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Abstract

We use random sampling as a tool for solving undirected graph problems.
We show that the sparse graph, or skeleton, that arises when we randomly
sample a graph’s edges will accurately approximate the value of all cuts in
the original graph with high probability. This makes sampling effective for
problems involving cuts in graphs.

We present fast randomized (Monte Carlo and Las Vegas) algorithms for
approximating and exactly finding minimum cuts and maximum flows in un-
weighted, undirected graphs. Our cut-approximation algorithms extend un-
changed to weighted graphs while our weighted-graph flow algorithms are some-
what slower. Our approach gives a general paradigm with potential applications
to any packing problem. It has since been used in a near-linear time algorithm
for finding minimum cuts, as well as faster cut and flow algorithms.

Our sampling theorems also yield faster algorithms for several other cut-
based problems, including approximating the best balanced cut of a graph,
finding a k-connected orientation of a 2k-connected graph, and finding integral
multicommodity flows in graphs with a great deal of excess capacity. Our
methods also improve the efficiency of some parallel cut and flow algorithms.

Our methods also apply to the network design problem, where we wish to
build a network satisfying certain connectivity requirements between vertices.
We can purchase edges of various costs and wish to satisfy the requirements at
minimum total cost. Since our sampling theorems apply even when the sam-
pling probabilities are different for different edges, we can apply randomized
rounding to solve network design problems. This gives approximation algo-
rithms that guarantee much better approximations than previous algorithms
whenever the minimum connectivity requirement is large. As a particular ex-
ample, we improve the best approximation bound for the minimum k-connected

subgraph problem from 1.85 to 1 + O(y/(logn)/k).
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1 Introduction

The representative random sample is a central concept of statistics. It is often
possible to gather a great deal of information about a large population by examining
a small sample randomly drawn from it. This approach has obvious advantages in
reducing the investigator’s work, both in gathering and in analyzing the data.

We apply the concept of a representative sample to combinatorial optimization
problems on graphs. Given an optimization problem, it may be possible to gen-
erate a small representative subproblem by random sampling. Intuitively, such a
subproblem should form a microcosm of the larger problem. We can examine the
subproblem and use it to glean information about the original problem. Since the
subproblem is small, we can spend proportionately more time analyzing it than we
would spend examining the original problem. Sometime, an optimal solution to the
subproblem will be a nearly optimal solution to the problem as a whole. In some
situations, such an approximation might be sufficient. In other situations, it may
be easy to refine this good solution into a truly optimal solution.

We show this approach to be effective for problems involving cuts in graphs. A
cut in an undirected graph is a partition of the graph’s vertices into two nonempty
sets. The value of the cut is the number, or for a weighted graph the total weight,
of edges with one endpoint in each set. Cuts play an important role in determining
the solutions to many graph problems. Most obviously, the connectivity of a graph
is the minimum value of a cut in the graph. Similarly, the s-{ maximum flow is de-
termined by the smallest of all cuts that separate s and t—that is, the s-f minimum
cut. In the N'P-complete network design problem, the goal is to build a graph that
satisfies certain specified connectivity requirements by containing no small cuts. A
special case is to find a minimum size (number of edges) k-connected subgraph of
a k-connected graph. Other problems to which cuts are relevant include finding
a minimum balanced cut (in which both sides of the cut are “large”) and finding
an orientation (assignment of directions) of the edges of an undirected graph that
makes it k-connected as a directed graph. Cuts also play an important role in multi-
commodity flow problems, though the connection is not as tight as for the standard
max-flow problem (Leighton and Rao 1988; Linial, London, and Rabinovich 1995;
Aumann and Rabani 1998).

Random sampling helps us solve cut-dependent undirected graph problems. We
define and use a graph skeleton. Given a graph, a skeleton is constructed on the
same set of vertices by including a small random sample of the graph’s edges. Our
main result is that (with high probability) a skeleton accurately approximates all
cut values in the original graph. This means random subgraphs can often be used
as substitutes for the original graphs in cut and flow problems. Since the subgraphs
are small, improved time bounds result.



In the most obvious application, by computing minimum cuts and maximum
flows in the skeleton, we get fast algorithms for approximating global minimum
cuts, s-t minimum cuts and maximum flows. For example, we give a near-linear-
time algorithm for approximating the global minimum cut of a graph to within
any constant factor with high probability. Furthermore, a randomized divide and
conquer technique finds exact solutions more quickly than before. For example,
we improve the time to find a minimum cut of value ¢ in an m-edge unweighted
(that is, with all edges having the same, unit, capacity) graph from O(mc) (Gabow
1995) to O(m+/c) (The notation O(f) denotes O(f polylog f)). This in turn yields
faster algorithms for constructing the cactus representation of minimum cuts in a
graph and for optimally augmenting graph connectivity. We improve the time to
find a maximum flow of value v from O(mwv) to O(mwv/+/c). We improve the total
work done by some parallel cut and flow algorithms. We also give applications to
balanced cuts and orientations and to integral multicommodity flows.

While this work can stand independently, perhaps its greater value is in proving
results on sampling that have since found several applications. The major improve-
ment has been to eliminate the dependence on the minimum cut ¢ appearing in
this paper’s results. Benczir and Karger (1996) extend the sampling construc-
tion to weighted graphs, showing how to approximate s-{ minimum cuts with high
probability in O(n?) time. This author used sampling in an algorithm to find an
ezact minimum cut in any (weighted or unweighted) undirected graph with high
probability in O(m) time (Karger 1996). More recently, this author gave a faster,
sampling-based algorithm that finds a maximum flow of value v in O(y/mnw) time
with high probability (Karger 1998a). Karger and Levine (1998) gave an even faster
O(nv®/*)-time algorithm for simple graphs. All of these new results rely directly on
this paper’s sampling theorems and algorithms.

Our approach to maximum flows and minimum cuts exemplifies a natural random-
sampling approach to packing problems in which the goal is to find a maximum col-
lection of feasible subsets of some input universe. In the s-t maximum flow problem
the universe is the graph’s edges and the feasible sets are s-¢ paths. A different (tree-
) packing problem corresponds to global minimum cuts. In a different paper (Karger
1998b), we show that the paradigm also applies to the problem of packing bases in
a matroid.

Our approach also applies to certain covering problems. From random sampling,
it is a small step to show that randomized rounding (Raghavan and Thompson 1987)
can be effectively applied to graphs with fractional edge weights, yielding integrally
weighted graphs with roughly the same cut values. This makes randomized round-
ing a useful tool in network design problems. In these NP-complete problems,
the goal is to construct a minimum-cost network satisfying certain connectivity de-
mands (for example, the Steiner tree problem asks for the minimum cost subgraph



connecting a certain set of vertices). For the version where edges can be reused,
we give a polynomial time approximation algorithm with an approximation bound
of 14+ O(+/(logn)/ fmin), where fuin is the connectivity (minimum cut) of the op-
timum solution (and thus at least the minimum connectivity demand between two
vertices). Previous approximation algorithms had bounds depending on the maz-
imum connectivity demands fax, the best being O(log fiax) for a large class of
problems (Agrawal, Klein, and Ravi 1995) . We get a 1 + O(1/vk) bound for the
minimum k-connected subgraph problem (where edges cannot be reused, all con-
nectivity demands are k, and edge costs are 1 or infinity). For sufficiently large k
this improves on a previous approximation ratio of 1.85 (Khuller and Raghavachari
1995). We also improve bounds for various other single-edge-use problems.

All of our techniques apply only to undirected graphs, as cuts in directed graphs
do not appear to have the same predictable behavior under random sampling.

Preliminary versions of this work appeared in conference proceedings (Karger
1994a; Karger 1994c). A more extensive treatment is provided in the author’s
dissertation (Karger 1994b).

The remainder of this introduction includes a more detailed description of our
results as well as a comparison to previous and subsequent work, followed by some
definitions. Section 2 then presents our main theorem on cuts in sampled graphs.
The paper then splits into two parts that can be read independently. In the first
part, we show how to accelerate algorithms for computing s-t maximum flows and
minimum cuts (Section 3) and global minimum cuts (Section 4) in unweighted
graphs, with extensions to weighted graphs (Section 5). Section 6 describes appli-
cations to other cut problems. The second part of the paper discusses applications
of the sampling theorem and randomized rounding to network design problems. In
Section 7, we lay the groundwork and address the version where edges can be reused.
In Section 8 we discuss the harder case in which edges can only be used once.

1.1 Definitions

We make the following definitions. Consider a statement that refers to a variable
n. We say that the statement holds with high probability (w.h.p.) in n if for any
constant d, there is a setting of constants in the statement (typically hidden by
O-notation) such that the probability the statement fails to hold is O(n~%).

Our work deals with randomized algorithms. Our typical model is that the
algorithm has a source of “random bits”—variables that are mutually independent
and take on values 0 or 1 with probability 1/2 each. Extracting one random bit from
the source is assumed to take constant time. If our algorithms use more complex
operations, such as flipping biased coins or generating samples from more complex
distributions, we take into account the time needed to simulate these operations



in our unbiased-bit model. Event probabilities are taken over the sample space
of random bit strings produced by the random bit generator. We say an event
regarding the algorithm occurs with high probability (w.h.p.) if it occurs with high
probability in the problem size (that is, with probability at least 1—n~¢ on problems
of size n) and with low probability if the complementary event occurs with high
probability.

The random choices that an algorithm makes can affect both its running time
and its correctness. An algorithm that has a fixed (deterministic) running time but
has a low probability of giving an incorrect answer is called Monte Carlo (MC). If
the running time of the algorithmn is a random variable but the correct answer is
given with certainty, then the algorithm is said to be Las Vegas (LV). Depending on
the circumstances, one type of algorithm may be better than the other. However,
a Las Vegas algorithm is “stronger” in the following sense.

A Las Vegas algorithm can be made Monte Carlo by having it terminate with
an arbitrary wrong answer if it exceeds the time bound f(n). Since the Las Vegas
algorithm is unlikely to exceed its time bound, the converted algorithm is unlikely to
give the wrong answer. On the other hand, there is no universal method for making
a Monte Carlo algorithm into a Las Vegas one, and indeed some of the algorithms
we present are Monte Carlo with no Las Vegas version apparent. The fundamental
problem is that sometimes it is impossible to check whether an algorithm has given
a correct answer. However, the failure probability of a Monte Carlo optimization
algorithm can be made arbitrarily small by repeating it several times and taking
the best answer; we shall see several examples of this below. In particular, we can
reduce the failure probability so far that other unavoidable events (such as a power
failure) are more likely than an incorrect answer.

_ Finally, we remark that all logarithms in the paper are base 2 and recall that
O(f) denotes O(f polylogn).

1.2 Cuts and Flows

In the first part of this paper we present algorithms for approximating and for
exactly finding s-t and global minimum cuts and maximum flows. To this end, we
make the following definition:

Definition 1.1. An a-minimum cut is a cut whose value is at most « times that
of the (global) minimum cut. An a-minimum s-t cut is defined similarly. An
a-mazximum s-t flow is an s-t flow whose value is at least « times the optimum.

We show that if we pick a small random sample of a graph’s edges, then we
get a graph whose minimum cuts correspond (under the same vertex partition) to
(14-€)-minimum cuts of the original graph. Therefore, we can approximate minimum



cuts by computing minimum cuts in a sampled graph. These cuts are found using
augmenting path algorithms whose running times increase with both the size of the
graph and the value of the output cut. Both of these quantities are smaller in the
sampled graph, so we get a speedup for two different reasons. We extend these ideas
to find approximately maximum flows by randomly partitioning the graph’s edges
and finding flows separately in each resulting edge group. Finally, we find exact
flows by using augmenting path algorithms to “repair” the errors introduced by the
approximation algorithms. Since the error is small, the repair takes little time.

Throughout this paper, we focus attention on an n vertex, m edge graph with
minimum cut ¢ and s-¢ minimum cut v. We give randomized Monte Carlo (MC) and
Las Vegas (LV) algorithms to find the following objects in unweighted, undirected
graphs:

e A global minimum cut in O(m+/c) time (LV),
e A (14 ¢)-minimum cut in O(m + n/e*) time (MC) or O(m/e) time (LV),
e An s-t maximum flow in O(mwv//c) time (LV),

e A (1 + €)-minimum s-¢ cut in O(m + n(v/c)2e=3) = O(mwv/e3c?) time (MC)
or O(mv/ec) time (LV),

e A (1 —¢)-maximum s-t flow in O(mwv/ec) time (LV).

Our cut approximation algorithms extend to weighted graphs with roughly the
same time bounds. The flow approximation algorithms and exact algorithms use a
“scaling” technique that, for a given maximum edge weight U, increases the time
bounds of the flow algorithms by a factor of VU rather than the naive factor of U.

Our approximation algorithms are in fact meta-algorithms: for example, given
any algorithm to find an s-t minimum cut in time 7'(m,n,v), we can approximate
the cut in time T'(m/c,n,v/c). Previously, the best time bound for computing
maximum flows in unweighted graphs was O(m - min(v, n?/3,\/m)), achieved using
blocking flows (cf. Tarjan (1983, Ahuja, Magnanti, and Orlin (1993)). In the unit
graphs that arise in bipartite matching problems, a running time of O(my/n) is
known. Our exact algorithm improves on these bounds whenever v//c is small, and
in particular when c is large. We are aware of no previous work on approximating
s-t minimum cuts or maximum flows, although blocking flows can be used to achieve
a certain large absolute error bound.

This work relates to several previous algorithms for finding minimum cuts. The
Contraction Algorithm (Karger and Stein 1993) runs in O(n? log® n) time on undi-
rected (weighted or unweighted) graphs. Gabow’s Round Robin Algorithm (Gabow
1995) runs in O(mclog(n?/m)) time on unweighted (directed or undirected) graphs.



Matula (1993) gave a deterministic linear-time algorithm for finding a (2 + ¢)-
minimum cut in unweighted, undirected graphs. It is easily extended to run in
near-linear time on weighted graphs (Karger 1994b).

As mentioned above, since this work appeared, Benczir and Karger (1996) have
given an O(n?) time algorithm for approximating s-t minimum cuts, Karger (1996)
has given an O(m) time algorithm for finding an exact minimum cut, and Karger
and Levine (1998) have given an O(nv®/*)-time algorithm for finding a flow of value

v, all regardless of c.

1.3 Network Design

In the second part of our paper we discuss the network design problem. We start
with a set of vertices and “purchase” various edges in order to build a graph sat-
isfying certain connectivity demands between the vertices. Each edge has an as-
sociated cost, and our goal is to meet the demands at minimum total cost. The
minimum spanning tree problem is a special case where the “demand” is that all
vertices be connected. Network design also covers many other classic problems,
some N P-complete, including perfect matching, minimum cost flow, Steiner tree,
and minimum T-join. It also captures the minimum cost k-connected subgraph prob-
lem, where the goal is to build a minimum cost graph with minimum cut k. The
minimum cost 1-connected subgraph is just the minimum spanning tree, but for
larger values of k the problem is N'P-complete even when all edge costs are 1 or
infinity (Eswaran and Tarjan 1976).

Agrawal, Klein, and Ravi (1995) studied a special case of network design called
the generalized Steiner problem, first formulated by Krarup (see Winter (1987)).
In this version, the demands are specified by giving a minimum connectivity d;;
that the output graph must satisfy between each pair of vertices 7 and j (setting all
d;j = k gives the minimum cost k-connected subgraph problem). Assuming edges
can be used repeatedly, they gave an O(log fmax)-approximation algorithm, where
Jmax is the maximum demand across any cut (i.e. maxd;;). This extended previous
work (Goemans and Bertsimas 1993) on the special case where d;; = min(d;, d;) for
given “connectivity types” d;. Aggarwal and Garg (1994) gave an algorithm with
performance ratio O(log k), where k£ is the number of sites with nonzero connectivity
demands.

A pair of papers (Williamson, Goemans, Mihail, and Vazirani 1993; Goemans,
Goldberg, Plotkin, Shmoys, Tardos, and Williamson 1994) extended the O(log fiax)
bound of Agrawal, Klein, and Ravi (1995) to the harder case where edges can be used
only once, and extended the approximation technique to a larger class of network
design problems. They also noted that for a wide range of problems (including all
those just mentioned) a fractional solution can be found in polynomial time by using



the ellipsoid algorithm.

Our graph skeleton construction can sample edges with different probabilities.
This lets us apply Raghavan and Thompson’s(1987) randomized rounding technique
to the fractional solutions and get good approximation ratios, despite the fact that
the rounding must simultaneously satisfy exponentially many constraints. Round-
ing a fractional solution gives an integral one whose cuts are all approximately equal
to their fractional values (which were constrained to exceed the corresponding de-
mands). The only complication is in the possibility that the rounded values might
be slightly below the demands. When edges can be reused, this is easy: we simply
increase each fractional weight slightly before rounding. This yields an approxima-
tion algorithm with a ratio of 1+ O(y/(logn)/ fmin+ (log n)/ fmin) for arbitrary edge
costs, where fi,i, is the minimum demand across a cut.

When edges cannot be reused, increasing the fractional weights may not be pos-
sible. However, some more complicated techniques can often be applied instead. For
the minimum k-connected subgraph problem with £ > logn, we give an approxi-
mation algorithm with performance ratio 1 + O(y/(logn)/k). For any k > logn,
this improves on the previous best known approximation factor of 1.85 (Khuller
and Raghavachari 1995). For general network design problems, we extend the

Williamson et al. bound of O(log fmax) to O <log (fmaxl;m%».

1.4 Related Work

Random sampling is a powerful general tool in algorithm design. It appears in
a fast and elegant algorithm for finding the median of an ordered set (Floyd and
Rivest 1975). It has many applications in computational geometry (Clarkson 1987;
Clarkson and Shor 1987) and in particular in fixed-dimension linear and integer pro-
gramming (Clarkson 1995). Random sampling drives the first linear-time minimum
spanning tree algorithm (Karger, Klein, and Tarjan 1995). This author (Karger
1998b) shows how it can speed up algorithms for matroid optimization and for
packing matroid bases.

Skeletons are conceptually related to sparse graph certificates. Certificates apply
to any monotone increasing property of graphs—one that holds for G if it holds for
some subgraph of G. Given such a property, a sparse certificate for G is a sparse
subgraph that has the property, proving that G has it as well. The advantage is
that since the certificate is sparse, the property can be verified more quickly. For
example, sparsification techniques improve the running times of dynamic algorithms
for numerous graph problems such as connectivity, bipartitioning, and and minimum
spanning trees (Eppstein, Galil, Italiano, and Nissenzweig 1992). The skeleton is a
kind of sparse approzimate certificate.



A sparse certificate particularly relevant to this paper is the sparse k-connectivity
certificate. For any graph, a sparse k-connectivity certificate is a kn-edge subgraph
of G such that all cuts of value at most £ in G' have the same value in the subgraph.
This differs from our skeleton in that cuts of value less than k have their values
preserved exactly, but cuts of greater value are not preserved at all. Nagamochi
and Ibaraki (1992b) give an algorithm that takes a graph and a parameter k£ and
returns a sparse k-connectivity certificate. It runs in O(m) time on unweighted
graphs. In weighted graphs, where the resulting certificate has total weight kn
and preserves cuts of value up to k, the running time increases to O(m + nlogn)
(Nagamochi and Ibaraki 1992a).

If we are looking for cuts or flows of value less than k, we can find them in
the certificate, taking less time since the certificate has fewer edges. For example a
sparse certificate can be constructed before Gabow’s (1995) minimum cut algorithm
is executed; this improves the algorithm’s running time from O(mc) to O(m+nc®/?).
Like Gabow’s, all of our cut and flow algorithms can use this preprocessing step. As a
result, mn can be replaced by nc in all the bounds for our min-cut algorithms and min-
cut approximation algorithms (since if we find a 2¢n-connectivity certificate, it will
have the same minimum cuts and approximate minimum cuts as the original graph).
Similarly, m can be replaced by nwv in all of our s-¢ cut and flow algorithms since a
v-certificate preserves all flows of value v. However, it clarifies the presentation to
keep m in the time bounds and leave the obvious substitution to the reader.

2 Randomly Sampling Graph Edges

Our algorithms are all based upon the following model of random sampling in
graphs. We are given an unweighted graph G with a sampling probability p. for
each edge e, and we construct a random subgraph, or skeleton, on the same vertices
by placing each edge e in the skeleton independently with probability p.. Let G
denote the weighted graph with the vertices and edges of G and with edge weight
pe assigned to edge e, and let ¢ be the minimum cut (by weight) of G. Note that
G is not the skeleton (a random object), but is rather an “expected value” of the
skeleton, since the value of a cut in G is the expected value of the corresponding cut
in the skeleton. The quantity ¢ is the minimum expected value of any cut, though
not necessarily the expected value of the minimum cut. Our main theorem says
that so long as ¢ is sufficiently large, every cut in the skeleton takes on roughly its
expected value.

Theorem 2.1. Let € = /3(d+2)(Inn)/é. If e < 1 then, with probability 1 —
O(1/n%), every cut in the skeleton of G has value between 1 — ¢ and 1+ € times its
expected value.



To see the tightness of this theorem, note that if € = /3(d)(Inn)/é then the
Chernoff bound (below) only gives a 1/n¢ bound on the probability that one par-
ticular minimum cut diverges by € from its expected value. By changing d to d + 2,
we extend from the minimum cut to all cuts. To prove this theorem, we require two
lemmas.

Lemma 2.2 (Karger and Stein (1996)). In an undirected graph, the number of
a-minimum cuts is less than n?®.

Proof. A proof appears in the appendix. It is a minor variant of one that appeared
previously (Karger and Stein 1996). A quite different proof has also been devel-
oped (Karger 1996). O

Lemma 2.3 (Chernoff (1952), cf. Motwani and Raghavan (1995)). Let X
be a sum of independent Bernoulli (that is, 0/1) random wvariables with success
probabilities p1, ... ,pp and expected value p =Y p;. Then for e <1

Pr[| X —p| >eu] < 2e € 1/3

Lemma 2.2 applied to G states that the number of cuts with expected value
within an « factor of the minimum less that ¢ increases exponentially with . On
the other hand, Lemma 2.3 says that the probability that one such cut diverges too
far from its expected value decreases exponentially with «. Combining these two
lemmas and balancing the exponential rates proves the theorem. There is a simple
generalization to the case € > 1 that we omit since it will not be used in the paper.

Proof of Theorem 2.1. Let » = 2" — 2 be the number of cuts in the graph,
and let c¢1,...,c. be the expected values of the r cuts in the skeleton listed in
nondecreasing order so that ¢ = ¢; < ¢g,--- < ¢,. Let px be the probability that
the k™ cut diverges by more than e from its expected value. Then the probability
that some cut diverges by more than e is at most ) | pg, which we proceed to bound
from above.

Note that the (sampled) value of a cut is a sum of Bernoulli variables, so the
Chernoff bound says that p; < e~<*cr/3. Note that we have arranged that e=€’e/3 =
n~(@+2) We now proceed in two steps. First, consider the n? smallest cuts. Each
of them has ¢, > ¢ and thus py, < 2n~(42) 50 that

3 pe < ()20~ @) = 270,

k<n2

Next, consider the remaining larger cuts. According to Lemma 2.2, there are less
than n?® cuts of expected value less than a¢. Since we have numbered the cuts in
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increasing order, this means that c¢,2« > «é. In other words, writing k = n?®,

and thus

It follows that

2.1 Constructing p-Skeletons

In the first part of this paper, we will generally fix some value p and set p, = p for
all e. We call the resulting sample a p-skeleton of G and denote it G(p). To avoid
making exceptions for a special case let us define G(p) = G for p > 1. We have the
following immediate corollary to our sampling theorem.

Corollary 2.4. Let G be any graph with minimum cut ¢ and let p = 3(d+2)(Inn)/e%c.
Then the probability that the value of some cut in G(p) has value more than (1 + €)
or less than (1 — €) times its expected value is O(n=?%).

Proof. Note that the minimum expected cut is ¢ = pc and apply Theorem 2.1. [
Lemma 2.5. A p-skeleton of an unweighted graph can be constructed in O(m) time.

Proof. To generate a skeleton we can flip an appropriately biased coin for each edge.
In some models of computation, this is treated as a unit cost operation. If we want
to be stricter, we can use the weaker model in which only an unbiased random bit
can be generated in unit time. This would most obviously imply an O(mlog1/p)
time bound for generating a skeleton. However, even in this model, it is possible
to perform the m biased coin flips in O(m) time with high probability (Knuth and
Yao 1976), cf. Karger (1994b). O
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2.2 Determining the Right p

Our approximation algorithms are based upon constructing p-skeletons. In these
algorithms, given a desired approximation bound €, we will want to sample with the
corresponding p = O((Inn)/(e?c)) of Corollary 2.4 in order to ensure that in the
skeleton no cut diverges in value by more than € times its expectation. This would
appear to require knowledge of ¢. However, it is sufficient to have a constant-factor
underestimate ¢’ for the minimum cut. If we use this underestimate to determine a
corresponding sampling probability p’ = 3(d+2)(Inn)/e?c/, then we know that p’ is
larger than the correct p, so that e remains an upper bound on the likely deviation
in cut values. At the same time, since p’ exceeds the correct p by only a constant
factor, the expected number of edges in our sample will be of the same order as the
number of edges using the correct p. These two properties are sufficient to guarantee
the correctness and time bounds of our algorithms.

One way to get this constant factor approximation is to use Matula’s (1993)
linear-time min-cut approximation algorithm to find a 3-approximation to the min-
imum cut. Another approach is to initially guess a known upper bound on ¢ (say
¢ = n in unweighted graphs) and then repeatedly halve the value of the guess
until we confirm that our approximation algorithms have run correctly. Since our
algorithm’s running times are proportional to the sample size, and thus inversely
proportional to our guess ¢, this repeated halving will increase the running time of
our algorithms by only a constant factor.

Thus, we will assume for the rest of this paper that the correct p for a given € is
known to us, so that given ¢ we can construct a corresponding p-skeleton in linear
time.

3 s-t Min-Cuts and Max-Flows

We now show how the skeleton approach can be applied to minimum cuts and
maximum flows. In unweighted graphs, the s-t mazimum flow problem is to find a
maximum set, or packing, of edge-disjoint s-t paths. It is known (Ford and Fulkerson
1962) that the value of this flow is equal to the value of the minimum s-¢ cut. In
fact, the only known algorithms for finding an s-t minimum cut simply identify a
cut that is saturated by an s-t maximum flow.

In unweighted graphs, a classic algorithm for finding such a maximum flow is the
augmenting path algorithm (cf. Tarjan (1983, Ahuja, Magnanti, and Orlin (1993)).
Given a graph and an s-t flow of value f, a linear-time search of the so-called residual
graph will either show how to augment the flow to one of value f 41 or prove that f
is the value of the maximum flow. This algorithm can be used to find a maximum
flow of value v in O(mwv) time by finding v augmenting paths. We now show how
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random sampling can be used to speed up such augmenting path algorithms. We
have the following immediate extension of Corollary 2.4:

Theorem 3.1. Let G be any graph with minimum cut ¢ and let p = O((Inn)/e%c)
as in Corollary 2.4. Suppose the s-t minimum cut of G has value v. Then with high
probability, the s-t minimum cut in G(p) has value between (1 —€)pv and (1 + €)pv,
and the minimum cut has value between (1 — €)pc and (1 + €)pc.

Corollary 3.2. Assuming € < 1/2, the s-t min-cut in G(p) corresponds to a (1 +
4€)-minimum s-t cut in G with high probability.

Proof. Assuming that Theorem 3.1 holds, the minimum cut in G is sampled to a
cut of value at most (1 + €)c in G(p). So G(p) has minimum cut no larger. And
(again by the Theorem 3.1) this minimum cut corresponds to a cut of value at most
(14+€)c/(1 —€) < (14 4€)c when e < 1/2. O

If we use augmenting paths to find maximum flows in a skeleton, we find them
faster than in the original graph for two reasons: the sampled graph has fewer edges,
and the value of the maximum flow is smaller. The maximum flow in the skeleton
reveals an s-t minimum cut in the skeleton, which corresponds to a near-minimum
s-t cut of the original graph. An extension of this idea lets us find near-maximum
flows: we randomly partition the graph’s edges into many groups (each a skeleton),
find maximum flows in each group, and then merge the skeleton flows into a flow
in the original graph. Furthermore, once we have an approximately maximum
flow, we can turn it into a maximum flow with a small number of augmenting
path computations. This leads to an algorithm called DAUG that finds a maximum
flow in O(mwv+/(logn)/c) time. We lead into DAUG with some more straightforward
algorithms.

3.1 Approximate s-t Minimum Cuts

The most obvious application of Theorem 3.1 is to approximate minimum cuts.
We can find an approximate s-¢ minimum cut by finding an s-f minimum cut in a
skeleton.

Lemma 3.3. In a graph with minimum cut ¢, a (1 + €)-approzimation to the s-t
minimum cut of value v can be computed in O(mv/e3c?) time (MC).

Proof. Given ¢, determine the corresponding p = O((logn)/€%c) from Theorem 3.1.
Assume for now that p < 1. Construct a p-skeleton G(p) in O(m) time. Suppose
we compute an s-t maximum flow in G(p). By Theorem 3.1, 1/p times the value of
the computed maximum flow gives a (1 + €)-approximation to the s-t min-cut value
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(with high probability). Furthermore, any flow-saturated (and thus s-¢f minimum)
cut in G(p) will be a (1 + €)-minimum s-¢ cut in G.

By the Chernoff bound, the skeleton has O(pm) edges with high probability.
Also, by Theorem 3.1, the s-t minimum cut in the skeleton has value O(pv). There-
fore, the standard augmenting path algorithm can find a skeletal s-t maximum flow
in O((pm)(pv)) = O(mwlog?n/e*c?) time. Our improved augmenting paths algo-
rithm DAUG in Section 3.4 lets us shave a factor of ©(y/pc/logn) = O(1/¢) from
this running time, yielding the claimed bound.

If p > 1 because ¢ = O((logn)/€?), then e’¢? = O(y/¢), so our theorem is proved
if we give a running time of O(mw/+/c). This is the time bound of algorithm DAUG
in Section 3.4. O

3.2 Approximate Maximum Flows

A slight variation on the previous algorithm will compute approximate maximum
flows.

Lemma 3.4. In a graph with minimum cut ¢ and s-t mazimum flow v, a (1—¢)-
mazimum s-t flow can be found in O(muv/ec) time (MC).

Proof. Given p as determined by €, randomly partition the graph’s edges into 1/p
groups, creating 1/p graphs (this takes O(mlog(l/p)) time). Each graph looks
like (has the distribution of) a p-skeleton, and thus with high probability has a
maximum flow of value at least puv(l — €) that can be computed in O((pm)(pv))
time as in the previous section (the skeletons are not independent, but even the
sum of the probabilities that any one of them violates the sampling theorem is
negligible). Adding the 1/p flows that result gives a flow of value v(1 — €). The
running time is O((1/p)(pm)(pv)) = O(mv(logn)/e*c). If p > 1 then the argument
still holds since this implies €2¢c < logn. If we use our improved augmenting path
algorithm DAUG, we improve the running time by an additional factor of ©(1/e),
yielding the claimed bound. O

3.3 A Las Vegas Algorithm

Our max-flow and min-cut approximation algorithms are both Monte Carlo, since
they are not guaranteed to give the correct output (though their error probabilities
can be made arbitrarily small). However, by combining the two approximation
algorithms, we can certify the correctness of our results and obtain a Las Vegas
algorithm for both problems—one that is guaranteed to find the right answer, but
has a small probability of taking a long time to do so.
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Corollary 3.5. In a graph with minimum cut ¢ and s-t mazimum flow v, a (1 —€)-
mazimum s-t flow and a (1 + €)-minimum s-t cut can be found in O(mv/ec) time
(LV).

Proof. Run both the approximate min-cut and approximate max-flow algorithms,
obtaining a (1 — €/2)-maximum flow of value vy and a (1 4 €¢/2)-minimum cut of
value v;. We know that vy < v < vy, so to verify the correctness of the results
all we need do is check that (1 + ¢/2)vy > (1 — €/2)v;, which happens with high
probability. To make the algorithm Las Vegas, we repeat both algorithms until
each demonstrates the other’s correctness (or switch to a deterministic algorithm
if the first randomized attempt fails). Since the first attempt succeeds with high
probability, the expected running time is as claimed. ]

3.4 Exact Maximum Flows

We now use the above sampling ideas to speed up the familiar augmenting paths
algorithm for maximum flows. This section is devoted to proving the following
theorem:

Theorem 3.6. In a graph with minimum cut value ¢, a mazimum flow of value v
can be found in O(mwv min(1,+/(logn)/c)) time (LV).

We assume for now that v > logn. Our approach is a randomized divide-
and-conquer algorithm that we analyze by treating each subproblem as a (non-
independent) random sample. This technique suggests a general approach for solv-
ing packing problems with an augmentation algorithm (including packing bases in
a matroid (Karger 1998b)). The flow that we are attempting to find can be seen
as a packing of disjoint s-t paths. We use the algorithm in Figure 1, which we call
DAUG (Divide-and-conquer AUGmentation).

1. Randomly split the edges of G into two groups (each edge goes to one or the
other group independently with probability 1/2), yielding graphs G; and G.

2. Recursively compute s-t maximum flows in G; and Gs.

3. Add the two flows, yielding an s-t flow f in G.

4. Use augmenting paths (or blocking flows) to increase f to a maximum flow.

Figure 1: Algorithm DAUG

Note that we cannot apply sampling in DAUG’s cleanup phase (Step 4) because the
residual graph we manipulate there is directed, while our sampling theorems apply
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only to undirected graphs. Note also that unlike our approximation algorithms, this
algorithm requires no prior guess as to the value of c. We have left out a condition
for terminating the recursion; when the graph is sufficiently small (say with one
edge) we use the basic augmenting path algorithm.

The outcome of Steps 1-3 is a flow. Regardless of its value, Step 4 will transform
this flow into a maximum flow. Thus, our algorithm is clearly correct; the only
question is how fast it runs. Suppose the s-t maximum flow is v. Consider G;.
Since each edge of G is in G; with probability 1/2, we expect G; to have m/2
edges. Also, we can apply Theorem 3.1 to deduce that with high probability the
s-t maximum flow in Gy is (v/2)(1 — O(y/1/c)) and the global minimum cut is
©(c/2). The same holds for Gy (the two graphs are not independent, but this is
irrelevant). It follows that the flow f has value v(1 — O(1/y/c)) = v — O(v/\/<).
Therefore the number of augmentations that must be performed in G to make f a
maximum flow is O(v/+/c). By deleting isolated vertices as they arise, we can ensure
that every problem instance has more edges than vertices. Thus each augmentation
takes O(m') time on an m'-edge graph. Intuitively, this suggests the following sort
of recurrence for the running time of the algorithm in terms of m, v, and ¢:

T(m,v,c) = 2T(m/2,v/2,¢/2) + O(mv/\/c).

(where we use the fact that each of the two subproblems expects to contain m/2
edges). If we solve this recurrence, it evaluates to T'(m,v,c) = O(mw/+/c).

Unfortunately, this argument does not constitute a proof because the actual
running time recurrence is in fact a probabilistic recurrence: the values of cuts in
and sizes of the subproblems are random variables not guaranteed to equal their
expectations. Actually proving the result requires some additional work.

We consider the tree of recursive calls made by our algorithm. Each node of this
tree corresponds to an invocation of the recursive algorithm. We can then bound
the total running time by summing the work performed at all the nodes in the
recursion tree. We first show that it is never worse than the standard augmenting
paths algorithm, and then show that it is better when c is large.

Lemma 3.7. The depth of the computation tree is O(logm) (w.h.p.).

Proof. The number of computation nodes at depth d is 2¢. Each edge of the graph
ends up in exactly one of these nodes chosen uniformly and independently at random
from among them all. Thus, the probability that two different edges both end up in
the same node at depth 3logm is (summing over pairs of edges) at most (T;) /m3,
which is negligible. But if there is only one edge, the base case applies with no
further recursion. O

Lemma 3.8. DAUG runs in O(mlogm + mv) time (LV).
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Proof. First we bound the non-augmenting-path work (i.e. the work of building
and reassembling the subproblems) in Steps 1-3. Note that at each node in the
computation tree, the amount of such work performed, not including recursive calls,
is linear in the size (number of edges) of the node (since we delete isolated vertices as
they arise, there are always fewer vertices than edges). At each level of the recursion
tree, each edge of the original graph is located in exactly one node. Therefore, the
total size of nodes at a given level is O(m). Since there are O(logm) levels in the
recursion, the total work is O(m logm).

Next we bound the work of the augmenting path computations. Note first that
the algorithm performs one “useless” augmenting path computation at each node
in order to discover that it has found a maximum flow for that node. Since the
work of this augmentation is linear in the size of the node, it can be absorbed in
the O(mlogm) time bound of the previous paragraph.

It remains to bound the time spent on “successful” augmentations that increase
the flow at their node by one. We claim that the number of successful augmenta-
tions, taken over the entire tree, is v. To see this, telescope the argument that the
number of successful augmentations at a node in the computation tree is equal to
the value of the maximum flow at that node minus the sum of the maximum flows
at the two children of that node. Since each successful augmentation takes O(m)
time, the total time spent on successful augmentations is O(mwv). O

Lemma 3.9. When ¢ > logn, DAUG runs in O(mlogm + mv 13%—”) time (LV).

Proof. We improve the previous lemma’s bound on the work of the successful aug-
mentations that add a unit of flow at a node. The number of such augmentations
is equal to the difference between the maximum flow at the node and the sum of
the children’s maximum flows. Consider a node N at depth d. Each edge of the
original graph ends up at N independently with probability 1/2¢. Thus, the graph
at N is a (27%)-skeleton.

First consider nodes at depths exceeding log(c/logn). Each of these nodes has
O(m(logn)/c) edges w.h.p. By the same argument as the previous lemma, there
are only v successful augmentations performed at these nodes, for a total work of
O(muv(logn)/c), which is less than the claimed bound if ¢ > logn.

At depths less than log(c/logn), the minimum expected cut at a node N is
large enough to apply the sampling theorem. This proves that the maximum flow

at N is 27%(1+0(4/ 2dl#)) w.h.p. Now consider the two children of node N. By
the same argument, each has a maximum flow of value 2~ (“*Yy(1 4+ O0(4/ 2dHﬂ))

c
(w.h.p.). It follows that the total number of augmentations that must be performed
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at N is

v 24 Jogn v [2d+1 Jogn B [logn

By the Chernoff bound, each node at depth d has O(m/2¢) edges with high prob-
ability. Thus the total amount of augmentation work done at the node is O(m/2%)
times the above bound. Summing over the 2¢ nodes at depth d gives an overall
bound for the work at level d of

logn
0] <mv 5, ) .

We now sum this bound over all depths d to get an overall bound of O(mwv

1
0%”).

O

Combining this result with the previous one gives a bound of O(mlogm +
mvmin(1, /(logn)/c)). This time bound is still not quite satisfactory, because the
extra O(mlogm) term means the algorithm is slower than standard augmenting
paths when v is less than logm. This is easy to fix. Before running DAUG, perform
O(logm) augmenting path computations on the original graph, stopping if a max-
imum flow is found. This guarantees that when v = O(logm), the running time is
O(mw). This completes the proof of the section’s main theorem.

4 Global Minimum Cuts

We now show how sampling can be used for global minimum cuts. We improve an
algorithm of Gabow (1995) that finds minimum cuts in O(mclog(n?/m)) time. This
section is devoted to proving the following theorem. Some additional ramifications
are discussed at the end.

Theorem 4.1. A graph’s minimum cut ¢ can be found in O(my/c) time (LV). It
can be approximated to within (1 4 €) in O(m) time (LV).

We therefore improve Gabow’s algorithm’s running time by a factor of roughly
V/c in the exact case and give a roughly linear-time algorithm for the approximate
case. We have recently developed a near-linear time exact algorithm (Karger 1996),
but it is Monte Carlo. These are the fastest known Las Vegas algorithms.

Our proof of Theorem 4.1 is the same as the one presented previously for find-
ing maximum flows. The change is that instead of using the standard augmenting
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paths technique to pack paths, we use a matroid augmentation technique devel-
oped by Gabow (1995) to pack arborescences—that is, directed spanning trees. We
must revise the analysis slightly because the time for a single “augmenting path”
computation is not linear.

Gabow’s algorithm is designed for directed graphs and is based on earlier work
of Edmonds (1965). In a directed graph, a minimum cut is a vertex partition (S5, 7)
that minimizes the number of edges directed from S to T'. Given a particular vertex
s, a minimum s-cut is a partition of the vertices into nonempty sets .S and 7' such
that s € S and the number of directed edges crossing from S to 7' is minimized.
Since the minimum cut in a graph is a minimum s-cut in either G or G with all edges
reversed, finding a global minimum cut in a directed graph reduces to two iterations
of finding a minimum s-cut. Gabow’s algorithm does so by packing s-arborescences.
An s-arborescence in G is a spanning tree of directed edges that induce indegree
exactly one at every vertex other than s. In other words, it is a spanning tree with
all edges directed away from s. Edmonds (1965) gave the following characterization
of minimum cuts:

The minimum s-cut of a graph is equal to the number of disjoint s-
arborescences that can be packed in it.

It is obvious that every tree in the packing must use at least one edge of any s-cut;
the other direction of the inequality is harder. This characterization corresponds
closely to that for maximum flows. Just as the minimum s-¢ cut is equal to the
maximum number of disjoint paths directed from s to ¢, the minimum s-cut is
equal to the maximum number of disjoint spanning trees directed away from s.
Each arborescence can be thought of as directing a unit of flow from s to all other
vertices simultaneously. Intuitively, the bottleneck in this flow is the vertex to which
s can send the least flow—mnamely, one on the opposite side of the minimum s-cut.

Gabow’s min-cut algorithm uses a subroutine that he calls the Round Robin Al-
gorithm (Round-Robin). This algorithm takes as input a graph G with an arbores-
cence packing of value k. In O(mlog(n?/m)) time it either returns an arborescence
packing of value (k + 1) or proves that the minimum cut is & by returning a cut of
value k. Round-Robin can therefore be seen as a cousin of the standard augmenting-
path algorithm for maximum flows: instead of augmenting by a path, it augments
by a spanning tree that sends an extra unit of flow to every vertex. Like many
flow algorithms, Gabow’s algorithm does not explicitly partition his current flow
into arborescences (“paths”). Rather, it maintains an edge set (called a complete
intersection) that can be so partitioned. Actually carrying out the partition seems
to be somewhat harder than finding the edge set.

Gabow’s algorithm for finding a minimum cut is to repeatedly call Round-Robin
until it fails. The number of calls needed is just the value ¢ of the minimum cut; thus
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the total running time of his algorithm is O(cm log(n?/m)). Gabow’s algorithm can
clearly be applied (with the same time bounds) to undirected graphs as well: simply
replace each undirected edge with two directed edges: one in each direction.

We can improve this algorithm as we did the max-flow algorithm. Use DAUG,
but replace the augmenting path steps with calls to Round-Robin.

Lemma 4.2. DAUG finds a global minimum cut in O(m min(c, /clogn)logn) time.

Proof. Reuse the proof for the maximum flow analysis as if we were looking for
a flow of value ¢. The only change is that a single application of Round-Robin
on a graph with m' edges takes O(m/log(n?/m')) = O(m'logn) time. Since each
augmentation anywhere in the analysis is O(logn) times slower than for flows, the
overall time bound is O(logn) times greater. O

We can improve the last logarithmic factor with a more careful algorithm and
analysis. Before running DAUG, approximate the minimum cut to within some con-
stant factor (using Matula’s (1993) algorithm or the skeleton approach). Then, at
depth log(c/logn) in the recursion, when the incoming graph has minimum cut
O(logn), run Gabow’s original algorithm instead of recursing. This immediately
proves Theorem 4.1 for ¢ = O(logn). We now prove the other case to finish the
proof of the theorem.

Lemma 4.3. Forc > logm, the modified DAUG algorithm runs in O(m+/clogm log(n?/m))
time.

Proof. Since the computation stops recursing when the depth reaches log(c/ logn),
the recursion tree has depth log(c/logn). As with the flow analysis, the overhead
in setting up the subproblems at all levels is then O(mlog(c/logn)), which is neg-
ligible. Since the time per augmentation is no longer linear, we must change the
analysis of work performed during augmentations.

Consider first the “unsuccessful” augmentations that identify maximum arbores-
cence packings. The algorithm performs one at each node in the recursion tree. The
total work over all 2¢ nodes at each depth d is thus

O (Z md + Zmlog(nQ/m))

= O(mlog®(c/logn) + mlog(c/logn)log(n*/m)),

log(c/ logn)

0 > 2%(m/2%) log(2'n?/m)
d=1

which is less than the specified bound since log?(c/logn) = o(y/clogn).
Now consider the “successful” Round-Robin calls that actually augment a pack-
ing. We analyze these calls as in the maximum flow case. Comparing the minimum
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cuts of a parent node and its children, we see that at depth d, each of the 2% nodes
has O(m/2%) edges and requires O(+/c(logn)/2%) Round-Robin calls for total of
O(m+/c(logn)/2%1og(29n?/m)) work at depth d. Summing over all depths gives a
total work bound of O(m+/clognlog(n?/m)).

Finally, consider the work in the calls to Gabow’ algorithm at the leaves of
the recursion. At depth d = log(c/logn), there will be 2¢ such calls on graphs
with minimum cut O(logn), each taking O((m/2%)(logn)(log(n?c/mlogn))) time.
Since by assumption ¢ > logn, this is dominated by the time bound for successful
augmentations. O

Remark. An alternative to running a separate approximation algorithm for the
minimum cut is to modify DAUG so that before it recurses, it makes O(logn) calls to
Round-Robin and halts if it finds a maximum packing. This causes the recursion to
terminate at the same point as before while increasing the work at each recursion-
tree node by at most a constant factor.

The improved time for packing arborescences has other ramifications in Gabow’s (1991)

work. He gives other algorithms for which computing an arborescence packing is
the computational bottleneck. He gives an algorithm for computing a compact
m-tree representation of all minimum cuts, and shows how this representation can
be converted to the older O(n)-space cactus representation (Dinitz, Karzanov, and
Lomonosov 1976) in linear time. He also gives an algorithm for finding a minimum
set of edges to add to augment the connectivity of a graph from c¢ to ¢+ 4. In both
of these algorithms, computing an arborescence packing forms the bottleneck in the
running time.

Corollary 4.4. The cactus and m-tree representations of all minimum cuts in an
undirected graph can be constructed in O(m+/c) time (LV).

Corollary 4.5. A minimum set of edges augmenting the connectivity of a graph
from ¢ to ¢+ 3 can be computed in O(m + n(c3/? + 6c + 62)) time (LV).

4.1 Approximating the Minimum Cut

Just as with maximum flows, we can combine a minimum cut algorithm with random
sampling to develop Monte Carlo and Las Vegas algorithms for finding approzimate
minimum cuts. Previously, Matula (1993) gave a linear-time deterministic (2 + ¢)-
approximation algorithm; we use randomization to get better approximations with
the same time bound.

3
Corollary 4.6. A (1 + €)-minimum cut can be found in O (m +n (1°§n> > time
(MC).
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Proof. Given an m edge graph, build a p-skeleton using the p determined by e, and
use the previous min-cut algorithm to find a minimum cut in it. Assume p < 1.
Then the running time is O(m(log®n)/(e3c)). Now note that before we run the
approximation algorithm, we can use Nagamochi and Ibaraki’s sparse certificate
algorithm (discussed in Section 1.4) to construct (in O(m) time) an O(nc)-edge
graph with the same approximately minimum cuts as our starting graph. This
reduces the running time of the sampling algorithm to the stated bound.

If p > 1, meaning that ¢2 = O(1/c), then the claimed running time is O(nc?/?),
which is achieved by running DAUG on the nc-edge sparse certificate. O

Corollary 4.7. A (14¢)-minimum cut and (1 —€)-mazimum arborescence packing
can be found in O(m(log®n)/e) time (LV).

Proof. Recall from above that an arborescence-packing of value k certifies that the
minimum cut is at least k. Given € and its corresponding p, divide the graph in 1/p
pieces, find a maximum arborescence packing in each of the pieces independently,
and union the packings. The analysis proceeds exactly as in the approximate max-
flow algorithm of Section 3.2. As in Corollary 3.5, the combination of a cut of value
(1 +€/2)c and a (1 — €/2)c-packing brackets the minimum cut between these two
bounds. O

5 Weighted Graphs

We now describe the changes that occur when we apply our cut and flow algorithms
to weighted graphs. We model an edge of weight w as a collection of w unweighted
edges. This creates problems in applying the undirected graph algorithms. For the
approximation algorithms, the time to construct a skeleton becomes proportional
to the total edge weight. For the divide and conquer algorithms, the time for
augmentations becomes large for the same reason.

Improved methods for weighted graphs have recently been developed for both
cuts (Benczir and Karger 1996) and flows (Karger 1998a; Karger and Levine 1998).

5.1 Constructing Skeletons

The first problem we face is constructing a skeleton. The number of edges implicitly
represented by edge weights can be too large to let us take time to sample each
individually. To speed our skeleton construction, we use the following alternative
approach.

Lemma 5.1. Let G be any unweighted graph with minimum cut ¢ and let p =
3(d+2)(Inn)/e*c. Let H be constructed from G by choosing [pm] edges from G at
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random. Then the probability that some cut of value v in G has value more than
(14 €)pv or less than (1 — €)pv in H is O(n~% /pm).

Proof. We could prove this corollary from first principles by reapplying the cut-
counting theorem, but we take an easier approach. Let ERR denote the event that
some cut diverges by more than e from its expected value. We know that if we sample
each edge with probability p, then Pr[ERR] is O(1/n?). Let S denote the number of
edges actually chosen in such a sample. Note that S has the binomial distribution
and that its so-called central term Pr[S = [pm]] = Q(1/,/pm) (cf. (Feller 1968)).
We can evaluate ERR conditioning on the value of S:

1/n® > Pr[ERR]
> Pr[S =k|-Pr[ERR| S = k]

k
> Pr[S = [pml]] - Pr[ERR | S = [pm]]
_ Q(\/%)-Pr[ER}HS: rpm]].
In other words, Pr[ERR | S = [pm]] = O(,/pm/n?). O

This corollary tells us that so long as the expected number pm of edges in the
skeleton is polynomial, we can construct the skeleton by taking a fixed-size sample
and get roughly the same result as in the original construction: all cut values will
be within e of their expectations with high probability. We can construct such
a modified p-skeleton by making pm random selections from among the edges of
the graph. In a weighted graph this corresponds to using biased selection: choose
the edge with probability proportional to the weight of the edge. In a graph with
total edge weight W, each such selection takes O(log W) time since we generate
log W random bits in order to identify a particular edge. Thus, the total time is
O(pW logW). In fact, this algorithm can be made strongly polynomial: we can
arrange for each selection to take O(logm) amortized time, but the digression into
the details would take us too far afield. A discussion can be found elsewhere (Knuth
and Yao 1976; Karger and Stein 1996).

Lemma 5.2. In a weighted graph with m edges of total weight W, a p-skeleton can
be constructed in O(pW logm) time.

The only other issue that needs to be addressed is the estimation of the correct
sampling rates p for a given approximation bound e. As with the unweighted case,
we actually only need a constant factor estimate of the minimum cut. One way to
get it is to generalize Matula’s (2 + €)-approximation algorithm to weighted graphs
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(see (Karger 1994b) for details). An alternative is to generalize the repeated dou-
bling approach of Section 2.1. Unweighted graphs had minimum cuts bounded by n,
so only logn repeated doubling trials were needed to get the estimate. For weighted
graphs, we need a slightly more complex algorithm. We use the following scheme
to estimate the minimum cut to within a factor of n?, and then repeatedly double
the estimate (halving the estimated sampling probability) until (within O(logn)
attempts) the estimate is correct to within a factor of 2. Compute a maximum
spanning tree of the weighted graph, and then let w be the weight of the minimum
weight edge of this maximum spanning tree. Removing this edge partitions the
maximum spanning tree into two sets of vertices such that no edge of G' connecting
them has weight greater than w (else it would be in the maximum spanning tree).
Therefore, the minimum cut is at most n?w. On the other hand, the maximum
spanning tree has only edges of weight at least w, so one such edge crosses every
cut. Thus the minimum cut is at least w.

5.2 Cuts

Our cut approximation algorithms have roughly the same running time as in the
unweighted case: the only change is that we use the O(pW logn)-time weighted-
graph skeleton construction.

Corollary 5.3. In a weighted graph, a (14 €)-minimum cut can be found in O(m+
n((logn)/€)?) time (MC).

Proof. We have already discussed finding a rough approximation to ¢ using, e.g.,
Matula’s algorithm. Construct a sparse 3c-connectivity certificate of total weight
O(nc) and proceed as in the unweighted graph algorithm. Regardless of the orig-
inal graph weights, the skeleton will have O(n(logn)/€?) edges and minimum cut
O((logn)/€?). O

Corollary 5.4. In a weighted graph, a (1 4 €)-minimum s-t cut can be found in
O(m +n(v/c)*e3) time (MC).

Proof. Suppose first that we knew v. Use Nagamochi and Ibaraki’s (1992a) sparse
certificate algorithm to construct a sparse 3v-connectivity certificate of total weight
O(nv). Assuming € < 1, approximate cuts in the certificate are the same as those in
the original graph. Construct a p-skeleton of the certificate using weighted selection
from the certificate in O(pnvlogm) time. Now proceed as in the unweighted graph
case.

To make up for our ignorance of v, begin by estimating v to within a factor of n?
as follows. Find (using an obvious variant of Dijkstra’s shortest path algorithm) the
path from s to ¢ whose smallest edge weight w is maximized. It follows that every
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s-t cut has weight at least w, since some edge on the found path is cut. However, if
we remove all edges of weight w or less (a total of n?w weight) then we disconnect
s and t since every s-t path contains an edge of weight at most w. Therefore, v is
between w and n?w. Start by guessing v = w, and double it O(logn) times until
the guess exceeds v, at which point the approach of the previous paragraph will
yield the desired cut. O

The O(mw/e*c?) bound of the unweighted case no longer follows, since it need
no longer be the case that skeleton has only pm edges.

5.3 Flows

We can also adapt the max-flow algorithms. If we directly simulated the unweighted
graph algorithm DAUG, we would partition the edges into two groups by generating
a binomial distribution for each weighted edge in order to determine how much of
its weight went to each of the two subgraphs. To avoid having to generate such
complicated distributions, we return to Theorem 2.1 and use the following approach.
If w is even, assign weight w/2 to each group. If w is odd, then assign weight |w/2]
to each group, and flip a coin to decide which group gets the remaining single unit
of weight. Since the minimum expected cut (¢ of Theorem 2.1) that results in each
half is still ¢/2, we can deduce as in the unweighted case that little augmentation
need be done after the recursive calls.

We have described the change in implementation, and correctness is clear, but
we have to change the time bound analysis. It is no longer true that each new graph
has half the edges of the old. Indeed, if all edge weights are large, then each new
graph will have just as many edges as the old. We therefore add a new parameter
and analyze the algorithm in terms of the number of edges m, the minimum cut c,
the desired flow value v, and the total weight W of edges in the graph. Note the two
subgraphs that we recurse on have total weight roughly W/2. In order to contrast
with bit-scaling techniques, we also use the average edge weight U = W /m which is
no more than the maximum edge weight. The unweighted analysis suggests a time
bound for minimum cuts of O(W+/¢) = O(mU+/c), but we can show a better one:

Lemma 5.5. A global minimum cut of value ¢ can be found in O(m cU) time
(LV).

Proof. We divide the recursion tree into two parts. At depths d < log(W/m), we
bound the number of edges in a node by m. As in the unweighted analysis, we
know each node at depth d has to perform O(y/¢/29) augmentations, each taking
O(m) time, so the total work at depth d is O(2¢m+/c/29) = O(mV2%c). Sum-
ming over d < log(W/m) gives a total work bound of O(m+/Wec/m) = O(mv/cU).
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At depth log(W/m), we have W/m computation nodes, each with minimum cut

O(mc/W) (by the sampling theorem) and at most m edges. Our unweighted graph

analysis shows that the time taken by each such node together with its children is

O(m+/mc/W). Thus the total work below depth log(W/m) is O((W/m)(m+/mc/W)) =
U

O(mvcU).

A similar result can be derived if we use the same algorithm to find flows,
replacing Gabow’s Round Robin Algorithm with standard augmenting paths.

Corollary 5.6. A mazimum flow of value v can be found in O(mwv\/U/c) time
(LV).

More recently (Karger 1998a) we introduced a smoothing technique that lets
us avoid splitting large edges in two for the two recursive calls. Instead, after
some preliminary splitting, we show that it is possible to assign the full weight of
an edge randomly to one subproblem or the other, and still get the same accurate
approximation of cut values. This lets us extend our unweighted-graph time bounds
to weighted graphs as well.

6 Other Cut Problems

In this section, we discuss several other cut problems and algorithms and show how
our sampling techniques can be applied to them.

6.1 Parallel Flow Algorithms

In the s-t min-cut problem the need for the final “cleanup” augmentations inter-
feres with the development of efficient RN C DAUG-type algorithms for the problem,
because there are no good parallel reachability algorithms for finding augmenting
paths in directed graphs. However, we can still take advantage of the divide and
conquer technique in a partially parallel algorithm for the problem. Khuller and
Schieber (Khuller and Schieber 1991) give an algorithm for finding disjoint s-¢ paths
in undirected graphs. It uses a subroutine that augments a set of k disjoint s-¢ paths
to k + 1 if possible, using O(k) time and kn processors. This lets them find a flow
of value v in in 0(02) time using vn processors. We can speed up this algorithm
by applying the DAUG technique we used for maximum flows. Finding the final aug-
mentations after merging the results of the recursive calls is the dominant step in
the computation. It requires O(v/c) iterations of their augmentation algorithm,
each taking O(v) time, for a total of O(v?/+/c) time using vn processors. Thus we
decrease the running time of their algorithm by an O(y/c) factor, without changing
the processor cost.
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6.2 Separators and Sparsest Cuts

The edge separator problem is to find a cut with a minimum number of edges
that partitions a graph into two roughly equal-sized vertex sets. The sparsest cut
problem is to find a cut (A, B) of value v minimizing the value of the quotient
v/(||A]|[|B]|). These problems are N'P-complete and the best known approximation
ratio is O(log n) (for separators, one has to accept a less balanced solution to achieve
this bound). One algorithm that achieves this approximation for sparsest cuts is
due to Leighton and Rao (Leighton and Rao 1988).

Klein, Plotkin, Stein, and Tardos (Klein, Plotkin, Stein, and Tardos 1994) give
a fast concurrent flow algorithm which they use to improve the running time of
Leighton and Rao’s algorithm. Their algorithm runs in O(m?logm) time, and
finds a cut with quotient within an O(logn) factor of the optimum. Consider a
skeleton of the graph which approximates cuts to within a (1 & €) factor. Since the
denominator of a cut’s quotient is unchanged in the skeleton, the quotients in the
skeleton also approximate their original values to within a (1 + €) factor. It follows
that we can take p = O(logn/c) and introduce a negligible additional error in the
approximation. By the same argument, it suffices to look for balanced cuts in a
skeleton rather than the original graph.

Theorem 6.1. An O(logn)-approzimation to the sparsest cut can be computed in
O((m/c)?) time (MC).

Benczur and Karger (Benczir and Karger 1996) have improved this time bound
to O(n?).

6.3 Orienting a Graph

Given an undirected graph, the graph orientation problem is to find an assignment
of directions to the edges such that the resulting directed graph has the largest
possible (directed) connectivity. Gabow (Gabow 1993) cites a theorem of Nash-
Williams (Nash-Williams 1969) showing that a solution of (directed) connectivity &
exists if and only if the input graph is 2k-connected, and also gives a submodular-
flow based algorithm for finding the orientation in O(kn?(vkn+k?log(n/k))) time.
We have the following result:

Lemma 6.2. A (k — O(v/klogn))-connected orientation of a 2k-connected graph
can be found in linear time.

Proof. Orient each edge randomly with probability 1/2 in each direction. A minor
adaptation of Theorem 2.1 shows that with high probability, for each cut, there will
be at least k — O(v/klogn) edges oriented in each direction. In other words, every
directed cut will have a value exceeding the claimed one. U
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Using this randomly oriented graph as a starting point in Gabow’s algorithm
also allows us to speed up that algorithm by a factor of O(VE).

6.4 Integral Multicommodity Flows

Suppose we are given an unweighted graph G and a multicommodity flow problem
with k& source-sink pairs (s;,t;) and demands d;. Let ¢; be the value of the s;-t;
minimum cut and suppose that > d;/¢; < 1. Then it is obvious that there is a
fractional solution to the problem: divide the graph into k& new graphs Gj, giving
a d;/c; fraction of the capacity of each edge to graph G;. Then the s;-f; minimum
cut of G; has value exceeding d;, so commodity ¢ can be routed in graph G;. There
has been some interest in the question of when an integral multicommodity flow
can be found (the problem is discussed in (Ford and Fulkerson 1962); more recent
discussions include (Grotschel, Lovasz, and Schrijver 1988, Section 8.6) and (Frank
1990)). Our sampling theorem gives new results on the existence of integral flows
and fast algorithms for finding them. Rather than assigning a fraction of each edge
to each graph, assign each edge to a graph G; with probability proportional to d;/¢;.
We now argue as for the flow algorithms that, given the right conditions on ¢, each
graph G; will be able to integrally satisfy the demands for commodity z. Thus
k max-flow computations will suffice to route all the commodities. In fact, in an
unweighted graph, if m; is the number of edges in G;, we know that Y m; = m,
so that the max-flow computations will take O(>_m;n) = O(mn) time. Various
results follow; we give one as an example:

Lemma 6.3. Suppose that each d; > logn, and that > d; < ¢/2 (where c is the
minimum cut). Then an integral multicommodity flow satisfying the demands exists
and can be found in O(mn) time.

Proof. Assign each edge to group ¢ with probability proportional to d;/c. Since
> d;/c < 1/2, this means the probability an edge goes to i is at least 2d;/c. Thus
the minimum expected cut in G; is at least 2d;, so the minimum cut exceeds d; with
high probability and that graph can satisfy the i** demand. U

7 Network Design

We now turn to the network design problem. Here, rather than sampling as a
preprocessing step to reduce the problem size, we sample as a postprocessing step
to round a fractional solution to an integral one.
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7.1 Problem Definition

The most general form of the network design problem is as a covering integer pro-
gram with exponentially many constraints. We are given a set of vertices, and for
each pair of vertices ¢ and j, a cost ¢;; of establishing a unit capacity link between
1 and j. For each cut C in the graph, we are given a demand dc denoting the
minimum number of edges that must cross that cut in the output graph. Since
there are exponentially many cuts (in the number of vertices n), the demands must
be specified implicitly if the problem description is to be of size polynomial in n.
Our goal is to build a graph of minimum cost that obeys all of the cut demands,
i.e. to solve the following integer program:

minimize Z CijTij
Z Tij 2 do (V cuts C)

(¢,§) crossing C
zij =2 0

There are two variants of this problem: in the single edge use version, each z;; must
be 0 or 1. In the repeated edge use version, the z;; can be arbitrary nonnegative
integers.

There are several specializations of the network design problem (further details
can be found in the paper by Agrawal, Klein, and Ravi (1995)):

The generalized Steiner problem specifies a connectivity demand d;; for each
pair of vertices ¢ and 7, and the demand across a cut C' is just the maximum of
d;;j over all pairs (7,7) separated by C. An early formulation is due to Krarup
(see Winter (1987)).

The survivable network problem has d;; = min(d;,d;) for certain “connectiv-
ity types” 7 and j. It was studied by Goemans and Bertsimas (1993).

The minimum k-connected subgraph problem is to find a smallest (fewest
edges) k-connected subgraph of an input graph G. This is a network design
problem in which all demands are k¥ and all edges have cost 1 (present in G)
or 0o (not present).

Even the minimum k-connected subgraph problem is N'P-complete, even for k =
2 (Eswaran and Tarjan 1976).

7.2 Past Work

Khuller and Vishkin (1994) gave a 2-approximation algorithm for the minimum
cost k-connected graph problem and a 3/2-approximation for the minimum (unit

29



cost) k-connected subgraph problem. Khuller and Raghavachari (1995) gave a 1.85-
approximation for the minimum k-connected subgraph problem for any k.

Agrawal, Klein, and Ravi (1995) studied the repeated-edge-use generalized Steiner
problem (with costs) and gave an O(log fmax) approximation algorithm, where fiax
is the maximum demand across a cut, namely maxd;;.

Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson (1994), extend-
ing work of Williamson, Goemans, Mihail, and Vazirani (1993)) have recently given
powerful algorithms for a large class of network design problems, namely those de-
fined by so-called proper demand functions (this category includes all generalized
Steiner problems). Their approximation algorithm, which we shall refer to as the
Forest Algorithm, finds a graph satisfying the demands of cost at most O(log fimax)
times the optimum. It applies to both single and repeated edge-use problems. It
can also be used to augment a given graph, adding edges so as to meet some proper
demand function; the approximation ratio becomes the logarithm of the maximum
deficit, i.e. difference between the demand across a cut and its starting capacity.
The authors also note that a fractional solution, in which each edge is to be assigned
a real-valued weight such that the resulting weighted graph satisfies the demands
with a minimum total (weighted) cost, can be found in polynomial time by using the
ellipsoid algorithm even though the number of constraints is exponential (Gabow,
Goemans, and Williamson 1993). For example, given a generalized Steiner problem,
a separation oracle can be implemented by computing all-pairs ¢-j minimum cuts
in a candidate solution to see if some connectivity demand d;; is not satisfied. If it
is not, an ¢-7 minimum cut gives a violated constraint.

7.3 Present Work

We use the fractional solution produced by the ellipsoid algorithm as the starting
point in a randomized rounding based solution to network design problems. Ran-
domized rounding (Raghavan and Thompson 1987) is a general technique developed
to solve integral packing and covering problems problemms.

Using randomized rounding, we give approximation algorithms whose bounds
depend on fin, the minimum connectivity requirement between any pair of vertices.
We begin by considering the version in which edges can be used repeatedly. If fiin <
log n, randomized rounding leads to an approximation bound of O((logn)/ fmin)-
If fimin > logn, our approximation bound is 1 + O(y/(logn)/ fmin). This bound
contrasts with a previous best bound of O(log fimax) (Agrawal, Klein, and Ravi
1995), providing significant improvements when the minimum connectivity demand
is large.

We also give results for the single-edge-use case. For the k-connected sub-
graph problem, we give an approximation algorithm with performance ratio 1 +
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O(+/(logn)/k + (logn)/k). For any k > logn, this improves on the previous best
known approximation factor of 1.85 (Khuller and Raghavachari 1995). For more gen-
eral problems, we give an approximation algorithm with ratio log( fmax(log )/ fimin),
compared to the previous O(log fmax) bound (Goemans, Goldberg, Plotkin, Shmoys,
Tardos, and Williamson 1994).

7.4 Randomized Rounding

The network design problem is a variant of the set cover problem. In this problem,
we are given a collection of sets drawn from a universe, with each element of the
universe possibly assigned a cost. We are required to find a minimum (number or
total cost) collection of elements that intersects every set. The Steiner tree problem
is an instance of set cover involving exponentially many sets. The universe is the
set of edges, and each cut that separates two terminals corresponds to a set (the
edges of the cut) that must be covered. An extension of this problem corresponding
more closely to general network design is the set multicover problem, in which a
demand dg is specified for each set S and the covering set is required to contain
dg elements of S. The network design problem is an instance of set multicover in
which the universe is the set of edges, and each cut induces a set consisting of the
edges crossing it.

The set cover problem is easily formulated as an integer linear program, and its
linear programming dual is what is known as a packing problem: find a maximum
collection of sets that do not intersect. Raghavan and Thompson (1987) developed
a technique called randomized rounding that can be used to solve such packing
problems. The method is to solve the linear programming relaxation of the packing
problem and then use the fractional values as probabilities that yield an integer
solution by randomly setting variables to 0 or 1.

In the Raghavan-Thompson rounding analysis, the error introduced by round-
ing increases as the logarithm of the number of constraints. Thus, their approach
typically works well only for covering problems with polynomially many constraints,
while the network design problem has exponentially many. However, using Theo-
rem 2.1, we prove that the special structure of graphs allows us to surmount this
problem. This gives a simple approach to solving the multiple-edge-use versions of
network design problems. A more complicated approach described in Section 8.2
gives us some weaker results for the single-edge-use version of the problem. We now
describe the randomized rounding technique.

Consider a fractional solution to a network design problem (which has been
found, for example, with the ellipsoid algorithm (Gabow, Goemans, and Williamson
1993)). Without loss of generality, we can assume every edge has fractional weight
at most 1, since we can replace an edge of weight w by |w| parallel edges of weight 1

31



and a single edge of weight w — [w| without changing the solution value. Therefore,
the weights on the edges can be thought of as sampling probabilities.

Suppose that we build a random graph by sampling each edge with the given
probability. As a weighted graph, our fractional solution has minimum cut fui, and
each cut C has weight at least equal to the demand d¢ across it. Therefore, by Theo-
rem 2.1, each cut C in the random graph has value at least dc(1 —/(121nn)/ fmin)
with probability 1 — 1/n%. Now consider the cost of the random graph. Its ex-
pected value is just the cost b of the fractional solution, which is clearly a lower
bound on the cost of the optimum integral solution. Therefore, by the Markov in-
equality, the probability that the random graph cost exceeds (1 + 1/n)b is at most
1 — 1/n. Therefore, if we perform the rounding experiment O(nlogn) times, we
have a high probability of getting one graph that satisfies the demands to within

(1 —+/(12Inn)/ fmin) at cost (1 + 1/n)b. To get our results, we need only explain
how to deal with the slight under-satisfaction of the demands.

7.5 Repeated Edge Use

We first consider the repeated edge-use version of the network design problem. To
handle the under-satisfaction of demands, we simply increase the weight of each
edge slightly before we perform the randomized rounding.

Theorem 7.1. The network design problem for proper demand functions with re-
peated edge use can be solved in polynomial time to within 1 + O(\/(logn)/ fmin +
(logn)/ fmin) times optimum (LV).

Proof. Assume first that f,;; > 12Inn. Before rounding the fractional solution,
multiply each edge weight by (1 + O(y/(logn)/fmin)). This increases the overall
cost by the same factor. Now when we round, we get a graph with cut values 1 —
V/(121nn)/ fin times the new values (w.h.p.). Thus by suitable choice of constants
we can ensure that the rounded value exceed the original fractional values w.h.p.
Now consider the case fui, < 12lnn. The previous argument does not apply
because (1 — /(121nn)/fmin) < 0 and we thus get no approximation guarantee
from Theorem 2.1. However, if we multiply each edge weight by O((logn)/ fumin),
we get a graph with minimum cut Q(logn). If we round this graph, each cut gets
value at least half its expected value, which is in turn Q((logn)/fmin)) > 1 times
its original value. O

Remark. Note how the use of repeated edges is needed. We can constrain the
fractional solution to assign weight at most 1 to each edge in an attempt to solve
the single-edge-use version of the problem, but scaling up the fractional values in
the solution could yield some fractional values greater than 1 that could round to
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an illegal value of 2. However, when fnj, > logn, we will use every edge at most
twice.

8 Single Edge-Use Network Design

The simple scaling up and rounding procedure that we applied for multiple-edge-
use problems breaks down when we are restricted to use each edge at most once.
We cannot freely scale up the weights of edges because some of them may take on
values greater than one. Instead, we round the graph based on the original fractional
weights and then “repair” the resulting graph. To characterize the necessary repairs,
we make the following definition:

Definition 8.1. Given a network design problem and a candidate solution H, the
deficit of a cut C' in H is the difference between the demand across C' and the value
of C in H. The deficit of graph H is the maximum deficit of a cut in H.

8.1 Minimum k-connected Subgraph

A particularly easy case to handle is the minimum k-connected subgraph problem,
where the best previous approximation value was 1.85 (Khuller and Raghavachari
1995).

Theorem 8.2. For k > logn, a (1 4+ O(y/(logn)/k))-approzimation to the mini-
mum k-connected subgraph can be found in polynomial time (LV).

Proof. We exploit tight bounds on the optimum solution value. Consider any k-
connected graph. It must have minimum degree k. and thus at least kn/2 edges.
On the other hand, as discussed in Section 1.4, any sparse k-certificate of G will be
k-connected if G is and will contain at most kn edges. Thus, the optimum solution
has between kn/2 and kn edges (so a 2-approximation is trivial).

To get a better approximation, take the input graph G and find a fractional
solution F' using the ellipsoid algorithm (Gabow, Goemans, and Williamson 1993).
By construction, F' has (weighted) minimum cut k. Suppose the solution has total
weight W. As discussed above, we know kn/2 < W < kn. Clearly W is a lower
bound on the number of edges in the integral solution. Use randomized rounding
to define a subgraph H. By the Chernoff bound, the number of edges in H is
W + O(v/W logn) with high probability. Since F' has minimum cut k, Theorem 2.1
says that H has minimum cut k& — O(yv/klogn) with high probability. That is, the
deficit of H is O(v/klogn).

We now show how to remove this deficit. Consider the following procedure for
reducing the deficit of H by one. Find a spanning forest of G — H, and add its edges
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to H. To see that this reduces the deficit of H, consider any cut of H that is in
deficit. By definition less than k edges cross it. However, we know that at least k
edges cross the corresponding cut in G (since by assumption G is k connected). It
follows that one spanning-forest edge crosses this cut, and thus its deficit is decreased
by one.

It follows that if we perform the deficit-reduction step O(y/klogn) times, then
H will at the end have no deficit, and will therefore be k-connected. Now note
that each deficit-reduction step adds one forest with at most n edges to H, so the
total number of additions is O(ny/klogn). Since the optimum number of edges
exceeds W > kn/2, we have that ny/klogn = O(W/(logn)/k) and /W logn =
O(W/(logn)/kn). Thus the total number of edges in our solution is W+O(y/W logn)+
O(nv/klogn), which is O(W (1 + +/(logn)/k)). O

Remark. It is not in fact necessary to perform the repeated deficit reduction steps.
A more efficient approach is to use Nagamochi and Ibaraki’s sparse certificate algo-
rithm (discussed in Section 1.4). After deleting all the edges in H, build a sparse
O(V/klogn)-connectivity certificate C' in the remaining graph. A modification of
the above argument shows that C'U H is k-connected while C has O(n+/klogn)
edges.

Corollary 8.3. There is a (1 + O(fmaxv/10g n/fr?;l/ii))—approximation algorithm for
finding o smallest subgraph satisfying given connectivity demands.

Proof. The minimum solution has at least n fmin/2 edges. After rounding the frac-
tional solution the maximum deficit is O( fmaxy/(10g7)/ fmin) and can therefore be
repaired with n times that many edges. U

8.2 General Single-Edge Problems

We now consider more general single edge-use problems in which the demands can
be arbitrary and the edges have arbitrary costs. As before, we solve the problem
by first rounding a fractional solution and then repairing the deficits that arise. We
can no longer use the deficit reduction procedure of the k-connected subgraph case,
because there is no immediate bound relating the cost of a single forest to the cost
of the entire solution. Instead, we use the Forest Algorithm of Goemans, Goldberg,
Plotkin, Shmoys, Tardos, and Williamson (1994).

The Forest Algorithm can be used to solve augmentation problems that general-
ize network design problems. Namely, it attempts to find the minimum cost way to
augment a graph H so as to satisfy a set of demands across cuts. If the maximum
deficit in the augmentation problem is d, then the Forest algorithm finds a solution
with cost O(logd) times the optimum.
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8.2.1 Oversampling

Since the approximation factor of the Forest Algorithm worsens with the deficit, we
first show how to modify the rounding step so as to keep the deficit small. We begin
with a variant of the Chernoff bound that we can use when we are not allowed to
scale weights above 1.

Definition 8.4. Consider a random sum S = Y ", X; in which X; = 1 with
probability p; and 0 otherwise. Define the oversampling of S by a as S(a) =
> i1 Y;, where Y; = 1 with probability min(1, ap;) and 0 otherwise.

Note that S(1) = S.
Lemma 8.5. Let E[S]| = p. Then Pr[S(1+46) < (1 —e)u] < e—€0n/2,

Proof. Suppose S = Y X;. Write S = S1 + S, where S} is the sum of X; with
p; > 1/(146) and S is the sum of the remaining X;. Let 1 = E[S1] and po = E[Ss].
Then p = p1 + po, and S(l +5) = 51(1 + 5) + Sg(l + (5)

Since the variables in S have p; > 1/(1 4+ ¢), Si(1 + 0) is not random: it
is simply the number of variables in S, since each is 1 with probability one. In
particular, S1(14 ) is certainly at least pp. It follows that S(1+6) < (1 —€)u only
if So < (1 —€)p— p1 = po — €.

The variables in Sy have p; < 1/(1+0) so that the corresponding oversamplings
have probabilities (1+)p;. It follows that E[S2(140)] = (1+6)u2. By the standard
Chernoff bound, the probability that Sy < ps — € is at most

((1 + 5)N2 - (u2 - E:u))2) _ (_ (6H2 + 6:u)Z)

B TGRS 21+ 0)ri

Our weakest bound arises when the above quantity is maximized with respect to us.
It is straightforward to show that the quantity is a concave function of py with its
global maximum at pe = eu/d. However, po is constrained to be at least ey (since
otherwise pu; > (1 — €)u, immediately giving S(1 4+ ) > p1). We thus have two
cases to consider. If § < 1, then eu/d is a valid value for p9, and the corresponding
bound is exp(2edpu/(1 4 6)). If § > 1, then the bound is maximized at the smallest
possible pi2, namely p2 = €, in which case the bound is eu(1+46)/2. Over the given
ranges of §, each of these bounds is less than the bound given in the theorem. [J

Remark. The lemma easily extends to the case where the X; take on arbitrary values
between 0 and w. In this case, e~ bounds the probability that the deviation
exceeds ewy rather than eu.
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8.2.2 Application

A combination of the above oversampling lemma with the proof of Theorem 2.1
yields the following:

Corollary 8.6. Given a fractional solution f to a network design problem, if each
edge weight we is increased to min(1, (1 + 0)we) and randomized rounding is per-
formed, then with high probability no cut in the rounded graph will have value less
than (1—¢) times its value in the original weighted graph, where e = O(logn /(0 fmin))-

We now combine Corollary 8.6 with the Forest Algorithm. Suppose we have
fractionally solved a network design problem. Set § = 2 and apply Corollary 8.6,
so that at cost twice the optimum we get a graph in which the maximum deficit is
O(fmax(logn)/ fmin)- Then use the Forest Algorithm (Goemans, Goldberg, Plotkin,
Shmoys, Tardos, and Williamson 1994) to augment it to optimum. This yields the
following;:

Lemma 8.7. There is an O(log %)) approzimation algorithm for the single
edge-use network design problem.

This compares favorably with the Forest Algorithm’s O(log fmax) bound when-
ever fmin > logn.

8.3 Fixed Charge Networks

Our algorithms also apply to the fized charge problem in which each edge has a
capacity of which all or none must be purchased. In this problem, the best cur-
rently known approximation ratio is a factor of fi.x (Goemans, Goldberg, Plotkin,
Shmoys, Tardos, and Williamson 1994). The introduction of large capacities in-
creases the variances in our random sampling theorems. In particular, if we let
U denote the maximum edge capacity, we have the following result based on a
modification of Theorem 7.1:

Corollary 8.8. There is a (1+0((U logn)/ fmin++/ (U logn)/ fmin))-approzimation
algorithm for the fized-charge network design problem with repeated edges.

Proof. The Chernoff bound that we use for the randomized rounding proof applies if
all random variables have maximum value at most 1. Take the fixed charge problem,
and divide each demand and edge capacity by U. Now the original theorems apply,
but new minimum demand is fuin/U. O

Note that we can upper bound U by fmax, since any edge with capacity exceeding
fmax can have its capacity reduced to fax without affecting the optimum solution.
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Corollary 8.9. There is a (1+ O(Mg—n))—approximation algorithm for the fized

min

charge network design problem with repeated edges.
We also extend Theorem 2.1 as follows:

Corollary 8.10. Given a fractional solution to f, if each edge weight we is in-
creased to min(1, (1 + d)w,) and randomized rounding is performed, then with high
probability no cut in the rounded graph will have value less than its value in the
original fractionally weighted graph, where € = O(U logn/(6 fmin))-

Corollary 8.11. There is an O(4/ W)—appmm’mation algorithm for the fized-
charge single-use network design problem.

Proof. Apply oversampling with § = \/(U fmax 10g 1)/ fmin- O

Corollary 8.12. There is an O(fmax l})gi")—approximation algorithms for the fized
charge single-use network design problem when fmin > logn.

Corollary 8.13. There is an O(\/klogn)-approzimation algorithm for the fized-
charge k-connected subgraph problem.

9 Conclusion

This work has demonstrated the effectiveness of a sampling for solving problems
involving cuts. We have shown how random sampling tends to “preserve” all cut
information in a graph. This suggests that we might want to try to reformulate other
problems in terms of cuts so that the random sampling methods can be applied to
them.

One result of this approach has been to reduce large max-flow and min-cut
problems on undirected graphs to small max-flow and min-cut problems on di-
rected graphs. Our techniques are in a sense “meta-algorithms” in that improved
cut or flow algorithms that are subsequently developed may well be accelerated by
application of our technique. In particular, our exact algorithms’ running times are
dominated by the time needed to perform “cleaning up” augmenting path compu-
tations; any improvement in the time to compute a sequence of augmenting paths
would translate immediately into an improvement in our algorithm’s running time.
We have achieved this objective for simple graphs (unweighted graphs without par-
allel edges) (Karger and Levine 1998). One way to get such an improvement on
general graphs might be to generalize our sampling theorems to the case of directed
graphs. Unfortunately, directed graphs do not have good cut-counting bounds like
the ones we used here.
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Our approach to cuts and flows, combining sampling with an augmentation
algorithm, is a natural one for any problem of packing disjoint feasible sets over
some universe. All that is needed for the approach to work is

1. a sampling theorem, showing that a sample from half the universe has a pack-
ing of about half the size, and

2. an augmentation algorithm that increases the size of the packing by one.

One additional domain where we have shown these two features apply is that of
matroids. In particular, we show that the problem of packing matroid bases is
susceptible to this approach (Karger 1998b).

Our work studies sampling from arbitrary graphs. A huge amount of work has
gone into the study of sampling from complete graphs, yielding what are generally
known as random graphs. Indeed, one of the very first results on random graphs
was that their minimum cut was close its expected value (Erdos and Rényi 1961).
Our results can be seen as generalizing those results, but (perhaps because of their
generality) are not as tight. Perhaps our results can be tightened by considering
special cases, and perhaps other results from random graphs can be extended to the
study of sampling from arbitrary graphs.

Our randomized constructions show the exzistence of sparse subgraphs that ac-
curately approximate cut values. A natural question is whether these subgraphs
can be constructed deterministically in polynomial time. In the case of complete
graphs, this has been accomplished through the deterministic construction of ez-
panders (Gabber and Galil 1981). Indeed, just as the expander of (Gabber and
Galil 1981) has constant degree, it may be possible to deterministically construct a
(1+¢€)-accurate skeleton with a constant minimum cut, rather than the size Q(logn)
minimum cut produced by the randomized construction.

A related question is whether we can derandomize the randomized rounding
approach to network design problems. Raghavan (1988) uses the method of condi-
tional expectations to derandomize the randomized-rounding algorithm for explic-
itly specified packing problems. However, this approach requires a computation for
each constraint. This is not feasible for our problem with its exponentially many
constraints.

A very general goal would be to reformulate other network problems in terms
of cuts so that the sampling theorems could be applied.

A Counting Cuts

This section is devoted to proving a single theorem bounding the number of small
cuts in a graph. This theorem is a slightly tightened version of one that appeared
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earlier (Karger and Stein 1996).

Theorem A.1 (Cut Counting). In a graph with minimum cut c, there are less

2a

than n°% cuts of value at most ac.

We prove this theorem only for unweighted multigraphs, since clearly to every
weighted graph there corresponds an unweighted multigraph with the same cut
values: simply replace an edge of weight w with w parallel edges. To prove the
theorem, we present an algorithm that selects a single cut from the graph, and
show that the probability that a particular cut of value ac is selected is more than
n—2, Tt follows that there are less than n?® such cuts.

A.1 The Contraction Algorithm

The algorithm we use is the Contraction Algorithm (Karger and Stein 1996). This
algorithm is based on the idea of contracting edges. An efficient implementation
is given by Karger and Stein (1996), but here we care only about the abstract
algorithm.

To contract two vertices v; and ve we replace them by a vertex v, and let the
set of edges incident on v be the union of the sets of edges incident on v; and wvs.
We do not merge edges from v; and vy that have the same other endpoint; instead,
we allow multiple instances of those edges. However, we remove self loops formed
by edges originally connecting v; to vy. Formally, we delete all edges (v1,v2), and
replace each edge (vi,w) or (ve,w) with an edge (v,w). The rest of the graph
remains unchanged. We will use G/(v1,v2) to denote graph G with edge (v1,v2)
contracted (by contracting an edge, we will mean contracting the two endpoints of
the edge). Extending this definition, for an edge set F' we will let G/F denote the
graph produced by contracting all edges in F' (the order of contractions is irrelevant
up to isomorphism).

Note that a contraction reduces the number of graph vertices by one. We can
imagine repeatedly selecting and contracting edges until every vertex has been
merged into one of two remaining “metavertices.” These metavertices define a
cut of the original graph: each side corresponds to the vertices contained in one
of the metavertices. More formally, at any point in the algorithm, we can define
s(a) to be the set of original vertices contracted to a current metavertex a. Initially
s(v) = v for each v € V, and whenever we contract (v,w) to create vertex z we
let s(z) = s(v) U s(w). We say a cut (A, B) in the contracted graph corresponds
to a cut (A, B') in G, where A’ = Ugcas(a) and B’ = Upeps(b). Note that a cut
and its corresponding cut will have the same value. When the series of contractions
terminates, yielding a graph with two metavertices a and b, we have a corresponding
cut (A, B) in the original graph, where A = s(a) and B = s(b).
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Lemma A.2. A cut (A, B) is output by a contraction algorithm if and only if no
edge crossing (A, B) is contracted by the algorithm.

Proof. The only if direction is obvious. For the other direction, consider two vertices
on opposite sides of the cut (A, B). If they end up in the same metavertex, then there
must be a path between them consisting of edges that were contracted. However,
any path between them crosses (A, B), so an edge crossing cut (A, B) would have
had to be contracted. This contradicts our hypothesis. O

We now give a particular contraction-based algorithm, and analyze it to deter-
mine the probability that a particular cut is selected. Assume initially that we are
given a multigraph G(V, E) with n vertices and m edges. The Contraction Algo-
rithm, which is described in Figure 2, repeatedly chooses an edge at random and
contracts it.

Algorithm Contract(G)

repeat until G has 2 vertices

choose an edge (v, w) uniformly at random from G
let G «+ G/(v,w)

return G

Figure 2: The Contraction Algorithm

Lemma A.3. A particular minimum cut in G is returned by the Contraction Al-
gorithm with probability at least (g)_l.

Proof. Fix attention on some specific minimum cut (A4, B) with ¢ crossing edges.
We will use the term minimum cut edge to refer only to edges crossing (A, B).
From Lemma A.2, we know that if we never select a minimum cut edge during
the Contraction Algorithm, then the two vertices we end up with must define the
minimum cut.

Observe that after each contraction, the minimum cut value in the new graph
must still be at least c. This is because every cut in the contracted graph corresponds
to a cut of the same value in the original graph, and thus has value at least c.
Furthermore, if we contract an edge (v,w) that does not cross (A, B), then the
cut (A, B) corresponds to a cut of value ¢ in G/(v,w); this corresponding cut is a
minimum cut (of value ¢) in the contracted graph.
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Each time we contract an edge, we reduce the number of vertices in the graph
by one. Consider the stage in which the graph has r vertices. Since the contracted
graph has a minimum cut of at least ¢, it must have minimum degree ¢, and thus
at least rc/2 edges. However, only c of these edges are in the minimum cut. Thus,
a randomly chosen edge is in the minimum cut with probability at most 2/r. The
probability that we never contract a minimum cut edge through all n—2 contractions

T - (e
()

A.2 Proof of Theorem

We now extend our analysis to prove the section’s main theorem. To begin with,
we have the following:

Corollary A.4. The number of minimum cuts in a graph is at most (g)

Proof. In analyzing the contraction algorithm, we showed that the probability a
minimum cut survives contraction to 2 vertices is at least (7)) ~! Since only one cut
survives these contractions, the survivals of the different minimum cuts are disjoint
events. Therefore, the probability that some minimum cut survives is equal to the
sum of the probabilities that each survives. But this probability is at most one.
Thus, if there are k¥ minimum cuts, we have k(g)_l <1 O

This corollary has been proven in the past (Dinitz, Karzanov, and Lomonosov
1976; Lomonosov and Polesskii 1971). This bound is tight. In a cycle on n vertices,
there are (g) minimum cuts, one for each pair of edges in the graph. Each of these
minimum cuts is produced by the Contraction Algorithm with equal probability,
namely (g)fl. We now extend the analysis to approxzimately minimum cuts. No

such analysis was previously known.

Lemma A.5. For « a half-integer, the probabilitiy that a particular c-minimum cut
survives contraction to 2a vertices exceeds (2"04)7

Proof. We counsider the unweighted case; the extension to the weighted case goes
as before. The goal is to reapply Lemma A.2. Let « be a half-integer, and ¢ the
minimum cut, and consider some cut of weight at most «ec. Suppose we run the

41



Countraction Algorithm. If with 7 vertices remaining we choose a random edge, then
since the number of edges is at least cr/2, we take an edge from a cut of weight
ac with probability at most 2a/r. If we repeatedly select and contract edges until
r = 2, then the probability that the cut survives is

2c 2c 2c n\*
(1_?)(1_(n—1))"'(1_(2a+1)) - ( )

O

Remark. A cycle on n vertices again shows that this result is tight, since each set
of 2« edges forms an o-minimum cut.

Corollary A.6. For « a half-integer, the number of a-minimum cuts is at most
22a71 ( n ) < n2a
2c0 :

Proof. We generalize Corollary A.4. Suppose we randomly contract a graph to
2« vertices. The previous lemma lower bounds the survival probability of an «-
minimum cut, but we cannot yet apply the proof of Corollary A.4 because with
more than one cut still remaining the cut-survival events are not disjoint. However,
suppose we now take a random partition of the 2« remaining vertices. This partition
gives us a corresponding unique cut in the original graph. There are only 22¢ !
partitions of the 2« vertices (consider assigning a 0 or 1 to each vertex; doing this
all possible ways counts each partition twice). Thus, we pick a particular partition
with probability 2'~2¢. Combined with the previous lemma, this shows that we
select a particular unique c-minimum cut with probability exceeding 2'—2¢ (;&)_1.
Now continue as in Corollary A.4.

Th n2® bound follows from the fact that 22! < (2a)!. O

We can also extend our results to the case where 2« is not an integer. We
use generalized binomial coefficients in which the upper and lower terms need not
be integers. These are discussed in Knuth (1973, Sections 1.2.5-6) (cf. Exercise
1.2.6.45). There, the Gamma function is introduced to extend factorials to real
numbers such that ! = a(a — 1)! for all real & > 0. Many standard binomial
identities extend to generalized binomial coeflicients, including the facts that (;&) <
n?®/(2a)! and 22¢°1 < (2a)! for a > 1.

Corollary A.7. For arbitrary real values o > 1, there are less than n*® a-minimum
cuts.

Proof. Let r = [2a]|. Suppose we contract the graph until there are only r vertices
remaining, and then pick one of the 2"~! cuts of the resulting graph uniformly at
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random. The probability that a particular a-minimum cut survives contraction to
r vertices is

-2 22 - (n —2a)! 1!

(r —2a)! n!
()
(50)

It follows that the probability our cut gets picked is 277 (, ) (27;)71. Thus the

number of a-minimum cuts is at most 271 (27;) (27;[)71 < (27;) O
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