
Random Sampling in Cut, Flow, andNetwork Design ProblemsDavid R. Karger�October 19, 2000AbstractWe use random sampling as a tool for solving undirected graph problems.We show that the sparse graph, or skeleton, that arises when we randomlysample a graph's edges will accurately approximate the value of all cuts inthe original graph with high probability. This makes sampling e�ective forproblems involving cuts in graphs.We present fast randomized (Monte Carlo and Las Vegas) algorithms forapproximating and exactly �nding minimum cuts and maximum ows in un-weighted, undirected graphs. Our cut-approximation algorithms extend un-changed to weighted graphs while our weighted-graph ow algorithms are some-what slower. Our approach gives a general paradigm with potential applicationsto any packing problem. It has since been used in a near-linear time algorithmfor �nding minimum cuts, as well as faster cut and ow algorithms.Our sampling theorems also yield faster algorithms for several other cut-based problems, including approximating the best balanced cut of a graph,�nding a k-connected orientation of a 2k-connected graph, and �nding integralmulticommodity ows in graphs with a great deal of excess capacity. Ourmethods also improve the e�ciency of some parallel cut and ow algorithms.Our methods also apply to the network design problem, where we wish tobuild a network satisfying certain connectivity requirements between vertices.We can purchase edges of various costs and wish to satisfy the requirements atminimum total cost. Since our sampling theorems apply even when the sam-pling probabilities are di�erent for di�erent edges, we can apply randomizedrounding to solve network design problems. This gives approximation algo-rithms that guarantee much better approximations than previous algorithmswhenever the minimum connectivity requirement is large. As a particular ex-ample, we improve the best approximation bound for the minimum k-connectedsubgraph problem from 1:85 to 1 +O(p(logn)=k).�MIT Laboratory for Computer Science, Cambridge, MA 02139. email: karger@lcs.mit.eduURL: http://theory.lcs.mit.edu/~karger 1

1 IntroductionThe representative random sample is a central concept of statistics. It is oftenpossible to gather a great deal of information about a large population by examininga small sample randomly drawn from it. This approach has obvious advantages inreducing the investigator's work, both in gathering and in analyzing the data.We apply the concept of a representative sample to combinatorial optimizationproblems on graphs. Given an optimization problem, it may be possible to gen-erate a small representative subproblem by random sampling. Intuitively, such asubproblem should form a microcosm of the larger problem. We can examine thesubproblem and use it to glean information about the original problem. Since thesubproblem is small, we can spend proportionately more time analyzing it than wewould spend examining the original problem. Sometime, an optimal solution to thesubproblem will be a nearly optimal solution to the problem as a whole. In somesituations, such an approximation might be su�cient. In other situations, it maybe easy to re�ne this good solution into a truly optimal solution.We show this approach to be e�ective for problems involving cuts in graphs. Acut in an undirected graph is a partition of the graph's vertices into two nonemptysets. The value of the cut is the number, or for a weighted graph the total weight,of edges with one endpoint in each set. Cuts play an important role in determiningthe solutions to many graph problems. Most obviously, the connectivity of a graphis the minimum value of a cut in the graph. Similarly, the s-t maximum ow is de-termined by the smallest of all cuts that separate s and t|that is, the s-t minimumcut. In the NP-complete network design problem, the goal is to build a graph thatsatis�es certain speci�ed connectivity requirements by containing no small cuts. Aspecial case is to �nd a minimum size (number of edges) k-connected subgraph ofa k-connected graph. Other problems to which cuts are relevant include �ndinga minimum balanced cut (in which both sides of the cut are \large") and �ndingan orientation (assignment of directions) of the edges of an undirected graph thatmakes it k-connected as a directed graph. Cuts also play an important role in multi-commodity ow problems, though the connection is not as tight as for the standardmax-ow problem (Leighton and Rao 1988; Linial, London, and Rabinovich 1995;Aumann and Rabani 1998).Random sampling helps us solve cut-dependent undirected graph problems. Wede�ne and use a graph skeleton. Given a graph, a skeleton is constructed on thesame set of vertices by including a small random sample of the graph's edges. Ourmain result is that (with high probability) a skeleton accurately approximates allcut values in the original graph. This means random subgraphs can often be usedas substitutes for the original graphs in cut and ow problems. Since the subgraphsare small, improved time bounds result. 2

In the most obvious application, by computing minimum cuts and maximumows in the skeleton, we get fast algorithms for approximating global minimumcuts, s-t minimum cuts and maximum ows. For example, we give a near-linear-time algorithm for approximating the global minimum cut of a graph to withinany constant factor with high probability. Furthermore, a randomized divide andconquer technique �nds exact solutions more quickly than before. For example,we improve the time to �nd a minimum cut of value c in an m-edge unweighted(that is, with all edges having the same, unit, capacity) graph from ~O(mc) (Gabow1995) to ~O(mpc) (The notation ~O(f) denotes O(f polylog f)). This in turn yieldsfaster algorithms for constructing the cactus representation of minimum cuts in agraph and for optimally augmenting graph connectivity. We improve the time to�nd a maximum ow of value v from O(mv) to ~O(mv=pc). We improve the totalwork done by some parallel cut and ow algorithms. We also give applications tobalanced cuts and orientations and to integral multicommodity ows.While this work can stand independently, perhaps its greater value is in provingresults on sampling that have since found several applications. The major improve-ment has been to eliminate the dependence on the minimum cut c appearing inthis paper's results. Bencz�ur and Karger (1996) extend the sampling construc-tion to weighted graphs, showing how to approximate s-t minimum cuts with highprobability in ~O(n2) time. This author used sampling in an algorithm to �nd anexact minimum cut in any (weighted or unweighted) undirected graph with highprobability in ~O(m) time (Karger 1996). More recently, this author gave a faster,sampling-based algorithm that �nds a maximum ow of value v in ~O(pmnv) timewith high probability (Karger 1998a). Karger and Levine (1998) gave an even faster~O(nv5=4)-time algorithm for simple graphs. All of these new results rely directly onthis paper's sampling theorems and algorithms.Our approach to maximum ows and minimum cuts exempli�es a natural random-sampling approach to packing problems in which the goal is to �nd a maximum col-lection of feasible subsets of some input universe. In the s-t maximum ow problemthe universe is the graph's edges and the feasible sets are s-t paths. A di�erent (tree-) packing problem corresponds to global minimum cuts. In a di�erent paper (Karger1998b), we show that the paradigm also applies to the problem of packing bases ina matroid.Our approach also applies to certain covering problems. From random sampling,it is a small step to show that randomized rounding (Raghavan and Thompson 1987)can be e�ectively applied to graphs with fractional edge weights, yielding integrallyweighted graphs with roughly the same cut values. This makes randomized round-ing a useful tool in network design problems. In these NP-complete problems,the goal is to construct a minimum-cost network satisfying certain connectivity de-mands (for example, the Steiner tree problem asks for the minimum cost subgraph3

connecting a certain set of vertices). For the version where edges can be reused,we give a polynomial time approximation algorithm with an approximation boundof 1 + O(p(log n)=fmin), where fmin is the connectivity (minimum cut) of the op-timum solution (and thus at least the minimum connectivity demand between twovertices). Previous approximation algorithms had bounds depending on the max-imum connectivity demands fmax, the best being O(log fmax) for a large class ofproblems (Agrawal, Klein, and Ravi 1995) . We get a 1 + ~O(1=pk) bound for theminimum k-connected subgraph problem (where edges cannot be reused, all con-nectivity demands are k, and edge costs are 1 or in�nity). For su�ciently large kthis improves on a previous approximation ratio of 1:85 (Khuller and Raghavachari1995). We also improve bounds for various other single-edge-use problems.All of our techniques apply only to undirected graphs, as cuts in directed graphsdo not appear to have the same predictable behavior under random sampling.Preliminary versions of this work appeared in conference proceedings (Karger1994a; Karger 1994c). A more extensive treatment is provided in the author'sdissertation (Karger 1994b).The remainder of this introduction includes a more detailed description of ourresults as well as a comparison to previous and subsequent work, followed by somede�nitions. Section 2 then presents our main theorem on cuts in sampled graphs.The paper then splits into two parts that can be read independently. In the �rstpart, we show how to accelerate algorithms for computing s-t maximum ows andminimum cuts (Section 3) and global minimum cuts (Section 4) in unweightedgraphs, with extensions to weighted graphs (Section 5). Section 6 describes appli-cations to other cut problems. The second part of the paper discusses applicationsof the sampling theorem and randomized rounding to network design problems. InSection 7, we lay the groundwork and address the version where edges can be reused.In Section 8 we discuss the harder case in which edges can only be used once.1.1 De�nitionsWe make the following de�nitions. Consider a statement that refers to a variablen. We say that the statement holds with high probability (w.h.p.) in n if for anyconstant d, there is a setting of constants in the statement (typically hidden byO-notation) such that the probability the statement fails to hold is O(n�d).Our work deals with randomized algorithms. Our typical model is that thealgorithm has a source of \random bits"|variables that are mutually independentand take on values 0 or 1 with probability 1/2 each. Extracting one random bit fromthe source is assumed to take constant time. If our algorithms use more complexoperations, such as ipping biased coins or generating samples from more complexdistributions, we take into account the time needed to simulate these operations4

in our unbiased-bit model. Event probabilities are taken over the sample spaceof random bit strings produced by the random bit generator. We say an eventregarding the algorithm occurs with high probability (w.h.p.) if it occurs with highprobability in the problem size (that is, with probability at least 1�n�d on problemsof size n) and with low probability if the complementary event occurs with highprobability.The random choices that an algorithm makes can a�ect both its running timeand its correctness. An algorithm that has a �xed (deterministic) running time buthas a low probability of giving an incorrect answer is called Monte Carlo (MC). Ifthe running time of the algorithm is a random variable but the correct answer isgiven with certainty, then the algorithm is said to be Las Vegas (LV). Depending onthe circumstances, one type of algorithm may be better than the other. However,a Las Vegas algorithm is \stronger" in the following sense.A Las Vegas algorithm can be made Monte Carlo by having it terminate withan arbitrary wrong answer if it exceeds the time bound f(n). Since the Las Vegasalgorithm is unlikely to exceed its time bound, the converted algorithm is unlikely togive the wrong answer. On the other hand, there is no universal method for makinga Monte Carlo algorithm into a Las Vegas one, and indeed some of the algorithmswe present are Monte Carlo with no Las Vegas version apparent. The fundamentalproblem is that sometimes it is impossible to check whether an algorithm has givena correct answer. However, the failure probability of a Monte Carlo optimizationalgorithm can be made arbitrarily small by repeating it several times and takingthe best answer; we shall see several examples of this below. In particular, we canreduce the failure probability so far that other unavoidable events (such as a powerfailure) are more likely than an incorrect answer.Finally, we remark that all logarithms in the paper are base 2 and recall that~O(f) denotes O(f polylogn).1.2 Cuts and FlowsIn the �rst part of this paper we present algorithms for approximating and forexactly �nding s-t and global minimum cuts and maximum ows. To this end, wemake the following de�nition:De�nition 1.1. An �-minimum cut is a cut whose value is at most � times thatof the (global) minimum cut. An �-minimum s-t cut is de�ned similarly. An�-maximum s-t ow is an s-t ow whose value is at least � times the optimum.We show that if we pick a small random sample of a graph's edges, then weget a graph whose minimum cuts correspond (under the same vertex partition) to(1+�)-minimum cuts of the original graph. Therefore, we can approximate minimum5

cuts by computing minimum cuts in a sampled graph. These cuts are found usingaugmenting path algorithms whose running times increase with both the size of thegraph and the value of the output cut. Both of these quantities are smaller in thesampled graph, so we get a speedup for two di�erent reasons. We extend these ideasto �nd approximately maximum ows by randomly partitioning the graph's edgesand �nding ows separately in each resulting edge group. Finally, we �nd exactows by using augmenting path algorithms to \repair" the errors introduced by theapproximation algorithms. Since the error is small, the repair takes little time.Throughout this paper, we focus attention on an n vertex, m edge graph withminimum cut c and s-t minimum cut v. We give randomized Monte Carlo (MC) andLas Vegas (LV) algorithms to �nd the following objects in unweighted, undirectedgraphs:� A global minimum cut in ~O(mpc) time (LV),� A (1 + �)-minimum cut in ~O(m+ n=�3) time (MC) or ~O(m=�) time (LV),� An s-t maximum ow in ~O(mv=pc) time (LV),� A (1 + �)-minimum s-t cut in O(m + n(v=c)2��3) = O(mv=�3c2) time (MC)or ~O(mv=�c) time (LV),� A (1� �)-maximum s-t ow in ~O(mv=�c) time (LV).Our cut approximation algorithms extend to weighted graphs with roughly thesame time bounds. The ow approximation algorithms and exact algorithms use a\scaling" technique that, for a given maximum edge weight U , increases the timebounds of the ow algorithms by a factor of pU rather than the naive factor of U .Our approximation algorithms are in fact meta-algorithms: for example, givenany algorithm to �nd an s-t minimum cut in time T (m;n; v), we can approximatethe cut in time T (m=c; n; v=c). Previously, the best time bound for computingmaximum ows in unweighted graphs was O(m �min(v; n2=3;pm)), achieved usingblocking ows (cf. Tarjan (1983, Ahuja, Magnanti, and Orlin (1993)). In the unitgraphs that arise in bipartite matching problems, a running time of O(mpn) isknown. Our exact algorithm improves on these bounds whenever v=pc is small, andin particular when c is large. We are aware of no previous work on approximatings-t minimum cuts or maximum ows, although blocking ows can be used to achievea certain large absolute error bound.This work relates to several previous algorithms for �nding minimum cuts. TheContraction Algorithm (Karger and Stein 1993) runs in O(n2 log3 n) time on undi-rected (weighted or unweighted) graphs. Gabow's Round Robin Algorithm (Gabow1995) runs in O(mc log(n2=m)) time on unweighted (directed or undirected) graphs.6

Matula (1993) gave a deterministic linear-time algorithm for �nding a (2 + �)-minimum cut in unweighted, undirected graphs. It is easily extended to run innear-linear time on weighted graphs (Karger 1994b).As mentioned above, since this work appeared, Bencz�ur and Karger (1996) havegiven an ~O(n2) time algorithm for approximating s-t minimum cuts, Karger (1996)has given an ~O(m) time algorithm for �nding an exact minimum cut, and Kargerand Levine (1998) have given an O(nv5=4)-time algorithm for �nding a ow of valuev, all regardless of c.1.3 Network DesignIn the second part of our paper we discuss the network design problem. We startwith a set of vertices and \purchase" various edges in order to build a graph sat-isfying certain connectivity demands between the vertices. Each edge has an as-sociated cost, and our goal is to meet the demands at minimum total cost. Theminimum spanning tree problem is a special case where the \demand" is that allvertices be connected. Network design also covers many other classic problems,some NP-complete, including perfect matching, minimum cost ow, Steiner tree,and minimum T-join. It also captures the minimum cost k-connected subgraph prob-lem, where the goal is to build a minimum cost graph with minimum cut k. Theminimum cost 1-connected subgraph is just the minimum spanning tree, but forlarger values of k the problem is NP-complete even when all edge costs are 1 orin�nity (Eswaran and Tarjan 1976).Agrawal, Klein, and Ravi (1995) studied a special case of network design calledthe generalized Steiner problem, �rst formulated by Krarup (see Winter (1987)).In this version, the demands are speci�ed by giving a minimum connectivity dijthat the output graph must satisfy between each pair of vertices i and j (setting alldij = k gives the minimum cost k-connected subgraph problem). Assuming edgescan be used repeatedly, they gave an O(log fmax)-approximation algorithm, wherefmax is the maximum demand across any cut (i.e. max dij). This extended previouswork (Goemans and Bertsimas 1993) on the special case where dij = min(di; dj) forgiven \connectivity types" di. Aggarwal and Garg (1994) gave an algorithm withperformance ratio O(log k), where k is the number of sites with nonzero connectivitydemands.A pair of papers (Williamson, Goemans, Mihail, and Vazirani 1993; Goemans,Goldberg, Plotkin, Shmoys, Tardos, andWilliamson 1994) extended the O(log fmax)bound of Agrawal, Klein, and Ravi (1995) to the harder case where edges can be usedonly once, and extended the approximation technique to a larger class of networkdesign problems. They also noted that for a wide range of problems (including allthose just mentioned) a fractional solution can be found in polynomial time by using7

the ellipsoid algorithm.Our graph skeleton construction can sample edges with di�erent probabilities.This lets us apply Raghavan and Thompson's(1987) randomized rounding techniqueto the fractional solutions and get good approximation ratios, despite the fact thatthe rounding must simultaneously satisfy exponentially many constraints. Round-ing a fractional solution gives an integral one whose cuts are all approximately equalto their fractional values (which were constrained to exceed the corresponding de-mands). The only complication is in the possibility that the rounded values mightbe slightly below the demands. When edges can be reused, this is easy: we simplyincrease each fractional weight slightly before rounding. This yields an approxima-tion algorithm with a ratio of 1+O(p(log n)=fmin+(log n)=fmin) for arbitrary edgecosts, where fmin is the minimum demand across a cut.When edges cannot be reused, increasing the fractional weights may not be pos-sible. However, some more complicated techniques can often be applied instead. Forthe minimum k-connected subgraph problem with k � log n, we give an approxi-mation algorithm with performance ratio 1 + O(p(log n)=k). For any k � logn,this improves on the previous best known approximation factor of 1:85 (Khullerand Raghavachari 1995). For general network design problems, we extend theWilliamson et al. bound of O(log fmax) to O �log �fmax log nfmin ��.1.4 Related WorkRandom sampling is a powerful general tool in algorithm design. It appears ina fast and elegant algorithm for �nding the median of an ordered set (Floyd andRivest 1975). It has many applications in computational geometry (Clarkson 1987;Clarkson and Shor 1987) and in particular in �xed-dimension linear and integer pro-gramming (Clarkson 1995). Random sampling drives the �rst linear-time minimumspanning tree algorithm (Karger, Klein, and Tarjan 1995). This author (Karger1998b) shows how it can speed up algorithms for matroid optimization and forpacking matroid bases.Skeletons are conceptually related to sparse graph certi�cates. Certi�cates applyto any monotone increasing property of graphs|one that holds for G if it holds forsome subgraph of G. Given such a property, a sparse certi�cate for G is a sparsesubgraph that has the property, proving that G has it as well. The advantage isthat since the certi�cate is sparse, the property can be veri�ed more quickly. Forexample, sparsi�cation techniques improve the running times of dynamic algorithmsfor numerous graph problems such as connectivity, bipartitioning, and and minimumspanning trees (Eppstein, Galil, Italiano, and Nissenzweig 1992). The skeleton is akind of sparse approximate certi�cate. 8

A sparse certi�cate particularly relevant to this paper is the sparse k-connectivitycerti�cate. For any graph, a sparse k-connectivity certi�cate is a kn-edge subgraphof G such that all cuts of value at most k in G have the same value in the subgraph.This di�ers from our skeleton in that cuts of value less than k have their valuespreserved exactly, but cuts of greater value are not preserved at all. Nagamochiand Ibaraki (1992b) give an algorithm that takes a graph and a parameter k andreturns a sparse k-connectivity certi�cate. It runs in O(m) time on unweightedgraphs. In weighted graphs, where the resulting certi�cate has total weight knand preserves cuts of value up to k, the running time increases to O(m + n logn)(Nagamochi and Ibaraki 1992a).If we are looking for cuts or ows of value less than k, we can �nd them inthe certi�cate, taking less time since the certi�cate has fewer edges. For example asparse certi�cate can be constructed before Gabow's (1995) minimum cut algorithmis executed; this improves the algorithm's running time from ~O(mc) to ~O(m+nc3=2).Like Gabow's, all of our cut and ow algorithms can use this preprocessing step. As aresult,m can be replaced by nc in all the bounds for our min-cut algorithms and min-cut approximation algorithms (since if we �nd a 2cn-connectivity certi�cate, it willhave the same minimum cuts and approximate minimum cuts as the original graph).Similarly, m can be replaced by nv in all of our s-t cut and ow algorithms since av-certi�cate preserves all ows of value v. However, it clari�es the presentation tokeep m in the time bounds and leave the obvious substitution to the reader.2 Randomly Sampling Graph EdgesOur algorithms are all based upon the following model of random sampling ingraphs. We are given an unweighted graph G with a sampling probability pe foreach edge e, and we construct a random subgraph, or skeleton, on the same verticesby placing each edge e in the skeleton independently with probability pe. Let Ĝdenote the weighted graph with the vertices and edges of G and with edge weightpe assigned to edge e, and let ĉ be the minimum cut (by weight) of Ĝ. Note thatĜ is not the skeleton (a random object), but is rather an \expected value" of theskeleton, since the value of a cut in Ĝ is the expected value of the corresponding cutin the skeleton. The quantity ĉ is the minimum expected value of any cut, thoughnot necessarily the expected value of the minimum cut. Our main theorem saysthat so long as ĉ is su�ciently large, every cut in the skeleton takes on roughly itsexpected value.Theorem 2.1. Let � = p3(d+ 2)(lnn)=ĉ. If � � 1 then, with probability 1 �O(1=nd), every cut in the skeleton of G has value between 1� � and 1 + � times itsexpected value. 9

To see the tightness of this theorem, note that if � = p3(d)(lnn)=ĉ then theCherno� bound (below) only gives a 1=nd bound on the probability that one par-ticular minimum cut diverges by � from its expected value. By changing d to d+2,we extend from the minimum cut to all cuts. To prove this theorem, we require twolemmas.Lemma 2.2 (Karger and Stein (1996)). In an undirected graph, the number of�-minimum cuts is less than n2�.Proof. A proof appears in the appendix. It is a minor variant of one that appearedpreviously (Karger and Stein 1996). A quite di�erent proof has also been devel-oped (Karger 1996).Lemma 2.3 (Cherno� (1952), cf. Motwani and Raghavan (1995)). Let Xbe a sum of independent Bernoulli (that is, 0/1) random variables with successprobabilities p1; : : : ; pn and expected value � =P pi. Then for � � 1Pr[jX � �j > ��] � 2e��2�=3Lemma 2.2 applied to Ĝ states that the number of cuts with expected valuewithin an � factor of the minimum less that �ĉ increases exponentially with �. Onthe other hand, Lemma 2.3 says that the probability that one such cut diverges toofar from its expected value decreases exponentially with �. Combining these twolemmas and balancing the exponential rates proves the theorem. There is a simplegeneralization to the case � > 1 that we omit since it will not be used in the paper.Proof of Theorem 2.1. Let r = 2n � 2 be the number of cuts in the graph,and let c1; : : : ; cr be the expected values of the r cuts in the skeleton listed innondecreasing order so that ĉ = c1 � c2; � � � � cr. Let pk be the probability thatthe kth cut diverges by more than � from its expected value. Then the probabilitythat some cut diverges by more than � is at mostP pk, which we proceed to boundfrom above.Note that the (sampled) value of a cut is a sum of Bernoulli variables, so theCherno� bound says that pk � e��2ck=3. Note that we have arranged that e��2ĉ=3 =n�(d+2): We now proceed in two steps. First, consider the n2 smallest cuts. Eachof them has ck � ĉ and thus pk � 2n�(d+2), so thatXk�n2 pk � (n2)(2n�(d+2)) = 2n�d:Next, consider the remaining larger cuts. According to Lemma 2.2, there are lessthan n2� cuts of expected value less than �ĉ. Since we have numbered the cuts in10

increasing order, this means that cn2� � �ĉ. In other words, writing k = n2�,ck � lnk2 lnn � ĉ;and thus pk � 2k�(d+2)=2:It follows that Xk>n2 pk � Xk>n2 2k�(d+2)=2� Z 1n2 2k�(d+2)=2= 4dk�d=2����1n2= O(n�d)2.1 Constructing p-SkeletonsIn the �rst part of this paper, we will generally �x some value p and set pe = p forall e. We call the resulting sample a p-skeleton of G and denote it G(p). To avoidmaking exceptions for a special case let us de�ne G(p) = G for p > 1. We have thefollowing immediate corollary to our sampling theorem.Corollary 2.4. Let G be any graph with minimum cut c and let p = 3(d+2)(lnn)=�2c.Then the probability that the value of some cut in G(p) has value more than (1 + �)or less than (1� �) times its expected value is O(n�d).Proof. Note that the minimum expected cut is ĉ = pc and apply Theorem 2.1.Lemma 2.5. A p-skeleton of an unweighted graph can be constructed in O(m) time.Proof. To generate a skeleton we can ip an appropriately biased coin for each edge.In some models of computation, this is treated as a unit cost operation. If we wantto be stricter, we can use the weaker model in which only an unbiased random bitcan be generated in unit time. This would most obviously imply an O(m log 1=p)time bound for generating a skeleton. However, even in this model, it is possibleto perform the m biased coin ips in O(m) time with high probability (Knuth andYao 1976), cf. Karger (1994b). 11

2.2 Determining the Right pOur approximation algorithms are based upon constructing p-skeletons. In thesealgorithms, given a desired approximation bound �, we will want to sample with thecorresponding p = �((lnn)=(�2c)) of Corollary 2.4 in order to ensure that in theskeleton no cut diverges in value by more than � times its expectation. This wouldappear to require knowledge of c. However, it is su�cient to have a constant-factorunderestimate c0 for the minimum cut. If we use this underestimate to determine acorresponding sampling probability p0 = 3(d+2)(lnn)=�2c0, then we know that p0 islarger than the correct p, so that � remains an upper bound on the likely deviationin cut values. At the same time, since p0 exceeds the correct p by only a constantfactor, the expected number of edges in our sample will be of the same order as thenumber of edges using the correct p. These two properties are su�cient to guaranteethe correctness and time bounds of our algorithms.One way to get this constant factor approximation is to use Matula's (1993)linear-time min-cut approximation algorithm to �nd a 3-approximation to the min-imum cut. Another approach is to initially guess a known upper bound on c (sayc0 = n in unweighted graphs) and then repeatedly halve the value of the guessuntil we con�rm that our approximation algorithms have run correctly. Since ouralgorithm's running times are proportional to the sample size, and thus inverselyproportional to our guess c0, this repeated halving will increase the running time ofour algorithms by only a constant factor.Thus, we will assume for the rest of this paper that the correct p for a given � isknown to us, so that given � we can construct a corresponding p-skeleton in lineartime.3 s-t Min-Cuts and Max-FlowsWe now show how the skeleton approach can be applied to minimum cuts andmaximum ows. In unweighted graphs, the s-t maximum ow problem is to �nd amaximum set, or packing, of edge-disjoint s-t paths. It is known (Ford and Fulkerson1962) that the value of this ow is equal to the value of the minimum s-t cut. Infact, the only known algorithms for �nding an s-t minimum cut simply identify acut that is saturated by an s-t maximum ow.In unweighted graphs, a classic algorithm for �nding such a maximum ow is theaugmenting path algorithm (cf. Tarjan (1983, Ahuja, Magnanti, and Orlin (1993)).Given a graph and an s-t ow of value f , a linear-time search of the so-called residualgraph will either show how to augment the ow to one of value f+1 or prove that fis the value of the maximum ow. This algorithm can be used to �nd a maximumow of value v in O(mv) time by �nding v augmenting paths. We now show how12

random sampling can be used to speed up such augmenting path algorithms. Wehave the following immediate extension of Corollary 2.4:Theorem 3.1. Let G be any graph with minimum cut c and let p = �((lnn)=�2c)as in Corollary 2.4. Suppose the s-t minimum cut of G has value v. Then with highprobability, the s-t minimum cut in G(p) has value between (1� �)pv and (1+ �)pv,and the minimum cut has value between (1� �)pc and (1 + �)pc.Corollary 3.2. Assuming � < 1=2, the s-t min-cut in G(p) corresponds to a (1 +4�)-minimum s-t cut in G with high probability.Proof. Assuming that Theorem 3.1 holds, the minimum cut in G is sampled to acut of value at most (1 + �)c in G(p). So G(p) has minimum cut no larger. And(again by the Theorem 3.1) this minimum cut corresponds to a cut of value at most(1 + �)c=(1 � �) < (1 + 4�)c when � < 1=2.If we use augmenting paths to �nd maximum ows in a skeleton, we �nd themfaster than in the original graph for two reasons: the sampled graph has fewer edges,and the value of the maximum ow is smaller. The maximum ow in the skeletonreveals an s-t minimum cut in the skeleton, which corresponds to a near-minimums-t cut of the original graph. An extension of this idea lets us �nd near-maximumows: we randomly partition the graph's edges into many groups (each a skeleton),�nd maximum ows in each group, and then merge the skeleton ows into a owin the original graph. Furthermore, once we have an approximately maximumow, we can turn it into a maximum ow with a small number of augmentingpath computations. This leads to an algorithm called DAUG that �nds a maximumow in O(mvp(log n)=c) time. We lead into DAUG with some more straightforwardalgorithms.3.1 Approximate s-t Minimum CutsThe most obvious application of Theorem 3.1 is to approximate minimum cuts.We can �nd an approximate s-t minimum cut by �nding an s-t minimum cut in askeleton.Lemma 3.3. In a graph with minimum cut c, a (1 + �)-approximation to the s-tminimum cut of value v can be computed in ~O(mv=�3c2) time (MC).Proof. Given �, determine the corresponding p = �((log n)=�2c) from Theorem 3.1.Assume for now that p � 1. Construct a p-skeleton G(p) in O(m) time. Supposewe compute an s-t maximum ow in G(p). By Theorem 3.1, 1=p times the value ofthe computed maximum ow gives a (1+ �)-approximation to the s-t min-cut value13

(with high probability). Furthermore, any ow-saturated (and thus s-t minimum)cut in G(p) will be a (1 + �)-minimum s-t cut in G.By the Cherno� bound, the skeleton has O(pm) edges with high probability.Also, by Theorem 3.1, the s-t minimum cut in the skeleton has value O(pv). There-fore, the standard augmenting path algorithm can �nd a skeletal s-t maximum owin O((pm)(pv)) = O(mv log2 n=�4c2) time. Our improved augmenting paths algo-rithm DAUG in Section 3.4 lets us shave a factor of �(ppc= log n) = �(1=�) fromthis running time, yielding the claimed bound.If p � 1 because c = O((log n)=�2), then �3c2 = ~O(pc), so our theorem is provedif we give a running time of ~O(mv=pc). This is the time bound of algorithm DAUGin Section 3.4.3.2 Approximate Maximum FlowsA slight variation on the previous algorithm will compute approximate maximumows.Lemma 3.4. In a graph with minimum cut c and s-t maximum ow v, a (1 � �)-maximum s-t ow can be found in ~O(mv=�c) time (MC).Proof. Given p as determined by �, randomly partition the graph's edges into 1=pgroups, creating 1=p graphs (this takes O(m log(1=p)) time). Each graph lookslike (has the distribution of) a p-skeleton, and thus with high probability has amaximum ow of value at least pv(1 � �) that can be computed in O((pm)(pv))time as in the previous section (the skeletons are not independent, but even thesum of the probabilities that any one of them violates the sampling theorem isnegligible). Adding the 1=p ows that result gives a ow of value v(1 � �). Therunning time is O((1=p)(pm)(pv)) = O(mv(log n)=�2c). If p � 1 then the argumentstill holds since this implies �2c � log n. If we use our improved augmenting pathalgorithm DAUG, we improve the running time by an additional factor of �(1=�),yielding the claimed bound.3.3 A Las Vegas AlgorithmOur max-ow and min-cut approximation algorithms are both Monte Carlo, sincethey are not guaranteed to give the correct output (though their error probabilitiescan be made arbitrarily small). However, by combining the two approximationalgorithms, we can certify the correctness of our results and obtain a Las Vegasalgorithm for both problems|one that is guaranteed to �nd the right answer, buthas a small probability of taking a long time to do so.14

Corollary 3.5. In a graph with minimum cut c and s-t maximum ow v, a (1��)-maximum s-t ow and a (1 + �)-minimum s-t cut can be found in ~O(mv=�c) time(LV).Proof. Run both the approximate min-cut and approximate max-ow algorithms,obtaining a (1 � �=2)-maximum ow of value v0 and a (1 + �=2)-minimum cut ofvalue v1. We know that v0 � v � v1, so to verify the correctness of the resultsall we need do is check that (1 + �=2)v0 � (1 � �=2)v1, which happens with highprobability. To make the algorithm Las Vegas, we repeat both algorithms untileach demonstrates the other's correctness (or switch to a deterministic algorithmif the �rst randomized attempt fails). Since the �rst attempt succeeds with highprobability, the expected running time is as claimed.3.4 Exact Maximum FlowsWe now use the above sampling ideas to speed up the familiar augmenting pathsalgorithm for maximum ows. This section is devoted to proving the followingtheorem:Theorem 3.6. In a graph with minimum cut value c, a maximum ow of value vcan be found in O(mvmin(1;p(log n)=c)) time (LV).We assume for now that v � log n. Our approach is a randomized divide-and-conquer algorithm that we analyze by treating each subproblem as a (non-independent) random sample. This technique suggests a general approach for solv-ing packing problems with an augmentation algorithm (including packing bases ina matroid (Karger 1998b)). The ow that we are attempting to �nd can be seenas a packing of disjoint s-t paths. We use the algorithm in Figure 1, which we callDAUG (Divide-and-conquer AUGmentation).1. Randomly split the edges of G into two groups (each edge goes to one or theother group independently with probability 1=2), yielding graphs G1 and G2.2. Recursively compute s-t maximum ows in G1 and G2.3. Add the two ows, yielding an s-t ow f in G.4. Use augmenting paths (or blocking ows) to increase f to a maximum ow.Figure 1: Algorithm DAUGNote that we cannot apply sampling in DAUG's cleanup phase (Step 4) because theresidual graph we manipulate there is directed, while our sampling theorems apply15

only to undirected graphs. Note also that unlike our approximation algorithms, thisalgorithm requires no prior guess as to the value of c. We have left out a conditionfor terminating the recursion; when the graph is su�ciently small (say with oneedge) we use the basic augmenting path algorithm.The outcome of Steps 1{3 is a ow. Regardless of its value, Step 4 will transformthis ow into a maximum ow. Thus, our algorithm is clearly correct; the onlyquestion is how fast it runs. Suppose the s-t maximum ow is v. Consider G1.Since each edge of G is in G1 with probability 1=2, we expect G1 to have m=2edges. Also, we can apply Theorem 3.1 to deduce that with high probability thes-t maximum ow in G1 is (v=2)(1 � ~O(p1=c)) and the global minimum cut is�(c=2). The same holds for G2 (the two graphs are not independent, but this isirrelevant). It follows that the ow f has value v(1 � ~O(1=pc)) = v � ~O(v=pc).Therefore the number of augmentations that must be performed in G to make f amaximum ow is ~O(v=pc). By deleting isolated vertices as they arise, we can ensurethat every problem instance has more edges than vertices. Thus each augmentationtakes O(m0) time on an m0-edge graph. Intuitively, this suggests the following sortof recurrence for the running time of the algorithm in terms of m, v, and c:T (m; v; c) = 2T (m=2; v=2; c=2) + ~O(mv=pc):(where we use the fact that each of the two subproblems expects to contain m=2edges). If we solve this recurrence, it evaluates to T (m; v; c) = ~O(mv=pc).Unfortunately, this argument does not constitute a proof because the actualrunning time recurrence is in fact a probabilistic recurrence: the values of cuts inand sizes of the subproblems are random variables not guaranteed to equal theirexpectations. Actually proving the result requires some additional work.We consider the tree of recursive calls made by our algorithm. Each node of thistree corresponds to an invocation of the recursive algorithm. We can then boundthe total running time by summing the work performed at all the nodes in therecursion tree. We �rst show that it is never worse than the standard augmentingpaths algorithm, and then show that it is better when c is large.Lemma 3.7. The depth of the computation tree is O(logm) (w.h.p.).Proof. The number of computation nodes at depth d is 2d. Each edge of the graphends up in exactly one of these nodes chosen uniformly and independently at randomfrom among them all. Thus, the probability that two di�erent edges both end up inthe same node at depth 3 logm is (summing over pairs of edges) at most �m2 �=m3,which is negligible. But if there is only one edge, the base case applies with nofurther recursion.Lemma 3.8. DAUG runs in O(m logm+mv) time (LV).16

Proof. First we bound the non-augmenting-path work (i.e. the work of buildingand reassembling the subproblems) in Steps 1{3. Note that at each node in thecomputation tree, the amount of such work performed, not including recursive calls,is linear in the size (number of edges) of the node (since we delete isolated vertices asthey arise, there are always fewer vertices than edges). At each level of the recursiontree, each edge of the original graph is located in exactly one node. Therefore, thetotal size of nodes at a given level is O(m). Since there are O(logm) levels in therecursion, the total work is O(m logm).Next we bound the work of the augmenting path computations. Note �rst thatthe algorithm performs one \useless" augmenting path computation at each nodein order to discover that it has found a maximum ow for that node. Since thework of this augmentation is linear in the size of the node, it can be absorbed inthe O(m logm) time bound of the previous paragraph.It remains to bound the time spent on \successful" augmentations that increasethe ow at their node by one. We claim that the number of successful augmenta-tions, taken over the entire tree, is v. To see this, telescope the argument that thenumber of successful augmentations at a node in the computation tree is equal tothe value of the maximum ow at that node minus the sum of the maximum owsat the two children of that node. Since each successful augmentation takes O(m)time, the total time spent on successful augmentations is O(mv).Lemma 3.9. When c � log n, DAUG runs in O(m logm+mvq lognc) time (LV).Proof. We improve the previous lemma's bound on the work of the successful aug-mentations that add a unit of ow at a node. The number of such augmentationsis equal to the di�erence between the maximum ow at the node and the sum ofthe children's maximum ows. Consider a node N at depth d. Each edge of theoriginal graph ends up at N independently with probability 1=2d. Thus, the graphat N is a (2�d)-skeleton.First consider nodes at depths exceeding log(c= log n). Each of these nodes hasO(m(log n)=c) edges w.h.p. By the same argument as the previous lemma, thereare only v successful augmentations performed at these nodes, for a total work ofO(mv(log n)=c), which is less than the claimed bound if c � logn.At depths less than log(c= log n), the minimum expected cut at a node N islarge enough to apply the sampling theorem. This proves that the maximum owat N is 2�dv(1�O(q2d lognc)) w.h.p. Now consider the two children of node N . Bythe same argument, each has a maximum ow of value 2�(d+1)v(1�O(q 2d+1 log nc))(w.h.p.). It follows that the total number of augmentations that must be performed17

at N isv2d 1�O r2d log nc !!� 2 � v2d+1 1�O r2d+1 lognc !! = O vr log n2dc ! :By the Cherno� bound, each node at depth d has O(m=2d) edges with high prob-ability. Thus the total amount of augmentation work done at the node is O(m=2d)times the above bound. Summing over the 2d nodes at depth d gives an overallbound for the work at level d of O mvr logn2dc ! :We now sum this bound over all depths d to get an overall bound of O(mvq log nc).Combining this result with the previous one gives a bound of O(m logm +mvmin(1;p(log n)=c)). This time bound is still not quite satisfactory, because theextra O(m logm) term means the algorithm is slower than standard augmentingpaths when v is less than logm. This is easy to �x. Before running DAUG, performO(logm) augmenting path computations on the original graph, stopping if a max-imum ow is found. This guarantees that when v = O(logm), the running time isO(mv). This completes the proof of the section's main theorem.4 Global Minimum CutsWe now show how sampling can be used for global minimum cuts. We improve analgorithm of Gabow (1995) that �nds minimum cuts in O(mc log(n2=m)) time. Thissection is devoted to proving the following theorem. Some additional rami�cationsare discussed at the end.Theorem 4.1. A graph's minimum cut c can be found in ~O(mpc) time (LV). Itcan be approximated to within (1 + �) in ~O(m) time (LV).We therefore improve Gabow's algorithm's running time by a factor of roughlypc in the exact case and give a roughly linear-time algorithm for the approximatecase. We have recently developed a near-linear time exact algorithm (Karger 1996),but it is Monte Carlo. These are the fastest known Las Vegas algorithms.Our proof of Theorem 4.1 is the same as the one presented previously for �nd-ing maximum ows. The change is that instead of using the standard augmenting18

paths technique to pack paths, we use a matroid augmentation technique devel-oped by Gabow (1995) to pack arborescences|that is, directed spanning trees. Wemust revise the analysis slightly because the time for a single \augmenting path"computation is not linear.Gabow's algorithm is designed for directed graphs and is based on earlier workof Edmonds (1965). In a directed graph, a minimum cut is a vertex partition (S; T)that minimizes the number of edges directed from S to T . Given a particular vertexs, a minimum s-cut is a partition of the vertices into nonempty sets S and T suchthat s 2 S and the number of directed edges crossing from S to T is minimized.Since the minimum cut in a graph is a minimum s-cut in either G or G with all edgesreversed, �nding a global minimum cut in a directed graph reduces to two iterationsof �nding a minimum s-cut. Gabow's algorithm does so by packing s-arborescences.An s-arborescence in G is a spanning tree of directed edges that induce indegreeexactly one at every vertex other than s. In other words, it is a spanning tree withall edges directed away from s. Edmonds (1965) gave the following characterizationof minimum cuts:The minimum s-cut of a graph is equal to the number of disjoint s-arborescences that can be packed in it.It is obvious that every tree in the packing must use at least one edge of any s-cut;the other direction of the inequality is harder. This characterization correspondsclosely to that for maximum ows. Just as the minimum s-t cut is equal to themaximum number of disjoint paths directed from s to t, the minimum s-cut isequal to the maximum number of disjoint spanning trees directed away from s.Each arborescence can be thought of as directing a unit of ow from s to all othervertices simultaneously. Intuitively, the bottleneck in this ow is the vertex to whichs can send the least ow|namely, one on the opposite side of the minimum s-cut.Gabow's min-cut algorithm uses a subroutine that he calls the Round Robin Al-gorithm (Round-Robin). This algorithm takes as input a graph G with an arbores-cence packing of value k. In O(m log(n2=m)) time it either returns an arborescencepacking of value (k + 1) or proves that the minimum cut is k by returning a cut ofvalue k. Round-Robin can therefore be seen as a cousin of the standard augmenting-path algorithm for maximum ows: instead of augmenting by a path, it augmentsby a spanning tree that sends an extra unit of ow to every vertex. Like manyow algorithms, Gabow's algorithm does not explicitly partition his current owinto arborescences (\paths"). Rather, it maintains an edge set (called a completeintersection) that can be so partitioned. Actually carrying out the partition seemsto be somewhat harder than �nding the edge set.Gabow's algorithm for �nding a minimum cut is to repeatedly call Round-Robinuntil it fails. The number of calls needed is just the value c of the minimum cut; thus19

the total running time of his algorithm is O(cm log(n2=m)). Gabow's algorithm canclearly be applied (with the same time bounds) to undirected graphs as well: simplyreplace each undirected edge with two directed edges: one in each direction.We can improve this algorithm as we did the max-ow algorithm. Use DAUG,but replace the augmenting path steps with calls to Round-Robin.Lemma 4.2. DAUG �nds a global minimum cut in O(mmin(c;pc log n) log n) time.Proof. Reuse the proof for the maximum ow analysis as if we were looking fora ow of value c. The only change is that a single application of Round-Robinon a graph with m0 edges takes O(m0 log(n2=m0)) = O(m0 log n) time. Since eachaugmentation anywhere in the analysis is O(log n) times slower than for ows, theoverall time bound is O(log n) times greater.We can improve the last logarithmic factor with a more careful algorithm andanalysis. Before running DAUG, approximate the minimum cut to within some con-stant factor (using Matula's (1993) algorithm or the skeleton approach). Then, atdepth log(c= log n) in the recursion, when the incoming graph has minimum cutO(log n), run Gabow's original algorithm instead of recursing. This immediatelyproves Theorem 4.1 for c = O(log n). We now prove the other case to �nish theproof of the theorem.Lemma 4.3. For c � logm, the modi�ed DAUG algorithm runs in O(mpc logm log(n2=m))time.Proof. Since the computation stops recursing when the depth reaches log(c= log n),the recursion tree has depth log(c= log n). As with the ow analysis, the overheadin setting up the subproblems at all levels is then O(m log(c= log n)), which is neg-ligible. Since the time per augmentation is no longer linear, we must change theanalysis of work performed during augmentations.Consider �rst the \unsuccessful" augmentations that identify maximum arbores-cence packings. The algorithm performs one at each node in the recursion tree. Thetotal work over all 2d nodes at each depth d is thusO0@log(c= log n)Xd=1 2d(m=2d) log(2dn2=m)1A = O �Xmd+Xm log(n2=m)�= O(m log2(c= log n) +m log(c= log n) log(n2=m));which is less than the speci�ed bound since log2(c= log n) = o(pc log n).Now consider the \successful" Round-Robin calls that actually augment a pack-ing. We analyze these calls as in the maximum ow case. Comparing the minimum20

cuts of a parent node and its children, we see that at depth d, each of the 2d nodeshas O(m=2d) edges and requires O(pc(log n)=2d) Round-Robin calls for total ofO(mpc(log n)=2d log(2dn2=m)) work at depth d. Summing over all depths gives atotal work bound of O(mpc log n log(n2=m)).Finally, consider the work in the calls to Gabow' algorithm at the leaves ofthe recursion. At depth d = log(c= log n), there will be 2d such calls on graphswith minimum cut O(log n), each taking O((m=2d)(log n)(log(n2c=m log n))) time.Since by assumption c > logn, this is dominated by the time bound for successfulaugmentations.Remark. An alternative to running a separate approximation algorithm for theminimum cut is to modify DAUG so that before it recurses, it makes O(log n) calls toRound-Robin and halts if it �nds a maximum packing. This causes the recursion toterminate at the same point as before while increasing the work at each recursion-tree node by at most a constant factor.The improved time for packing arborescences has other rami�cations in Gabow's (1991)work. He gives other algorithms for which computing an arborescence packing isthe computational bottleneck. He gives an algorithm for computing a compactm-tree representation of all minimum cuts, and shows how this representation canbe converted to the older O(n)-space cactus representation (Dinitz, Karzanov, andLomonosov 1976) in linear time. He also gives an algorithm for �nding a minimumset of edges to add to augment the connectivity of a graph from c to c+ �. In bothof these algorithms, computing an arborescence packing forms the bottleneck in therunning time.Corollary 4.4. The cactus and m-tree representations of all minimum cuts in anundirected graph can be constructed in ~O(mpc) time (LV).Corollary 4.5. A minimum set of edges augmenting the connectivity of a graphfrom c to c+ � can be computed in ~O(m+ n(c3=2 + �c+ �2)) time (LV).4.1 Approximating the Minimum CutJust as with maximum ows, we can combine a minimum cut algorithm with randomsampling to develop Monte Carlo and Las Vegas algorithms for �nding approximateminimum cuts. Previously, Matula (1993) gave a linear-time deterministic (2 + �)-approximation algorithm; we use randomization to get better approximations withthe same time bound.Corollary 4.6. A (1 + �)-minimum cut can be found in O�m+ n� log n� �3� time(MC). 21

Proof. Given an m edge graph, build a p-skeleton using the p determined by �, anduse the previous min-cut algorithm to �nd a minimum cut in it. Assume p < 1.Then the running time is O(m(log3 n)=(�3c)). Now note that before we run theapproximation algorithm, we can use Nagamochi and Ibaraki's sparse certi�catealgorithm (discussed in Section 1.4) to construct (in O(m) time) an O(nc)-edgegraph with the same approximately minimum cuts as our starting graph. Thisreduces the running time of the sampling algorithm to the stated bound.If p > 1, meaning that �2 = ~O(1=c), then the claimed running time is ~O(nc3=2),which is achieved by running DAUG on the nc-edge sparse certi�cate.Corollary 4.7. A (1+ �)-minimum cut and (1� �)-maximum arborescence packingcan be found in O(m(log2 n)=�) time (LV).Proof. Recall from above that an arborescence-packing of value k certi�es that theminimum cut is at least k. Given � and its corresponding p, divide the graph in 1=ppieces, �nd a maximum arborescence packing in each of the pieces independently,and union the packings. The analysis proceeds exactly as in the approximate max-ow algorithm of Section 3.2. As in Corollary 3.5, the combination of a cut of value(1 + �=2)c and a (1 � �=2)c-packing brackets the minimum cut between these twobounds.5 Weighted GraphsWe now describe the changes that occur when we apply our cut and ow algorithmsto weighted graphs. We model an edge of weight w as a collection of w unweightededges. This creates problems in applying the undirected graph algorithms. For theapproximation algorithms, the time to construct a skeleton becomes proportionalto the total edge weight. For the divide and conquer algorithms, the time foraugmentations becomes large for the same reason.Improved methods for weighted graphs have recently been developed for bothcuts (Bencz�ur and Karger 1996) and ows (Karger 1998a; Karger and Levine 1998).5.1 Constructing SkeletonsThe �rst problem we face is constructing a skeleton. The number of edges implicitlyrepresented by edge weights can be too large to let us take time to sample eachindividually. To speed our skeleton construction, we use the following alternativeapproach.Lemma 5.1. Let G be any unweighted graph with minimum cut c and let p =3(d+ 2)(lnn)=�2c. Let H be constructed from G by choosing dpme edges from G at22

random. Then the probability that some cut of value v in G has value more than(1 + �)pv or less than (1� �)pv in H is O(n�dppm).Proof. We could prove this corollary from �rst principles by reapplying the cut-counting theorem, but we take an easier approach. Let ERR denote the event thatsome cut diverges by more than � from its expected value. We know that if we sampleeach edge with probability p, then Pr[ERR] is O(1=nd). Let S denote the number ofedges actually chosen in such a sample. Note that S has the binomial distributionand that its so-called central term Pr[S = dpme] =
(1=ppm) (cf. (Feller 1968)).We can evaluate ERR conditioning on the value of S:1=nd � Pr[ERR]= Xk Pr[S = k] � Pr[ERR j S = k]� Pr[S = dpme] � Pr[ERR j S = dpme]=
(1ppm) � Pr[ERR j S = dpme]:In other words, Pr[ERR j S = dpme] = O(ppm=nd).This corollary tells us that so long as the expected number pm of edges in theskeleton is polynomial, we can construct the skeleton by taking a �xed-size sampleand get roughly the same result as in the original construction: all cut values willbe within � of their expectations with high probability. We can construct sucha modi�ed p-skeleton by making pm random selections from among the edges ofthe graph. In a weighted graph this corresponds to using biased selection: choosethe edge with probability proportional to the weight of the edge. In a graph withtotal edge weight W , each such selection takes O(logW) time since we generatelogW random bits in order to identify a particular edge. Thus, the total time isO(pW logW). In fact, this algorithm can be made strongly polynomial: we canarrange for each selection to take O(logm) amortized time, but the digression intothe details would take us too far a�eld. A discussion can be found elsewhere (Knuthand Yao 1976; Karger and Stein 1996).Lemma 5.2. In a weighted graph with m edges of total weight W; a p-skeleton canbe constructed in O(pW logm) time.The only other issue that needs to be addressed is the estimation of the correctsampling rates p for a given approximation bound �. As with the unweighted case,we actually only need a constant factor estimate of the minimum cut. One way toget it is to generalize Matula's (2 + �)-approximation algorithm to weighted graphs23

(see (Karger 1994b) for details). An alternative is to generalize the repeated dou-bling approach of Section 2.1. Unweighted graphs had minimum cuts bounded by n,so only logn repeated doubling trials were needed to get the estimate. For weightedgraphs, we need a slightly more complex algorithm. We use the following schemeto estimate the minimum cut to within a factor of n2, and then repeatedly doublethe estimate (halving the estimated sampling probability) until (within O(log n)attempts) the estimate is correct to within a factor of 2. Compute a maximumspanning tree of the weighted graph, and then let w be the weight of the minimumweight edge of this maximum spanning tree. Removing this edge partitions themaximum spanning tree into two sets of vertices such that no edge of G connectingthem has weight greater than w (else it would be in the maximum spanning tree).Therefore, the minimum cut is at most n2w. On the other hand, the maximumspanning tree has only edges of weight at least w, so one such edge crosses everycut. Thus the minimum cut is at least w.5.2 CutsOur cut approximation algorithms have roughly the same running time as in theunweighted case: the only change is that we use the O(pW log n)-time weighted-graph skeleton construction.Corollary 5.3. In a weighted graph, a (1+�)-minimum cut can be found in O(m+n((log n)=�)3) time (MC).Proof. We have already discussed �nding a rough approximation to c using, e.g.,Matula's algorithm. Construct a sparse 3c-connectivity certi�cate of total weightO(nc) and proceed as in the unweighted graph algorithm. Regardless of the orig-inal graph weights, the skeleton will have O(n(logn)=�2) edges and minimum cutO((log n)=�2).Corollary 5.4. In a weighted graph, a (1 + �)-minimum s-t cut can be found in~O(m+ n(v=c)2��3) time (MC).Proof. Suppose �rst that we knew v. Use Nagamochi and Ibaraki's (1992a) sparsecerti�cate algorithm to construct a sparse 3v-connectivity certi�cate of total weightO(nv). Assuming � < 1, approximate cuts in the certi�cate are the same as those inthe original graph. Construct a p-skeleton of the certi�cate using weighted selectionfrom the certi�cate in O(pnv logm) time. Now proceed as in the unweighted graphcase.To make up for our ignorance of v, begin by estimating v to within a factor of n2as follows. Find (using an obvious variant of Dijkstra's shortest path algorithm) thepath from s to t whose smallest edge weight w is maximized. It follows that every24

s-t cut has weight at least w, since some edge on the found path is cut. However, ifwe remove all edges of weight w or less (a total of n2w weight) then we disconnects and t since every s-t path contains an edge of weight at most w. Therefore, v isbetween w and n2w. Start by guessing v = w, and double it O(log n) times untilthe guess exceeds v, at which point the approach of the previous paragraph willyield the desired cut.The ~O(mv=�3c2) bound of the unweighted case no longer follows, since it needno longer be the case that skeleton has only pm edges.5.3 FlowsWe can also adapt the max-ow algorithms. If we directly simulated the unweightedgraph algorithm DAUG, we would partition the edges into two groups by generatinga binomial distribution for each weighted edge in order to determine how much ofits weight went to each of the two subgraphs. To avoid having to generate suchcomplicated distributions, we return to Theorem 2.1 and use the following approach.If w is even, assign weight w=2 to each group. If w is odd, then assign weight bw=2cto each group, and ip a coin to decide which group gets the remaining single unitof weight. Since the minimum expected cut (ĉ of Theorem 2.1) that results in eachhalf is still c=2, we can deduce as in the unweighted case that little augmentationneed be done after the recursive calls.We have described the change in implementation, and correctness is clear, butwe have to change the time bound analysis. It is no longer true that each new graphhas half the edges of the old. Indeed, if all edge weights are large, then each newgraph will have just as many edges as the old. We therefore add a new parameterand analyze the algorithm in terms of the number of edges m, the minimum cut c,the desired ow value v, and the total weight W of edges in the graph. Note the twosubgraphs that we recurse on have total weight roughly W=2. In order to contrastwith bit-scaling techniques, we also use the average edge weight U =W=m which isno more than the maximum edge weight. The unweighted analysis suggests a timebound for minimum cuts of ~O(Wpc) = ~O(mUpc), but we can show a better one:Lemma 5.5. A global minimum cut of value c can be found in ~O(mpcU) time(LV).Proof. We divide the recursion tree into two parts. At depths d � log(W=m), webound the number of edges in a node by m. As in the unweighted analysis, weknow each node at depth d has to perform ~O(pc=2d) augmentations, each taking~O(m) time, so the total work at depth d is ~O(2dmpc=2d) = ~O(mp2dc). Sum-ming over d � log(W=m) gives a total work bound of ~O(mpWc=m) = ~O(mpcU).25

At depth log(W=m), we have W=m computation nodes, each with minimum cut~O(mc=W) (by the sampling theorem) and at most m edges. Our unweighted graphanalysis shows that the time taken by each such node together with its children is~O(mpmc=W). Thus the total work below depth log(W=m) is ~O((W=m)(mpmc=W)) =~O(mpcU).A similar result can be derived if we use the same algorithm to �nd ows,replacing Gabow's Round Robin Algorithm with standard augmenting paths.Corollary 5.6. A maximum ow of value v can be found in ~O(mvpU=c) time(LV).More recently (Karger 1998a) we introduced a smoothing technique that letsus avoid splitting large edges in two for the two recursive calls. Instead, aftersome preliminary splitting, we show that it is possible to assign the full weight ofan edge randomly to one subproblem or the other, and still get the same accurateapproximation of cut values. This lets us extend our unweighted-graph time boundsto weighted graphs as well.6 Other Cut ProblemsIn this section, we discuss several other cut problems and algorithms and show howour sampling techniques can be applied to them.6.1 Parallel Flow AlgorithmsIn the s-t min-cut problem the need for the �nal \cleanup" augmentations inter-feres with the development of e�cient RNC DAUG-type algorithms for the problem,because there are no good parallel reachability algorithms for �nding augmentingpaths in directed graphs. However, we can still take advantage of the divide andconquer technique in a partially parallel algorithm for the problem. Khuller andSchieber (Khuller and Schieber 1991) give an algorithm for �nding disjoint s-t pathsin undirected graphs. It uses a subroutine that augments a set of k disjoint s-t pathsto k + 1 if possible, using ~O(k) time and kn processors. This lets them �nd a owof value v in in ~O(v2) time using vn processors. We can speed up this algorithmby applying the DAUG technique we used for maximum ows. Finding the �nal aug-mentations after merging the results of the recursive calls is the dominant step inthe computation. It requires ~O(v=c) iterations of their augmentation algorithm,each taking ~O(v) time, for a total of ~O(v2=pc) time using vn processors. Thus wedecrease the running time of their algorithm by an ~O(pc) factor, without changingthe processor cost. 26

6.2 Separators and Sparsest CutsThe edge separator problem is to �nd a cut with a minimum number of edgesthat partitions a graph into two roughly equal-sized vertex sets. The sparsest cutproblem is to �nd a cut (A;B) of value v minimizing the value of the quotientv=(kAkkBk). These problems are NP-complete and the best known approximationratio is O(logn) (for separators, one has to accept a less balanced solution to achievethis bound). One algorithm that achieves this approximation for sparsest cuts isdue to Leighton and Rao (Leighton and Rao 1988).Klein, Plotkin, Stein, and Tardos (Klein, Plotkin, Stein, and Tardos 1994) givea fast concurrent ow algorithm which they use to improve the running time ofLeighton and Rao's algorithm. Their algorithm runs in O(m2 logm) time, and�nds a cut with quotient within an O(log n) factor of the optimum. Consider askeleton of the graph which approximates cuts to within a (1� �) factor. Since thedenominator of a cut's quotient is unchanged in the skeleton, the quotients in theskeleton also approximate their original values to within a (1� �) factor. It followsthat we can take p = O(log n=c) and introduce a negligible additional error in theapproximation. By the same argument, it su�ces to look for balanced cuts in askeleton rather than the original graph.Theorem 6.1. An O(log n)-approximation to the sparsest cut can be computed in~O((m=c)2) time (MC).Benczur and Karger (Bencz�ur and Karger 1996) have improved this time boundto ~O(n2).6.3 Orienting a GraphGiven an undirected graph, the graph orientation problem is to �nd an assignmentof directions to the edges such that the resulting directed graph has the largestpossible (directed) connectivity. Gabow (Gabow 1993) cites a theorem of Nash-Williams (Nash-Williams 1969) showing that a solution of (directed) connectivity kexists if and only if the input graph is 2k-connected, and also gives a submodular-ow based algorithm for �nding the orientation in O(kn2(pkn+k2 log(n=k))) time.We have the following result:Lemma 6.2. A (k � O(pk logn))-connected orientation of a 2k-connected graphcan be found in linear time.Proof. Orient each edge randomly with probability 1=2 in each direction. A minoradaptation of Theorem 2.1 shows that with high probability, for each cut, there willbe at least k � O(pk logn) edges oriented in each direction. In other words, everydirected cut will have a value exceeding the claimed one.27

Using this randomly oriented graph as a starting point in Gabow's algorithmalso allows us to speed up that algorithm by a factor of ~O(pk).6.4 Integral Multicommodity FlowsSuppose we are given an unweighted graph G and a multicommodity ow problemwith k source-sink pairs (si; ti) and demands di. Let ci be the value of the si-timinimum cut and suppose that P di=ci � 1. Then it is obvious that there is afractional solution to the problem: divide the graph into k new graphs Gi, givinga di=ci fraction of the capacity of each edge to graph Gi. Then the si-ti minimumcut of Gi has value exceeding di, so commodity i can be routed in graph Gi. Therehas been some interest in the question of when an integral multicommodity owcan be found (the problem is discussed in (Ford and Fulkerson 1962); more recentdiscussions include (Gr�otschel, Lov�asz, and Schrijver 1988, Section 8.6) and (Frank1990)). Our sampling theorem gives new results on the existence of integral owsand fast algorithms for �nding them. Rather than assigning a fraction of each edgeto each graph, assign each edge to a graph Gi with probability proportional to di=ci.We now argue as for the ow algorithms that, given the right conditions on c, eachgraph Gi will be able to integrally satisfy the demands for commodity i. Thusk max-ow computations will su�ce to route all the commodities. In fact, in anunweighted graph, if mi is the number of edges in Gi, we know that Pmi = m,so that the max-ow computations will take O(Pmin) = O(mn) time. Variousresults follow; we give one as an example:Lemma 6.3. Suppose that each di � logn, and that P di � c=2 (where c is theminimum cut). Then an integral multicommodity ow satisfying the demands existsand can be found in O(mn) time.Proof. Assign each edge to group i with probability proportional to di=c. SinceP di=c � 1=2, this means the probability an edge goes to i is at least 2di=c. Thusthe minimum expected cut in Gi is at least 2di, so the minimum cut exceeds di withhigh probability and that graph can satisfy the ith demand.7 Network DesignWe now turn to the network design problem. Here, rather than sampling as apreprocessing step to reduce the problem size, we sample as a postprocessing stepto round a fractional solution to an integral one.
28

7.1 Problem De�nitionThe most general form of the network design problem is as a covering integer pro-gram with exponentially many constraints. We are given a set of vertices, and foreach pair of vertices i and j, a cost cij of establishing a unit capacity link betweeni and j. For each cut C in the graph, we are given a demand dC denoting theminimum number of edges that must cross that cut in the output graph. Sincethere are exponentially many cuts (in the number of vertices n), the demands mustbe speci�ed implicitly if the problem description is to be of size polynomial in n.Our goal is to build a graph of minimum cost that obeys all of the cut demands,i.e. to solve the following integer program:minimize P cijxijX(i;j) crossing C xij � dC (8 cuts C)xij � 0There are two variants of this problem: in the single edge use version, each xij mustbe 0 or 1. In the repeated edge use version, the xij can be arbitrary nonnegativeintegers.There are several specializations of the network design problem (further detailscan be found in the paper by Agrawal, Klein, and Ravi (1995)):The generalized Steiner problem speci�es a connectivity demand dij for eachpair of vertices i and j, and the demand across a cut C is just the maximum ofdij over all pairs (i; j) separated by C. An early formulation is due to Krarup(see Winter (1987)).The survivable network problem has dij = min(di; dj) for certain \connectiv-ity types" i and j. It was studied by Goemans and Bertsimas (1993).The minimum k-connected subgraph problem is to �nd a smallest (fewestedges) k-connected subgraph of an input graph G. This is a network designproblem in which all demands are k and all edges have cost 1 (present in G)or 1 (not present).Even the minimum k-connected subgraph problem is NP-complete, even for k =2 (Eswaran and Tarjan 1976).7.2 Past WorkKhuller and Vishkin (1994) gave a 2-approximation algorithm for the minimumcost k-connected graph problem and a 3=2-approximation for the minimum (unit29

cost) k-connected subgraph problem. Khuller and Raghavachari (1995) gave a 1.85-approximation for the minimum k-connected subgraph problem for any k.Agrawal, Klein, and Ravi (1995) studied the repeated-edge-use generalized Steinerproblem (with costs) and gave an O(log fmax) approximation algorithm, where fmaxis the maximum demand across a cut, namely max dij .Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson (1994), extend-ing work of Williamson, Goemans, Mihail, and Vazirani (1993)) have recently givenpowerful algorithms for a large class of network design problems, namely those de-�ned by so-called proper demand functions (this category includes all generalizedSteiner problems). Their approximation algorithm, which we shall refer to as theForest Algorithm, �nds a graph satisfying the demands of cost at most O(log fmax)times the optimum. It applies to both single and repeated edge-use problems. Itcan also be used to augment a given graph, adding edges so as to meet some properdemand function; the approximation ratio becomes the logarithm of the maximumde�cit, i.e. di�erence between the demand across a cut and its starting capacity.The authors also note that a fractional solution, in which each edge is to be assigneda real-valued weight such that the resulting weighted graph satis�es the demandswith a minimum total (weighted) cost, can be found in polynomial time by using theellipsoid algorithm even though the number of constraints is exponential (Gabow,Goemans, and Williamson 1993). For example, given a generalized Steiner problem,a separation oracle can be implemented by computing all-pairs i-j minimum cutsin a candidate solution to see if some connectivity demand dij is not satis�ed. If itis not, an i-j minimum cut gives a violated constraint.7.3 Present WorkWe use the fractional solution produced by the ellipsoid algorithm as the startingpoint in a randomized rounding based solution to network design problems. Ran-domized rounding (Raghavan and Thompson 1987) is a general technique developedto solve integral packing and covering problems problems.Using randomized rounding, we give approximation algorithms whose boundsdepend on fmin, the minimum connectivity requirement between any pair of vertices.We begin by considering the version in which edges can be used repeatedly. If fmin �log n, randomized rounding leads to an approximation bound of O((log n)=fmin).If fmin � logn, our approximation bound is 1 + O(p(log n)=fmin). This boundcontrasts with a previous best bound of O(log fmax) (Agrawal, Klein, and Ravi1995), providing signi�cant improvements when the minimum connectivity demandis large.We also give results for the single-edge-use case. For the k-connected sub-graph problem, we give an approximation algorithm with performance ratio 1 +30

O(p(log n)=k + (log n)=k). For any k � log n, this improves on the previous bestknown approximation factor of 1:85 (Khuller and Raghavachari 1995). For more gen-eral problems, we give an approximation algorithm with ratio log(fmax(log n)=fmin);compared to the previousO(log fmax) bound (Goemans, Goldberg, Plotkin, Shmoys,Tardos, and Williamson 1994).7.4 Randomized RoundingThe network design problem is a variant of the set cover problem. In this problem,we are given a collection of sets drawn from a universe, with each element of theuniverse possibly assigned a cost. We are required to �nd a minimum (number ortotal cost) collection of elements that intersects every set. The Steiner tree problemis an instance of set cover involving exponentially many sets. The universe is theset of edges, and each cut that separates two terminals corresponds to a set (theedges of the cut) that must be covered. An extension of this problem correspondingmore closely to general network design is the set multicover problem, in which ademand dS is speci�ed for each set S and the covering set is required to containdS elements of S. The network design problem is an instance of set multicover inwhich the universe is the set of edges, and each cut induces a set consisting of theedges crossing it.The set cover problem is easily formulated as an integer linear program, and itslinear programming dual is what is known as a packing problem: �nd a maximumcollection of sets that do not intersect. Raghavan and Thompson (1987) developeda technique called randomized rounding that can be used to solve such packingproblems. The method is to solve the linear programming relaxation of the packingproblem and then use the fractional values as probabilities that yield an integersolution by randomly setting variables to 0 or 1.In the Raghavan-Thompson rounding analysis, the error introduced by round-ing increases as the logarithm of the number of constraints. Thus, their approachtypically works well only for covering problems with polynomially many constraints,while the network design problem has exponentially many. However, using Theo-rem 2.1, we prove that the special structure of graphs allows us to surmount thisproblem. This gives a simple approach to solving the multiple-edge-use versions ofnetwork design problems. A more complicated approach described in Section 8.2gives us some weaker results for the single-edge-use version of the problem. We nowdescribe the randomized rounding technique.Consider a fractional solution to a network design problem (which has beenfound, for example, with the ellipsoid algorithm (Gabow, Goemans, and Williamson1993)). Without loss of generality, we can assume every edge has fractional weightat most 1, since we can replace an edge of weight w by bwc parallel edges of weight 131

and a single edge of weight w�bwc without changing the solution value. Therefore,the weights on the edges can be thought of as sampling probabilities.Suppose that we build a random graph by sampling each edge with the givenprobability. As a weighted graph, our fractional solution has minimum cut fmin andeach cut C has weight at least equal to the demand dC across it. Therefore, by Theo-rem 2.1, each cut C in the random graph has value at least dC(1�p(12 lnn)=fmin)with probability 1 � 1=n2. Now consider the cost of the random graph. Its ex-pected value is just the cost b of the fractional solution, which is clearly a lowerbound on the cost of the optimum integral solution. Therefore, by the Markov in-equality, the probability that the random graph cost exceeds (1 + 1=n)b is at most1 � 1=n. Therefore, if we perform the rounding experiment O(n log n) times, wehave a high probability of getting one graph that satis�es the demands to within(1 �p(12 lnn)=fmin) at cost (1 + 1=n)b. To get our results, we need only explainhow to deal with the slight under-satisfaction of the demands.7.5 Repeated Edge UseWe �rst consider the repeated edge-use version of the network design problem. Tohandle the under-satisfaction of demands, we simply increase the weight of eachedge slightly before we perform the randomized rounding.Theorem 7.1. The network design problem for proper demand functions with re-peated edge use can be solved in polynomial time to within 1 + O(p(log n)=fmin +(log n)=fmin) times optimum (LV).Proof. Assume �rst that fmin > 12 lnn. Before rounding the fractional solution,multiply each edge weight by (1 + O(p(logn)=fmin)). This increases the overallcost by the same factor. Now when we round, we get a graph with cut values 1 �p(12 lnn)=fmin times the new values (w.h.p.). Thus by suitable choice of constantswe can ensure that the rounded value exceed the original fractional values w.h.p.Now consider the case fmin < 12 lnn. The previous argument does not applybecause (1 �p(12 lnn)=fmin) < 0 and we thus get no approximation guaranteefrom Theorem 2.1. However, if we multiply each edge weight by O((log n)=fmin),we get a graph with minimum cut
(log n). If we round this graph, each cut getsvalue at least half its expected value, which is in turn
((log n)=fmin)) � 1 timesits original value.Remark. Note how the use of repeated edges is needed. We can constrain thefractional solution to assign weight at most 1 to each edge in an attempt to solvethe single-edge-use version of the problem, but scaling up the fractional values inthe solution could yield some fractional values greater than 1 that could round to32

an illegal value of 2. However, when fmin � logn, we will use every edge at mosttwice.8 Single Edge-Use Network DesignThe simple scaling up and rounding procedure that we applied for multiple-edge-use problems breaks down when we are restricted to use each edge at most once.We cannot freely scale up the weights of edges because some of them may take onvalues greater than one. Instead, we round the graph based on the original fractionalweights and then \repair" the resulting graph. To characterize the necessary repairs,we make the following de�nition:De�nition 8.1. Given a network design problem and a candidate solution H, thede�cit of a cut C in H is the di�erence between the demand across C and the valueof C in H. The de�cit of graph H is the maximum de�cit of a cut in H.8.1 Minimum k-connected SubgraphA particularly easy case to handle is the minimum k-connected subgraph problem,where the best previous approximation value was 1:85 (Khuller and Raghavachari1995).Theorem 8.2. For k > logn, a (1 + O(p(log n)=k))-approximation to the mini-mum k-connected subgraph can be found in polynomial time (LV).Proof. We exploit tight bounds on the optimum solution value. Consider any k-connected graph. It must have minimum degree k. and thus at least kn=2 edges.On the other hand, as discussed in Section 1.4, any sparse k-certi�cate of G will bek-connected if G is and will contain at most kn edges. Thus, the optimum solutionhas between kn=2 and kn edges (so a 2-approximation is trivial).To get a better approximation, take the input graph G and �nd a fractionalsolution F using the ellipsoid algorithm (Gabow, Goemans, and Williamson 1993).By construction, F has (weighted) minimum cut k. Suppose the solution has totalweight W . As discussed above, we know kn=2 � W � kn. Clearly W is a lowerbound on the number of edges in the integral solution. Use randomized roundingto de�ne a subgraph H. By the Cherno� bound, the number of edges in H isW +O(pW logn) with high probability. Since F has minimum cut k, Theorem 2.1says that H has minimum cut k � O(pk logn) with high probability. That is, thede�cit of H is O(pk logn).We now show how to remove this de�cit. Consider the following procedure forreducing the de�cit of H by one. Find a spanning forest of G�H, and add its edges33

to H. To see that this reduces the de�cit of H, consider any cut of H that is inde�cit. By de�nition less than k edges cross it. However, we know that at least kedges cross the corresponding cut in G (since by assumption G is k connected). Itfollows that one spanning-forest edge crosses this cut, and thus its de�cit is decreasedby one.It follows that if we perform the de�cit-reduction step O(pk log n) times, thenH will at the end have no de�cit, and will therefore be k-connected. Now notethat each de�cit-reduction step adds one forest with at most n edges to H, so thetotal number of additions is O(npk logn). Since the optimum number of edgesexceeds W � kn=2, we have that npk logn = O(Wp(log n)=k) and pW log n =O(Wp(log n)=kn). Thus the total number of edges in our solution isW+O(pW log n)+O(npk log n), which is O(W (1 +p(log n)=k)).Remark. It is not in fact necessary to perform the repeated de�cit reduction steps.A more e�cient approach is to use Nagamochi and Ibaraki's sparse certi�cate algo-rithm (discussed in Section 1.4). After deleting all the edges in H, build a sparseO(pk logn)-connectivity certi�cate C in the remaining graph. A modi�cation ofthe above argument shows that C [H is k-connected while C has O(npk logn)edges.Corollary 8.3. There is a (1 + O(fmaxplog n=f3=2min))-approximation algorithm for�nding a smallest subgraph satisfying given connectivity demands.Proof. The minimum solution has at least nfmin=2 edges. After rounding the frac-tional solution the maximum de�cit is O(fmaxp(log n)=fmin) and can therefore berepaired with n times that many edges.8.2 General Single-Edge ProblemsWe now consider more general single edge-use problems in which the demands canbe arbitrary and the edges have arbitrary costs. As before, we solve the problemby �rst rounding a fractional solution and then repairing the de�cits that arise. Wecan no longer use the de�cit reduction procedure of the k-connected subgraph case,because there is no immediate bound relating the cost of a single forest to the costof the entire solution. Instead, we use the Forest Algorithm of Goemans, Goldberg,Plotkin, Shmoys, Tardos, and Williamson (1994).The Forest Algorithm can be used to solve augmentation problems that general-ize network design problems. Namely, it attempts to �nd the minimum cost way toaugment a graph H so as to satisfy a set of demands across cuts. If the maximumde�cit in the augmentation problem is d, then the Forest algorithm �nds a solutionwith cost O(log d) times the optimum. 34

8.2.1 OversamplingSince the approximation factor of the Forest Algorithm worsens with the de�cit, we�rst show how to modify the rounding step so as to keep the de�cit small. We beginwith a variant of the Cherno� bound that we can use when we are not allowed toscale weights above 1.De�nition 8.4. Consider a random sum S = Pni=1Xi in which Xi = 1 withprobability pi and 0 otherwise. De�ne the oversampling of S by � as S(�) =Pni=1 Yi, where Yi = 1 with probability min(1; �pi) and 0 otherwise.Note that S(1) = S.Lemma 8.5. Let E[S] = �. Then Pr[S(1 + �) < (1� �)�] < e����=2.Proof. Suppose S = PXi. Write S = S1 + S2, where S1 is the sum of Xi withpi � 1=(1+�) and S2 is the sum of the remainingXi. Let �1 = E[S1] and �2 = E[S2].Then � = �1 + �2, and S(1 + �) = S1(1 + �) + S2(1 + �).Since the variables in S1 have pi � 1=(1 + �), S1(1 + �) is not random: itis simply the number of variables in S1, since each is 1 with probability one. Inparticular, S1(1+ �) is certainly at least �1. It follows that S(1+ �) < (1� �)� onlyif S2 < (1� �)�� �1 = �2 � ��.The variables in S2 have pi < 1=(1+ �) so that the corresponding oversamplingshave probabilities (1+�)pi. It follows that E[S2(1+�)] = (1+�)�2. By the standardCherno� bound, the probability that S2 < �2 � �� is at mostexp(�((1 + �)�2 � (u2 � ��))22(1 + �)�2) = exp(�(��2 + ��)22(1 + �)�2)Our weakest bound arises when the above quantity is maximized with respect to �2.It is straightforward to show that the quantity is a concave function of �2 with itsglobal maximum at �2 = ��=�. However, �2 is constrained to be at least �� (sinceotherwise �1 � (1 � �)�, immediately giving S(1 + �) � �1). We thus have twocases to consider. If � < 1, then ��=� is a valid value for �2, and the correspondingbound is exp(2���=(1 + �)). If � > 1, then the bound is maximized at the smallestpossible �2, namely �2 = ��, in which case the bound is ��(1+�)=2. Over the givenranges of �, each of these bounds is less than the bound given in the theorem.Remark. The lemma easily extends to the case where theXi take on arbitrary valuesbetween 0 and w. In this case, e���� bounds the probability that the deviationexceeds �w� rather than ��. 35

8.2.2 ApplicationA combination of the above oversampling lemma with the proof of Theorem 2.1yields the following:Corollary 8.6. Given a fractional solution f to a network design problem, if eachedge weight we is increased to min(1; (1 + �)we) and randomized rounding is per-formed, then with high probability no cut in the rounded graph will have value lessthan (1��) times its value in the original weighted graph, where � = O(log n=(�fmin)).We now combine Corollary 8.6 with the Forest Algorithm. Suppose we havefractionally solved a network design problem. Set � = 2 and apply Corollary 8.6,so that at cost twice the optimum we get a graph in which the maximum de�cit isO(fmax(logn)=fmin). Then use the Forest Algorithm (Goemans, Goldberg, Plotkin,Shmoys, Tardos, and Williamson 1994) to augment it to optimum. This yields thefollowing:Lemma 8.7. There is an O(log fmax log nfmin)) approximation algorithm for the singleedge-use network design problem.This compares favorably with the Forest Algorithm's O(log fmax) bound when-ever fmin > log n.8.3 Fixed Charge NetworksOur algorithms also apply to the �xed charge problem in which each edge has acapacity of which all or none must be purchased. In this problem, the best cur-rently known approximation ratio is a factor of fmax (Goemans, Goldberg, Plotkin,Shmoys, Tardos, and Williamson 1994). The introduction of large capacities in-creases the variances in our random sampling theorems. In particular, if we letU denote the maximum edge capacity, we have the following result based on amodi�cation of Theorem 7.1:Corollary 8.8. There is a (1+O((U log n)=fmin+p(U logn)=fmin))-approximationalgorithm for the �xed-charge network design problem with repeated edges.Proof. The Cherno� bound that we use for the randomized rounding proof applies ifall random variables have maximum value at most 1. Take the �xed charge problem,and divide each demand and edge capacity by U . Now the original theorems apply,but new minimum demand is fmin=U .Note that we can upper bound U by fmax, since any edge with capacity exceedingfmax can have its capacity reduced to fmax without a�ecting the optimum solution.36

Corollary 8.9. There is a (1+O(fmax log nfmin))-approximation algorithm for the �xedcharge network design problem with repeated edges.We also extend Theorem 2.1 as follows:Corollary 8.10. Given a fractional solution to f , if each edge weight we is in-creased to min(1; (1 + �)we) and randomized rounding is performed, then with highprobability no cut in the rounded graph will have value less than its value in theoriginal fractionally weighted graph, where � = O(U log n=(�fmin)).Corollary 8.11. There is an O(qUfmax log nfmin)-approximation algorithm for the �xed-charge single-use network design problem.Proof. Apply oversampling with � =p(Ufmax log n)=fmin.Corollary 8.12. There is an O(fmaxq log nfmin)-approximation algorithms for the �xedcharge single-use network design problem when fmin � log n.Corollary 8.13. There is an O(pk log n)-approximation algorithm for the �xed-charge k-connected subgraph problem.9 ConclusionThis work has demonstrated the e�ectiveness of a sampling for solving problemsinvolving cuts. We have shown how random sampling tends to \preserve" all cutinformation in a graph. This suggests that we might want to try to reformulate otherproblems in terms of cuts so that the random sampling methods can be applied tothem.One result of this approach has been to reduce large max-ow and min-cutproblems on undirected graphs to small max-ow and min-cut problems on di-rected graphs. Our techniques are in a sense \meta-algorithms" in that improvedcut or ow algorithms that are subsequently developed may well be accelerated byapplication of our technique. In particular, our exact algorithms' running times aredominated by the time needed to perform \cleaning up" augmenting path compu-tations; any improvement in the time to compute a sequence of augmenting pathswould translate immediately into an improvement in our algorithm's running time.We have achieved this objective for simple graphs (unweighted graphs without par-allel edges) (Karger and Levine 1998). One way to get such an improvement ongeneral graphs might be to generalize our sampling theorems to the case of directedgraphs. Unfortunately, directed graphs do not have good cut-counting bounds likethe ones we used here. 37

Our approach to cuts and ows, combining sampling with an augmentationalgorithm, is a natural one for any problem of packing disjoint feasible sets oversome universe. All that is needed for the approach to work is1. a sampling theorem, showing that a sample from half the universe has a pack-ing of about half the size, and2. an augmentation algorithm that increases the size of the packing by one.One additional domain where we have shown these two features apply is that ofmatroids. In particular, we show that the problem of packing matroid bases issusceptible to this approach (Karger 1998b).Our work studies sampling from arbitrary graphs. A huge amount of work hasgone into the study of sampling from complete graphs, yielding what are generallyknown as random graphs. Indeed, one of the very �rst results on random graphswas that their minimum cut was close its expected value (Erd�os and R�enyi 1961).Our results can be seen as generalizing those results, but (perhaps because of theirgenerality) are not as tight. Perhaps our results can be tightened by consideringspecial cases, and perhaps other results from random graphs can be extended to thestudy of sampling from arbitrary graphs.Our randomized constructions show the existence of sparse subgraphs that ac-curately approximate cut values. A natural question is whether these subgraphscan be constructed deterministically in polynomial time. In the case of completegraphs, this has been accomplished through the deterministic construction of ex-panders (Gabber and Galil 1981). Indeed, just as the expander of (Gabber andGalil 1981) has constant degree, it may be possible to deterministically construct a(1+�)-accurate skeleton with a constant minimum cut, rather than the size
(logn)minimum cut produced by the randomized construction.A related question is whether we can derandomize the randomized roundingapproach to network design problems. Raghavan (1988) uses the method of condi-tional expectations to derandomize the randomized-rounding algorithm for explic-itly speci�ed packing problems. However, this approach requires a computation foreach constraint. This is not feasible for our problem with its exponentially manyconstraints.A very general goal would be to reformulate other network problems in termsof cuts so that the sampling theorems could be applied.A Counting CutsThis section is devoted to proving a single theorem bounding the number of smallcuts in a graph. This theorem is a slightly tightened version of one that appeared38

earlier (Karger and Stein 1996).Theorem A.1 (Cut Counting). In a graph with minimum cut c, there are lessthan n2� cuts of value at most �c.We prove this theorem only for unweighted multigraphs, since clearly to everyweighted graph there corresponds an unweighted multigraph with the same cutvalues: simply replace an edge of weight w with w parallel edges. To prove thetheorem, we present an algorithm that selects a single cut from the graph, andshow that the probability that a particular cut of value �c is selected is more thann�2�. It follows that there are less than n2� such cuts.A.1 The Contraction AlgorithmThe algorithm we use is the Contraction Algorithm (Karger and Stein 1996). Thisalgorithm is based on the idea of contracting edges. An e�cient implementationis given by Karger and Stein (1996), but here we care only about the abstractalgorithm.To contract two vertices v1 and v2 we replace them by a vertex v, and let theset of edges incident on v be the union of the sets of edges incident on v1 and v2.We do not merge edges from v1 and v2 that have the same other endpoint; instead,we allow multiple instances of those edges. However, we remove self loops formedby edges originally connecting v1 to v2. Formally, we delete all edges (v1; v2), andreplace each edge (v1; w) or (v2; w) with an edge (v; w). The rest of the graphremains unchanged. We will use G=(v1; v2) to denote graph G with edge (v1; v2)contracted (by contracting an edge, we will mean contracting the two endpoints ofthe edge). Extending this de�nition, for an edge set F we will let G=F denote thegraph produced by contracting all edges in F (the order of contractions is irrelevantup to isomorphism).Note that a contraction reduces the number of graph vertices by one. We canimagine repeatedly selecting and contracting edges until every vertex has beenmerged into one of two remaining \metavertices." These metavertices de�ne acut of the original graph: each side corresponds to the vertices contained in oneof the metavertices. More formally, at any point in the algorithm, we can de�nes(a) to be the set of original vertices contracted to a current metavertex a. Initiallys(v) = v for each v 2 V , and whenever we contract (v; w) to create vertex x welet s(x) = s(v) [s(w). We say a cut (A;B) in the contracted graph correspondsto a cut (A0; B0) in G, where A0 = [a2As(a) and B0 = [b2Bs(b). Note that a cutand its corresponding cut will have the same value. When the series of contractionsterminates, yielding a graph with two metavertices a and b, we have a correspondingcut (A;B) in the original graph, where A = s(a) and B = s(b).39

Lemma A.2. A cut (A;B) is output by a contraction algorithm if and only if noedge crossing (A;B) is contracted by the algorithm.Proof. The only if direction is obvious. For the other direction, consider two verticeson opposite sides of the cut (A;B). If they end up in the same metavertex, then theremust be a path between them consisting of edges that were contracted. However,any path between them crosses (A;B), so an edge crossing cut (A;B) would havehad to be contracted. This contradicts our hypothesis.We now give a particular contraction-based algorithm, and analyze it to deter-mine the probability that a particular cut is selected. Assume initially that we aregiven a multigraph G(V;E) with n vertices and m edges. The Contraction Algo-rithm, which is described in Figure 2, repeatedly chooses an edge at random andcontracts it.Algorithm Contract(G)repeat until G has 2 verticeschoose an edge (v; w) uniformly at random from Glet G G=(v; w)return G Figure 2: The Contraction AlgorithmLemma A.3. A particular minimum cut in G is returned by the Contraction Al-gorithm with probability at least �n2��1.Proof. Fix attention on some speci�c minimum cut (A;B) with c crossing edges.We will use the term minimum cut edge to refer only to edges crossing (A;B).From Lemma A.2, we know that if we never select a minimum cut edge duringthe Contraction Algorithm, then the two vertices we end up with must de�ne theminimum cut.Observe that after each contraction, the minimum cut value in the new graphmust still be at least c. This is because every cut in the contracted graph correspondsto a cut of the same value in the original graph, and thus has value at least c.Furthermore, if we contract an edge (v; w) that does not cross (A;B), then thecut (A;B) corresponds to a cut of value c in G=(v; w); this corresponding cut is aminimum cut (of value c) in the contracted graph.40

Each time we contract an edge, we reduce the number of vertices in the graphby one. Consider the stage in which the graph has r vertices. Since the contractedgraph has a minimum cut of at least c, it must have minimum degree c, and thusat least rc=2 edges. However, only c of these edges are in the minimum cut. Thus,a randomly chosen edge is in the minimum cut with probability at most 2=r. Theprobability that we never contract a minimum cut edge through all n�2 contractionsis thus at least�1� 2n��1� 2n� 1� � � ��1� 23� = �n� 2n ��n� 3n� 1� � � ��24��13�= �n2��1:A.2 Proof of TheoremWe now extend our analysis to prove the section's main theorem. To begin with,we have the following:Corollary A.4. The number of minimum cuts in a graph is at most �n2�.Proof. In analyzing the contraction algorithm, we showed that the probability aminimum cut survives contraction to 2 vertices is at least �n2��1. Since only one cutsurvives these contractions, the survivals of the di�erent minimum cuts are disjointevents. Therefore, the probability that some minimum cut survives is equal to thesum of the probabilities that each survives. But this probability is at most one.Thus, if there are k minimum cuts, we have k�n2��1 � 1.This corollary has been proven in the past (Dinitz, Karzanov, and Lomonosov1976; Lomonosov and Polesskii 1971). This bound is tight. In a cycle on n vertices,there are �n2� minimum cuts, one for each pair of edges in the graph. Each of theseminimum cuts is produced by the Contraction Algorithm with equal probability,namely �n2��1. We now extend the analysis to approximately minimum cuts. Nosuch analysis was previously known.Lemma A.5. For � a half-integer, the probability that a particular �-minimum cutsurvives contraction to 2� vertices exceeds � n2���1.Proof. We consider the unweighted case; the extension to the weighted case goesas before. The goal is to reapply Lemma A.2. Let � be a half-integer, and c theminimum cut, and consider some cut of weight at most �c. Suppose we run the41

Contraction Algorithm. If with r vertices remaining we choose a random edge, thensince the number of edges is at least cr=2, we take an edge from a cut of weight�c with probability at most 2�=r. If we repeatedly select and contract edges untilr = 2�, then the probability that the cut survives is(1� 2�n)(1� 2�(n� 1)) � � � (1� 2�(2� + 1)) = � n2���1Remark. A cycle on n vertices again shows that this result is tight, since each setof 2� edges forms an �-minimum cut.Corollary A.6. For � a half-integer, the number of �-minimum cuts is at most22��1� n2�� < n2�.Proof. We generalize Corollary A.4. Suppose we randomly contract a graph to2� vertices. The previous lemma lower bounds the survival probability of an �-minimum cut, but we cannot yet apply the proof of Corollary A.4 because withmore than one cut still remaining the cut-survival events are not disjoint. However,suppose we now take a random partition of the 2� remaining vertices. This partitiongives us a corresponding unique cut in the original graph. There are only 22��1partitions of the 2� vertices (consider assigning a 0 or 1 to each vertex; doing thisall possible ways counts each partition twice). Thus, we pick a particular partitionwith probability 21�2�. Combined with the previous lemma, this shows that weselect a particular unique �-minimum cut with probability exceeding 21�2�� n2���1.Now continue as in Corollary A.4.Th n2� bound follows from the fact that 22��1 � (2�)!.We can also extend our results to the case where 2� is not an integer. Weuse generalized binomial coe�cients in which the upper and lower terms need notbe integers. These are discussed in Knuth (1973, Sections 1.2.5{6) (cf. Exercise1.2.6.45). There, the Gamma function is introduced to extend factorials to realnumbers such that �! = �(� � 1)! for all real � > 0. Many standard binomialidentities extend to generalized binomial coe�cients, including the facts that � n2�� <n2�=(2�)! and 22��1 � (2�)! for � � 1.Corollary A.7. For arbitrary real values � > 1, there are less than n2� �-minimumcuts.Proof. Let r = d2�e. Suppose we contract the graph until there are only r verticesremaining, and then pick one of the 2r�1 cuts of the resulting graph uniformly at42

random. The probability that a particular �-minimum cut survives contraction tor vertices is (1� 2�n)(1� 2�(n� 1)) � � � (1� 2�r + 1) = (n� 2�)!(r � 2�)! r!n!= � r2��� n2�� :It follows that the probability our cut gets picked is 21�r� r2��� n2���1. Thus thenumber of �-minimum cuts is at most 2r�1� n2��� r2���1 < � n2��.ReferencesAggarwal, A. (Ed.) (1993, May). Proceedings of the 25th ACM Symposium onTheory of Computing. ACM: ACM Press.Aggarwal, M. and N. Garg (1994, January). A scaling technique for better net-work design. See Sleator (1994), pp. 233{240.Agrawal, A., P. Klein, and R. Ravi (1995, June). When trees collide: An approx-imation algorithm for the generalized Steiner problem on networks. SIAMJournal on Computing 24 (3), 440{456. A preliminary version appeared inProceedings of the 23rd ACM Symposium on Theory of Computingpp. 134{144.Ahuja, R. K., T. L. Magnanti, and J. B. Orlin (1993). Network Flows: Theory,Algorithms, and Applications. Prentice Hall.Aumann, Y. and Y. Rabani (1998). An O(log k) approximate min-cut max-owtheorem and approximation algorithm. SIAM Journal on Computing 27 (1),291{301.Bencz�ur, A. A. and D. R. Karger (1996, May). Approximate s{t min-cuts in~O(n2) time. See Miller (1996), pp. 47{55.Cherno�, H. (1952). A measure of the asymptotic e�ciency for tests of a hypoth-esis based on the sum of observations. Annals of Mathematical Statistics 23,493{509.Clarkson, K. L. (1987). New applications of random sampling in computationalgeometry. Discrete and Computational Geometry 2, 195{222.Clarkson, K. L. (1995). Las Vegas algorithms for linear and integer programmingwhen the dimension is small. Journal of the ACM 42 (2), 488{499.43

Clarkson, K. L. and P. W. Shor (1987). Applications of random sampling incomputational geometry, II. Discrete and Computational Geometry 4 (5), 387{421.Dinitz, E. A., A. V. Karzanov, and M. V. Lomonosov (1976). On the structureof a family of minimum weighted cuts in a graph. In A. A. Fridman (Ed.),Studies in Discrete Optimization, pp. 290{306. Nauka Publishers.Edmonds, J. (1965). Minimum partition of a matroid into independents subsets.Journal of Research of the National Bureau of Standards 69, 67{72.Eppstein, D., Z. Galil, G. F. Italiano, and A. Nissenzweig (1992, October).Sparsi�cation|a technique for speeding up dynamic graph algorithms. InProceedings of the 33rd Annual Symposium on the Foundations of ComputerScience, pp. 60{69. IEEE: IEEE Computer Society Press.Erd�os, P. and A. R�enyi (1961). On the strength of connectedness of a randomgraph. Acta Mathematica Acad. Sci. Hungar. 12, 261{267.Eswaran, K. P. and R. E. Tarjan (1976). Augmentation problems. SIAM Journalon Computing 5, 653{665.Feller, W. (1968). An Introduction to Probability Theory and its Applications(third ed.), Volume 1. John Wiley & Sons.Floyd, R. W. and R. L. Rivest (1975). Expected time bounds for selection. Com-munications of the ACM 18 (3), 165{172.Ford, Jr., L. R. and D. R. Fulkerson (1962). Flows in Networks. Princeton, NewJersey: Princeton University Press.Frank, A. (1990). Packing paths, circuits, and cuts|a survey. In B. Korte,L. Lov�asz, H. J. Pr�omel, and A. Schrijver (Eds.), Paths, Flows, and VLSILayout, Volume 9 of Algorithms and Combinatorics, Chapter 4. Heidelberg:Springer-Verlag.Gabber, O. and Z. Galil (1981). Explicit construction of linear-sized supercon-centrators. Journal of Computer and System Sciences 22, 407{420.Gabow, H. N. (1991, October). Applications of a poset representation to edgeconnectivity and graph rigidity. In Proceedings of the 32nd Annual Symposiumon the Foundations of Computer Science, pp. 812{821. IEEE: IEEE ComputerSociety Press.Gabow, H. N. (1993, November). A framework for cost-scaling algorithms forsubmodular ow problems. In L. Guibas (Ed.), Proceedings of the 34th AnnualSymposium on the Foundations of Computer Science, pp. 449{458. IEEE:IEEE Computer Society Press. 44

Gabow, H. N. (1995, April). A matroid approach to �nding edge connectivityand packing arborescences. Journal of Computer and System Sciences 50 (2),259{273. A preliminary version appeared in Proceedings of the 23rd ACMSymposium on Theory of Computing.Gabow, H. N., M. X. Goemans, and D. P. Williamson (1993). An e�cient approx-imation algorithm for the survivable network design problem. In Proceedingsof the Third MPS Conference on Integer Programming and CombinatorialOptimization, pp. 57{74.Goemans, M. X. and D. J. Bertsimas (1993). Survivable networks, linear pro-gramming relaxations and the parsimonious property. Mathematical Program-ming 60, 145{166.Goemans, M. X., A. Goldberg, S. Plotkin, D. Shmoys, �E. Tardos, andD. Williamson (1994, January). Improved approximation algorithms for net-work design problems. See Sleator (1994), pp. 223{232.Gr�otschel, M., L. Lov�asz, and A. Schrijver (1988). Geometric Algorithms andCombinatorial Optimization, Volume 2 of Algorithms and Combinatorics.Springer-Verlag.Karger, D. R. (1994a, May). Random sampling in cut, ow, and network designproblems. In Proceedings of the 26th ACM Symposium on Theory of Comput-ing, pp. 648{657. ACM: ACM Press. Mathematics of Operations Research,To appear.Karger, D. R. (1994b). Random Sampling in Graph Optimiza-tion Problems. Ph. D. thesis, Stanford University, Stanford,CA 94305. Contact at karger@lcs.mit.edu. Available fromhttp://theory.lcs.mit.edu/~karger.Karger, D. R. (1994c, January). Using randomized sparsi�cation to approximateminimum cuts. See Sleator (1994), pp. 424{432.Karger, D. R. (1996, May). Minimum cuts in near-linear time. See Miller (1996),pp. 56{63.Karger, D. R. (1998a, January). Better random sampling algorithms for ows inundirected graphs. In H. Karlo� (Ed.), Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 490{499. ACM-SIAM.Karger, D. R. (1998b, June). Random sampling and greedy sparsi�cation in ma-troid optimization problems.Mathematical Programmming B 82 (1{2), 41{81.A preliminary version appeared in Proceedings of the 34th Annual Symposiumon the Foundations of Computer Science.45

Karger, D. R., P. N. Klein, and R. E. Tarjan (1995). A randomized linear-timealgorithm to �nd minimum spanning trees. Journal of the ACM 42 (2), 321{328.Karger, D. R. and M. Levine (1998, May). Finding maximum ows in simpleundirected graphs seems faster than bipartite matching. In Proceedings of the29th ACM Symposium on Theory of Computing, pp. 69{78. ACM: ACM Press.Karger, D. R. and C. Stein (1993, May). An ~O(n2) algorithm for minimum cuts.See Aggarwal (1993), pp. 757{765.Karger, D. R. and C. Stein (1996, July). A new approach to the minimum cutproblem. Journal of the ACM 43 (4), 601{640. Preliminary portions appearedin SODA 1992 and STOC 1993.Khuller, S. and B. Raghavachari (1995, May). Improved approximation algo-rithms for uniform connectivity problems. In Proceedings of the 27th ACMSymposium on Theory of Computing, pp. 1{10. ACM: ACM Press.Khuller, S. and B. Schieber (1991, April). E�cient parallel algorithms for test-ing connectivity and �nding disjoint s-t paths in graphs. SIAM Journal onComputing 20 (2), 352{375.Khuller, S. and U. Vishkin (1994, March). Biconnectivity approximations andgraph carvings. Journal of the ACM 41 (2), 214{235. A preliminary versionappeared in Proceedings of the 24th ACM Symposium on Theory of Comput-ing.Klein, P., S. A. Plotkin, C. Stein, and �E. Tardos (1994). Faster approximationalgorithms for the unit capacity concurrent ow problem with applications torouting and �nding sparse cuts. SIAM Journal on Computing 23 (3), 466{487.A preliminary version appeared in Proceedings of the 22nd ACM Symposiumon Theory of Computing.Knuth, D. E. (1973). Fundamental Algorithms (2nd ed.), Volume 1 of The Art ofComputer Programming. Addison-Wesley Publishing Company.Knuth, D. E. and A. C. Yao (1976). The complexity of nonuniform random num-ber generation. In J. F. Traub (Ed.), Algorithms and Complexity: New Direc-tions and Recent Results, pp. 357{428. Academic Press.Leighton, T. and S. Rao (1988, October). An approximate max-ow min-cuttheorem for uniform multicommodity ow problems with applications to ap-proximation algorithms. In Proceedings of the 29th Annual Symposium on theFoundations of Computer Science, pp. 422{431. IEEE: IEEE Computer Soci-ety Press. 46

Linial, N., E. London, and Y. Rabinovich (1995). The geometry of graphs andsome of its algorithmic applications. Combinatorica 15 (2), 215{246. A pre-liminary version appeared in Proceedings of the 35th Annual Symposium onthe Foundations of Computer Science.Lomonosov, M. V. and V. P. Polesskii (1971). Lower bound of network reliability.Problems of Information Transmission 7, 118{123.Matula, D. W. (1993, January). A linear time 2 + � approximation algorithm foredge connectivity. In Proceedings of the 4th Annual ACM-SIAM Symposiumon Discrete Algorithms, pp. 500{504. ACM-SIAM.Miller, G. (Ed.) (1996, May). Proceedings of the 28th ACM Symposium on Theoryof Computing. ACM: ACM Press.Motwani, R. and P. Raghavan (1995). Randomized Algorithms. New York, NY:Cambridge University Press.Nagamochi, H. and T. Ibaraki (1992a, February). Computing edge connectivityin multigraphs and capacitated graphs. SIAM Journal on Discrete Mathemat-ics 5 (1), 54{66.Nagamochi, H. and T. Ibaraki (1992b). Linear time algorithms for �nding k-edge connected and k-node connected spanning subgraphs. Algorithmica 7,583{596.Nash-Williams, C. S. J. A. (1969). Well-balanced orientations of �nite graphsand unobtrusive odd-vertex-pairings. In W. T. Tutte (Ed.), Recent Progressin Combinatorics, pp. 133{149. Academic Press.Raghavan, P. (1988, October). Probabilistic construction of deterministic algo-rithms: Approximate packing integer programs. Journal of Computer andSystem Sciences 37 (2), 130{43.Raghavan, P. and C. D. Thompson (1987). Randomized rounding: a techniquefor provably good algorithms and algorithmic proofs. Combinatorica 7 (4),365{374.Sleator, D. D. (Ed.) (1994, January). Proceedings of the 5th Annual ACM-SIAMSymposium on Discrete Algorithms. ACM-SIAM.Tarjan, R. E. (1983). Data Structures and Network Algorithms, Volume 44 ofCBMS-NSF Regional Conference Series in Applied Mathematics. SIAM.Williamson, D., M. X. Goemans, M. Mihail, and V. V. Vazirani (1993, May).A primal-dual approximation algorithm for generalized Steiner problems. SeeAggarwal (1993), pp. 708{717. 47

Winter, P. (1987). Generalized Steiner problem in outerplanar networks. Net-works, 129{167.

48

