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Abstra
t. The 
lassi
 all-terminal network reliability problem posits a graph, ea
h of whoseedges fails independently with some given probability. The goal is to determine the probability thatthe network be
omes dis
onne
ted due to edge failures. This problem has obvious appli
ations inthe design of 
ommuni
ation networks. Sin
e the problem is ℄P-
omplete and thus believed hardto solve exa
tly, a great deal of resear
h has been devoted to estimating the failure probability. Inthis paper, we give a fully polynomial randomized approximation s
heme that, given any n-vertexgraph with spe
i�ed failure probabilities, 
omputes in time polynomial in n and 1=� an estimate forthe failure probability that is a

urate to within a relative error of 1 � � with high probability. Wealso give a deterministi
 polynomial approximation s
heme for the 
ase of small failure probabilities.Some extensions to evaluating probabilities of k-
onne
tivity, strong 
onne
tivity in dire
ted Euleriangraphs and r-way dis
onne
tion, and to evaluating the Tutte polynomial are also des
ribed.This version of the paper 
orre
ts several errata that appeared in the previous journal publi
ation[D. R. Karger, SIAM J. Comput., 29 (1999), pp. 492{514℄.Key words. network reliability, approximation s
heme, minimum 
utAMS subje
t 
lassi�
ations. 05C40, 05C80, 05C85, 68Q25, 68R10, 90B25, 68M15PII. S00361445013871411. Introdu
tion.1.1. The problem. We 
onsider a 
lassi
 problem in reliability theory: given anetwork on n verti
es, ea
h of whose m links is assumed to fail (disappear) indepen-dently with some probability, determine the probability that the surviving networkis 
onne
ted. The pra
ti
al appli
ations of this question to 
ommuni
ation networksare obvious, and the problem has therefore been the subje
t of a great deal of study.Coulbourn [4℄ provides a survey.Formally, a network is modeled as a graph G, ea
h of whose edges e is presumedto fail (disappear) with some probability pe and thus to survive with probability qe =1� pe. Network reliability problems are 
on
erned with determining the probabilitiesof 
ertain 
onne
tivity-related events in this network. The most basi
 question ofall-terminal network reliability is determining the probability that the network stays
onne
ted. Others in
lude determining the probability that two parti
ular nodes stay
onne
ted (two-terminal reliability), and so on.Most su
h problems, in
luding the two just mentioned, are ℄P-
omplete [28, 26℄.That is, they are universal for a 
omplexity 
lass at least as intra
table as NP andtherefore seem unlikely to have polynomial time solutions. Attention therefore turnedto approximation algorithms. Provan and Ball [26℄ proved that it is ℄P-
omplete evento approximate the reliability of a network to within a relative error of �. However,they posited that the approximation parameter � is part of the input, and used anexponentially small � (whi
h 
an be represented in O(n) input bits) to prove their�Published ele
troni
ally August 1, 2001. This paper originally appeared in SIAM Journal onComputing, Volume 29, Number 2, 1999, pages 492{514.http://www.siam.org/journals/sirev/43-3/38714.htmlyMIT Laboratory for Computer S
ien
e, Massa
husetts Institute of Te
hnology, Room NE43-321, Cambridge, MA 02138 (karger�l
s.mit.edu). Parts of this work were done at AT&T BellLaboratories. 1
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laim. They note at the end of their arti
le that \a seemingly more diÆ
ult unsolvedproblem involves the 
ase where � is 
onstant, i.e., is not allowed to vary as part ofthe input list."Their idea is formalized in the de�nition of a polynomial approximation s
heme(PAS). In this de�nition, the performan
e measure is the running time of the approx-imation algorithm as a fun
tion of the problem size n and the error parameter �, andthe goal is for a running time that is polynomial in n for ea
h �xed � (e.g., 21=�n). Ifthe running time is also polynomial in 1=�, the algorithm is 
alled a fully polynomialapproximation s
heme (FPAS). An alternative interpretation of an FPAS is that ithas a running time polynomial in the input size when � is 
onstrained to be inputin unary rather than binary notation. When randomization is used in an approxi-mation s
heme, we refer to a polynomial randomized approximation s
heme (PRAS)or fully polynomial randomized approximation s
heme (FPRAS). Su
h algorithms arerequired to provide an �-approximation with probability at least 3=4; this probabilityof su

ess 
an be in
reased signi�
antly (e.g., to 1�1=n or even 1�1=2n) by repeatingthe algorithm a small number of times [25℄.Deterministi
 FPASs for nontrivial problems seem to be quite rare. However,FPRASs have been given for several ℄P-
omplete problems su
h as 
ounting maximummat
hings in dense graphs [8℄, measuring the volume of a 
onvex polytope [6℄, anddisjun
tive normal form (DNF) 
ounting|estimating the probability that a givenDNF formula evaluates to true if the variables are made true or false at random [20℄.In a plenary talk, Kannan [9℄ raised the problem of network reliability as an importantremaining open problems needing an approximation s
heme.1.2. Our results. In this paper, we provide an FPRAS for the all-terminalnetwork reliability problem. Given a failure probability p for the edges, our algorithm,in time polynomial in n and 1=�, returns a number P that estimates the probabilityFAIL(p) that the graph be
omes dis
onne
ted. With high probability,1 P is in therange (1��)FAIL(p). The algorithm is Monte Carlo, meaning that the approximationis 
orre
t with high probability but that it is not possible to verify its 
orre
tness. Itgeneralizes to the 
ase where the edge failure probabilities are di�erent, to 
omputingthe probability the graph is not k-
onne
ted (for any �xed k), and to the more generalproblem of approximating the Tutte polynomial for a large family of graphs. It
an also estimate the probability that an Eulerian dire
ted graph remains strongly
onne
ted under edge failures. Our algorithm is easy to implement and appears likelyto have satisfa
tory time bounds in pra
ti
e [3, 18℄.Some 
are must be taken with the notion of approximation be
ause approxima-tions are measured by relative error. We therefore get di�erent results dependingon whether we dis
uss the failure probability FAIL(p) or the reliability (probabilityof remaining 
onne
ted) REL(p) = 1 � FAIL(p). Consider a graph with a very lowfailure probability, say �. In su
h a graph, approximating REL(p) by 1 gives a (1+ �)-approximation to the reliability, but approximating the failure probability by 0 givesa very poor (in�nite) approximation ratio for FAIL(p). Thus, the failure probabilityis the harder quantity to approximate well. On the other hand, in a very unreli-able graph, FAIL(p) be
omes easy to approximate (by 1) while REL(p) be
omes the
hallenging quantity. Our algorithm is an FPRAS for FAIL(p). This means that inextremely unreliable graphs, it 
annot approximate REL(p). However, it does solve1The phrase with high probability means that the probability that it does not happen 
an bemade O(n�d) for any desired 
onstant d by suitable 
hoi
e of other 
onstants (typi
ally hidden inthe asymptoti
 notation).



AN APPROXIMATION SCHEME FOR NETWORK RELIABILITY 3the harder approximation problem on reliable graphs, whi
h are 
learly the ones likelyto be en
ountered in pra
ti
e.The basi
 approa
h of our FPRAS is to 
onsider two 
ases. When FAIL(p) islarge, it 
an be estimated via dire
t Monte Carlo simulation of random edge failures.We thus fo
us on the 
ase of small FAIL(p). Note that a graph be
omes dis
onne
tedwhen all edges in some 
ut fail (a 
ut is a partition of the verti
es into two groups; itsedges are the ones with one endpoint in ea
h group). The more edges 
ross a 
ut, theless likely it is that they will all fail simultaneously. We show that for small FAIL(p),only the smallest graph 
uts have any signi�
ant 
han
e of failing. We show thatthere is only a polynomial number of su
h 
uts, and that they 
an be enumeratedin polynomial time. We then use a DNF 
ounting algorithm [19℄ to estimate theprobability that one of these expli
itly enumerated 
uts fails, and take this estimateas an estimate of the overall graph failure probability.After presenting our basi
 FPRAS for FAIL(p) in se
tion 2, we present severalextensions of it, all relying on our observation regarding the number of small 
utsa graph 
an have. In se
tion 3, we give FPRASs for the network failure probabilitywhen every edge has a di�erent failure probability, for the probability that an Euleriandire
ted graph fails to be strongly 
onne
ted under random edge failures, and forthe probability that two parti
ular \weakly 
onne
ted" verti
es are dis
onne
ted byrandom edge failures. In se
tion 4, we give an FPRAS for the probability that agraph partitions into more than r pie
es for any �xed r. In se
tion 5, we give twodeterministi
 algorithms for all-terminal reliability: a simple heuristi
 that provablygives good approximations on 
ertain inputs and a deterministi
 PAS that applies toa somewhat broader 
lass of problems. In se
tion 6, we show that our te
hniques givean FPRAS for the Tutte polynomial on almost all graphs.1.3. Related work. Previous work gave algorithms for estimating FAIL(p) in
ertain spe
ial 
ases. Karp and Luby [20℄ showed how to estimate FAIL(p) in n-vertexplanar graphs when the expe
ted number of edge failures is O(log n). Alon, Frieze,and Welsh [1℄ showed how to estimate it when the input graph is suÆ
iently dense(with minimum degree 
(n)). Other spe
ial 
ase solutions are dis
ussed in Colbourn'ssurvey [4℄. Lomonosov [23℄ independently derived some of the results presented here.A 
ru
ial step in our algorithm is the enumeration of minimum and near-minimum
uts. Dinitz et al. [5℄ showed how to enumerate (and represent) all minimum 
uts.Vazirani and Yannakakis [29℄ showed how to enumerate near-minimum 
uts. Kargerand Stein [17℄ and Karger [14℄ gave faster 
ut enumeration algorithms as well asbounds on the number of 
uts that we will use heavily.A preliminary version of this work appeared in [11℄. The author's thesis [10℄ dis-
usses reliability estimation in the 
ontext of a general approa
h to random samplingin optimization problems involving 
uts. In parti
ular, this reliability work relies onsome new theorems bounding the number of small 
uts in graphs; these theoremshave led to other results on appli
ations of random sampling to graph optimizationproblems [12, 14, 2℄.2. The basi
 FPRAS. In this se
tion, we present an FPRAS for FAIL(p). Weuse two methods, depending on the value of FAIL(p).When FAIL(p) is large we estimate it in polynomial time by dire
t Monte Carlosimulation of edge failures. That is, we randomly 
ause edges to fail and 
he
k whetherthe graph remains 
onne
ted. Sin
e FAIL(p) is large, a small number of simulations(roughly 1=FAIL(p)) gives enough data to estimate it well.When FAIL(p) is small, we resort to 
ut enumeration to estimate it. A graph



4 DAVID R. KARGERbe
omes dis
onne
ted pre
isely when all of the edges in some 
ut of the graph fail.By a 
ut we mean a partition of the graph verti
es into two groups. The 
ut edgesare those with one endpoint in ea
h group (we also refer to these edges as the ones
rossing the 
ut). The value of the 
ut is the number of edges 
rossing the 
ut.We show that when FAIL(p) is small, only 
uts of small value in G have anysigni�
ant 
han
e of failing. We observe that there is only a polynomial numberof su
h 
uts and that they 
an be found in polynomial time. We therefore estimateFAIL(p) by enumerating the polynomial-size set of small 
uts of G and then estimatingthe probability that one of them fails.2.1. Preliminary Observations. We begin by formalizing our idea of the small
uts on whi
h we will 
on
entrate.If ea
h edge fails with probability p, then the probability that a k-edge 
ut fails ispk. Thus, the smaller a 
ut, the more likely it is to fail. It is therefore natural to fo
usattention on the small graph 
uts. Throughout this paper, we assume that our graphhas minimum 
ut value 
|that is, that the smallest 
ut in the graph has exa
tly 
edges. Su
h a graph has a probability of at least p
 of be
oming dis
onne
ted|namely,if the minimum 
ut fails. This implies the following:Fa
t 2.1. If ea
h edge of a graph with minimum 
ut 
 fails independently withprobability p, then the probability that the graph be
omes dis
onne
ted is at least p
.The probability that a 
ut fails de
reases exponentially with the number of edgesin the 
ut. This would suggest that a graph is most likely to fail at its small 
uts. Weformalize this intuition.Definition 2.2. An �-minimum 
ut is a 
ut with value at most � times theminimum 
ut value.Below, we show how to 
hoose between the two approa
hes just dis
ussed. If p
 �n�4 then, as we show in subse
tion 2.2, we 
an estimate it via Monte Carlo simulation.This works be
ause FAIL(p) � p
, so ~O(1=FAIL(p)) = ~O(n4) experiments give usenough data to dedu
e a good estimate ( ~O(f) denotes O(f logn)). On the otherhand, when p
 < n�4, we know that a given �-minimum 
ut fails with probabilityp�
 = n�4�. We show in subse
tion 2.3 that there are at most n2� �-minimum 
uts.It follows that the probability that any �-minimum 
ut fails is less than n�2�|that is,exponentially de
reasing with �. Thus, for a relatively small �, the probability thata greater than �-minimum 
ut fails is negligible. Thus (as we show in subse
tion 2.4)we 
an approximate FAIL(p) by approximating the probability that some less than�-minimum 
ut fails. Our FPRAS (in subse
tion 2.5) is based on enumerating thesesmall 
uts and determining the probability that one of them fails.2.2. Monte Carlo simulation. The most obvious way to estimate FAIL(p) isthrough Monte Carlo simulations. Given the failure probability p for ea
h edge, we
an \simulate" edge failures by 
ipping an appropriately biased random 
oin for ea
hedge. We 
an then test whether the resulting network is 
onne
ted. If we do this manytimes, then the fra
tion of trials in whi
h the network be
omes dis
onne
ted shouldintuitively provide a good estimate of FAIL(p). Karp and Luby [20℄ investigated thisidea formally, and observed (a generalization of) the following.Theorem 2.3. Performing O((logn)=(�2FAIL(p))) trials will give an estimatefor FAIL(p) a

urate to within 1� � with high probability.Corollary 2.4. If FAIL(p) � p
 � n�4, then FAIL(p) 
an be estimated towithin (1 + �) in ~O(mn4=�2) time using Monte Carlo simulation.The 
riterion that FAIL(p) not be too small 
an of 
ourse be repla
ed by a 
on-dition that implies it. For example, Alon, Frieze, and Welsh [1℄ showed that for any
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onstant p, there is an FPRAS for network reliability in dense graphs (those with min-imum degree 
(n)). The reason is that as n grows and p remains 
onstant, FAIL(p)is bounded below by a 
onstant on dense graphs and 
an therefore be estimated in~O(n2=�2) time by dire
t Monte Carlo simulation.The 
aw of the simulation approa
h is that it is too slow for small values ofFAIL(p), namely those less than 1 over a polynomial in n. It is upon this situation thatwe fo
us our attention for the remainder of this se
tion. In this 
ase, a huge number ofstandard simulations would have to be run before we en
ountered a suÆ
iently largenumber of failures to estimate FAIL(p). (Note that we expe
t to run 1=FAIL(p) trialsbefore seeing any failures. With no failures, we have no way to measure a failureprobability.) Karp and Luby [20℄ ta
kled this situation for various problems, andshowed that it 
ould be handled in some 
ases by biasing the simulation su
h thato

urren
es of the event being estimated be
ame more likely. One of their results wasan FPRAS for network reliability in planar graphs, under the assumption that thefailure probability p of edges is O((log n)=n) so that the expe
ted number of edgesfailing is O(log n). Their algorithm is more intri
ate than straightforward simulation,and, like ours, relies on identifying a small 
olle
tion of \important 
uts" on whi
h to
on
entrate.Another problem where dire
t Monte Carlo simulation breaks down, and to whi
hKarp and Luby [20℄, found a solution, is that of DNF 
ounting: given a booleanformula in disjun
tive normal form (an \or" of \and"s), and given for ea
h variablea probability that it is set to true, estimate the probability that the entire formulaevaluates to true. Like estimating FAIL(p), this problem is hard when the probabilitybeing estimated is very small. Karp and Luby [20℄ developed an FPRAS for DNF
ounting using a biased Monte Carlo simulation. The running time was later improvedby Karp, Luby, and Madras [19℄ to yield the following.Theorem 2.5. There is an FPRAS for the DNF 
ounting problem that runs in~O(s=�2) time on any size s formula.We will use the DNF 
ounting algorithm as a subroutine in our FPRAS.2.3. Counting near-minimum 
uts. Having handled the 
ase of p
 large, wenow turn to the 
ase of p
 small. We show that in this 
ase, only the smallest graph
uts have any signi�
ant 
han
e of failure. While it is obvious that 
uts with feweredges are more likely to fail, one might think that there are so many large 
utsthat overall they are more likely to fail than the small 
uts. However, the followingproposition lets us bound the number of large 
uts and show this is not the 
ase.Theorem 2.6. An undire
ted graph has less than n2� �-minimum 
uts.Remark. Vazirani and Yannakakis [29℄ gave an in
omparable bound on the num-ber of small 
uts by rank rather than by value.In this subse
tion, we sket
h a proof of Theorem 2.6. A detailed proof of thetheorem 
an be found in [17℄ and an alternative proof in [14℄. Here, we sket
h enoughdetail to allow for some of the extensions we will need later. We prove the theorem onlyfor unweighted multigraphs (graphs with parallel edges between the same endpoints);the theorem follows for weighted graphs if we repla
e any weight w edge by a set ofw unweighted parallel edges.2.3.1. Contra
tion. The proof of the theorem is based on the idea of edge
ontra
tion. Given a graph G = (V;W ) and an edge (v; w), we de�ne a 
ontra
tedgraph G=(v; w) with vertex set V 0 = V [fug�fv; wg for some new vertex u and edge



6 DAVID R. KARGERset E0 = E � f(v; w)g [ f(u; x) j (v; x) 2 E or (w; x) 2 Eg:In other words, in the 
ontra
ted graph, verti
es v and w are repla
ed by a singlevertex u, and all edges originally in
ident on v or w are repla
ed by edges in
identon u. We also remove self-loops formed by edges parallel to the 
ontra
ted edge sin
ethey 
ross no 
ut in the 
ontra
ted graph.Fa
t 2.7. There is a one-to-one 
orresponden
e between 
uts in G=e and 
uts inG that e does not 
ross. Corresponding 
uts have the same value.Proof. Consider a partition (A;B) of the verti
es of G=(v; w). The vertex u
orresponding to 
ontra
ted edge (v; w) is on one side or the other. Repla
ing u by vand w gives a partition of the verti
es of G. The same edges 
ross the 
orrespondingpartitions.2.3.2. The 
ontra
tion algorithm. We now use repeated edge 
ontra
tion inan algorithm that sele
ts a 
ut from G. Consider the following 
ontra
tion algorithm.While G has more than 2 verti
es, 
hoose an edge e uniformly at random and setG  G=e. When the algorithm terminates, we are left with a two-vertex graph thathas a unique 
ut. A transitive appli
ation of Fa
t 2.7 shows that this 
ut 
orrespondsto a unique 
ut in our original graph; we will say this 
ut is 
hosen by the 
ontra
tionalgorithm. We show that any parti
ular minimum 
ut is 
hosen with probability atleast n�2. Sin
e the 
hoi
es of di�erent 
uts are disjoint events whose probabilitiesadd up to one, it will follow that there are at most n2 minimum 
uts. We thengeneralize this argument to �-minimum 
uts.Lemma 2.8. The 
ontra
tion algorithm 
hooses any parti
ular minimum 
ut withprobability at least n�2.Proof. Ea
h time we 
ontra
t an edge, we redu
e the number of verti
es in thegraph by one. Consider the stage in whi
h the graph has r verti
es. Suppose G hasminimum 
ut 
. It must have minimum degree 
, and thus at least r
=2 edges. Ourparti
ular minimum 
ut has 
 edges. Thus a randomly 
hosen edge is in the minimum
ut with probability at most 
=(r
=2) = 2=r. The probability that we never 
ontra
ta minimum 
ut edge through all n� 2 
ontra
tions is thus at least�1� 2n��1� 2n� 1� � � ��1� 23� = �n� 2n ��n� 3n� 1� � � ��24��13�= (n� 2)(n� 3) � � � (3)(2)(1)n(n� 1)(n� 2) � � � � � � (4)(3)= 2n(n� 1)= �n2��1> n�2:2.3.3. Proof of Theorem 2.6. We 
an extend the approa
h above to proveTheorem 2.6. We slightly modify the 
ontra
tion algorithm and lower bound theprobability that the modi�
ation 
hooses a parti
ular �-minimum 
ut. With r verti
esremaining, the probability we 
hoose an edge from our parti
ular �-minimum 
ut is atmost 2�=r. Let k = d2�e. Suppose we perform random 
ontra
tions until we have ak-vertex graph. In this graph, 
hoose a vertex partition (
ut) uniformly at random, so
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h 
ut is 
hosen with probability 21�k. It follows that a parti
ular �-minimum
ut is 
hosen with probability�1� 2�n ��1� 2�n� 1� � � ��1� 2�k + 1� 21�k = (n� 2�)!(k � 2�)! k!n! 21�k= � k2��� n2��21�k> n�2�:Note that for � not a half-integer, we are making use of generalized binomial 
oef-�
ients whi
h may have nonintegral arguments. These are dis
ussed by Knuth [21,Se
tions 1.2.5{6℄; 
f. Exer
ise 1.2.6.45. There, the Gamma fun
tion is introdu
ed toextend fa
torials to real numbers su
h that �! = �(� � 1)! for all real � > 0. Manystandard binomial identities extend to generalized binomial 
oeÆ
ients, in
luding thefa
ts that � n2�� < n2�=(2�)! and 22��1 � (2�)! for � � 1.Remark. The 
ontra
tion algorithm des
ribed above is used only to 
ount 
uts.An eÆ
ient implementation given by Karger and Stein [17℄ 
an be used to �nd all�-minimum 
uts in ~O(n2�) time. We use this algorithm in our FPRAS.2.4. Cut failure bounds. Using the 
ut 
ounting theorem just given, we showthat large 
uts do not 
ontribute signi�
antly to a graph's failure probability. ConsiderTheorem 2.6; taking � = 1, it follows from the union bound that the probability thatsome minimum 
ut fails is at most n2p
. We now show that the probability that any
ut fails is only a little bit larger.Theorem 2.9. Suppose a graph has minimum 
ut 
 and that ea
h edge of thegraph fails independently with probability p, where p
 = n�(2+Æ) for some Æ > 0. Then1. the probability that the given graph dis
onne
ts is at most n�Æ(1 + 2=Æ), and2. the probability that a 
ut of value �
 or greater fails in the graph is at mostn��Æ(1 + 2=Æ).Remark. We 
onje
ture that a probability bound of n��Æ 
an be proven (elimi-nating the (1 + 2=Æ) term).Proof. We prove part 1 and then note the small 
hange needed to prove part 2. Forthe graph to be
ome dis
onne
ted, all the edges in some 
ut must fail. We thereforebound the failure probability by summing the probabilities that ea
h 
ut fails. Let rbe the number of 
uts in the graph, and let 
1; : : : ; 
r be the values of the r 
uts inin
reasing order so that 
 = 
1 � 
2 � � � � � 
r. Let pk = p
k be the probability thatall edges in the kth 
ut fail. Then the probability that the graph dis
onne
ts is atmost P pk, whi
h we pro
eed to bound from above.We pro
eed in two steps. First, 
onsider the �rst n2 
uts in the ordering (theymight not be minimum 
uts). Ea
h of them has 
k � 
 and thus has pk � n�(2+Æ),so that Xk�n2 pk � (n2)(n�(2+Æ)) = n�Æ:Next, 
onsider the remaining larger 
uts. A

ording to Theorem 2.6, there are lessthan n2� 
uts of value at most �
. Sin
e we have numbered the 
uts in in
reasingorder, this means that 
n2� > �
. In other words, writing k = n2�,
k > ln k2 lnn � 




8 DAVID R. KARGERand thus pk < (p
) ln k2 lnn= (n�(2+Æ)) ln k2 lnn= k�(1+Æ=2):It follows that Xk>n2 pk < Xk>n2 k�(1+Æ=2)� Z 1n2 k�(1+Æ=2) dk� 2n�Æ=Æ:Summing the bounds for the �rst n2 and for the remaining 
uts gives a total ofn�Æ + 2n�Æ=Æ, as 
laimed.The proof of part 2 is the same, ex
ept that we sum only over those 
uts of valueat least �
.Remark. A slightly stronger version of part 1 was �rst proved by Lomonosovand Polesskii [24℄ using di�erent te
hniques that identi�ed the 
y
le as the mostunreliable graph for a given 
 and n. We sket
h their result, whi
h we need for adi�erent purpose, in subse
tion 4.3.2. However, part 2 is ne
essary for the FPRASand was not previously known.2.5. An approximation algorithm for small probabilities. Our proof thatonly small 
uts matter leads immediately to an FPRAS. First we outline our solution.Given that FAIL(p) < n�4, Theorem 2.9 shows that the probability that a 
ut of valuemu
h larger than 
 fails is negligible, so we need only determine the probability thata 
ut of value near 
 fails. We do this as follows. First, we enumerate the (polynomialsize) set of near-minimum 
uts that matter. From this set we generate a polynomialsize boolean expression (with a variable for ea
h edge, true if the edge has failed)that is true if any of our near-minimum 
uts has failed. We then need to determinethe probability that this boolean expression is true; this 
an be done using the DNF
ounting te
hniques of Karp, Luby, and Madras [20, 19℄. Details are given in thefollowing theorem.Theorem 2.10. When FAIL(p) < n�4, there is a (Monte Carlo) FPRAS forestimating FAIL(p) running in ~O(mn4=�3) time.Proof. Under the assumption, the probability that a parti
ular minimum 
ut failsis p
 � FAIL(p) � n�4. We show there is a 
onstant � for whi
h the probabilitythat any 
ut of value greater than �
 fails is at most � � FAIL(p). This proves thatto approximate to the desired a

ura
y we need only determine the probability thatsome 
ut of value less than �
 fails. It remains to determine �. Write p
 = n�(2+Æ);by hypothesis Æ � 2. Thus by Theorem 2.9, the probability that a 
ut larger than �
fails is at most 2n�Æ�. On the other hand, we know that n�(2+Æ) = p
 � FAIL(p),so it suÆ
es to �nd an � for whi
h 2n�Æ� � �n�(2+Æ). Solving this shows that� = 1+2=Æ� (ln(�=2))=Æ lnn � 2� ln(�=2)=2 lnn suÆ
es and that we therefore needonly examine the smallest n2� = O(n4=�) 
uts.We 
an enumerate these 
uts in O(n2� log3 n) time using 
ertain randomizedalgorithms [16, 14℄ (a somewhat slower deterministi
 algorithm exists [29℄). Supposewe assign a boolean variable xe to ea
h edge e; xe is true if edge e fails and false



AN APPROXIMATION SCHEME FOR NETWORK RELIABILITY 9otherwise. Therefore, the xe are independent and true with probability p. Let Ei bethe set of edges in the ith small 
ut. Sin
e the ith 
ut fails if and only if all edges init fail, the event of the ith small 
ut failing 
an be written as Fi = ^e2Eixe. Then theevent of at least one small 
ut failing 
an be written as F = _iFi. We wish to know theprobability that F is true. Note that F is a formula in disjun
tive normal form. Thesize of the formula is equal to the number of 
lauses (n2�) times the number of variablesper 
lause (at most �
), namely, O(
n2�). The FPRAS of Karp, Luby, and Madras [19℄estimates the truth probability of this formula, and thus the failure probability of thesmall 
uts, to within (1� �) in ~O(
n2�=�2) = ~O(
n4=�3) = ~O(mn4=�3) time.We are therefore able to estimate to within (1� �) the value of a probability (theprobability that some �-minimum 
ut fails) that is within (1 � �) of the probabilityof the event we really 
are about (the probability that some 
ut fails). This gives usan overall estimate a

urate to within (1� �)2 � (1� 2�).2.6. Putting the pie
es together. We now 
ombine the above results to getan FPRAS.Corollary 2.11. There is an FPRAS for FAIL(p) running in ~O(mn4=�3) time.Proof. Suppose we wish to estimate the failure probability to within a (1 � �)ratio. If FAIL(p) > n�4, then we 
an estimate it in ~O(mn4=�2) time by dire
t MonteCarlo simulation as in Corollary 2.4. Otherwise, we 
an run the ~O(mn4=�3)-timealgorithm of Theorem 2.10.While this time bound is quite poor, experiments have suggested that performan
ein pra
ti
e is signi�
antly better|typi
ally ~O(n3) on sparse graphs [18℄.3. Extensions. We now dis
uss several extensions of our basi
 FPRAS. In thisse
tion, we will 
onsider many 
ases in whi
h it is suÆ
ient to 
onsider the probabilitythat an �-minimum 
ut fails for some � = O(1 � log �= logn) (as in the previousse
tion) that is understood in 
ontext but not worth deriving expli
itly. We will referto these �-minimum 
uts as the weak 
uts of the graph.3.1. Varying failure probabilities. The analysis and algorithm given aboveextend to the 
ase where ea
h edge e has its own failure probability pe. To extend theanalysis, we transform a graph with varying edge failure probabilities into one withidenti
al failure probabilities. Given the graph G with spe
i�ed edge failure probabil-ities, we build a new graph H all of whose edges have the same failure probability p,but that has the same failure probability as G. Choose a small parameter �. Repla
ean edge e of failure probability pe by a \bundle" of ke parallel edges, ea
h with thesame endpoints as e but with failure probability 1� �, whereke = d�(ln pe)=�e :This bundle of edges keeps its endpoints 
onne
ted unless all the edges in the bundlefail; this happens with probability(1� �)d�(ln pe)=�e:As � ! 0, this failure probability 
onverges to pe. Therefore, the reliability of H
onverges as � ! 0 to the reliability of G. Thus, to determine the failure probabilityof G, we need determine only the failure probability of H in the limit as � ! 0.Sin
e H has all edge failure probabilities the same, our se
tion 2 analysis ofnetwork reliability applies to H . In parti
ular, we know that it suÆ
es to enumeratethe weak 
uts of H and then determine the probability that one of them fails. To



10 DAVID R. KARGERimplement this idea, note that 
hanging the parameter � s
ales the values of 
uts inH without 
hanging their relative values (modulo a negligible rounding error). Wetherefore build a weighted graph F by taking graph G and giving a weight ln 1=pe toedge e. The weak 
uts in F 
orrespond to the weak 
uts in H . We �nd these weak
uts in F using the 
ontra
tion algorithm (whi
h works for weighted graphs [17℄) asbefore.Given the weak 
uts in H , we need to determine the limiting probability that oneof them fails as � ! 0. We have already argued that as � ! 0, the probability a 
utin H fails 
onverges to the probability that the 
orresponding 
ut in G fails. Thus wea
tually want to determine the probability that one of a given set of 
uts in G fails.We do this as before. We build a boolean formula with variables for the edges of Gand with a 
lause for ea
h weak 
ut that is true if all the edges of the 
ut fail. Theonly 
hange is that variable xe is set to true with probability pe. The algorithm of [19℄works with these varying truth probabilities and 
omputes the desired quantity.Theorem 3.1. There is an FPRAS for the all-terminal network reliability prob-lem with varying edge failure probabilities.One might be 
on
erned by the 
omplexity-theoreti
 impa
t of using logarithms to
ompute edge weights. However, it is easy to see that in fa
t approximate logarithmssuÆ
e for the purpose of enumerating small 
uts. If we approximate ea
h logarithm towithin relative error :1, then every �-minimum 
ut in F remains an 11�=9-minimum
ut in the approximation to F . Thus we 
an enumerate a slightly larger set of near-minimum 
uts in order to �nd the weak 
uts. On
e we �nd the weak 
uts, we use theoriginal pe values in the DNF 
ounting algorithm.All the other extensions des
ribed in this paper 
an be modi�ed to handle varyingfailure probabilities. But for simpli
ity, we fo
us on the uniform 
ase.3.2. A Faster Algorithm. Our analysis of the stru
ture of small 
uts 
an alsobe applied to the dire
t Monte-Carlo simulation that is used when FAIL(p) is large.We show that by transforming the input, we 
an ensure that the number of edges inour graph is O(n). In parti
ular, we show that all but O(n logn) edges of G are insidesubgraphs of G that are so unlikely to dis
onne
t that we 
an 
ontra
t them away andignore them. Sin
e the running time of the Monte Carlo simulation is proportionalto the number of edges in the graph, this transformation improves its running time.This in turn improves the running time of the overall approximation algorithm.Consider �rst the 
ase where p
 > 1��. In this 
ase we also have FAIL(p) > 1��,whi
h means that we 
an return the value 1 as an �-approximation to the probabilityof graph failure. This simply requires 
he
king the value of the minimum 
ut, in~O(n2) time using the 
ontra
tion algorithm.Now 
onsider the 
ase where p
 < (1� �). Suppose that we 
an identify a vertex-indu
ed subgraph G0 of G whose minimum 
ut ex
eeds �
, where � = ��1 log(2n7=�).Then sin
e p�
 = (1��)log(2n7=�)=� � �=2n7, we know fromTheorem 2.9 that the graphG0 (
onsidered on its own) be
omes dis
onne
ted by edge failures with probability atmost 2�n�5 � � �FAIL(p)=n. Let A denote the event that G be
omes dis
onne
ted (soPr[A℄ = FAIL(p)), and let B denote the event that G0 be
omes dis
onne
ted. ThenPr[A℄ = Pr[A j B℄ Pr[B℄ + Pr[A j B℄ Pr[B℄� Pr[A j B℄ + Pr[B℄� Pr[A j B℄ + �Pr[A℄=nwhi
h means that Pr[A℄ � Pr[A j B℄=(1 � �=n). In other words, Pr[A j B℄ is an
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urate approximation to Pr[A℄ = FAIL(p).Of 
ourse, if we wish to 
ompute Pr[A j B℄, we 
an assume that the subgraph G0of G is not dis
onne
ted by edge failures. In other words, 
ontra
ting the verti
es ofG0 to a single vertex 
hanges (de
reases) the failure probability of G by at most an�=n fa
tor.In an earlier paper, Ben
zur and Karger [2℄ showed how to 
ompute, in ~O(m)time, a so-
alled k-strong partition of any graph G. This is a partition of the verti
esof G with two properties:� All verti
es in the same blo
k of the partition are inside a single k-
onne
tedindu
ed subgraph of G.� At most O(kn) edges of G have endpoints in di�erent blo
ks of the partition.Suppose that we set k = (log 2n7=�) and 
ompute this k-strong partition. As weargued above, all verti
es of a k-
onne
ted indu
ed subgraph of G 
an be 
ontra
tedwithout 
hanging the failure probability by more than an �=n fa
tor. The samefollows for any set of verti
es 
ontained in a single k-
onne
ted indu
ed subgraph. Inother words, ea
h blo
k of the partition 
an be 
ontra
ted to a single vertex withouta�e
ting the failure probability by a more than �=n fa
tor. Sin
e there are most nblo
ks (ea
h 
ontains at least one vertex) they 
an all be 
ontra
ted simultaneouslywhile 
hanges the failure probability by only an � fa
tor.In the 
ontra
ted graph, only the O(kn) = O(n log(n=�)) edges that had endpointsin di�erent blo
ks will remain. If we now apply our approximation algorithm, we knowthat m = ~O(n). Thus, the running time of our algorithm is ~O(n5=�3).If we know that the minimum 
ut involves ~O(1) edges (as in planar graphs, forexample) then the size of the formula for the DNF 
ounting step above is ~O(n2�).Thus if we use a di�erent threshold of p
 <> n�3:57 for de
iding whi
h algorithm touse, we 
an improve the running time bound to ~O(n4:57=�3).Even with varying failure probabilities, we 
an use the Ben
zur-Karger sparsi�
a-tion algorithm to redu
e the number of edges in the graph to O(n). This 
an be seenfrom the previous se
tion, where we modeled of edges with varying failure probabilitiesby bundles of edges with the same failure probability. Applying the Ben
zur-Kargeralgorithm to these bundled edges produ
es a graph with ~O(n=�) edges from the bun-dles, whi
h of 
ourse 
an be part of at most ~O(n=�) real edges. For implementation,rather than a
tually generating in�nitesimal edges, we apply the Ben
zur-Karger al-gorithm (whi
h works for weighted graphs) to the graph with edge weights ln 1=pe.On the other hand, our proposed improvement for graph with few edges in theminimum 
ut does not 
arry over. Even if the number of edges in one parti
ularminimum 
ut is O(1), some other near minimum 
ut (by edge weight) might 
utnearly all the edges in the graph.3.3. Multiterminal reliability. The multiterminal reliability problem is a gen-eralization of the all-terminal reliability problem. Instead of asking whether the graphbe
omes dis
onne
ted, we 
onsider a subset K of the verti
es and ask if some pair ofthem be
omes dis
onne
ted. If some pair of verti
es in K is separated by a 
ut ofvalue O(
), then we 
an use the same theorem on the exponential de
ay of 
ut failureprobabilities to prove that we need only to examine the small 
uts in the graph todetermine whether some pair of verti
es in K be
omes dis
onne
ted.Lemma 3.2. If some pair of verti
es in K is separated by a 
ut of value O(
),then there is an FPRAS for the multiterminal reliability problem with sour
e verti
esK.
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us on the 
ase of uniform failure probability p; the generalizationto arbitrary failure probabilities is as before. Suppose a 
ut of value �
 separatesverti
es in K. Then the probability that K gets dis
onne
ted when edges fail withprobability p is at least p�
. If p
 > n�4, then p�
 > n�4� = n�O(1) and we use MonteCarlo simulation as before to estimate the failure probability. If p
 < n�4, then byTheorem 2.9, the probability that a 
ut of value ex
eeding �
 fails is O(n�2�). Thus,
hoosing � su
h that n�2� � �p�
, we 
an enumerate the weak 
uts and apply DNF
ounting.3.4. k-
onne
tivity. Just as we estimated the probability that the graph fails tobe 
onne
ted, we 
an estimate the probability that it fails to be k-edge 
onne
ted forany 
onstant k. Note that the graph fails to be k-edge 
onne
ted only if some 
ut hasless than k of its edges survive. The probability of this event de
ays exponentially withthe value of the 
ut, allowing us to prove (as with Theorem 2.9) that if the probabilitythat fewer than k edges in a minimum 
ut survive is O(n�(2+Æ)), then the probabilitythat fewer than k edges survive in a nonweak 
ut is negligible. Thus, if dire
t MonteCarlo simulation is not appli
able, we need only determine the probability that someweak 
ut keeps less than k of its edges. But this is another DNF 
ounting problem.For any parti
ular weak 
ut 
ontaining C � m edges, we enumerate all � CC�k+1� =O(Ck�1) = O(mk�1) sets of C � k + 1 edges, and for ea
h add a DNF 
lause that istrue if all the given edges fail.In fa
t, one 
an also adapt the algorithm of Karp et al. [19℄ to determine theprobability that all but k� 1 variables in some 
lause of a DNF formula be
ome true;thus we 
an 
ontinue to work with the O(mn4=�)-size formula we used before.Corollary 3.3. For any 
onstant k, there is an FPRAS for the probability thata graph with edge failure probabilities fails to be k-edge 
onne
ted.3.5. Eulerian dire
ted graphs. A natural generalization of the all-terminalreliability problem to dire
ted graphs is to ask for the probability that a dire
tedgraph with random edge failures remains strongly 
onne
ted. A dire
ted graph failsto be strongly 
onne
ted pre
isely when all the edges in some dire
ted 
ut fail. Ingeneral, the te
hniques of this paper 
annot be applied to dire
ted graphs|the mainreason being that a dire
ted graph 
an have exponentially many minimum dire
ted
uts.We 
an, however, handle one spe
ial 
ase. In an Eulerian dire
ted graph G onvertex set V , the number of edges 
rossing from any vertex set A to V � A is equalto the number of edges 
rossing from V �A to A. Thus if we 
onstru
t an undire
tedgraph H by removing the dire
tions from the edges of G, we know that any (dire
ted)
ut in G has value equal to half that of the 
orresponding (undire
ted) 
ut in H . Itfollows that the �-minimum dire
ted 
uts of G 
orrespond to �-minimum undire
ted
uts of H . Therefore, there are at most 2n2� �-minimum dire
ted 
uts in G that
an be enumerated by enumerating the �-minimum 
uts of H (the fa
tor of 2 arisesfrom 
onsidering both dire
tions for ea
h 
ut). As in the undire
ted 
ase, if thedire
ted failure probability is less than n�4, an analogue of Theorem 2.9 immediatelyfollows, showing that only weak dire
ted 
uts are likely to fail. It therefore suÆ
es toenumerate a polynomial number of weak dire
ted 
uts to estimate the dire
ted failureprobability.Corollary 3.4. There is an FPRAS for the probability that a dire
ted Euleriangraph fails to remain strongly 
onne
ted under random edge failures.Corollary 3.5. For any 
onstant k there is an FPRAS for the probability that
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ted Eulerian graph fails to have dire
ted 
onne
tivity k under random edgefailures.3.6. Random orientations. In a similar fashion, we 
an estimate the proba-bility that, if we orient randomly ea
h edge of an undire
ted graph, the graph fails tobe strongly 
onne
ted. This problem 
an also be phrased as estimating the number ofnon-strongly 
onne
ted orientations of an undire
ted graph; in this form, it is relatedto the Tutte polynomial dis
ussed in se
tion 6. For ea
h 
ut, we make a DNF formulawith two 
lauses, one of whi
h is true if all edges point \left" and the other if all edgespoint \right." (This observation is due to Alan Frieze.) Similarly, we 
an estimate theprobability that random orientations fail to produ
e a k-
onne
ted dire
ted graph.4. Partition into r 
omponents. The quantity FAIL(p) is an estimate ofthe probability that the graph partitions into more than one 
onne
ted 
omponent.We 
an similarly estimate the probability that the graph partitions into r or more
omponents for any 
onstant r. Besides its intrinsi
 interest, the analysis of thisproblem will be important in our study of some heuristi
s and derandomizations inse
tion 5 and the Tutte polynomial in se
tion 6.We �rst note that a graph partitions into r or more 
omponents only if an r-way 
ut|the set of edges with endpoints in di�erent 
omponents of an r-way vertexpartition|loses all its edges. Note that some of the vertex sets of the partition mightindu
e dis
onne
ted subgraphs, so that the r-way partition might indu
e more thanr 
onne
ted 
omponents. However, it 
ertainly does not indu
e less. Our approa
hto r-way reliability is the same as for the 2-way 
ase. We show that there are fewsmall r-way 
uts and that estimating the probability one fails suÆ
es to approximatethe r-way failure probability. As a 
orollary, we show that the probability of r-waypartition is mu
h less than that of 2-way partition.4.1. Counting multiway 
uts. We enumerate multiway 
uts using the 
on-tra
tion algorithm as for the 2-way 
ase. Details 
an be found in [17℄.Lemma 4.1. In an m-edge unweighted graph the minimum r-way 
ut has valueat most 2m(r � 1)=n.Proof. A graph's average degree is 2m=n. Consider an r-way 
ut with ea
h of ther�1 verti
es of smallest degree as its own singleton 
omponent and all the remainingverti
es as the last 
omponent. The value of this 
ut is at most the sum of thesingleton vertex degrees, whi
h is at most r � 1 times the average degree.Corollary 4.2. There are at most � n2(r�1)� minimum r-way 
uts.Proof. Suppose we �x a parti
ular r-way minimum 
ut and run the 
ontra
tionalgorithmuntil we have 2(r�1) verti
es. By the previous lemma, the probability thatwe pi
k an edge of our �xed 
ut when k verti
es remain is at most 2 r�1k . Thus theprobability that our �xed minimum r-way 
ut is 
hosen isnYk=2r�1�1� 2(r � 1)k � ;whi
h is analyzed as in the proof of Theorem 2.6, substituting r � 1 for �.Corollary 4.3. For arbitrary � � 1, there are at most (rn)2�(r�1) �-minimumr-way 
uts that 
an be enumerated in ~O((rn)2�(r�1)) time.Proof. First run the 
ontra
tion algorithm until the number of verti
es remainingis d2�(r � 1)e. At this point, 
hoose a random r-way partition of what remains. Thereare at most r2�(r�1) su
h partitions.
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ontra
tion algorithm [17℄.Remark. We 
onje
ture that in fa
t the 
orre
t bound is O(n�r) �-minimumr-way 
uts. Subse
tion 4.3.2 shows this is true for � = 1. Proving it for general �would slightly improve our exponents in the following se
tions.4.2. An approximation algorithm. Our enumeration of multiway 
uts allowsan analysis and redu
tion to DNF 
ounting exa
tly analogous to the one performedfor FAIL(p).Corollary 4.4. Suppose that a graph has r-way minimum 
ut value 
r, andsuppose that ea
h edge fails with probability p, where p
r = (rn)�(2+Æ)(r�1) for some
onstant Æ > 0. Then the probability that an �-minimum r-way 
ut fails is at most(rn)��Æ(r�1) (1 + 2=Æ):Proof. The proof is exa
tly as for Theorem 2.9, substituting (rn)(r�1) (drawnfrom Corollary 4.3) for n everywhere.Corollary 4.5. There is an algorithm for �-approximating the probability thata graph partitions into r or more 
omponents, running in ~O(m(rn)4(r�1)=�3) time.The algorithm is an FPRAS with running time ~O(mn4(r�1)=�3) for any �xed r.Proof. Exa
tly as for the 2-way 
ut 
ase, with (rn)(r�1) repla
ing n everywhere.Let 
r be the r-way minimum 
ut value and let Æ be de�ned by p
r = (rn)�(2+Æ)(r�1).If p
r > (rn)�4(r�1), estimate the partition probability via Monte Carlo simulation.Otherwise, it follows as in the 2-way 
ut 
ase that for the same 
onstant � as we 
hosethere, the probability that a greater than �-minimum r-way 
ut fails is less than �p
r .Thus to estimate the partition probability it suÆ
es to enumerate (in ~O((rn)4(r�1)=�)time) the set of �-minimum r-way 
uts and perform DNF 
ounting.One might wish to 
ompute the probability that a graph partitions into exa
tlyr 
omponents, but it is not 
lear that this 
an be done. In parti
ular, 
omputingREL(p) 
an be redu
ed to this problem (for any r) by adding r � 1 isolated verti
es.There is at present no known FPRAS for REL(p).4.3. Comparison to 2-way 
uts. For se
tions 5 and 6, we need to show thatthe probability of partition into r 
omponents is mu
h less than that of partitioninto 2 
omponents. We give two proofs, the �rst simpler but with a slightly weakerbound. The remainder of the paper 
an use the weaker analysis at the 
ost of worseexponents. In this se
tion, the term \
ut" refers ex
lusively to 2-way 
uts unless weexpli
itly modify it.4.3.1. A simple argument.Lemma 4.6. If p
 = n�(2+Æ), then the probability that an r-way 
ut fails is atmost n�Ær=4(1 + 2=Æ).Proof. We show that any r-way 
ut 
ontains the edges of a (2-way) 
ut of valuer
=4. Thus, if an r-way 
ut fails then an (r=4)-minimum 2-way 
ut fails. The proba-bility that this happens has been upper-bounded by Theorem 2.9.To show the 
laim, 
onsider an r-way 
ut. Contra
t ea
h 
omponent of the r-waypartition to a single vertex, yielding an r-vertex graph G0. All edges in this graph
orrespond to edges of the r-way 
ut. Every 
ut in G0 
orresponds to a 
ut of thesame value in the original graph, so it suÆ
es to show that G0 has a 2-way 
ut ofvalue at least r
=4. To see this, note that every vertex in G0 has degree at least 
, sothe number of edges in G0 is at least r
=2. Consider a random 
ut of G0, generated byassigning ea
h vertex randomly to one side or the other. Ea
h edge has a 1=2 
han
eof being 
ut by this partition, so the expe
ted value of this 
ut is at least r
=4. Itfollows that G0 has a 
ut of value at least r
=4 that 
orresponds to a 
ut of value at
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=4 in the original graph.4.3.2. A better argument. We 
an get a slightly better bound on the proba-bility that a graph partitions into r 
omponents via a small variation on an argumentmade by Lomonosov and Polesskii [24, 22, 4℄. The better bound improves some ofour exponents. Their proof uses te
hniques somewhat di�erent from the remainderof the paper and 
an safely be skipped.Lemma 4.7. Let FAILr(G; p) denote the probability that G partitions into ror more 
onne
ted 
omponents when ea
h edge fails with probability p. Let G haveminimum 
ut 
 for some even 
. Let Cn be a 
y
le with 
=2 edges between adja
entverti
es. Then for any r, FAILr(G; p) � FAILr(Cn; p).Corollary 4.8. For any graph G with minimum 
ut 
, if edges fail withprobability p where p
 = n�(2+Æ), then the probability the failed graph has r or more
onne
ted 
omponents is less than n�Ær=2.Remark. Note that for r = 2, the above result gives a slightly stronger bound onFAIL(p) than we are able to get in Theorem 2.9. Unfortunately, this argument doesnot appear to extend to proving the bound we need on the probability that a greaterthan �-minimum r-way 
ut fails.Proof of Corollary 4.8. Thanks to Lemma 4.7, it suÆ
es to prove this 
laim forthe 
ase of G a 
y
le Cn with (
=2)-edge \bundles" between adja
ent verti
es. Thenumber of 
omponents into whi
h Cn is partitioned is equal to the number of bundlesthat fail, so we need only bound the probability that r or more bundles fail. Theprobability that a single bundle fails is p
=2 = n�(1+Æ=2), so the probability that rparti
ular bundles fail is n�r(1+Æ=2). There are �nr� < nr sets of exa
tly r bundles.It follows that the probability r or more bundles fail is less than nrn�r(1+Æ=2) =n�rÆ=2.Proof of Lemma 4.7. Consider the following time-evolving version of the 
ontra
-tion algorithm on a 
onne
ted graph G. Ea
h edge of G is given an arrival time
hosen independently from the exponential distribution with mean 1. Ea
h time anedge arrives, we 
ontra
t its endpoints if they have not already been 
ontra
ted. Thisgives rise to a sequen
e of graphs G = Gn; Gn�1; : : : ; G1, where Gr has r verti
es. LetG[t℄ be the graph that exists at time t. Thus initially G[0℄ = Gn and eventually G[1℄has one vertex sin
e all edges have arrived. We draw a 
orresponden
e between thismodel and our edge failure model as follows: at time t, the failed edges are those whi
hhave not yet arrived. It follows that ea
h vertex in G[t℄ 
orresponds to a 
onne
ted
omponent of G when ea
h edge has failed (to arrive) independently with probabilitye�t.We 
onsider the random variable Tr(G) de�ned as the time at whi
h the edgethat 
ontra
ts Gr to Gr�1 arrives. We show that Tr(Cn) sto
hasti
ally dominatesTr(G) for every r|that is,Pr[Tr(G) � t℄ � Pr[Tr(Cn) � t℄:(See Motwani and Raghavan [25℄ for additional dis
ussion of this de�nition.) Assum-ing this is true, we 
an prove our result as follows:Pr[G[t℄ has r or fewer 
omponents℄ = Pr[Tr(G) � t℄� Pr[Tr(Cn) � t℄= Pr[Cn[t℄ has r or fewer 
omponents℄:To prove sto
hasti
 domination, let tr(G) = Tr�1(G) � Tr(G) denote the lengthof time for whi
h Gr exists before being 
ontra
ted to Gr�1. Clearly, tr(G) is just the



16 DAVID R. KARGERtime it takes for an edge to arrive that has endpoints in di�erent 
onne
ted 
ompo-nents of Gr. It follows that Tr(G) =Pnr0=r tr0(G). Similarly, Tr(Cn) =Pnr0=r tr0(Cn).Thanks to the memoryless nature of the exponential distribution, the tr are mutuallyindependent (this will be justi�ed more 
arefully later). We will show that tr(Cn)sto
hasti
ally dominates tr(G) for every r. The fa
t that Tr(Cn) sto
hasti
ally dom-inates Tr(G) then follows from the fa
t that when X dominates X 0 and Y dominatesY 0 and the variables are independent, X + Y dominates X 0 + Y 0.To analyze tr, suppose there are mr edges in Gr (note mr is a random variable).The arrival time of ea
h edge in Gr measured from Tr(G) is exponentially distributedwith mean 1. Therefore, the arrival time of the �rst su
h edge, namely tr(G), isexponentially distributed with mean 1=mr. Now note that Gr is 
-
onne
ted, soit must have mr � 
r=2. It follows that tr(G) is exponentially distributed withmean at most 2=
r, meaning that it is sto
hasti
ally dominated by any exponentiallydistributed variable with mean 2=
r. On the other hand, when Cn has been redu
ed tor 
omponents, it is isomorphi
 to Cr. By the same analysis as for G, we know tr(Cn)is exponentially distributed with mean 2=
r, and thus sto
hasti
ally dominates tr(G).Our glib 
laim that the tr are independent needs some additional justi�
ation.Te
hni
ally, we 
ondition on the values Gn; : : : ; G1 of the evolving graph. We showthat regardless of what values Gi we 
ondition on, Tr(Cn) sto
hasti
ally dominatesTr(G j Gn; : : : ; G1). Sin
e the sto
hasti
 domination applies regardless of our 
ondi-tioning event, it follows even if we do not 
ondition.On
e we have 
onditioned on the value Gr, tr is just the time it takes for anedge to arrive that 
ontra
ts Gr to Gr�1 and is therefore independent of tr0 whenr0 6= r. But we must ask whether tr still has the right exponential distribution|the
ompli
ating fa
tor being that we know the �rst edge to arrive at Gr must 
ontra
tGr to a spe
i�
 Gr�1 and not some other graph. To see that this does not matter,let B be the event that the �rst edge to arrive at Gr is one that 
reates Gr�1. ThenPr[tr � t j B℄ = Pr[B j tr � t℄ Pr[tr � t℄=Pr[B℄= Pr[B℄ Pr[tr � t℄=Pr[B℄= Pr[tr � t℄sin
e, of 
ourse, the time of arrival of the edge the 
ontra
ts Gr has no impa
t onwhi
h of the edges of Gr is the �rst to arrive.5. Heuristi
s and deterministi
 algorithms. Until now, we have relied onthe fa
t that the most likely way for a graph to fail is for some of its near-minimum
uts to fail. We now strengthen this argument to observe that most likely, exa
tlyone of these near-minimum 
uts fails. This leads to two additional results. First,we show that the sum of the individual small-
ut failure probabilities is a reasonableapproximation to the overall failure probability. This justi�es a natural heuristi
 andindi
ates that in pra
ti
e one might not want to bother with the DNF 
ounting phaseof our algorithm. In a more theoreti
al vein, we also give a deterministi
 PAS forFAIL(p) that applies whenever FAIL(p) < n�(2+Æ). We prove the following theorems.Theorem 5.1. When p
 < n�4 (and in parti
ular when FAIL(p) < n�4), thesum of the weak 
uts' failure probabilities is a (1 + o(1)) approximation to FAIL(p).Theorem 5.2. When p
 < n�(2+Æ) for any 
onstant Æ (and in parti
ular whenFAIL(p) < n�(2+Æ)), there is a deterministi
 PAS for FAIL(p) running in(n=�)exp(O(� logn �)) time.We remark that unlike many PASs whose running times are only polynomial for
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onstant �, our PAS has polynomial running time so long as � = n�O(1). Its behaviorwhen � is tiny prevents it from being an FPAS, however.To prove these theorems, we argue as follows. As shown in se
tion 2, it is suÆ
ientto approximate, for the given �, the probability that some �-minimum 
ut fails, where� = 1 + 2=Æ � (ln �)=Æ lnn:Let us write these �-minimum 
uts as Ci, i = 1; : : : ; n2�. Let Fi denote the eventthat 
ut Ci fails. We 
an use in
lusion-ex
lusion to write the failure probability asPr[[Fi℄ =Xi1 Pr[Fi1 ℄� Xi1<i2 Pr[Fi1 \ Fi2 ℄ + Xi1<i2<i3 Pr[Fi1 \ Fi2 \ Fi3 ℄ + � � � :Later terms in this summation measure events involving many 
ut failures. We showthat when many 
uts fail, the graph partitions into many pie
es, meaning a multiway
ut fails. We then argue (using Lemma 4.6 or Corollary 4.8) that this is so unlikelythat later terms in the sum 
an be ignored. This immediately yields Theorem 5.1.To prove Theorem 5.2, we show that for any �xed � it is suÆ
ient to 
onsidera 
onstant number of terms (summations) on the right-hand side in order to get agood approximation. Observe that the kth term in the summation 
an be 
omputeddeterministi
ally in O(m(n2�)k) time by evaluating the probability of ea
h of the(n2k�) interse
tion events in the sum (ea
h 
an be evaluated deterministi
ally sin
e itis just the probability that all edges in the spe
i�ed 
uts fail). Thus, our running timewill be polynomial so long as the number of terms we need to evaluate is 
onstant.5.1. In
lusion-ex
lusion analysis. As dis
ussed above, our analyses use atrun
ation of the in
lusion-ex
lusion expression forPr[[Fi℄ =Xi1 Pr[Fi1 ℄� Xi1<i2 Pr[Fi1 \ Fi2 ℄ + Xi1<i2<i3 Pr[Fi1 \ Fi2 \ Fi3 ℄ + � � � :Suppose we trun
ate the in
lusion-ex
lusion, leaving out the kth and later terms.If k is odd the trun
ated sum yields a lower bound; if k is even it yields an upperbound. We show that this bound is suÆ
iently tight. We do so by rewriting thein
lusion-ex
lusion expression involving parti
ular sets of failed 
uts failing as anexpression based on how many 
uts fail.Lemma 5.3. Let Su be the event that u or more of the events Fi o

ur. If thein
lusion-ex
lusion expansion is trun
ated at the kth term, the error introdu
ed isXu �u� 2k � 2�Pr[Su℄:Proof. Let Tu be the event that exa
tly u of the events Fi o

ur. Consider the �rstsummation PFi1 in the in
lusion-ex
lusion expansion. The event that pre
isely theevents Fj1 ; : : : ; Fju o

ur (that is, the event that 
uts Cj1 ; : : : ; Cjk fail but no othersfail) 
ontributes to the u terms Pr[Fj1 ℄; : : : ;Pr[Fju ℄ in the sum. It follows that ea
hsample point 
ontributing to Tu is 
ounted u = �u1� times in the summation. Thus,XPr[Fi1 ℄ =Xu �u1�Pr[Tu℄:By the same reasoning, XPr[Fi1 \ Fi2 ℄ =Xu �u2�Pr[Tu℄;



18 DAVID R. KARGERand so on. It follows that the error introdu
ed by trun
ation at term k isXi1<i2<���<ik Pr[Fi1 \ Fi2 \ � � � \ Fik ℄� Xi1<i2<���<ik+1 Pr[Fi1 \ Fi2 \ � � � \ Fik+1 ℄ + � � �=Xj�k(�1)k�jXu �uj�Pr[Tu℄=Xu Xj�k(�1)k�j�uj�Pr[Tu℄=Xu �u� 1k � 1�Pr[Tu℄:Now re
all that Su is the event that u or more of the Fi o

ur, meaning that Pr[Tu℄ =Pr[Su℄� Pr[Su+1℄. Thus we 
an rewrite our bound above asXu �u� 1k � 1�(Pr[Su℄� Pr[Su+1℄)=Xu �u� 1k � 1�Pr[Su℄�Xu �u� 1k � 1�Pr[Su+1℄=Xu �u� 1k � 1�Pr[Su℄�Xu �u� 2k � 1�Pr[Su℄=Xu ��u� 1k � 1���u� 2k � 1��Pr[Su℄=Xu �u� 2k � 2�Pr[Su℄:This 
ompletes the proof.5.2. A simple approximation. Using the above error bound, we 
an proveTheorem 5.1. Let Fi denote the event that the ith near-minimum 
ut fails. Ourobje
tive is to estimate Pr[[Fi℄. Summing the individual 
uts' failure probabilities
orresponds to trun
ating our in
lusion-ex
lusion sum at the se
ond term, giving (byLemma 5.3) an error ofPu�2 Su. We now bound this error by bounding the quantitiesSu. Lemma 5.4. If u distin
t (2-way) 
uts fail then a dlog(u+ 1) + 1e-way 
ut fails.Proof. Consider a 
on�guration in whi
h u distin
t 
uts have failed simultane-ously. Suppose this indu
es k 
onne
ted 
omponents. Let us 
ontra
t ea
h 
onne
ted
omponent in the 
on�guration to a single vertex. Ea
h failed 
ut in the original graph
orresponds to a distin
t failed 
ut in the 
ontra
ted graph. Sin
e the 
ontra
tedgraph has k verti
es, we know that there are at most 2k�1 � 1 ways to partition itsverti
es into two nonempty groups, and thus at most this many 
uts. In other words,u � 2k�1 � 1. Now solve for u and observe it must be integral.Corollary 5.5. If p
 = n�(2+Æ) then Pr[Su℄ � n�dlog(u+1)+1eÆ=2:Proof. Apply Corollary 4.8 to the previous lemma.Thus, for example, S2 and S3 are upper bounded by the probability that a 3-way 
ut fails, whi
h by Corollary 4.8 is at most n�3Æ=2. More generally, all 2k valuesS2k ; : : : ; S2k+1�1 are at most n�(k+2)Æ=2. It follows that the error in our approximation



AN APPROXIMATION SCHEME FOR NETWORK RELIABILITY 19by the bound of Theorem 5.1 isXu�2Su �Xk�1 2kn�(k+2)Æ=2= n�ÆXk�1(2n�Æ=2)k= 2n�3Æ=2(1 + o(1));whenever Æ > 0. This quantity is o(p
), and thus o(FAIL(p)), whenever n�3Æ=2 =o(n�(2+Æ)), i.e. Æ > 4. This proves Theorem 5.1.5.3. A PAS. We now use the in
lusion-ex
lusion analysis to give a PAS forFAIL(p) when p
 = n�(2+Æ) for some �xed Æ > 0, thus proving Theorem 5.2. Wegive an �-approximation algorithm with a running time of (n=�)exp(O(� logn �)), whi
his 
learly polynomial in n for ea
h �xed � (and in fa
t, for any � = n�O(1)).We must eliminate two uses of randomization: in the 
ontra
tion algorithm foridentifying the �-minimum 
uts and in the DNF 
ounting algorithm for estimatingtheir failure probability.The �rst step is to deterministi
ally identify the near-minimum 
uts of G. Oneapproa
h is to use a derandomization of the 
ontra
tion algorithm [15℄. A moreeÆ
ient approa
h is to use a 
ut enumeration s
heme of Vazirani and Yannakakis [29℄.This s
heme enumerates 
uts in in
reasing order of value, with a \delay" of ~O(mn)per 
ut. From the fa
t that there are only n2� weak 
uts, it follows that all weak 
uts(in the sense of se
tion 3) 
an be found in ~O(mn1+2�) time.We must now estimate the probability one of the near-minimum 
uts fails. Letus 
onsider trun
ating to the �rst k terms in the in
lusion-ex
lusion expansion. FromCorollary 5.5 we know that Pr[Su℄ � n�(log(u+1)+1)Æ=2. It follows from Lemma 5.3that for any k � 13Æ logn, our error from using the k-term trun
ation of in
lusion-ex
lusion isXu �u� 2k � 2�n�(log(u+1)+1)Æ=2 � n�Æ=2Xu�k(u� 2)k�2(u+ 1)�Æ(logn)=2�Xu�k(u+ 1)k�2�Æ(log n)=2�Xu�k(u+ 1)Æ(logn)=3�2�Æ(log n)=2�Xu�k(u+ 1)�Æ(logn)=6�1� Z 1u=k�1(u+ 1)�Æ(log n)=6�1 du= k�Æ(logn)=6Æ(log n)=6= n�Æ(log k)=6Æ(log n)=6= O(n�Æ(log k)=6):This quantity is O(�n�(2+Æ)) = O(�p
) = O(�FAIL(p)) for some k = 2O(� logn �). Itfollows that for an �-approximation we need only evaluate the in
lusion-ex
lusion up



20 DAVID R. KARGERto the kth term. Computing the kth term requires examining every set of k of the(n=�)O(1) �-minimum 
uts; this requires (n=�)exp(O(� logn �)) time. This 
on
ludes theproof of Theorem 5.2.The fa
t that the error drops exponentially with n is what prevents our determin-isti
 algorithm from begin an FPAS: if � < n�!(1), then we need more than a 
onstantnumber of terms in the above sum to redu
e the error to �.We 
an slightly improve our bound on Pr[Su℄, whi
h in turn gives better boundson k.Lemma 5.6. If u distin
t �-minimum 
uts fail, then a u1=2�-way 
ut fails.Proof. Consider a 
on�guration in whi
h u distin
t 
uts have failed simultane-ously. Suppose this indu
es k 
onne
ted 
omponents. Let us 
ontra
t ea
h 
onne
ted
omponent in the 
on�guration to a single vertex. In this 
ontra
ted graph (beforeedges fail), the minimum 
ut is at least 
 (sin
e 
ontra
tion never redu
es the mini-mum 
ut). Furthermore, ea
h of the u failed 
uts is a 
ut of value at most �
, andthus an �-minimum 
ut, in the 
ontra
ted graph. Sin
e the 
ontra
ted graph has kverti
es, we know from Theorem 2.6 that u < k2�, meaning that k > u1=2�.However, this serves only to redu
e the values of our 
onstants (and redu
e therunning time from an exponential to a polynomial dependen
e on 1=Æ).6. The Tutte polynomial. The Tutte polynomial T (G;x; y) is a polynomialin two variables de�ned by a graph G. Evaluating it at various points (x; y) on theso-
alled Tutte plane yields various interesting quantities regarding the graph. Inparti
ular, 
omputing the network reliability REL(p) is the spe
ial 
ase of evaluatingthe Tutte polynomial at the point x = 1; y = 1=p. Another spe
ial 
ase is 
ountingthe number of strongly 
onne
ted orientations of an undire
ted graph, dis
ussed insubse
tion 3.6. Yet another is 
ounting the number of forests in a graph. Alon, Frieze,and Welsh [1℄ showed that for any dense graph (one with 
(n2) edges) and �xed xand �xed y � 1 there is an FPRAS for the Tutte polynomial.6.1. Results. In this se
tion, we prove the following.Theorem 6.1. For every y > 1 there is a 
 = O(logy nx) (in parti
ular, 
 =O(log n) for any �xed x and y) su
h that for all n-vertex m-edge graphs of edge-
onne
tivity greater than 
,T (G;x; y) = ym(y � 1)n�1 (1 +O(1=n)):Thus, a good approximation 
an be given in 
onstant time by ignoring G andreturning the 
onstant ym=(y � 1)n�1. Note that almost all graphs fall under thistheorem as the minimum 
ut of a random graph is tightly 
on
entrated around n=2�
. Theorem 6.2. For every y > 1 there is a 
 = O(logy nx) su
h that there is anFPRAS for T (G;x; y).This theorem is perhaps unsurprising given the previous theorem. But it is notimmediate sin
e the input may spe
ify �� 1=n. A slightly more 
hallenging quantityis the \se
ond-order term" saying how far a given graph diverges from its approxima-tion in the �rst theorem.Theorem 6.3. Let�T (G;x; y) = ym(y � 1)n�1 � T (G;x; y):
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 = O(log n) su
h that there is an FPRASfor �T (G;x; y).This theorem is stronger than and implies the previous theorem. When �T isvery 
lose to 0, the quantity ym(y�1)n�1 a

urately approximates T but approximating�T with small relative error is harder.6.2. Method. Our proofs begin with a lemma of Alon, Frieze, and Welsh [1℄(whi
h we have slightly rephrased to in
lude what is for them the spe
ial 
ase ofx = 1).Lemma 6.4 (see [1℄). When y > 1,T (G;x; y) = ym(y � 1)n�1E[Q��1℄;where Q = (x�1)(y�1), and � is a random variable equal to the number of 
onne
ted
omponents of G when ea
h edge of G fails independently with probability p = 1=y.(In the 
ase Q = 0 (when x = 1), we use the fa
t that 0r = 0 for r 6= 0 while 00 = 1.)In other words, when pr is the probability that the graph with random edgefailures partitions into exa
tly r 
omponents, the Tutte polynomial 
an be evaluatedfrom E[Q��1℄ = nXk=1 prQr�1:For the remainder of this subse
tion, we normalize our analysis by 
onsidering thequantity T 0(G;x; y) = T (G;x; y) (y�1)n�1ym = E[Q��1℄. Clearly, any results on relativeapproximations to T 0 translate immediately into results on relative approximationsto T .We begin with an intuitive argument. From Theorem 2.9, when p
 = n�(2+Æ)(whi
h happens for some 
 = O(log n) for any �xed p) we know pr is negligible forr � 1. Intuitively, sin
e p1 � 1 and all other pr � 0, we might as well approximateT 0 by Q. Extending this argument, we know that 
ompared to p2, all terms pr forr > 2 are negligible. Therefore, the error in the approximation of T 0 by Q is almostentirely determined by p2Q2, whi
h we 
an determine by 
omputing p2.To prove our results formally, we have to deal with the fa
t that the term Qrin the expe
tation in
reases exponentially with r. We prove that the pr de
ay fastenough to damp out the in
reasing values of Qr. We also need to be 
areful thatwhen Q < 0, the large leading terms do not 
an
el ea
h other out.6.3. Proofs. For our formal analysis, instead of the quantities pr, it is more 
on-venient to work with quantities sr measuring the probability that the graph partitionsinto r or more 
omponents. Note that s1 = 1 and s2 = FAIL(p). Sin
e pr = sr�sr+1,



22 DAVID R. KARGERit follows that T 0(G;x; y) = nXr=1 prQr�1= nXr=1(sr � sr+1)Qr�1= nXr=1 srQr�1 � nXr=2 srQr�2= 1 + nXr=2 sr(Qr�1 �Qr�2)= 1 + (Q� 1) nXr=2 srQr�2:Theorem 6.1 will follow dire
tly from the last equation if we 
an show that the trailingterm (Q�1)Pnr=2 srQr�2 = O(1=n). Theorem 6.3 will follow if we 
an give an FPRASforPnr=2 srQr�2. The fa
t that the value of this sum is o(1) (Theorem 6.1) means thatthe FPRAS for it immediately yields an FPRAS for T 0, thus proving Theorem 6.2.To prove these results, �rst 
onsider the 
ase x = 1. In this 
ase Q = 0, meaningQr�2 = 1 for r = 2 and 0 for r > 2. Thus T 0(G;x; y) = 1�s2 = 1�FAIL(p) = REL(p).We have already seen in Theorem 2.9 that whenever p
 = n�(2+Æ), the probabilitythat the graph be
omes dis
onne
ted is at most n�Æ(1+2=Æ). This is 
ertainly O(1=n)if Æ � 1, meaning REL(p) = 1�O(1=n). But this in turn is true when p
 < n�3, i.e.,
 > 3 logy n:This proves Theorem 6.1 for Q = 0. On the other hand, Theorem 6.3 simply 
laimsthat there is an FPRAS for 1� REL(p) = FAIL(p), whi
h is what se
tion 2 showed.Finally, Theorem 6.2 says that when FAIL(p) is small, we 
an approximate REL(p)(by approximating FAIL(p)).We now generalize this argument to the 
ase x > 1. To derive the appropriatelower bound on 
, we state two 
riteria that will we need in our analysis. First,we require 
 to be su
h that p
 = n�(2+Æ) for some Æ > 1. Equivalently, we have1 < Æ = � log(n2p
)= logn. Se
ond, we require that Q < 14nÆ=4. Plugging in for Æ, we�nd the equivalent requirement Q < 14nÆ=4= 14(n2p
)�1=4(4Q)4 < 1=n2p
n2(4Q)4 < y
logy(256Q4n2) < 
:This is true for some 
 = O(logy(nQ)) = O(logy nx) as 
laimed.Given the above relations between Q;n; and Æ, we 
an use Corollary 4.8. Sin
e
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 = n�(2+Æ), we dedu
e that sr � n�rÆ=2. Sin
e Q < 14nÆ=4 < 12nÆ=2 we �nd thatnXr=r0 srQr�2 � Q�2 Xr�r0(Qn�Æ=2)r� Q�2(Qn�Æ=2)r0=(1� (Qn�Æ=2)r0)� Q�2(Qn�Æ=2)r0=�1� 12r0�� 2Q�2(Qn�Æ=2)r0 :Our results follow from this bound. First, taking r0 = 2, we �nd that the error inapproximating T 0(G;x; y) by 1 is at most2n�Æ = o(1):This proves Theorem 6.1.To prove Theorem 6.3, note that the leading term in the summation (6.1) iss2 � n�(2+Æ). We 
an therefore estimate the sum to within relative error O(�) byevaluating summation terms up to summation index r0 where (Qn�Æ=2)r0 � �n�(2+Æ).Sin
e the left-hand side de
reases exponentially in n as a fun
tion of r0, we 
an a
hievethis error bound by takingr0 = O(logn(n2+Æ=�)) = O(1 + logn 1=�):In other words, we need only to determine O(1 + logn 1=�) terms in the summation.This in turn redu
es to determining the quantities sr appearing in those terms.We 
annot �nd the sr exa
tly. However, for an �-approximation, it suÆ
es toapproximate ea
h relevant sr to within �. We 
an do so using the algorithm ofCorollary 4.5. The running time of this algorithm for estimating the r-way failureprobability to within � is (nr=�)O(1). We have argued above that we need only to runthe algorithm for r � r0 = O(1 � logn �). It follows that the running time of ouralgorithm is nO(1�logn �)=�O(1) = (n=�)O(1), as required. This proves Theorem 6.3.Finally, we 
onsider the 
ase x < 1. Our argument is essentially un
hanged frombefore. We need to be slightly more 
areful be
ause our sum is now an alternatingsum, whi
h means that the leading terms are a good approximation only if they do not
an
el ea
h other out. To see that su
h 
an
elling does not o

ur, note that the �rstterm has value s2 = n�(2+Æ), while the remaining terms (by the analysis above) havetotal (absolute) value O(n(Qn�3Æ=2)). If we 
hoose n large enough that Q < 14nÆ=4,then this bound is O( 14n�5Æ=4) < 14s2 for Æ > 4, so the remaining terms do not 
an
els2. 7. Con
lusion. We have given an FPRAS for the all-terminal network reliabilityproblem and several variants. In the 
ase of large failure probability, the FPRASuses straightforward Monte Carlo simulation. For smaller failure probabilities, theFPRAS uses an eÆ
ient redu
tion to DNF 
ounting or a less eÆ
ient deterministi

omputation. An obvious open question is whether there is also a deterministi
 PAS(or even FPAS) for the 
ase of large failure probabilities. Another is whether there isalso an FPRAS for REL(p) = 1� FAIL(p), the question being open only for the 
aseREL(p) near 0.This work has studied probabilisti
 edge failures; a question of equal importan
eis that of network reliability under vertex failures. We are aware of no results on



24 DAVID R. KARGERthe stru
ture of minimum vertex 
uts that 
ould lead to the same results as wehave derived here for edge 
uts. In parti
ular, graphs 
an have exponentially manyminimum vertex 
uts. The same obsta
le arises in dire
ted graphs (where we wish tomeasure the probability of failing to be strongly 
onne
ted).Although the polynomial time bounds proven here are not extremely small, weexpe
t mu
h better performan
e in pra
ti
e sin
e most graphs will not have the largenumber of small 
uts assumed for the analysis. Limited experiments [18℄ have sug-gested that this is indeed the 
ase.A
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