorithm with a running time of (n=�)exp(O(� logn �)), whihis learly polynomial in n for eah �xed � (and in fat, for any � = n�O(1)).We must eliminate two uses of randomization: in the ontration algorithm foridentifying the �-minimum uts and in the DNF ounting algorithm for estimatingtheir failure probability.The �rst step is to deterministially identify the near-minimum uts of G. Oneapproah is to use a derandomization of the ontration algorithm [15℄. A moreeÆient approah is to use a ut enumeration sheme of Vazirani and Yannakakis [29℄.This sheme enumerates uts in inreasing order of value, with a \delay" of ~O(mn)per ut. From the fat that there are only n2� weak uts, it follows that all weak uts(in the sense of setion 3) an be found in ~O(mn1+2�) time.We must now estimate the probability one of the near-minimum uts fails. Letus onsider trunating to the �rst k terms in the inlusion-exlusion expansion. FromCorollary 5.5 we know that Pr[Su℄ � n�(log(u+1)+1)Æ=2. It follows from Lemma 5.3that for any k � 13Æ logn, our error from using the k-term trunation of inlusion-exlusion isXu �u� 2k � 2�n�(log(u+1)+1)Æ=2 � n�Æ=2Xu�k(u� 2)k�2(u+ 1)�Æ(logn)=2�Xu�k(u+ 1)k�2�Æ(log n)=2�Xu�k(u+ 1)Æ(logn)=3�2�Æ(log n)=2�Xu�k(u+ 1)�Æ(logn)=6�1� Z 1u=k�1(u+ 1)�Æ(log n)=6�1 du= k�Æ(logn)=6Æ(log n)=6= n�Æ(log k)=6Æ(log n)=6= O(n�Æ(log k)=6):This quantity is O(�n�(2+Æ)) = O(�p) = O(�FAIL(p)) for some k = 2O(� logn �). Itfollows that for an �-approximation we need only evaluate the inlusion-exlusion up



20 DAVID R. KARGERto the kth term. Computing the kth term requires examining every set of k of the(n=�)O(1) �-minimum uts; this requires (n=�)exp(O(� logn �)) time. This onludes theproof of Theorem 5.2.The fat that the error drops exponentially with n is what prevents our determin-isti algorithm from begin an FPAS: if � < n�!(1), then we need more than a onstantnumber of terms in the above sum to redue the error to �.We an slightly improve our bound on Pr[Su℄, whih in turn gives better boundson k.Lemma 5.6. If u distint �-minimum uts fail, then a u1=2�-way ut fails.Proof. Consider a on�guration in whih u distint uts have failed simultane-ously. Suppose this indues k onneted omponents. Let us ontrat eah onnetedomponent in the on�guration to a single vertex. In this ontrated graph (beforeedges fail), the minimum ut is at least  (sine ontration never redues the mini-mum ut). Furthermore, eah of the u failed uts is a ut of value at most �, andthus an �-minimum ut, in the ontrated graph. Sine the ontrated graph has kverties, we know from Theorem 2.6 that u < k2�, meaning that k > u1=2�.However, this serves only to redue the values of our onstants (and redue therunning time from an exponential to a polynomial dependene on 1=Æ).6. The Tutte polynomial. The Tutte polynomial T (G;x; y) is a polynomialin two variables de�ned by a graph G. Evaluating it at various points (x; y) on theso-alled Tutte plane yields various interesting quantities regarding the graph. Inpartiular, omputing the network reliability REL(p) is the speial ase of evaluatingthe Tutte polynomial at the point x = 1; y = 1=p. Another speial ase is ountingthe number of strongly onneted orientations of an undireted graph, disussed insubsetion 3.6. Yet another is ounting the number of forests in a graph. Alon, Frieze,and Welsh [1℄ showed that for any dense graph (one with 
(n2) edges) and �xed xand �xed y � 1 there is an FPRAS for the Tutte polynomial.6.1. Results. In this setion, we prove the following.Theorem 6.1. For every y > 1 there is a  = O(logy nx) (in partiular,  =O(log n) for any �xed x and y) suh that for all n-vertex m-edge graphs of edge-onnetivity greater than ,T (G;x; y) = ym(y � 1)n�1 (1 +O(1=n)):Thus, a good approximation an be given in onstant time by ignoring G andreturning the onstant ym=(y � 1)n�1. Note that almost all graphs fall under thistheorem as the minimum ut of a random graph is tightly onentrated around n=2�. Theorem 6.2. For every y > 1 there is a  = O(logy nx) suh that there is anFPRAS for T (G;x; y).This theorem is perhaps unsurprising given the previous theorem. But it is notimmediate sine the input may speify �� 1=n. A slightly more hallenging quantityis the \seond-order term" saying how far a given graph diverges from its approxima-tion in the �rst theorem.Theorem 6.3. Let�T (G;x; y) = ym(y � 1)n�1 � T (G;x; y):



AN APPROXIMATION SCHEME FOR NETWORK RELIABILITY 21For any �xed y > 1 and �xed x, there is a  = O(log n) suh that there is an FPRASfor �T (G;x; y).This theorem is stronger than and implies the previous theorem. When �T isvery lose to 0, the quantity ym(y�1)n�1 aurately approximates T but approximating�T with small relative error is harder.6.2. Method. Our proofs begin with a lemma of Alon, Frieze, and Welsh [1℄(whih we have slightly rephrased to inlude what is for them the speial ase ofx = 1).Lemma 6.4 (see [1℄). When y > 1,T (G;x; y) = ym(y � 1)n�1E[Q��1℄;where Q = (x�1)(y�1), and � is a random variable equal to the number of onnetedomponents of G when eah edge of G fails independently with probability p = 1=y.(In the ase Q = 0 (when x = 1), we use the fat that 0r = 0 for r 6= 0 while 00 = 1.)In other words, when pr is the probability that the graph with random edgefailures partitions into exatly r omponents, the Tutte polynomial an be evaluatedfrom E[Q��1℄ = nXk=1 prQr�1:For the remainder of this subsetion, we normalize our analysis by onsidering thequantity T 0(G;x; y) = T (G;x; y) (y�1)n�1ym = E[Q��1℄. Clearly, any results on relativeapproximations to T 0 translate immediately into results on relative approximationsto T .We begin with an intuitive argument. From Theorem 2.9, when p = n�(2+Æ)(whih happens for some  = O(log n) for any �xed p) we know pr is negligible forr � 1. Intuitively, sine p1 � 1 and all other pr � 0, we might as well approximateT 0 by Q. Extending this argument, we know that ompared to p2, all terms pr forr > 2 are negligible. Therefore, the error in the approximation of T 0 by Q is almostentirely determined by p2Q2, whih we an determine by omputing p2.To prove our results formally, we have to deal with the fat that the term Qrin the expetation inreases exponentially with r. We prove that the pr deay fastenough to damp out the inreasing values of Qr. We also need to be areful thatwhen Q < 0, the large leading terms do not anel eah other out.6.3. Proofs. For our formal analysis, instead of the quantities pr, it is more on-venient to work with quantities sr measuring the probability that the graph partitionsinto r or more omponents. Note that s1 = 1 and s2 = FAIL(p). Sine pr = sr�sr+1,



22 DAVID R. KARGERit follows that T 0(G;x; y) = nXr=1 prQr�1= nXr=1(sr � sr+1)Qr�1= nXr=1 srQr�1 � nXr=2 srQr�2= 1 + nXr=2 sr(Qr�1 �Qr�2)= 1 + (Q� 1) nXr=2 srQr�2:Theorem 6.1 will follow diretly from the last equation if we an show that the trailingterm (Q�1)Pnr=2 srQr�2 = O(1=n). Theorem 6.3 will follow if we an give an FPRASforPnr=2 srQr�2. The fat that the value of this sum is o(1) (Theorem 6.1) means thatthe FPRAS for it immediately yields an FPRAS for T 0, thus proving Theorem 6.2.To prove these results, �rst onsider the ase x = 1. In this ase Q = 0, meaningQr�2 = 1 for r = 2 and 0 for r > 2. Thus T 0(G;x; y) = 1�s2 = 1�FAIL(p) = REL(p).We have already seen in Theorem 2.9 that whenever p = n�(2+Æ), the probabilitythat the graph beomes disonneted is at most n�Æ(1+2=Æ). This is ertainly O(1=n)if Æ � 1, meaning REL(p) = 1�O(1=n). But this in turn is true when p < n�3, i.e., > 3 logy n:This proves Theorem 6.1 for Q = 0. On the other hand, Theorem 6.3 simply laimsthat there is an FPRAS for 1� REL(p) = FAIL(p), whih is what setion 2 showed.Finally, Theorem 6.2 says that when FAIL(p) is small, we an approximate REL(p)(by approximating FAIL(p)).We now generalize this argument to the ase x > 1. To derive the appropriatelower bound on , we state two riteria that will we need in our analysis. First,we require  to be suh that p = n�(2+Æ) for some Æ > 1. Equivalently, we have1 < Æ = � log(n2p)= logn. Seond, we require that Q < 14nÆ=4. Plugging in for Æ, we�nd the equivalent requirement Q < 14nÆ=4= 14(n2p)�1=4(4Q)4 < 1=n2pn2(4Q)4 < ylogy(256Q4n2) < :This is true for some  = O(logy(nQ)) = O(logy nx) as laimed.Given the above relations between Q;n; and Æ, we an use Corollary 4.8. Sine



AN APPROXIMATION SCHEME FOR NETWORK RELIABILITY 23p = n�(2+Æ), we dedue that sr � n�rÆ=2. Sine Q < 14nÆ=4 < 12nÆ=2 we �nd thatnXr=r0 srQr�2 � Q�2 Xr�r0(Qn�Æ=2)r� Q�2(Qn�Æ=2)r0=(1� (Qn�Æ=2)r0)� Q�2(Qn�Æ=2)r0=�1� 12r0�� 2Q�2(Qn�Æ=2)r0 :Our results follow from this bound. First, taking r0 = 2, we �nd that the error inapproximating T 0(G;x; y) by 1 is at most2n�Æ = o(1):This proves Theorem 6.1.To prove Theorem 6.3, note that the leading term in the summation (6.1) iss2 � n�(2+Æ). We an therefore estimate the sum to within relative error O(�) byevaluating summation terms up to summation index r0 where (Qn�Æ=2)r0 � �n�(2+Æ).Sine the left-hand side dereases exponentially in n as a funtion of r0, we an ahievethis error bound by takingr0 = O(logn(n2+Æ=�)) = O(1 + logn 1=�):In other words, we need only to determine O(1 + logn 1=�) terms in the summation.This in turn redues to determining the quantities sr appearing in those terms.We annot �nd the sr exatly. However, for an �-approximation, it suÆes toapproximate eah relevant sr to within �. We an do so using the algorithm ofCorollary 4.5. The running time of this algorithm for estimating the r-way failureprobability to within � is (nr=�)O(1). We have argued above that we need only to runthe algorithm for r � r0 = O(1 � logn �). It follows that the running time of ouralgorithm is nO(1�logn �)=�O(1) = (n=�)O(1), as required. This proves Theorem 6.3.Finally, we onsider the ase x < 1. Our argument is essentially unhanged frombefore. We need to be slightly more areful beause our sum is now an alternatingsum, whih means that the leading terms are a good approximation only if they do notanel eah other out. To see that suh anelling does not our, note that the �rstterm has value s2 = n�(2+Æ), while the remaining terms (by the analysis above) havetotal (absolute) value O(n(Qn�3Æ=2)). If we hoose n large enough that Q < 14nÆ=4,then this bound is O( 14n�5Æ=4) < 14s2 for Æ > 4, so the remaining terms do not anels2. 7. Conlusion. We have given an FPRAS for the all-terminal network reliabilityproblem and several variants. In the ase of large failure probability, the FPRASuses straightforward Monte Carlo simulation. For smaller failure probabilities, theFPRAS uses an eÆient redution to DNF ounting or a less eÆient deterministiomputation. An obvious open question is whether there is also a deterministi PAS(or even FPAS) for the ase of large failure probabilities. Another is whether there isalso an FPRAS for REL(p) = 1� FAIL(p), the question being open only for the aseREL(p) near 0.This work has studied probabilisti edge failures; a question of equal importaneis that of network reliability under vertex failures. We are aware of no results on
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