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1 Introduction

Scheduling theory is concerned with the optimal allocation of scarce resources to activities over
time. The practice of this field dates to the first time two humans contended for a shared
resource and developed a plan to share it without bloodshed. The theory of the design of
algorithms for scheduling is younger, but still has a significant history—the earliest papers in
the field were published more than forty years ago.

Scheduling problems arise in a variety of settings, as is illustrated by the following examples:

Example 1: Consider the central processing unit of a computer that must process a sequence
of jobs that arrive over time. In what order should the jobs be processed in order to

minimize, on average, the time that a job is in the system from arrival to completion?

Example 2: Consider a team of five astronauts preparing for the reentry of their space shuttle
into the atmosphere. There is a set of tasks that must be accomplished by the team before
reentry. Each task must be carried out by exactly one astronaut, and certain tasks can not
be started until other tasks are completed. Which tasks should be performed by which
astronaut, and in which order, to ensure that the entire set of tasks is accomplished as

quickly as possible?

Example 3: Counsider a factory that produces different sorts of widgets. Each widget must
first be processed by machine 1, then machine 2, and then machine 3, but different widgets
require different amounts of processing time on different machines. The factory has orders
for batches of widgets; each order has a date by which it must be completed. In what
order should the machines work on different widgets in order to insure that the factory

completes as many orders as possible on time?

More generally, scheduling problems involve jobs that must scheduled on machines subject to
certain constraints to optimize some objective function. The goal is to specify a schedule that

specifies when and on which machine each job is to be executed.



Researchers have studied literally thousands of scheduling problems, and it would be im-
possible even to enumerate all known variants in the space of this chapter. Our goal is more
modest. We wish to make the reader familiar with an assortment of algorithmic techniques
that have proved useful for solving a large variety of scheduling problems. We will demonstrate
these techniques by drawing from a collection of “basic problems” that model important issues
arising in many scheduling problems, while at the same time remaining simple enough to per-
mit elegant and useful analysis. These basic problems have received much attention, and their
centrality was reinforced by two influential surveys [GLLK79, LLKS93]. All three examples
above fit into the basic problem framework.

In this survey we focus exclusively on algorithms that provably run, in the worst case, in
time polynomial in the size of the input. If the algorithm always gives an optimum solution,
we call it an ezact algorithm. Many of the problems that we consider, however, are N'P-hard,
and it thus seems unlikely that polynomial-time algorithms exist to solve them. In these cases
we will be interested in approzimation algorithms; we define a p-approzimation algorithm to be
an algorithm that runs in polynomial time and delivers a solution of value at most p times the
optimum.

The rest of this chapter is organized as follows. We complete this introduction by laying
out a standard framework covering the basic scheduling problems and a notation for describing
them. We then explore various techniques that can be used to solve them. In Section 2 we
present a collection of heuristics that use some simple rule to assign a priority to each job and
then schedule the jobs in priority order. These heuristics are useful both for solving certain
problems optimally in polynomial time, and for giving simple but high-quality approximations
for certain A/P-hard scheduling problems. Many scheduling problems require a more complex
approach than a simple priority rule; in Section 3 we study algorithms that are more sophis-
ticated in their greedy choices. In Section 4 we discuss the application of some basic tools
of combinatorial optimization, such as network optimization and linear programming, to the
design of scheduling algorithms. We then turn exclusively to N'P-hard problems. In Section 5
we introduce the notion of a relazation of a problem, and show how to use relaxations to design
approximation algorithms. Finally, in Section 6 we discuss enumeration and scaling techniques

by which certain other NP-hard scheduling problems can be approximated arbitrarily closely



in polynomial time.
1.1 The Framework of Basic Problems

A scheduling problem is defined by three separate elements: the machine environment, the
optimality criterion, and a set of side constraints and characteristics. We first discuss the
simplest machine environment, and use that to introduce a variety of optimality criteria and

side constraints. We then introduce and discuss more complex machine environments.
1.1.1 The One-Machine Environment

In all of our scheduling problems we begin with a set J of n jobs, numbered 1,...,n. In the
one-machine environment we have one machine that can process at most one job at a time.
Each job j has a processing requirement p;; namely, it requires processing for a total of p;
units of time on the machine. If each job must be processed in an uninterrupted fashion, we
have a nonpreemptive scheduling environment, whereas if a job may be processed for a period
of time, interrupted and continued at a later point in time, we have a preemptive environment.
A schedule S for the set J specifies, for each job j, which p; units of time the machine uses to
process job j. Given a schedule S, we denote the completion time of job j in schedule S by C’js.

The goal of a scheduling algorithm is to produce a “good” schedule, but the definition of
“good” will vary depending on the application. In Example 2 above, the goal is to process the
entire batch of jobs as quickly as possible, or, in other words, to minimize the completion time
of the last job finished in the schedule. In Example 1 we care less about the completion time
of the last job in the batch as long as, on average, the jobs receive good service. Therefore,
given a set of jobs and a machine environment, we must specify an optimality criterion; the
goal of a scheduling algorithm will be to construct a schedule that optimizes this criterion.
The two optimality criteria discussed in our examples are among the most basic optimality
criteria: the average completion time of a schedule and its makespan. We define the makespan
cS

hax = Max; CJS of a schedule S to be the maximum completion time of any job in S, and

the average completion of schedule S to be %Z?Zl CJS . Note that optimizing the average
completion time is equivalent to optimizing the sum of completion times Z;z:l st .

We next turn to side constraints and characteristics that modify the one-machine environ-



ment. A number of side constraints and characteristics are possible; for example, we must
specify whether or not preemption is allowed. T'wo other possible constraints model the arrival
of jobs over time or the possibility of logical dependence between jobs. In a scheduling envi-
ronment with release date constraints, we associate with each job j a release date r;; job j is
only available for processing at time r; or later. In a scheduling environment with precedence
constraints we are given a partial order < on the set J of jobs; if 5 < j then we may not begin
processing job j until job ’ is completed.

Although we are early in our discussion of scheduling models, we already have enough
information to define a number of problems. We refer to various scheduling problems in the
now-standard notation defined by Graham, Lawler, Lenstra, & Rinnooy Kan (1979) [GLLKT79].
A problem is denoted by «|f3|y, where (i) « denotes the machine environment, (ii) 8 denotes
various side constraints and characteristics and (iii) v denotes an optimality criterion.

For the one-machine environment « is 1. For the optimality criteria we have introduced so
far, v is either ) C; or Cpax. At this point in our discussion, 3 is a subset of r;, prec, and
pmin, where these denote respectively the presence of (non-trivial) release date constraints,
precedence constraints and the ability to schedule preemptively. Any of the side constraints
not explicitly listed are assumed not to be present—e.g., we default to a nonpreemptive model
unless pmtn is given in the side constraints. As an illustration, 1|| 3 C; denotes the problem of
nonpreemptively scheduling independent jobs on one machine so as to minimize their average
completion time, while 1|r;| 3~ C; denotes the variant of the problem in which jobs have release
dates. As another example, 1|r;, pmin, prec|Cnax denotes the problem of preemptively schedul-
ing jobs with release dates and precedence constraints on one machine so as to minimize their
makespan. Note that Example 1, given above, can be modeled by 1|r;| >_ Cj, or, if preemption
is allowed, by 1|r;, pmtn| > Cj.

Two other possible elements of a scheduling application might lead to different objective
functions in the one-machine environment. It is possible that not all jobs are of equal impor-
tance, and thus, when measuring average service provided to a job, one might wish to weight
the average so as to give more importance to certain jobs. We model this by assigning a weight
w; > 0 to each job j, and generalize the ) Cj criterion to the average weighted completion time

of a schedule, % 2?21 w;Cj. In the scheduling notation this optimality criterion is denoted by
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> w;Cj.

It is also possible that each job j may have an associated due date d; by which it should
be completed. This gives rise to two different optimality criteria. Given a schedule S, we
define L; = CJS — d; to be the lateness of job j, and we will be interested in constructing a
schedule that minimizes Lyax = maxj_; Lj, the mazimum lateness of any job in the schedule.
Alternatively, we concern ourselves with constructing a schedule that maximizes the number
of jobs that complete by their due dates. To capture this, given a schedule S we define
Uj =0 if C]-S < dj and U; = 1 otherwise; we can thus describe our optimality criterion as
the minimization of )~ Uj, or more generally, > w;U;. As illustrations, 1|r;|Lmax denotes the
problem of nonpreemptively scheduling, on one machine, jobs with release dates and due dates
so as to minimize the maximum lateness of any job, and 1|prec| - w;U; denotes the problem of
nonpreemptively scheduling precedence-constrained jobs on one machine so as to minimize the
total (summed) weight of the late jobs. Deadlines are not listed in the side constraints since
they are implicit in the objective function.

Finally, we will consider one scheduling problem that deals with a more general optimality
criterion. For each job j, we let f;(¢) be any function that is nondecreasing with the completion
time of the job, and, with respect to a schedule S, define fiax = maxj_; fj(C’]S). The specific
problem that we will consider (in Section 3.1) is 1|prec|fmax — the scheduling of precedence-
constrained jobs on one machine so as to minimize the maximum value of f;(C;) over all
jeJ.

1.1.2 More Complex Machine Environments: Parallel Machines and the Shop

Having introduced all of the optimality criteria, side characteristics and conditions that we will
use in this survey, we now discuss more complex machine environments.

We first discuss parallel machine environments. In these environments we are given m
machines. A job j with processing requirement p; can be processed on any one of the machines,
or, if preemption is allowed, started on one machine, and when preempted potentially continued
on another machine. A machine can process at most one job at a time and a job can be processed
by at most one machine at a time.

In the identical parallel machine environment the machines are identical, and job j requires



pj units of processing time when processed on any machine. In the uniformly related machines
environment each machine ¢ has a speed s; > 0, and thus job j, if processed entirely on machine
i, would take a total of p;/s; time to process. In the unrelated parallel machines environment
we model machines that have different capabilities and thus their relative performance on a job
is unrelated. In other words, the speed of machine ¢ on job j, s;;, depends on both the machine
and the job; job j requires p;/s;; processing time on machine i. We define p;; = p;/si;.

In the shop environment, which primarily models various sorts of production environments,
we again have m machines. In this setting a job j is made up of operations, with each operation
requiring processing on a specific one of the m machines. Different operations may take different
amounts of time (possibly 0). In the open shop environment, the operations of a job can
be processed in any order, as long as no two operations are processed on different machines
simultaneously. In the job shop environment, there is a total order on the operations of a job,
and one operation can not be started until its predecessor in the total order is completed. A
special case of the job shop is the flow shop, in which the order of the operations is the same
— each job requires processing on the same machines and in the same order, but different jobs
may require different amounts of processing on the same machine. Typically in the flow shop
and open shop environment, each job is processed exactly once on each machine.

In the scheduling notation, the identical, uniformly related and unrelated machine environ-
ments are denoted respectively by P, Q, and R. The open, flow and job shop environments are
denoted by O, F and J. When the environment has a fixed number of machines the number is
included in the environment specification; so, for example, P2 denotes the environment with
two identical parallel machines. Note that Example 2 can be modeled by P5|prec|Cpax, and
Example 3 can be modeled by F3|r;| > U;.

2 Priority Rules

The most obvious approach to solving a scheduling problem is a greedy one: whenever a machine
becomes available, assign some job to it. A more sophisticated variant of this approach is to
give each job a priority derived from the particular optimality criterion, and then, whenever
a machine becomes available, assign the available job of highest priority to it. In this section

we discuss such scheduling strategies for one-machine, parallel-machine and shop problems. In



all of our algorithms, the priority of a job can be determined without reference to other jobs.
This typically gives a simple scheduling algorithm that runs in O(nlogn) time—the bottleneck
being the time needed to sort the jobs by priority. We also discuss the limitations of these

approaches, giving examples where they do not work well.
2.1 One Machine

We first focus on algorithms for single-machine problems in which we give each job a priority,
sort by priorities, and schedule in this order. To establish the correctness of such algorithms, it
is often possible to apply an interchange argument. Suppose that there is an optimal schedule
with jobs processed in non-priority order. It follows that some adjacent pair of jobs in the
schedule has inverted priorities. We show that if we swap these two jobs, the scheduling
objective function is improved, thus contradicting the claim that the original schedule was

optimal.
2.1.1 Average weighted completion time: 1|3 w;C;

In perhaps the simplest scheduling problem, our objective is to minimize the sum of completion
times ) €. Intuitively, it makes sense to schedule the largest job at the end of the schedule to
ensure that it does not contribute to the delay on any other job. We formalize this by defining
the shortest processing time (SPT) algorithm: order the jobs by nondecreasing processing time

(breaking ties arbitrarily) and schedule in that order.
Theorem 2.1 SPT is an ezact algorithm for 1|| 3 Cj.

Proof: To establish the optimality of the schedule constructed by SPT we use an interchange
argument. Suppose for the purpose of contradiction that the jobs in the optimal schedule are
not scheduled in non-decreasing order of completion time. Then there is some pair of jobs j
and k such that j immediately precedes k in the schedule but p; > py.

Suppose we exchange jobs j and k. All jobs other than j and £ still start, and thus complete,
at the same time as they did before the swap. All that changes is the completion times of jobs
J and k. Suppose that originally job j started at time ¢ and ended at time ¢+ p;, so that job k
started at time ¢+ p; and finished at time ¢ + p; + py. It follows that the original contribution

of these two jobs to the sum of completion times, namely (¢ +p;) + (¢ +pj +pi) = 2t +2p; + py,



is replaced by their new contribution of 2¢ + 2p; + p;. This gives a net decrease of p; — py
in ) Cj, which is positive if p; > pg, implying that our original ordering was not optimal—a

contradiction. 0O

This algorithm, and proof of optimality, generalizes to the optimization of average weighted
completion time, 1|| Y7 w;C;. Intuitively, we would like to schedule as much weight as possible
with each unit of processing time. This suggests scheduling jobs in nonincreasing order of
wj/pj; the optimality of this rule can be established by a simple generalization of the previous

interchange argument.

Theorem 2.2 ([Smi56]) Scheduling jobs in nonincreasing order of wj/p; gives an optimal

schedule for 1| > w;Cj.
2.1.2 Maximum lateness: 1||Lmax

A simple greedy algorithm also solves 1||Lyax, in which we seek to minimize the maximum job
lateness. A natural strategy is to schedule the job that is closest to being late, which suggests
the EDD algorithm: order the jobs by nondecreasing due dates (breaking ties arbitrarily) and

schedule in that order.
Theorem 2.3 ([Jac55]) EDD is an ezact algorithm for 1||Lpyax.

Proof: We again use an interchange argument to prove that the the schedule constructed by
EDD is optimal. Assume without loss of generality that all due dates are distinct, and number
the jobs so that dy < dy < --- < d,,. Among all optimal schedules, we consider the one with the
fewest inversions, where an inversion is a pair of jobs j, k such that 7 < k but & is scheduled
before j. Suppose the given optimal schedule S is not the EDD schedule. Then there is a pair
of jobs j and k such that d; < dj but k immediately precedes j in the schedule.

Suppose we exchange jobs j and k. This does not change the completion time or lateness
of any job other than j and k. We claim that we can only decrease max(L;, L), so we do not
increase the maximum lateness. Furthermore, since j < k, swapping jobs 7 and k decreases the
number of inversions in the schedule. It follows that the new schedule has the same or better

lateness than the original one but fewer inversions, a contradiction.



To prove the claim, note that in schedule S C]-S > Cks but d; < di. It follows that
max(Lf,L;g) = st — d;. Under the exchange, job j’s completion time, and thus lateness,
decreases. Job k’s completion time rises to C]S, but this gives it a lateness of CJS —di < CJS —dj.

Thus, the maximum of the two latenesses has decreased. O

2.1.3 Preemption and Release Dates

We now consider the more complex one-machine environment in which jobs may arrive over
time, as modeled by the introduction of release dates. The greedy heuristics of the previous
sections are not immediately applicable, since jobs of high priority might be released relatively
late and thus not be available for processing before jobs of lower priority. The most natural
idea to cope with this complication is to always process the available (released) job of highest
priority. In a preemptive setting, this would mean, upon the release of a job of higher priority,
preempting the currently running job and switching to the “better” job. We will show that
this idea in fact yields optimal scheduling algorithms.

We thus define the Shortest Remaining Processing Time Algorithm SRPT: at each point
in time, schedule the job with shortest remaining processing time, preempting when jobs of
shorter processing time are released. We also generalize EDD: upon the release of jobs with
earlier dues dates than the job currently being processed, preempt the current job and process

the job with the earliest due date.

Theorem 2.4 ([Bak74, Hor74]) SRPT is an ezact algorithm for 1|r;, pmin|3- C;, and EDD

is an ezact algorithm for 1|r;, pmtn|Lmax

Proof:  As before, we argue by contradiction, using a similar greedy exchange argument.
However, instead of exchanging entire jobs, we exchange pieces of jobs, which is now allowed
in our preemptive environment.

We focus on 1|rj, pmitn| Y~ C;. Consider a schedule in which available job j with the shortest
remaining processing time is not being processed at time ¢, and instead available job k is being
processed. Let p;- and pj, denote the remaining processing times for jobs j and k after time
t, so p; < pj. In total, p; + pj, time is spent on jobs j and k. We now perform an exchange.

Take the first pg- units of time that were devoted to either of jobs j and k after time ¢, and use



them instead to process job j to completion. Then, take the remaining pj units of time that
were spent processing jobs 7 and k, and use them to schedule job j. This exchange preserves
feasibility since both jobs were released by time t.

In the new schedule, all jobs other than 5 and k£ have the same completion times as before.
Job k finishes when job j originally finished. But job j, which needed p;- < p}, additional work,
finishes before job k originally finished. Thus we have reduced C; + Cj without increasing any
other completion time, meaning we have reduced ) C}, a contradiction.

The argument that EDD solved 1|r;j, pmtn|Lyax goes much the same way. If at time ¢, job
J with the earliest remaining due date is not being processed and job k£ with a later due date
is, we reallocate the time spent processing job &k to job j. This makes job j finish earlier, and
makes job k finish when job j did originally. This cannot increase objective function value.

a

By considering how SRPT and EDD function if all jobs are available at time 0, we conclude
that on one machine, in the absence of release dates, the ability to preempt jobs does not yield
schedules with improved ) Cj or Ly,ax optimality criteria. This is not the case when jobs have
release dates; intuitively, a problem such as 1|r;j| 3 C; seems more difficult, as one can not
simply preempt the current job for a newly-arrived better one, but rather must decide whether
to start a worse job or wait for the better one. This intuition about the additional difficulty
of this setting is justified—1|r;j| > C; and 1|rj|Lmax are in fact N’P-Complete problems. We
discuss approximation algorithms for these problems in later sections.

We also note that these ideas have their limitations, and do not generalize to the ) w;C;
criterion — 1|r;, pmin| Y- w;C; is N'P-hard. Finally, we note that SRPT and EDD are on-line al-
gorithms — their decisions about which job to schedule currently do not require any information
about which jobs are to be released in the future. See [Sga97] for a comprehensive survey of

on-line scheduling.
2.2 The Two-Machine Flow Shop

We now consider a more complex machine environment in which we want to minimize the
makespan in a flow shop. In general, this problem is NP-hard, even in the case of three

machines. However, in the special case of the two-machine flow shop F2||Cpax, a priority-
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based ordering approach due to Johnson [Joh54] yields an exact algorithm. We denote the
operations of job j on the first and second machines as a pair (aj,b;). Intuitively, we want
to get jobs done on the first machine as quickly as possible so as to minimize idleness on the
second machine due to waiting for jobs from the first machine. This suggests using an SPT rule
on the first machine. On the other hand, it would be useful to process the jobs with large b;
as early as possible on the second machine, while machine 1 is still running, so they will not
create a large tail of processing on machine 2 after machine 1 is finished. This suggests some
kind of longest processing time first (LPT) rule for machine 2.

We now formalize this intuition. We partition our jobs into two sets. A is the set of jobs
g for which a; < bj, while B is the set for which a; > b;. We construct a schedule by first
ordering all the jobs in A by nondecreasing a; value, and then all the jobs in B by nonincreasing
b; values. We process jobs in this order on both machines. This is called Johnson’s rule.

It may be surprising that we do not reorder jobs to process them on the second machine.
It turns out that for two-machine flow shops, such reordering is not necessary. A schedule in

which all jobs are processed in the same order is called a permutation schedule.

Lemma 2.5 An instance of F2||Cpax always has an optimal schedule that is a permutation

schedule.

Note that for three or more machines there is not necessarily an optimal permutation
schedule.
Proof: Consider any optimal schedule, and number the jobs according to the time at which
they complete on machine 1. Suppose that job k£ immediately precedes job j in the order in
which jobs are completed on machine 2, but 57 < k. Let ¢ be the time at which job k is started
on machine 2. It follows that job k has completed on machine 1 by time ¢. Numbering j < k
means that j is processed earlier than k£ on machine 1, so it follows that job j also has completed
on machine 1 by time ¢. Therefore, we can swap the order of jobs 7 and k£ on machine 2, and
still have a legal schedule (since no other job’s start time changes) with the same makespan.
We can continue performing such swaps until there are none left to be done, implying that jobs

on machine 2 are processed in the same order as those on machine 1. O

Having limited our search for optimal schedules to permutation schedules, we present a
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clever argument given by Lawler et. al. [LLKS93] to establish the optimality of the permutation
schedule specified by Johnson’s rule.

Renumber the jobs according to the ordering given by Johnson’s rule. Notice that in
a permutation schedule for F2||Ch,x, there must be a job k that is started on machine 2
immediately after its completion on machine 1; for example, the job that starts immediately
after the last idle time on machine 2. The makespan of the schedule is thus determined by the
processing times of £ jobs on machine 1 and n — k + 1 jobs on machine 2, which is just a sum
of n+ 1 processing times. If we reduce all the a; and b; by the same value p, then every sum of
n + 1 processing times decreases by (n + 1)p, so the makespan of every permutation schedule
is reduced by (n + 1)p.

Now note that if a job has a; = 0 it is scheduled first in some optimal permutation schedule,
since it delays no jobs on machine 1 and only “buys time” for jobs that are processed later than
it on machine 2. Similarly, if a job has b; = 0, it is scheduled last in some optimal schedule.

Therefore, we can construct an optimal permutation schedule by repeatedly finding the
minimum operation size amongst all the a; and b; values of the unscheduled jobs, subtracting
that value from all of the operation sizes, and then scheduling the job with the new zero
processing time according to the above rules. Now observe that the schedule constructed is
exactly the schedule that orders the jobs by Johnson’s rule. We have therefore proved the

following.

Theorem 2.6 ([Joh54]) Johnson’s rule yields an optimal schedule for F2||Crax.
2.3 Parallel machines

We now turn to the case of parallel machines. In the move to parallel machines, many prob-
lems that are easily solvable on one machine become NP-hard; the focus therefore tends to
be on approximation algorithms. In some cases, the simple priority-based rules we used for
one machine generalize well. That is, we assign a priority to every job, and, whenever a ma-
chine becomes available, it starts processing the job that has the highest remaining priority.
The schedules created by such algorithms, which immediately give work to any machine that

becomes idle, will be referred to as busy schedules.
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In this section, we also introduce a new method of analysis. Instead of arguing correctness
based on interchange arguments, we give lower bounds on the quality of the optimal schedule.
We then show that our algorithm produces a schedule whose quality is within some factor of the
lower bound, thus demonstrating a fortiori that it is within this factor of the optimal schedule.
This is a general technique for approximation, and it has the pleasing feature that we are able
to guarantee that we are within a certain factor of the optimal value, without knowing what
that optimal value is. Sometimes we can show that our greedy algorithm achieves the lower
bound, thus demonstrating that the algorithm is actually optimal.

In this section, we devote most of our attention to the problem of minimizing the makespan
(schedule length) on m parallel machines, and study the behavior of the greedy algorithm for
the problem. We remark that for the average-completion-time problem P|| 3 Cj, the greedy
SPT algorithm also turns out to yield an optimal schedule. We discuss this further in Section
4.1.

As was mentioned in Section 2.1, P||Cpax is trivial when m = 1, as any schedule with no idle
time will be optimal. Once we have more than one machine, things become more complicated.
With preemption, it is possible to greedily construct an optimal schedule in polynomial time.
In the non-preemptive setting, however, it is unlikely that there is a polynomial time exact
algorithm, since the problem is NP-complete via a simple reduction from the N P-complete
Partition problem [GJ79]. We will thus focus on finding an approximately optimal solution.
First, we will show that any busy schedule gives a 2-approximation. We will then see how
this can be improved with a slightly smarter algorithm, the Longest Processing Time (LPT)
algorithm, which is a a 4/3-approximation algorithm. In Section 6 we will show that a more
complicated algorithm can guarantee an even better quality of approximation.

Our analyses of these algorithms are all based on comparing their performance to certain
lower bounds on the quality of the optimal schedule; their performance compared to the op-
timum can only be better. Our algorithms will make use of two simple lower bounds on the

makespan C} . of the optimal schedule:

max
n
Crax = D pj/m (1)
j=1
Chax = pj for all jobs j. (2)
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The first lower bound says that the schedule is at least as long as the average machine load,
and the second says that the schedule is as least as long as the size of any job. To demonstrate
the power of these lower bounds, we begin with the preemptive problem, P|pmin|Cpax. In
this case, we show how to find a schedule that matches the maximum of the two lower bounds
given above. We then use the lower bounds to establish approximation guarantees for the

nonpreemptive case.
2.3.1 Minimizing C\,,x with preemptions

We give a simple algorithm, called McNaughton’s wrap-around rule [McN59], that creates an
optimal schedule for P|pmin|Cpax with at most m — 1 preemptions. This algorithm is different
from many scheduling algorithms in that it creates the schedule machine by machine, rather
than over time.

Observing that the lower bounds (1) and (2) still apply to preemptive schedules, we will
give a schedule of length D = max{3_,; p;j/m, max;p;}. We order the jobs arbitrarily. Then we
begin placing jobs on the machines, in order, filling machine ¢ up until time D before starting
machine ¢ + 1. Thus, a job of length p; may be split, assigned to the last ¢ units of time of
machine ¢ and the first p; —¢ units of time on machine ¢+ 1, for some £. It is now easy to verify
that since there are no more than mD units of processing, every job is scheduled, and because
D —t > p; —t for any t, a job is scheduled on at most one machine at any time. Thus we have

created an optimal preemptive schedule.

Theorem 2.7 ([McN59]) McNaughton’s wrap-around rule gives an optimal schedule for P|pmin|Cpax.

2.3.2 List scheduling for P||Cpax

In contrast to P|pmin|Cmax, P||Cmax is N'P-hard. We consider the performance of the list
scheduling (LS) algorithm, which is a generic greedy algorithm: whenever a machine becomes

available, process any unprocessed job.
Theorem 2.8 ([Gra66]) LS is a 2-approzimation algorithm for P||Cpax.

Proof: Let j' be the last job to finish in the schedule constructed by LS and let s;; be the

time that j' begins processing. Cpay is therefore sj 4+ pj. All machines must be busy up to
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time s/, since otherwise job j' could have been started earlier. The maximum amount of time

that all machines can be busy is >-7_; pj/m, and so we obtain that

Chax < S+ pjr
n
< Y pj/m+py
i=1

< Céla,x + Céla,x = 2Crt1ax'
The last inequality comes from lower bounds (1) and (2) above. O

This algorithm can easily be implemented in O(n 4+ m) time. By a similar analysis, the
algorithm guarantees an approximation of the same quality even if the jobs have release dates

[Gus84].
2.3.3 Longest Processing Time First for P||Cpax

It is useful to think of the analysis of LS in the following manner. Every job starts being
processed before time 3°7_; p;/m, and hence the schedule length is no more than 77, p;/m
plus the length of the longest job that is running at time Z;‘L:l pj/m.

This motivates the natural idea that it is good to run the longer jobs early in the schedule
and the shorter jobs later. This is formalized in the Longest Processing Time (LPT) rule: sort

jobs in nonincreasing order of processing time and list schedule in that order.
Theorem 2.9 ([Gra69]) LPT is a 4/3-approzimation algorithm for P||Cmax.

Proof:  We start by simplifying the problem. Suppose that j', the last job to finish in our
schedule, is not the last job to start. Remove all jobs that start after time s;. This does
not affect the makespan of our schedule, since these jobs must have run on other machines.
Furthermore, it can only decrease the optimal makespan for the modified instance. Thus, if
we prove an approximation bound for this new instance, it applies a fortiori to our original
instance.

We can therefore assume that the last job to finish is the last to start, namely the smallest
job. In this case, by the analysis of Theorem 2.8 above, LPT returns a schedule of length no

more than C} .. + pmin. We now consider two cases:

max

Case 1: ppin < C*

max

/3. In this case C} . + Pmin < Chax + (1/3)Ck L < (4/3)CF .«
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Case 2: pmin > CF ., /3. In this case, all jobs have p; > Cp,./3, and hence in the optimal

schedule there are at most 2 jobs per machine. Number the jobs in order of nonincreasing p;.
If n < m, then the optimal schedule trivially puts one job on each machine. We thus consider
the remaining case with m < n < 2m. In this case, we claim that, for each 7 = 1,...,m the
optimal schedule pairs job 7 with job 2m + 1 — 5 if 2m + 1 — 5 < n and places job j by itself
otherwise. This can be shown to be optimal via a simple interchange argument. We finish the

proof by observing that this is exactly the schedule that LPT would construct. O

This algorithm needs to sort the jobs, and can be implemented in O(m+nlogn) time. If we
are willing to spend substantially more time, we can obtain a (1 4 €)-approximation algorithm

for any fixed € > 0; see Section 6.
2.3.4 List scheduling for P|prec|Cmax

Even when our input contains precedence constraints, list scheduling is still a 2-approximation
algorithm. Given a precedence relation <, we say that a job is available at time t if all its
predecessors have completed processing by time ¢. Recall that in list scheduling, whenever a
machine becomes idle, any available job is scheduled. Before giving the algorithm, we give
one additional lower bound that is relevant to scheduling with precedence constraints. Let

Ji1s Jizs---»Jip D€ any set of jobs such that j;, < 7, <--- < 7;,, then
k
C;;ax 2 Zpié' (3)
(=1
In other words the total processing time of any chain of jobs is a lower bound on the makespan.

Theorem 2.10 ([Gra66]) LS is a 2-approzimation algorithm for P|prec|Cpax.

Proof: Let j; be the last job to finish. Define jo to be the latest-finishing predecessor of
j1, and inductively define jsy; to be the latest-finishing predecessor of j,, continuing until
reaching ji, a job with no predecessors. Let C = {ji,...,jr}. We partition time into two
sets, A, the points in time when a job in C is running, and B, the remaining time. Observe
that during all times in B, all machines must be busy, for if they were not, there would be
a job from C that had all its predecessors completed and would be ready to run. Hence,
Cmax < |A] +[B] < Yjecp;i + 2j=1pj/m < 20}, where the last inequality follows by

applying lower bounds (3) and (1). Note that |A| is the total length of intervals in A. O
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For the case when all processing times are exactly one, P|prec|Chax is solvable in polynomial
time if there are only 2 machines [Law76], and is N'P-complete if there are an arbitrary number
of machines[Ull75]. The complexity of the problem in the case when there are a fixed constant

number of machines, e.g. 3, is one of the more famous open problems in scheduling.
2.3.5 List Scheduling for O||Cyax

List Scheduling can also be applied to O||Cpax. Recall that in this problem, each job must be
processed for disjoint intervals of time on several different machines. By an analysis similar
to that used for P||Cpax, we will show that any algorithm that constructs a busy schedule
for O||Cmax is a 2-approximation algorithm. Let Ppay be the maximum total processing time,
summed over all machines, for any one job, and let I1,,,,x be the maximum total processing time,
summed over all jobs, of any one machine. Clearly, both P, and Il are lower bounds on
the makespan of the optimal schedule. We show that the natural List Scheduling generalization
of processing any available operation on a free machine constructs a schedule of makespan at
most Ppax + Hax-

To see this, consider the machine M’ that finishes processing last, and consider the last job
4" to finish on machine M'. At any time during the schedule, either M’ is processing a job or
job j' is being processed (if neither of these is true, then list scheduling would require that ;' be
running on M’ a contradiction). However, the total length of time during which j' undergoes
processing is at most Pp,y. During all the remaining time in the schedule, machine M’ must
be busy. But machine M’ is busy for at most II;,x time units. Thus the total length of the

schedule is at most Ppax + Inax, as claimed. Since Ppayx + Hpax < CE L + CF

— %
max max ~ 20max7 we

obtain

Theorem 2.11 (Racsmadény, see [BF82]) List Scheduling is a 2-approzimation algorithm
for O]|Cmax-

2.4 Limitations of Priority Rules

For many problems, simple scheduling rules do not yield good schedules, and thus given a
scheduling problem, the algorithm designer should be careful about applying one of these rules

without justification. In particular, for many problems, particularly those with precedence
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constraints and release dates, the optimal schedule has unforced idle time. That is, if one is
constructing the schedule over time, there may be a time ¢ when there is an idle machine m
and an available job j, but scheduling job j on machine m at time ¢ will yield a sub-optimal
schedule.

Consider the problem Q||Cihax and recall that for P||Chyax, list scheduling is a 2-approximation
algorithm. Consider a 2-job 2-machine instance in which s; =1, ss =, p1 = 1, po = 1, and
x > 2. Then LS, SPT, and LPT all schedule one job on machine 1 and one on machine 2, and the
makespan is thus 1. However, the schedule that places both jobs on machine 2 has makespan
2/xz < 1. By making z arbitrarily large, we see that none of these simple algorithms, which all
have approximation ratio at least z/2, have bounded approximation ratios.

For this problem there is actually a simple heuristic that comes within a factor of 2 of
optimal, but for some problems, such as Q|prec|Cpax and R||Cpax, there is no simple algorithm
known that comes anywhere close to optimal. We also note that even though list scheduling
is a 2-approximation for O||Cpax, for F||Cpax busy schedules can be of makespan (m) times

optimal [GS78].
3 Sophisticated Greedy Approaches

As we have just argued, for many problems, the priority algorithms that consider jobs in
isolation, as in Section 2, are not sufficient. In this section, we consider algorithms that do
more than sort jobs by some priority measure. They take other jobs into account when making
a decision about where to schedule a job. The algorithms we study here are “incremental” in
nature: they start with an empty solution and grow it, one job at a time, until the optimal
solution is revealed. At each step the decision about which job to add to the growing solution is
made greedily, but is based on the current context of jobs which have already been scheduled.
We present two examples which are classic examples of the dynamic programming paradigm,
and several others that are more specialized.

All the algorithms share an analysis based on the idea of optimal substructure. Namely, if
we consider the optimal solution to a problem, we can often argue that its “subparts” (e.g.,
prefixes of the optimal schedule) are optimal solutions to “subproblems” (e.g., the problem of

scheduling the set of jobs in that prefix). This lets us argue that as our algorithms build their

18



solution incrementally, they are building optimal solutions to bigger and bigger subproblems

of the original problem, until they reach an optimal solution to the entire problem.
3.1 An Incremental Greedy Algorithm for 1||fyax

The first problem we consider is 1|| fmax, which was defined in Section 1. In this problem, each
job has some nondecreasing penalty function on its completion time Cj, and the goal is to find
a schedule minimizing the maximum f;(Cj). As one example, 1||Lyayx is captured by setting
fi(t) =t —dj.

A greedy strategy still applies, when suitably modified. It is convenient, instead of talking
about scheduling the “most penalizing” (e.g. earliest due date) job first, to talk about schedul-
ing the “least penalizing” (e.g. latest due date) job last. Let p(J) = ¥ ;c7p; be the total
time to process our schedule. Note that some job must complete at time p(J). We find the
job j that minimizes f;(p(J)), and schedule this job last. We then (recursively) schedule all
the remaining jobs before 5 so as to minimize their maximum penalty. We call this algorithm
Least-Cost-Last.

Observe the difference between this and our previous scheduling rules. In this new scheme,
we cannot determine the best job to schedule second-to-last until we know which job is scheduled
last (we need to know the processing time of the last job in order to know the processing time of
the recursive subproblem). Thus, instead of a simple O(nlogn)-time sorting algorithm based
on absolute priorities, we are faced with an algorithm that inspects & jobs in order to identify
the job to be scheduled k™, giving a total running time of O(n + (n — 1) +--- + 1) = O(n?).

This change in algorithm is matched by a change in analysis. Since the notion of which job
is worst can change as the schedule is constructed, there is no obvious fixed priority to which
we can apply a local exchange argument. Instead, as with P|pmin|Cpax in Section 2.3.1, we
show that our algorithm’s greedy decisions are in agreement with a provable lower bound on
the quality of the optimal schedule. Our algorithm produces a schedule that matches the lower
bound and must therefore be optimal.

Let fr.<(S) denote the optimal value of the objective function if we are only scheduling
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the jobs in S. Consider the following two facts about f},.:

A%

Fra ) 2 min f5(p(7))

frtla,x(j) 2 frtla,x(j_{.y})

The first of these statements follows from the fact that some job must be scheduled last. The
second follows from the fact that if we have an optimal schedule for J and remove a job from
the schedule, then we do not increase the completion time of any job. Therefore, since the f;
are increasing functions, we do not increase any penalty.

We use these inequalities to prove by induction that our schedule is optimal. According to
our scheduling rule, we schedule last the job j minimizing f;(p(J)). By induction, this gives us
a schedule with objective max{f;(p(J)), fomax(J —{j})}. But since each of these quantities is
(by the equations above) a lower bound on the optimal f,. (J), we see that in fact we obtain

a schedule whose value is a lower bound on f,.(J), and thus must in fact equal f. (7).
3.1.1 Extension to 1|prec|fmax

Our argument from the previous section continues to apply even if we introduce precedence
constraints. In the 1|prec|fmax problem, a partial order on jobs is given, and we must build a
schedule that does not start a job until all jobs preceding it in the partial order have completed.
Our above algorithm applies essentially unchanged to this case. Note that the last job in the
schedule must be a job with no successors. We therefore build an optimal schedule by scheduling
last the job j that, among jobs with no successors, minimizes f;(P(J)). We then recursively
schedule all other jobs before it. The proof of optimality goes exactly as before, using the fact

that if L is the set of all jobs without successors,

fima(J) Z min f5(P(J))

jJEL
This is the same as the first equation above, except that the minimum is taken only over jobs

without successors. The remainder of the proof proceeds unchanged.
Theorem 3.1 ([Law73]) Least-Cost-Last is an exact algorithm for 1|prec|fmax.

It should also be noted that, once again, the fact that our algorithm is greedy makes

preemption a moot point. One job needs to finish last, and it immediately follows that we can
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do no better than executing all of that job last. Thus, our greedy algorithm continues to apply.
3.1.2 An alternative approach

Moore [Moo68] gave a different approach to 1||fmax that may be faster in some cases. His
scheme is based on a reduction to the maximum lateness problem and its solution by the EDD
rule. To see how an algorithm for Ly, can be applied to 1||fmax, Suppose we want to know
whether there is a schedule with fi.x < B. We can decide this as follows. Give each job j a
deadline d; equal to the maximum ¢ for which f;(t) < B. It is easy to see that a schedule has
fmax < B precisely when every job finishes by its specified deadline, i.e. L,y < 0. Thus, we
have converted the feasibility problem for fiax into an instance of the lateness problem. The

optimization problem may therefore be solved by a binary search for the correct value of B.
3.2 Dynamic Programming for 1|| Y w;U;

We now consider 1|| 3~ w;U; problem, in which the goal is to minimize the total weight of late
jobs. This problem is weakly N'P-complete. That is, although it is N'P-complete, for integral
weights it is possible to solve the problem exactly in O(n ) w;) time, which is polynomial if the
w; are bounded by a polynomial. The necessary algorithm is a classical dynamic program that
builds the solution out of solutions to smaller problems (a detailed introduction to dynamic
programming can be found in many algorithms textbooks, see, for example [CLR90]). This
O(n ) wj) dynamic programming algorithm has several implications. First, it immediately
yields an O(n?)-time algorithm for 1|| 3 U; problem—just take all weights to be 1. Further-
more, we will show in Section 6 that this algorithm can be used to derive a fully polynomial
approzimation scheme for the general problem that finds a schedule with - w;U; within (1 +¢)
of the optimum in time polynomial in 1/e and n.

The first observation to make is that under this objective, a schedule partitions the jobs
into two types: those completed by their due dates, and those not completed. Clearly, we
might as well process all the jobs that meet their due date before processing any that do
not. Furthermore, the processing order of these jobs might as well be determined using the
Earliest Due Date (EDD) rule from Section 2.1.2: when all jobs can be completed by their due

date (implying nonpositive maximum lateness) EDD, which minimizes maximum lateness, will
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clearly find a schedule that does so.

It is therefore convenient to discuss feasible subsets of jobs that can all be scheduled together
to complete by their due dates. The question of finding a minimum weight set of late jobs can
then be equivalently restated as finding a maximum weight feasible subset of the jobs.

To solve this problem, we aim to solve a harder one: namely, to identify the fastest-
completing maximum weight feasible subset. We do so via dynamic programming. Order
the jobs according to increasing due date. Let T3,; denote the minimum completion time of
a weight w-or-greater feasible subset of 1,...,7, or oo if there is no such subset. Note that
To; = 0, while Ty9 = oo for all w > 0. We now give a dynamic program to compute the
other values T3,;. Consider the fastest completing weight w-or-greater feasible subset S of
{1,...,7+1}. Either j+1¢€ Soritisnot. If j+1¢ S, then S C {1,...,5} and is then
clearly the fastest completing weight w-or-greater subset of {1,...,5}, so S completes in time
Tywj. If 4+ 1 € S, then since we can schedule feasible subsets using EDD, j + 1 can be scheduled
last. The jobs preceding it have weight at least w — w;1, and clearly form the minimum-
completion-time subset of 1,...,7 with this weight. Thus, the completion time of this feasible

set 18 Tyy—w,,,,5 + Pj+1. It follows that

T = min(Tw,jaTw—wj_,_l +pj+1) if Tw—wj+1,j + pj < dj—i—l
wytl Twj otherwise

Now observe that there is clearly no feasible subset of weight exceeding > wj, so we can
stop our dynamic program once we reach this value of w. This takes O(n )  w;) time. Once
we have all the values T,;, we can find the maximum weight feasible subset by identifying the
largest value of w for which some T,; (and thus T,,) is finite.

This gives a standard O(n }_; w;) time dynamic program for computing T, for every
relevant value w; the maximum w for which 7}, is finite is the maximum total weight of jobs

that can be completed by their due date.

Theorem 3.2 ([LM69]) Dynamic programming yields an O(n )y wj)-time algorithm for ex-

actly solving 1|| 3 w;Uj.

We remark that a similar dynamic program can be used to solve the problem in time

O(n)_ pj), which is effective when the processing times are polynomially bounded integers. We
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also note that a quite simple greedy algorithm due to Moore [Moo68] can solve the unweighted

1|| >- U; problem in O(nlogn) time.
3.3 Dynamic Programming for P||C,ax

For a second example of the applicability of dynamic programming, we return to the NP-hard
problem P||Cpax, and focus on a special case that is solvable in polynomial time—the case in
which the number of different job processing times is bounded by a constant. While this special
case might appear to be somewhat contrived, in Section 6 we will show that it can form the

the core of a polynomial approximation scheme for P||Cpax.

Lemma 3.3 Given an instance of P||Cmax in which the p; take on at most s distinct values,

there exists an algorithm which finds an optimal solution in time n®®).

Proof: Assume for now that we are given a target schedule length 7. We again use dynamic
programming. Let the different processing times be z1, ..., z;. The key observation is that the
set of jobs on a machine can be described by an s-dimensional vector V' = (vy,...,vs), where v
is the number of jobs of length z;. There are at most n® such vectors since each entry has value
at most n. Let V be the set of all such vectors whose total processing time (that is, ) v;z;) is
less than T'. In the optimal schedule, every machine is assigned a set of jobs corresponding to
a vector from this set. We now define M (z1,...,x;) to be the minimum number of machines
needed to schedule a job set consisting of x; jobs of size z;, for i = 1,...,s. We observe in the

standard dynamic-programming fashion that

M(a;l,...,ar;s):l—l—{/nei%M(xl—Ul,...,xs—vs).

The minimization is over all possible vectors that could be processed by the “first” machine
counted by the quantity 1, and the recursive expression denotes the best way to process the
remaining work. Thus we need to compute an n® entry table, where each entry depends on
O(n®) other entries, and therefore the computation takes time O(n?®).

It remains to handle the assumption that we know 1. The easiest way to do this is to
perform a binary search on all possible values of T'. A slightly more sophisticated approach
is to search only over the O(n®) makespans of vectors describing sets of jobs, as one of these

clearly determines the makespan of the solution. O
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4 Matching and Linear Programming

Networks and linear programs are central themes in combinatorial optimization, and are useful
tools in the solution of many problems. Therefore it is not surprising that these techniques can
be applied profitably to scheduling problems as well. In this section, we discuss applications of
bipartite matching and linear programming to the exact solution of certain scheduling probleins;
in Section 5 we will revisit both techniques in the design of approximation algorithms for NP-

hard problems.
4.1 Applications of Matching

Given a bipartite graph on two sets of vertices A and B and an edge set £ C A x B, a matching
M is a subset of the edges, such that each vertex A and B is an endpoint of at most one edge
of M. A natural matching that is useful in scheduling problems is one that matches jobs to
machines; the matching constraints force each job to be scheduled on at most one machine,
and each machine to be processing at most one job. If A has no more vertices than B, we
call a matching perfect if every vertex of A is in some matching edge. It is also possible to
assign weights to the edges, and define the weight of a matching to be the sum of the weights
of the matching edges. The key fact that we use in this section is that minimum weight perfect

matchings can be computed in polynomial time (see e.g. [AMO93]).
4.1.1 Matching to Schedule Positions for R||}_ C;

In this section we give a polynomial-time algorithm for R|| 3~ C; that matches jobs to positions

in the schedule on each machine. For any schedule, let x;; be the k*-from-last job to run on

machine ¢, and let ¢; be the number of jobs that run on machine ¢. Then by observing that the

completion time of a job is equal to the sum of the processing times of the jobs that run before
it, we have that

m ¢ m 4 Y m 4
Cj = Z Crir = Z Z Z Dikes = Z Z kpi ;- (4)
j i=1k=1 i=1 k=1z=k i=1k=1
From this, we see that the k* from last job to run on a machine contributes exactly k
times its processing time to the sum of completion times. Based on this observation, Horn

[Hor73] and Bruno, Coffman and Sethi [BCS74] proposed formulating R|| > C; problem as a
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minimum-weight bipartite matching problem. We define a bipartite graph G = (V, E) with
V = AU B as follows. A will contain n vertices v;, one for each of the n jobs j =1,...,n. B
will contain nm nodes w;;, where vertex w;; represents the kth-from-last position on machine
i,fori =1,...,mand k=1,...,n. We include in E an edge (v;, w;;) between every node in
A and every node in B. Using (4) we define the weights on the edges from A to B as follows:
edge (vj, w;) is assigned weight kp;;.

We now argue that a minimum-weight perfect matching in this graph corresponds to an
optimal schedule. First, note that for each valid schedule there is a perfect matching in G. Not
every perfect matching in G corresponds to a schedule, since a job might might be assigned
to the kth from last position while less than k jobs are assigned to that machine; however,
such a perfect matching is clearly not of minimal weight — a better matching can be obtained
by pushing the &’ < k jobs assigned to that machine into the k¥’ from last slots. Therefore, a
schedule of minimum total completion time corresponds to a minimum-weight perfect matching

in the bipartite graph.
Theorem 4.1 ([Hor73, BCS74]) There is a polynomial-time algorithm for R|| > Cj.

In the special case of parallel identical machines, it remains true that the & from last job
to run on a machine contributes exactly k times its processing time to the sum of completion
times. Since in this case the processing time of each job is the same on any machine, the
algorithm is clear: schedule the m largest jobs last on each machine, schedule the next m
largest jobs next to last, etc. The schedule constructed is exactly that constructed by the SPT

algorithm.

Corollary 4.2 ([CMMS67]) SPT is an ezact algorithm for P|| > C;.
4.1.2 Matching Jobs to Machines: O|pmin|Chpax

For our second example of the utility of matching, we give an algorithm for O|pmin|Cyax due
to Gonzales and Sahni [GS76]. This algorithm will not find just one matching, but rather a
sequence of matchings, each of which will correspond to a partial schedule, and then concatenate
all of these partial schedules together. Recall from our discussion of O||Chax in Section 2.3.5

that two lower bounds on the makespan of a nonpreemptive schedule are the mazimum machine
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load Il,ax and the mazimum job size Pyax. Both of these remain lower bounds when preemption
is allowed. In the nonpreemptive setting, a simple greedy algorithm gives a schedule with
makespan bounded by Ppax + [Inax. We now show that when preemption is allowed, matching
can be used to achieve a makespan equal to max(Ppax, [Imax)-

The intuition behind the algorithm is the following. Consider the schedule at any point in
time. At this time, each machine is processing at most one job. In other words, the schedule at
each point in time defines a matching between jobs and machines. We aim to find a matching
that forms a part of the optimal schedule, and process jobs according to it for some time. Our
goal is that processing the matched jobs on their matched machines for some amount of time
t, and adjusting Ppax and Il,,x to reflect the decreased remaining processing requirements,
should reduce max(Ppax, [Inax) by t. It follows that if we repeat this process for a total amount
of time equal to max(Ppax, [Imax), we will reduce max(Ppax, [Imax) to 0, implying that there is
no work remaining in the system.

What properties should our matching of jobs to machines have? Recall that our goal is to
reduce our lower bound. Call a job tight if its total processing cost is Ppax. Call a machine
tight if its total load is Ilyax. Clearly, it is necessary that every tight job undergo processing
in our matching, since otherwise we will fail to subtract ¢ from P ,x. Similarly, it is necessary
that every tight machine be in the matching in order to ensure that we reduce Il,,x by t.
Lastly, we can only execute the matching for ¢ time if every job-machine pair in the matching
actually requires ¢ units of processing. In other words, we are seeking a matching in which
every tight machine and job is matched, and each matching edge requires positive processing
time. Such a matching is referred to as a decrementing set. That it always exists is a nontrivial
fact (about stochastic matrices) whose proof is beyond the scope of this survey; we refer the
reader to Lawler and Labetoulle’s presentation of this algorithm [LLT78].

To find a decrementing set, we construct a (bipartite) graph with a node representing each
job and machine, and include an edge between machine node 7 and job node j if job j requires a
non-zero amount of processing on machine s. In this graph we require a matching that matches
each tight machine or job node; this can easily be found with a variant of traditional matching
algorithms. Note that we must include the non-tight nodes in the matching problem since tight

nodes can be matched to them.
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Once we have found our decrementing set via matching, we have machines execute the jobs
matched to them until one of the matched jobs completes its work on its machine, or until a
new job or machine becomes tight (this can happen because some jobs and machines are not
being processed in the matching). Whenever this happens, we find a new decrementing set.
For simplicity, we assume that Ppax = Il ay; this can easily be arranged by adding dummy
operations, which can only make our task harder. Since our decrementing set includes every
tight job and machine, it follows that executing for time ¢ will reduce both Ppyay and [,y by
t. It follows that after Pax = Ilax time, both quantities will be reduced to 0. Clearly this
means that we are done in time equal to the lower bound.

One might worry that the number of decrementing set calculations we must perform could
be non-polynomially bounded, making our approximation algorithm too slow. But this turns
out not to happen. We only compute a new decrementing set when a job or machine finishes
or when a new job or machine becomes tight. Each job-processor pair can finish only once,
meaning that this occurs only nm times during our schedule. Also, each job or machine stays
tight forever after it becomes tight; thus, new tight jobs and machines only occur n + m
times. Thus, constructing our schedule of optimal length requires only mn + m + n matching

computations.

Theorem 4.3 ([GS76]) There is a polynomial time algorithm for O|pmin|Cpax, that finds

an (optimal) schedule of makespan max(Ppax, Inax)-
4.2 Linear Programming

We now discuss the application of linear programming to the design of scheduling algorithms. A
linear program is given by a vector of variables x = (z1,...,,), a set of m linear constraints of
the form a;121 + ajpz2+ . .. + aipzy < b, 1 < i < m, and a cost vector ¢ = (c1,...,¢,); the goal
is to find an x that satisfies these constraints and that minimizes cx = ¢1z1 +caxa2 + ...+ CpZn.
Alternatively but equivalently, some of the inequality constraints might be given as equalities,
and/or we may have no objective function and desire simply to find a feasible solution to the
set of constraints. Many optimization problems can be formulated as linear programs, and thus
solved efficiently, since a linear program can be solved in polynomial time [Kha79].

In this section we consider R|pmin|Cpax. To model this problem as a linear program, we
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use nm variables z;;,1 < ¢ < m,1 < j < n. Variable x;; denotes the fraction of job j that is
processed on machine ¢; for example, we would interpret a linear-programming solution with
T1j = Toj = T3j = % as assigning % of job 7 to machine 1, % to machine 2 and % to machine 3.

We now consider what sorts of linear constraints on the z;; are necessary to ensure that
they describe a valid solution to an instance of R|pmin|Chax. Clearly the fraction of a job

assigned to any machine must be non-negative, so we will create nm constraints
Lij Z 0.

In any schedule, we must fully process each job. We capture this requirement with the n

constraints:

m
Z!Bijzl, 1<j<n.
i1

Note that, along with the previous constraints, these constraints imply that z;; <1V ¢,7.
Our objective, of course, is to minimize the makespan D of the schedule. Recall that the
amount of processing that job j would require, if run entirely on machine ¢, is p;;. Therefore,
for a set of fractional assignments x;;, we can determine the amount of time machine ¢ will
work: it is just > z;;p;j, which must be at most D. We model this with the m constraints
n
Zpijxij <Dfori=1,...,m.
j=1
Finally, we must ensure that no job is processed for more than D time; we model this with

the n constraints

m
Z%‘ijpz’j <D,1<j<n.
i=1
To summarize, we formulate the problem as the following linear program:

min D (5)
m
inj = 1, forj=1,...,n, (6)
=1
n
Zpijl‘ij < D, fori=1,...,m, (7)
j=1
n
> pyzy < D, forj=1,...,n, (8)
i=1
zi; > 0 fori=1,....m, j=1,...,n. (9)
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It is clear that any feasible schedule for our problem yields an assignment of values to the
x;; that satisfies the constraints of our above linear program. However it is not completely
clear that solving the linear program yields a solution to the scheduling problem; this linear
program does not specify the ordering of the jobs on a specific machine, but simply assigns
the jobs to machines while constraining the maximum load on any machine. It thus fails to
explicitly require that a job not be processed simultaneously on more than one machine.

Interestingly enough, we can resolve this difficulty with an application of open-shop schedul-
ing. We define an open shop problem by creating an operation o;; for each positive variable
x;j, and define the size of 0;; to be x;;p;;. We then find an optimal preemptive schedule for this
instance, using the matching-based algorithm discussed in Section 4.1.2. We know that both
the maximum machine load and maximum job size of this open shop instance are bounded
above by D, and therefore the makespan of the resulting open shop schedule is at most D.
If we now reinterpret the operations of each job in the open-shop schedule as fragments of
the original job in the unrelated machines instance, we see that we have given a preemptive
schedule of length D in which no two fragments of a job are scheduled simultaneously.

We thus have established the following.
Theorem 4.4 ([LL78]) There is an ezact algorithm for R|pmin|Cpax.

We will see further applications of linear programming to the development of approximation

algorithms for N"P-hard scheduling problems in the next section.
5 Using Relaxations to Design Approximation Algorithms

We now turn exclusively to the design of approximation algorithms for NP-hard scheduling
problems. Recall that a p-approximation algorithm is one that is guaranteed to find a solution
with value within a multiplicative factor of p of the optimum. Many of the approximation
algorithms in this area are based on a relazation of the N'P-hard problem. A relaxation of
a problem is a version of the problem with some of the requirements or constraints removed
(“relaxed”). For example, we might consider 1|r;, pmtn|}_ C; to be a relaxation of 1|r;| 3 C;
in which the “no preemption” constraint has been relaxed. A second example of a relaxation

might be a version of the problem in which we relax the constraint that a machine processes
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at most one job at a time; a solution to this relaxation may have several jobs scheduled at one
time on the same machine.

A solution to the original problem is a solution to the relaxation, but a solution to the
relaxation is not necessarily a solution to the original problem. This is clearly illustrated by
our nonpreemptive/preemptive example — a nonpreemptive schedule is a legal solution to a
preemptive problem, although perhaps not an optimal one, but the converse is not true. It
follows that in the case of a minimization problem, the value of the optimal solution to the
relaxation is a not-necessarily-tight lower bound on the optimal solution to the original problem.

An idea that has proven quite useful is to define first a relaxation of the problem which
can be solved in polynomial time, and then to give an algorithm to convert the relaxation’s
solution into a valid solution to the original problem, with some degradation in the quality of
solution. The key to making this work work well is to find a relaxation that preserves enough
of the structure of the original problem to make the optimal relaxed solution “similar” to the
original optimum, so that the relaxed solution does not degrade too much when converted to
a valid solution.

In this section we discuss two sorts of relaxations of scheduling problems and their use in
the design of approximation algorithms, namely the preemptive version of a nonpreemptive
problem and a linear-programming relaxation of a problem.

There are generally two different ways to infer a valid schedule from the relaxed solution:
one is to infer an assignment of jobs to machines while the other is to infer a job ordering. We
give examples of both methods,

Before going any further, we introduce the notion of a relaxed decision procedure, which
we will use both in Section 5.1 and later in Section 6. A p-relazed decision procedure (RDP)
for a minimization problem accepts as input a target value 7', and returns either no, asserting
that no solution of value < T exists, or returns a solution of value at most p7'. A polynomial-
time p-relaxed decision procedure can easily be converted into a p-approximation algorithm for
the problem via binary search for the optimum 7'; see [HS87, Hoc97] for more details. This
simple idea is quite useful, as it essentially lets us assume that we know the value T of an
optimal solution to a problem. (Note that this is a different use of the word relax than the

term “relaxation.”)
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5.1 Rounding a Fractional Assignment to Machines: R||Cyax

In this section we give a 2-relaxed decision procedure for R||Cpax. Recall the linear program
that we used in giving an algorithm for R|pmin|Crax. If, instead of the constraints z;; > 0
we could constrain the x;; to be 0 or 1, the solution would constitute a valid nonpreemptive
schedule. Furthermore, note that these integer constraints combined with the constraints (7)
make the constraints (8) unnecessary (if a job is assigned integrally to a machine, constraint (7)
ensures that is is a fast enough machine, thus satisfying constraint (8) for that job). In other
words, the following formulation has a feasible solution if and only if there is a nonpreemptive

schedule of makespan D.

m
Zmiﬂ' = 1, fory=1,...,n, (10)
i=1
n
Zpij%j < D, fore=1,...,m, (11)
j=1
Lij € {071}7 for i=1,....m, g=1,...,n. (12)

This is an example of an integer linear program, in which the variables are constrained
to be integers. Unfortunately, in contrast to linear programming, finding a solution to an
integer linear program is N'P-complete. However, this integer programming formulation will
still be useful. A very common method for obtaining a relaxation of an optimization problem
is to formulate it as an integer linear program, and then to relax the integrality constraints.
One obtains a fractional solution and then rounds the fractions to integers in a fashion that
(hopefully) does not degrade the solution too dramatically.

In our setting, we relax the constraints (12) to z;; > 0. We will also add an additional
set of constraints that will ensure that the fractional solutions to this linear program have
enough structure to be useful for approximation. Specifically, we disallow any part of a job j
being processed on a machine ¢ on which it could not complete in D time in a nonpreemptive

schedule. Specifically, we include the following constraints:
Lij = 0, ifpij > D. (13)

(In fact, instead of adding constraints, we can simply remove such variables from the linear

program.) As argued above, this constraint is actually implicit in the integer program given by
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the constraints (10) through (12), but was no longer guaranteed when we relaxed the integer
constraints. Our new constraints can be seen as a replacement for the constraints (8) that we
did not need in the integer formulation. Note also that these new constraints are only linear
constraints when D is fized. This is why we use an RDP instead of taking the more obvious
approach of writing a linear program to minimize D.

To recap, constraints (10), (11), and (13) along with z;; > 0 constitute a linear-programming
relazation of R||Cpax. Our relaxed decision procedure attempts solve this relaxation, obtaining
a solution Z;;,1 < ¢ <m,1 < j < n. If there is no feasible solution, our RDP can output no —
no nonpreemptive schedule has makespan D or less. If the linear program is feasible, we will
give a way to derive an integral assignment of jobs to machines from the fractional solution.
Our job is made much easier by the fact, which we cite from the theory of linear programming,
that we can find a so-called basic solution of this linear program that has at most n+m positive
variables. Since these n + m positive variables must be distributed amongst n jobs, there are
at most m jobs that are assigned in a fractional fashion to more than one machine.

We may now state our rounding procedure. For each (machine, job) pair (i,7) such that
Z;; = 1, we assign job j to machine 7. We call the schedule of these jobs S;. For the remaining
at most m jobs, we simply construct a matching of the jobs to machines such that each job is
matched to a machine it is already partially assigned to. We schedule each job on the machine
to which it is matched, and call the schedule of these jobs Ss.

We defer momentarily the question of whether such a matching exists, and analyze the
makespan of the resulting schedule, which is at most the sum of the makespans of §; and So.
Since the x;; form a feasible solution to the relaxed linear program, the makespan of S is at
most D. Since So schedules at most one job per machine, and assigns j to ¢ only if z;; > 0,
meaning p;; < D, the makespan of Sy is at most D (this argument is the reason we had to add
constraint (13) to our linear program). Thus the overall schedule has length at most 2D.

The argument that a matching always exists is somewhat complex and can only be sketched
here. We create a graph G in which there is one node for each machine and one for each job,
and an edge between each machine node ¢ and job node j if z;; > 0. We are again helped by
the theory of linear programming, as the linear program we solved is a generalized assignment

problem. As a result, for any basic solution, the structure of G is a forest of trees and 1-trees,

32



which are trees with one edge added; for further details see [AMO93]. We need not consider
jobs that are already integrally assigned, so for every pair (i,7) such that z;; = 1, we remove
from G the nodes representing machine 7, job j and their mutual edge (note that the constraints
imply that this machine and job is not connected to any other machine or job). In the forest
that remains, the only leaves are machine nodes, since every remaining job node represents a
job that is fractionally assigned by the linear program and thus has an edge to at least two
machines.

It is now straightforward to find a matching in G. We first consider the 1-trees, and
in particular consider the unique cycle in each 1-tree. The nodes in these cycles alternate
between machine nodes and job nodes, with an equal number of each. We arbitrarily choose
an orientation of the cycle and assign each job to the machine that follows it in the oriented
cycle. We then remove all of the matched nodes from G. What remains is a forest of trees;
furthermore, it is possible that for each of these trees we have created at most one new leaf
that is a job node. We then root each of the trees in the forest, either at its leaf job node, or,
if it does not have one, at an arbitrary vertex. Finally, we assign each job node to one of its
children machine nodes in the rooted tree. Each machine node has at most one parent, and
thus is assigned at most one job. We have thus successfully matched all job nodes to machine
nodes, as we required.

Thus, there exists a 2-relaxed decision procedure for R||Cpax, and we have the following

theorem.

Theorem 5.1 ([LST90]) There is a 2-approzimation algorithm for R||Crpax.
5.2 Inferring an Ordering from a Preemptive Schedule for 1|r;| > C;

In this section and the next we discuss techniques for inferring an ordering of jobs from a relax-
ation. In this section we consider the problem 1|r;| > C;. Recall, as mentioned in Section 2.1,
that this problem is NP-hard. However, we can find a good relaxation by the simple expedi-
ent of allowing preemption. Specifically, we use 1|r;, pmtn|_ C; as a relaxation of 1|r;| 3 Cj.
L|rj, pmtn| > C; can be solved without linear programming, simply by using the SRPT rule. We
will make use of this relaxation by extracting from it the order of completion of the jobs in

the optimal preemptive schedule, and create a nonpreemptive schedule with the same order of
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completion.

Our algorithm, which we call Convert-Preempt-Schedule, is as follows. We first obtain
an optimal preemptive schedule P for the instance in question. We then order the jobs in their
order of completion in P; assume by renumbering that C{ < ...CF. We schedule the jobs
nonpreemptively in the same order. If at some point the next job in the order has not been
released, we wait idly until its release date and then schedule it. This added idle time is the

reason our schedule may not be optimal.

Theorem 5.2 ([PSW95]) Convert-Preempt-Schedule is a 2-approzimation algorithm for
Llrj| 22 C;.

Proof: The non-preemptive schedule N constructed by Convert-Preempt-Schedule can be
understood as follows. For each job j, consider the point of completion of the last piece
of j scheduled in P, insert p; extra units of time into the schedule at the completion point
of j in P (delaying by an additional p; time the part of the schedule after CJP ) and then
schedule j nonpreemptively in the newly inserted block of length p;. Then, remove from the
schedule all of the time originally allocated to processing job j. Finally, cut out any idle time
in the resulting schedule that can be removed without changing the scheduled order of the
jobs or violating a release date constraint. The result is exactly the schedule computed by
Convert-Preempt-Schedule.

Note that the completion of job j is only delayed by insertion of blocks for jobs that finish
earlier in P and hence:

cN <O+ i
k<j

However, 3 < pr < CJP , since all of these jobs completed before 5 in P, and therefore

n n
Y oYy <2y cf.
j=1 j=1

The theorem now follows from the fact that the total completion time of the optimal preemptive

schedule is a lower bound on the total completion time of the optimal nonpreemptive schedule.

a
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5.3 An Ordering from a Linear Programming Relaxation for 1|r;, prec| > w;C;

In this section we generalize the techniques of the previous section, applying them not to a

preemptive schedule but instead to a linear programming relaxation of 1|r;, prec| - w;Cj.
5.3.1 The Relaxation

We begin by describing the linear programming relaxation of our problem. Unlike our previous
relaxation, this one does not arise from relaxing the integrality constraints of an integer linear
program. Rather, we give several classes of inequalities that would be satisfied by feasible
solutions to 1|r;, prec| - w;C;. These constraints are necessary but not sufficient to describe a
valid solution to the problem.

The linear-programming formulation that we considered for R||Chax assigned jobs to ma-
chines but captured no information about the ordering of jobs on a machine. For 1|r;, prec| - w;C}
the ordering of jobs on a machine is a critical element of a high-quality solution, so we seek a
formulation that can model this. We do this by making time explicit in the formulation: we
will have n variables Cj, one for each of the n jobs; C; will represent the completion time of
job 7 in a schedule.

Consider the following formulation in these C; variables, solutions to which correspond to

optimal solutions of 1|r;, prec| > w;Cj.

n

minimize Z w;C; (14)
j=1
subject to
Cj > r; + pj, j=1...,n, (15)
Cr, > Cj + Pk, for each pair j, k such that j < k, (16)
Cy,>Cj+p, or Cj>Cy+pj, for each pair j, k. (17)

Unfortunately, the last set of constraints are not linear constraints. Instead, we use a class of
valid inequalities, introduced by Wolsey [Wol85] and Queyranne [Que93]. Recall that we denote
the entire set of jobs {1,...,n} as J, and, for any subset S C J, we define p(S) = >>;cqp;

and p?(S) = >jes p?. We claim that for any feasible one-machine schedule (independent of
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constraints and objective)
1
>_piC; 2 5(0*(S) +p(S)?), for each S C J. (18)
JES
We show that these inequalities are satisfied by the completion times of any valid sched-
ule for one machine and thus in particular by the completion times of a valid schedule for

L|rj, prec| >- w;Cj.

Lemma 5.3 Let Cy,...,C), be the completion times of jobs in any feasible schedule on one
machine. Then the C; must satisfy the inequalities
sl 2, 2
Zp]C] > 5 p(S)* +p“(S)) for each S C J. (19)
JeES
Proof: We assume that the jobs are indexed so that C7; < --- < C,,. Consider first the case
S ={1,...,n}. Clearly for any job j, C; > Zi:l pr. Multiplying by p; and summing over all

j, we obtain

Thus (19) holds for S = {1,...,n}. The general case follows from the fact that for any other
set of jobs S, the jobs in S are feasibly scheduled by the schedule of {1,...,n}—just ignore the

other jobs. So we may view S as our entire set of jobs and apply the previous argument. O

In the special case of 1||>Jw;C; the constraints (19) give an exact characterization of the
problem [Wol85, Que93]; specifically, any set of C; that satisfy these constraints must describe
the completion times of a feasible schedule, and thus these linear constraints effectively replace
the disjunctive constraints (17). When we extend the formulation to include constraints (15)
and (16), we no longer have an exact formulation, but rather a linear-programming relaxation
of 1|r;, prec| Y- w;Cj.

We note that this formulation has an exponential number of constraints; however, it can
be solved in polynomial time by the use of the ellipsoid algorithm for linear programming
[Wol85, Que93]. We also note that in the special case in which we just have release dates, a

slightly strengthened version can (remarkably) be solved optimally in O(nlogn) time [Goe96].
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5.3.2 Constructing a Schedule from a Solution to the Relaxation

We now show that a solution to this relaxation can be converted efficiently to an approximately-
optimal schedule. For simplicity, we ignore release dates and consider only 1|prec| Y w;C;. Our
approximation algorithm, which we call Schedule—by—C_’j, is simple to state. We first solve the
linear programming relaxation given by (14), (16) and (18) and call the solution C1, ..., Cp; we
renumber the jobs so that C; < Cy <...C,. We then schedule the jobs in the order 1,...,n.
Since there are no release dates there is no idle time. Note that this ordering of the jobs respects
the precedence constraints, because if the C; satisfy (14) then j < k implies that C; < Cj.

To analyze Schedule-by-C}, we begin by understanding why it is not an optimal algorithm.
Unfortunately, C; < --- < C,, being a feasible solution to (18) does not guarantee that, in the
schedule in which job j is designated to complete at time C; (thus defining its start time), that
at most one job is scheduled at any point in time. More formally, the intervals (C; — p;, Cj],
4 =1,...,n, are not constrained to be disjoint. If C; < --- < C,, actually corresponded to a
valid schedule, then C‘j would be no less than Zi:l pi for all 5. We will see that, although the

formulation does not guarantee this property, it does yield a relaxation of it, which is sufficient

for the purposes of approximation.
Theorem 5.4 ([HSSW97]) Schedule-by-Cjis a 2-approzimation algorithm for 1|prec| S w;C}.

Proof: Since C; optimized a relaxation, we know that > w;C; is a lower bound on the true
optimum. It therefore suffices to show that our algorithm gets within a factor of 2 of this
lower bound. So we let Ci,...,C, denote the completion times in the schedule found by
Schedule-by-Cj, and show that ijéj <2y w;C;.

Since the jobs have been renumbered so that C; < --- < O, taking S = {1,..., 5} gives
Cj = p(S).

We now show that C; > 1p(S). (Again, if the C; were feasible completion times in an actual
schedule, we would have C; > p(S). This relaxed version of the property is the key to the
approximation.)
We use inequality (18) for S = {1,2,...,5}.
j —
> oiCr >
k=1

(p*(S) +p(8)*) > 5p(S8)*. (20)

N | =
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Since Cj, < C_’j, foreach k =1,...,7, we have

Dividing by p(S), we obtain that C; is at least 1p(S). We therefore see that C; < 2C;. Since

> wjéj <23 w;CF the result follows. O

6 Polynomial Approximation Schemes Using Enumeration and
Rounding

For certain N'P-hard scheduling problems there is a limit to our ability to approximate them
in polynomial time; for example, Lenstra, Shmoys and Tardos proved that there is no p-
approximation algorithm, with p < 3/2, for R||Cpax unless P = NP [LST90]. For certain
problems, however, we can approximate their optimal solutions arbitrarily closely in polynomial
time. In this section we present three polynomial approzimation schemes; that is, polynomial
time algorithms that, for any constant p > 1, deliver a solution whose objective value is at
most p times optimal. The running time will depend on p—the smaller p is, the slower the
algorithm will be.

We will present two approaches to the design of such algorithms. The first approach
is based on rounding processing times or weights to small integers so that we can apply
pseudopolynomial-time algorithms such as that for 1|| > w;U;. A second approach is based
on identifying the “important” jobs—those that have the greatest impact on the solution—
and processing them separately. In one version, illustrated for P||Cpax, we round the large
jobs so that there are only a constant number of large job sizes, schedule them using dynamic
programming, and then schedule the small jobs arbitrarily. In a second version, illustrated for
1|7j| Limax, we enumerate all possible schedules for the large jobs, and then fill in the small jobs

around them.
6.1 From Pseudopolynomial to PTAS: 1||> w;U;

In Section 3, we gave an O(n ) w;) time algorithm for 1| 3~ w;U;. Since this gives an algorithm
that runs in polynomial time when the weights are polynomial in n, a natural idea is to try

to reduce any instance to such a special case. We will scale the weights so that the optimal
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solution is bounded by a polynomial in n; this will allow us to apply our dynamic programming
algorithm to weights of polynomial size.

Assume for now that we know W*, the value of ) w;U; in the optimal schedule. Multiply
every weight by n/(eW*); now the optimal ) w;U; becomes n/e. Clearly, a schedule with
> w;U; within a multiplicative (1 + €)-factor of optimum under these weights is also within a
multiplicative (1 + €)-factor of optimum under the original weights. Thus, it suffices to find a
schedule with Y~ w;U; at most (1 + €)n/e = n/e +n under the new weights.

To do so, increase the weight of every job to the next larger integer. This increases the
weight of each job by at most 1 and thus, for any schedule, increases ) w;U; by at most n.
Under these new weights, Y w;U; for the original optimal schedule is now at most n/e 4+ n,
so the optimal schedule under these integral weights has ) w;U; < n/e 4 n. Since all weights
are integers, we can apply the dynamic programming algorithm of Section 3 to find an optimal
schedule for the rounded instance. Since we only rounded up, the same schedule under the
original weights can only have a smaller ) w;U;. Thus, we find a schedule with weight at most
n/e+ n in the (scaled) original weights, i.e. a (1 + €) times optimum schedule.

The running time of our dynamic program is proportional to n times the sum of the (new)
weights. This might be a problem, since the weights can be arbitrarily large. However, any job
with new weight exceeding n/e+mn must be scheduled before its deadline. We therefore identify
all such jobs, and modify our dynamic program: T;,; becomes the minimum time needed to
complete all these jobs that must complete by their deadlines plus other jobs from 1,...,5 of
total weight w. The dynamic programming argument goes through unchanged, but now we
consider only jobs of weight O(n/e). It follows that the largest value of w that we consider is
O(n?/e), which means that the total running time is O(n?/e).

It remains to deal with our assumption that we know W*. One approach is to use the RDP
scheme that performs a binary search on W*. Of course, we do not expect to arrive at W*
exactly, but note that an estimate will suffice. If we test a value W' with W*/a < W' < W*,
the analysis above will go through with the running time increased by a factor of a. So we
can wait for the RDP binary search to bring us within (say) a constant factor of W* and then
solve the problem.

Of course, if the weights w are extremely large, our binary search could go through many
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iterations before finding a good value of W'. An elegant trick lets us avoid this problem. We
will solve the following problem: find a schedule that minimizes the weight of the maximum
weight late job. The value of this schedule, W, is clearly a lower bound on W*, as all schedules
that minimize ) w;U; must have a late job of weight at least W'. Further, W* is at most nW’,
since the schedule returned must have at most n late jobs each of which has weight at most
W'. Hence our value W' is within a factor of n of optimal. Thus O(logn) binary search steps
suffice to bring us within a constant factor of W*.

To compute W', we formulate a 1|| finax problem. For each job j,

A Wj if Cj > dj
f](C’])—{ 0 ifC;<d,
This will compute the schedule that minimizes the weight of the maximum weight late job. By

the results of Section 2.1, we know we can compute this exactly in polynomial time.

Theorem 6.1 There exists a O(n>(logn)/e)-time (1+€)-approzimation algorithm for 1|| > w;U,
6.2 Rounding and Dynamic Programming for P||C\,.x

We now return to the problem of P||Clax. Recall that in Lemma 3.3 we solved, in polynomial
time, the special case in which there are a constant number of different job sizes. For the
general case, we will focus mainly on the big jobs. We will round and scale these jobs so that
there is at most a constant number of sizes of big jobs, and apply the dynamic programming
algorithm of Section 3 to these rounded jobs. We then finish up by scheduling the small jobs
greedily. By the definition of big and small, the overall contribution of the small jobs to the
makespan will be negligible.

We will give a (1+4¢€)-RDP for this problem that can be transformed as before into a (1 +¢)-
approximation algorithm. We therefore assume that we have a target optimum schedule length
T, We also assume for the rest of this section that €T, ¢2T, e~ and €2 are integers. The proofs
can easily be modified to handle the case of arbitrary rational numbers.

We first show how to handle the large jobs.

Lemma 6.2 Let I be an instance of P||Chpax, let T be a target schedule length, and € > 0.

Assume that all pj > €T'. Then, for this case, there is a (1 4+ €)-RDP for P||Cpax.
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Proof: 'We assume 1" > max; p;, since otherwise we immediately know that the problem is
infeasible. Form instance I’ from I with processing times p;- by rounding each p; down to an

integer multiple of ¢27". This creates an instance in which:
1. 0 <p; —pj < T
2. there are at most 62% < 6% different job sizes,
3. in any feasible schedule, each machine has at most % = % jobs.

Thus, we can apply Lemma 3.3 to instance I’ and obtain an optimal solution to this scheduling
problem; let its makespan be D. If D > T, then we know that there is no schedule of length
< T for I, since job sizes in I’ are no greater than those in I. In this case we can answer “no
schedule of length < T exists”. If D < T, then we will answer “there exists a schedule of length
< (14 €)T. We now show that this answer will be correct. We simply take our schedule for I’
and replace the rounded jobs with the original jobs from /. By (1) and (3) above, we add at
most €2T" to the processing time of each job, and since there are at most % jobs per machine,
we add at most €I' to the processing time per machine. Thus we can create a schedule with

makespan at most 7'+ €I' = (1 +¢)7. O

We now give the complete algorithm. The idea will be to remove the “small” jobs, use
Lemma 6.2 to schedule the remaining jobs, and then add the small jobs back greedily. Given

input Iy, target schedule length 7', and p =1 4+ € > 1, we execute the following algorithm.

Let R be the set of jobs with p; < €T'. Let I = Iy — R
Apply Lemma 6.2 to I, T, and p.
If this algorithm returns no,
(t)  then output “no schedule of length < T exists”.
else
for each job 5 in R
if there is a machine ¢ with load < T,
then add job j to machine ¢

(*) else return “no schedule of length < 7' exists”

return “yes, a schedule of length < pT' exists”

Theorem 6.3 The algorithm above is a p-relazed decision procedure for P||Chrax-
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Proof: If the algorithm outputs “yes, a schedule of length < pT exists,” then it has constructed
such a schedule, and is clearly correct. If the algorithm outputs “no schedule of length < T
exists” on line (), then it is because no schedule of length 7" exists for instance I. But instance
I is a subset of the original jobs and so if no schedule exists for I, then no schedule exists for
Iy, and the output is correct. If the algorithm outputs “no schedule of length < T' exists” on
line (*), then at this point in the algorithm, every machine must have more than 7' units of
processing on it. Thus, we have that Zj pj > mT', which means that no schedule of length < 7T’

exists. a

The running time is dominated by the dynamic programming in Lemma 3.3. It is polynomial
in n, but the exponent is a polynomial in 1/e. While for p very close to 1, the running time
is prohibitively large, for larger, fixed values of p, a modified algorithm yields good schedules

with near-linear running times; see [HS87] for details.
6.3 Exhaustive Enumeration for 1|r;|Lyax

We now turn to the problem of minimizing the maximum lateness in the presence of release
dates. Recall from Section 2.1 that without release dates EDD is an exact algorithm for this
problem. Once we add release dates the problem becomes NP-hard. As we think about
approximation algorithms, we come upon an immediate obstacle, namely that the objective

function can be 0 or even negative, and hence a solution of value at most pC} .. is clearly

max
impossible. In order to get around this, we must guarantee that the objective value is positive.
One simple way to do so is to decrease all the d;’s uniformly by some value ¢. This decreases
the objective value by exactly § and does not change the structure of the optimal solution. In
particular, if we pick ¢ large enough so that all the d;’s are negative, we are guaranteed that
Lax is positive.

Forcing d; to be negative is somewhat artificial and so we do not concentrate on this
interpretation (note that by taking J arbitrarily large, we can make any algorithm into an
arbitrarily good approximation algorithm). We instead use an equivalent but natural delivery
time formulation which, in addition to modeling a number of applications, is a key subroutine in

computational approaches to shop scheduling problems [LLKS93]. In this formulation, each job,

in addition to having a release date r; and a processing time p;, has a delivery time gj. A delivery

42



time is an amount of time that must elapse between the completion time of a job on a machine
and when it is truly considered finished. Our objective is now to minimize max;{C; + ¢;}. To
see the connection to our original problem, note that by setting ¢; = —d; (recall that we made
all d; negative, so all g; are positive), the delivery-time problem is equivalent to minimizing

maximum lateness, and in fact we will overload L; and define it as C; + g;.
6.3.1 Jackson’s rule is a 2 approximation

In the delivery-time model, EDD translates to Longest Delivery Time First. This is often referred
to as Jackson’s rule. [Jacbb]. Let L} .  be the optimum maximum lateness. The following two

max

lower bounds for this problem are the easily derived lanalogs of (1) and (2):
Liax = s (21)
J
Liax > 7 +pj +gj for all j. (22)

Lemma 6.4 Jackson’s Rule is a 2-approzimation algorithm for the delivery time version of

L|7j| Limax-

Proof: Let j' be a job for which Ljs = Lax. Since Jackson’s rule creates a schedule with no
unforced idle time, we know that there is no idle time between time r;; and Cjs. Let J' be the

set of jobs that run between r;; and Cj. Then

Ly =Cy+aqy (23)
= rjr + Z pj + qj (24)
jeJ!
S (T‘j/ + Qj’) + ij (25)
J
= 2L7ax (26)

where the last line follows by applying the two lower bounds (21) and (22). O

6.3.2 A PAS using Enumeration

The presentation of this section follows that of Hall [Hal97]. The original approximation scheme

for this problem is due to Hall and Shmoys [HS89].
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To obtain better bounds, we need to look more carefully at when Jackson’s rule can go
wrong. Let s; be the starting time of job 7, let 7y (S) = minjeg 7}, let gmin(S) = minjes gj,

and recall that p(S) = 3 cgpj. Then clearly, for any S C J
L:nax > Tmin(S) +p(S) + qmin(S)- (27)

Now consider a job j' for which Lj = Lyax. Let t; be the latest time before s; at which the
machine is idle, and let ¢ be the job that runs immediately after this idle time. Let S be the
set of jobs that run between s, and Cj. We call S a critical section. Because of the idle time
immediately before s,, we know that for all j € S, r; > r,. In other words we have a set of
jobs, all of which were released after time r,, and which end with the job that achieves Ly ax.

Now if for all j € S q; > ¢;, then we claim that L = Lj This follows from the fact that

max"
Lyax = Lj’ =Tq +p(S) + qj = rmin(S) —|—p(S) + Qmin(S)u

and that the right hand side, by (27), is also a lower bound on L},

max- D0, as long as, in a critical

section, the job with the shortest delivery time is last, we have an optimal schedule. Thus, if
Jackson’s rule is not optimal, there must be a job b in the critical section which has g, < g;r.
We call the latest-schedule job in the critical section with g, < g an interference job. The

following lemma, shows the relationship between the interference job and its effect on Lyax.

Lemma 6.5 Let b be an interference job in a schedule created by Jackson’s rule. Then Lp,x <

L:nax + Pb-

Thus, if interference jobs have small processing times, Jackson’s rule does very well. To
make sure that this is the case, we will handle the large jobs separately, to ensure that they
are not interference jobs, and then use Jackson’s rule on the remaining jobs.

Let us assume for now that we know the optimal schedule for instance I. Let s be the
starting time of job j in the optimal schedule, and let 6 > 0 be a parameter to be chosen later.
Partition the jobs into small jobs S = {j : p; < 0} and big jobs B = {j : p; > 0}. We create
instance I as follows: if j € S, then Ty =rj, pj = pj, and ¢; = gj, otherwise, 7; = 53, p; = pj,

*
max

and G = Ly (I) —pj — s;. Instance I is no easier than instance I, since we have not decreased

any release dates or delivery times. Yet, the optimal schedule for I remains an optimal schedule
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for I, by construction. In I we have given the large jobs a release date equal to their optimal
starting time, and a delivery time that is equal to the schedule length minus their completion
time, and hence have constrained the large jobs to run exactly when they would run in the
optimal schedule for instance I. Thus, in an optimal schedule for I, the big jobs run at exactly
time 7; and have L; = 7j + pj + ¢j = Lj,..

Now we claim that if we run Jackson’s rule on I, the big jobs will not be interference jobs.
Lemma 6.6 If we run Jackson’s rule on I, no job b € B will be an interference job.

Proof: Assume that some job b € B is an interference job. As above, define the critical section,
and jobs a and j'. Since b is an interference job, we know that Gy > ¢, and 7y > 7. We also
know that 7, = s;, and so j/ must run after b in the optimal schedule for I. Applying (27) to

the set consisting of jobs b and j', we get that
Liax > b+ Do + By + Gjr > 7+ Py +Djr + G = Loy + Pt

1which is a contradiction. O

So if we run Jackson’s rule on I, we get a schedule whose length is at most L¥, (1) + 4.

*
max

Choosing ¢ = €3, pj, and recalling that L > Y. pj, we get a schedule of length at most
(1 + €)Liyax- Further, there can be at most 3°;p;/(€3°;p;j) = 1/e big jobs. The only problem
is that we don’t know I.

We now argue that it is not necessary to know I. First, observe that the set of big jobs is
purely a function of the input, and e. Now, if we knew the starting times of the big jobs in
the optimal schedule for I , we would know I, and could run Jackson’s rule on the job in S,
inserting the big jobs at the appropriate time. This implies a numbering of the big jobs, i.e.
each big job j; is, for some k, the kth job in the schedule for I. Thus, we really only need to
know k, and not the starting time for job j;. Thus we just enumerate all possible numberings
for the big jobs. There are n'/¢ such numberings. Given a numbering, we can run Jackson’s

rule on the small jobs, and insert the big jobs at the appropriate places in O(nlogn) time, and

thus we get an algorithm that in O(n'*t1/€logn) time finds a schedule with Ly < (1+€)L*

max-*
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7 Research Issues and Summary

In this chapter we have surveyed some of the basic techniques for deterministic scheduling.
Scheduling is an old and therefore mature field, but important opportunities for research con-
tributions remain. In addition to some of the outstanding open questions (see the survey by
Lawler et al. [LLKS93]) it is our feeling that the most meaningful research contributions will
be either new and innovative techniques for attacking old problems or new problem definitions
that model more realistic applications.

There are other schools of approach to the design of algorithms for scheduling, such as those
relying on techniques from artificial intelligence or from computational optimization. It will
be quite valuable to forge stronger connections between these different approaches to solving

scheduling problems.

8 Defining Terms

e n: number of jobs.

e m: number of machines.

e pj: processing time of job j.

° CJS : completion time of job j in schedule S.

e w;: weight of job j.

e 7;: release date of job j; job j is unavailable for processing before time 7.
e d;: due date of job j.

e L;:= ()} —dj the lateness of job j.

e Uj: 1is job j is scheduled by d; and 0 otherwise.

e «|f|y: denotes scheduling problem with machine environment «, optimality criterion

v,and side characteristics and constraints denoted by /.

e Machine Environments:
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— 1: One machine.

: Parallel identical machines.

: Parallel machines of different speeds.
: Parallel unrelated machines.

: Open shop.

|
M I OL

: Flow shop.

— J: Job shop.
e Possible characteristics and constraints:

— pmtn: Job preemption allowed.
— rj: Jobs have nontrivial release dates.

— prec: jobs are precedence-constrained.
e Optimality Criteria:

— > Cj: average (sum) of completion times.

— > w;Cj: weighted average (sum) of completion times.
— Chax: makespan (schedule length).

— Lpax: Maximum lateness over all jobs.

— >_Uj: Number of on-time jobs.

— > w;Uj: Weighted number of on-time jobs.
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For Further Information

We conclude by reminding the reader what this chapter is not. In no way is this chapter
a comprehensive survey of even the most basic and classical results in scheduling theory,
and it is certainly not an up-to-date survey on the field. It also essentially entirely ignores
“non-traditional” models, and does not touch on stochastic scheduling or on any of the other
approaches to scheduling and resource allocation. The reader interested in a comprehensive
survey of the field should consult the textbook by Pinedo [Pin95] and the survey by Lawler et.
al. [LLKS93]. These sources provide pointers to a number of other references. In addition, we
also recommend an annotated bibliography by Hoogeveen et. al. that contains information on
recent results in scheduling theory [HLvdV97], the surveys by Queyranne and Schulz on poly-
hedral formulations[QS94], by Hall on approximation algorithms [Hal97],and by Sgall on online

scheduling [Sga97]. Research on deterministic scheduling theory is published in many journals;
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for example see Mathematics of Operations Research, Operations Research, SIAM Journal on

Computing, and Journal of the ACM.
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