
Approximating s–t Minimum Cuts in ~O(n2) Time

András A. Benczúr�
Department of Mathematics

M. I. T.

David R. Kargery
Laboratory for Computer Science

M. I. T.Abstract
We improve on random sampling techniques for approximately
solving problems that involve cuts in graphs. We give a linear-
time construction that transforms any graph on n vertices into
anO(n log n)-edge graph on the same vertices whose cuts have
approximately the same value as the original graph’s. In this
new graph, for example, we can run the ~O(mn)-time maxi-
mum flow algorithm of Goldberg and Tarjan to find an s–tmin-
imum cut in ~O(n2) time. This corresponds to a (1 + �)-times
minimum s–t cut in the original graph. In a similar way, we
can approximate a sparsest cut in ~O(n2) time.1 Introduction
Several papers by Karger [Kar94b, Kar94a, Kar96] have re-
cently shownthat random sampling is an effective tool for prob-
lems involving cuts in graphs. A cut is a partition of a graph’s
vertices into two groups; its value is the number, or in weighted
graphs the total weight, of edges with one endpoint in each side
of the cut. Many problems depend only on cut values: the con-
nectivity of a graph is the minimum value of a graph cut; the
maximum flow that can be routed from s to t is the value of the
minimum cut separating s and t; a minimum bisection is the
smallest cut that splits the graph into two equal-sized pieces.

Random sampling “preserves”the values of cuts in a graph.
If we pick each edge of a graph G with probability p, we get
a new graph in which every cut has expected value exactly p
times it value inG. The following lemma from [Kar94a] shows
that all cuts are near their expected values:�E-mail: benczur@theory.lcs.mit.edu. Address: Laboratory for
Computer Science, 545 Technology Square, Cambridge MA 02139. Research
supported by DARPA contract N00014-92-J-1799 and NSF contract 9302476-
CCR.yM.I.T. Laboratory for Computer Science, 545 Technology Square, Cam-
bridge MA 02139. E-mail: karger@theory.lcs.mit.edu.
URL: http://theory.lcs.mit.edu/˜karger. Research supported in
part by ARPA contract N00014-95-1-1246.

Lemma 1.1 LetG have minimum cut c. Build G0 by including
everyedge fromGwith probabilityp. If p > 8(log n)=�2c then
with probability1�1=n every cut inG0 has value within (1��)
of its expectation.

Thus, for example, the minimum cut of G0 is close to pc.
Therefore, if we are willing to settle for an approximation, we
can find the minimum cut inG0, which has fewer edges thanG,
and from it derive an approximately minimum cut of G. This
scheme can be used to approximate the minimum cut in ~O(m)
time [Kar94a].

Unfortunately, the requirement that p� 1=c limits the ef-
fectiveness of this scheme. It means that in a graph with m
edges, we can only reduce the number of edges to m=c. Thus,
when c is small, we gain little. Results can be even worse in
weighted graphs.1.1 Our Results
In this paper, we show how nonuniform sampling can be used
to remove random sampling’s dependence on c. Our main re-
sult is the following:

Theorem 1.2 Given a graphG and an errorparameter�, there
is a graph G0 such that� G0 has O(n log n=�2) edges and� the value of every cut in G0 is (1� �) times the value of

the corresponding cut in G.G0 can be constructed in O(m log2 n) time if G is unweighted
and in O(m log3 n) time of G is weighted.

It follows that for any algorithm to (even approximately)
solve a cut problem, if we are willing to accept an approximate
answer,we can substituten log n for any factor ofm in the run-
ning time. Our applications of this result are the following:

Corollary 1.3 In an undirected graph, a (1 + �) times mini-
mum s–t cut can be found in ~O(n2=�2) time.

Corollary 1.4 In an undirected graph, a (1 + �) times mini-
mum s–t cut of value v can be found in ~O(nv=�2) time.

Corollary 1.5 AnO(log n)-approximation to the sparsest cut
in an undirected graph can be found in ~O(n2=�2) time.

These corollaries follow by applying our sampling scheme
to (respectively) the maximum flow algorithm of Goldberg and
Tarjan [GT88], the classical augmenting-paths algorithm for
maximum flow [FF56, AMO93], and the Klein-Stein-Tardos
algorithm for approximating the sparsest cut [KST90].

1.2 Our Methods
Our approachmodifies the uniform sampling schemedescribed
in Lemma 1.1. That scheme sampled all graph edges with the
same probability. Here we show that a graph with many edges
has “dense regions” that can be sampled sparsely (with lower
probability than the general graph), ensuring that not too many
edges are sampled overall. Consider a c0-connected induced
subgraph of G with c0 > c. Lemma 1.1 says that we can sam-
ple the edges of this subgraph with probability ~O(1=c0) with-
out introducing significant error in the cut values. More gen-
erally, we can sample an edge with probability inversely pro-
portional to the connectivity of any subgraph containing that
edge.

To take advantage of this fact, we will show that almost all
the edges are in components with large connectivities and can
therefore be sampled with low probability—the more edges,
the less likely they are to be sampled. We can therefore con-
struct an O(n log n)-edge graph that, regardless of the mini-
mum cut value, accurately approximates all cut values.

In addition to proving that such sampling works, we give
fast algorithms for identifying the dense regions and determin-
ing the correct sampling probabilities from them. This involves
an extension of the sparse certificate technique of Nagamochi
and Ibaraki [NI92b].

Our approach works for unweighted and weighted graphs.
Initially, we will focus our discussion on unweighted graphs.
We extend our results for weighted graphs in Section 5.

Our ideas are formalized in the following definitions and
theorems.Strong Connectivity
We first formalize the notion of subgraphs with large connec-
tivities.

Definition 1.6 A graph is k-connected if the value of each cut
in G is at least k.

Definition 1.7 A k-strong component is a maximalk-connected
vertex-induced subgraph.

It follows that the k-strong components partition the ver-
tices of a graph and that the (k + 1)-strong components are a
refinement of the partition into k-strong components.

Definition 1.8 The strong connectivity of an edge e, denotedce, is the maximum value of k such that a k-strong component
contains e. We say e is k-strong if its strong connectivity is k
or more, and k-weak otherwise.

Note that the strong connectivity of an edge differs from the
standard definition of connectivity:

Definition 1.9 The (standard) connectivity of an edge e is the
minimum value of a cut separating its endpoints.

Consider the graph with edges (s; vi) and (vi; t) for i =1; : : : ; n. Vertices s and t have (standard) connectivity n but
only have strong connectivity 1. An edge’s strong connectivity
is always less than its connectivity since a cut of value less thank separating the endpoints of an edge implies that there is nok-connected component containing both endpoints.

Compression
As was stated above, we aim to sample edgeswith varying prob-
abilities. This eliminates the linear-scaling behaviorof the sam-
pled cut values. To recover this behavior, we make the follow-
ing definition.

Definition 1.10 Given a graph G and compression probabil-
ities pe for each edge e, we build a compressed graph G[pe]
by including edge e in G[pe] with probability pe, and giving it
weight 1=pe if it is included.

Since the expected weight of any edge in the graph is 1, every
cut’s expected value is equal to its original value.The Main Theorems
We now use the above definitions to describe our results. In our
theorems, we use a constant compression factor �. We choose
the compression factor so as to satisfy a given error bound �:�� = 16(d+ 2)(ln n)=�2 :
Theorem 1.11 (Compression) Given � and a corresponding��, for each edge e, let pe = minf1; �=ceg. Then with prob-
ability 1� n�d, every cut in G[pe] has value between (1� �)
and (1 + �) times its value in G.

Theorem 1.12 If pe = minf1; �=ceg then with veryhigh prob-
ability G[pe] has O(n�) edges.

In particular, to achieve any constant error in cuts values,
one can choose � to yield O(n log n) edges in the compressed
graph.1.3 Previous results
In this section, we describe some ingredients of previous work
that will be used in our result.Uniform Sampling
We begin with the edge-sampling scheme of [Kar94a].

Definition 1.13 For an unweighted graph G, let each edge e
have a random variableXe assigned to it. We obtain a random
weighted graph G(Xe) by putting weight Xe on edge e.

Note the use of parenthesis versus brackets to distinguish
general sampling from compression. Note also that the special
caseof assigningweight0 to an edge corresponds to not putting
the edge in G(Xe) at all—this means G(Xe) can have fewer
edges than G.

Theorem 1.14 (Sampling [Kar94a]) Let Xe be a collection
of random variables for e 2 G such that 0 � Xe �M for alle. Let ĉ be the minimum expected value of any cut in G(Xe).
With probability 1� O(1=nd), every cut in G(Xe) has value
between (1 + �) and (1 � �) times its expected value, where� =p2(d + 2)(M=ĉ) ln n.

What this Sampling Theorem essentially says is that the key
to a good error bound is to have no one edge contribute a signif-
icant portion to the weight of any cut. As a particular example,
suppose we take a graph with minimum cut c and sample every

edge with probability p = �((log n)=�2c). This corresponds
to a variable Xe = n 1 with probability p,0 otherwise.

We can plug these variables into the sampling theorem withM = 1 and ĉ = pc =
(log n). Thus the sampled graph
will approximate all original graph cuts to within (1� �) (in a
scaled sense).

The Sampling Theorem is used in algorithms for approxi-
mating minimum cuts and maximum flows and for solving net-
work design problems [Kar94b, Kar94a]. It also plays an im-
portant role in a near linear time algorithm for finding mini-
mum cuts exactly [Kar96].Sparse Certi�cates
The other tool we use is sparse certificates.

Definition 1.15 A sparse k-connectivity certificate, or simply
a k-certificate, for an n-vertex graphG is a subgraphH of G
such that

1. H contains at most k(n� 1) edges, and

2. H contains all edges crossing cuts of value k or less.

It follows from this definition that if a cut has value v � k
in G, then it has the same value v in H since all edges from it
must be in the certificate. On the other hand, any cut of value
greater than k in G has value at least k in H . Therefore, if we
are looking for cuts of value less than k in G, we might as well
look for them in H , since they are the same. The advantage is
that H may have many fewer edges than G.

Nagamochi and Ibaraki [NI92b, NI92a] used sparse certifi-
cates in anO(mn)-time algorithm for computing the minimum
cut in a graph. They gave an algorithm [NI92b] that constructs
a sparsek-connectivity certificate inO(m) time on unweighted
graphs, independentof k. They also gave a weighted-graph al-
gorithm with an O(m+ n log n) running time [NI92a]. Note
that in weighted graphs, we define a sparse certificate as fol-
lows: we equatean edge of weightwwith a set ofw unweighted
edges with the same endpoints—the bound on size becomes a
bound on the total weight of certificate edges.Limitations
We can find approximate minimum cuts efficiently by combin-
ing sparse certificates with the Sampling Theorem. Given that
the minimum cut is c, we construct a sparseO(c)-connectivity
certificate with the same minimum cuts but with O(nc) edges.
The edges of this graph can then be sampled with probability�((log n)=c), yielding an O(n log n)-edge graph with min-
imum cuts corresponding to approximately minimum cuts in
the original graph. In this sample, minimum cuts can be found
in ~O(n) time using Gabow’s algorithm [Gab95] for minimum
cuts.

Suppose we try to use the above approach to find an s–t
minimum cutwith valuev. By sampling a sparseO(v)-certificate,
we can reduce the number of edges to ~O(nv=c). We cannot
take a sparser certificate without potentially damaging the cuts
we aim to find, and we cannot decrease the sampling probabil-
ity without substantially increasing the variance in cut values.
Thus the number of edges, and hence any improved running
time to approximate an s–t minimum cut, will depend on the
ratio of v to cwhich could be arbitrarily large. Our introduction
of nonuniform sampling allows us to overcome this limitation.

2 De�nitions
In the bulk of this paper, G denotes an unweighted undirected
graph with n vertices andm edges; parallel edges are allowed.
We also consider weighted graphs. If running times are not rel-
evant, we can treat an edge of weight w as a set of w parallel
edges with the same endpoints.

If F is a weighted graph, wt(e; F) denotes the weight of
edge e 2 F . For a constant , F denotes a graph with all
edge weights multiplied by . We extend this notion when re
is a vector over the edge set and let reF denote a graph with
wt(e; reF) = rewt(e;F).

A cut C is a partition of the vertices into two subsets. The
value VAL(C;G) of the cut in (a weighted or unweighted)graphG is the total weight (or number) of edges with endpoints in
different subsets. If it does not lead to ambiguity, we also letG
denote the vector of all cut values of a graphG, ordered canon-
ically by vertex partitions. We therefore say that G � F if G
andF have the same vertex set and the value of each cut inG is
not more than that of the corresponding cut inF . For a scalar or
vectorv, we say that v 2 (1��)v0 if (1��)v0 � v � (1+�)v0.

We say that an eventoccurs with high probability if its prob-
ability is 1�O(n�d) for some parameter d. An event occurs
with very high probability if the probability it does not occur is
exponentially small in n.

Using all of these definitions, the conclusion of the Com-
pression Theorem can be described as follows: with high prob-
ability, G[pe] 2 (1� �)G.3 Proofs of the Compression Theorem
We now prove Theorems 1.11 and 1.12. Recall that we com-
press with probabilities pe = �=ce where ce is the strong con-
nectivity of edge e. Compression is a special case of sampling.
We can use Theorem 1.14, with M = maxf1=pe j e 2 Gg,
to prove an error bound, but it is extremely weak. Our main
result will be a much tighter error bound based on connectivity
information encoded in the pe-values.3.1 Bounding the number of edges
We prove Theorem 1.12 first. We bound the expected num-
ber of edges by n� (where � is the compression factor); the
high probability result follows by a straightforward Chernoff
bound [Che52]. We use the following lemma:

Lemma 3.1 A graph with total edge weight k(n� 1) or more
has a k-strong component (which may be the graph itself).

Proof: Let G be a smallest counterexample with n vertices.
Since in particular G is not k-connected, it must have a cut C
of value less than k. Let us remove the edges of C and consider
the two sides G1 and G2 with n1 and n2 = n � n1 vertices
respectively. Since G is a smallest counterexample and G1 is
not k-strong,G1 must have total edge weight less than k(n1�1). Similarly, G2 has edge weight less than k(n2�1). Adding
back the fewer than k edges of C, we see that the total edge
weight of G is strictly less than k(n1 � 1)+ k(n2� 1)+k =k(n � 1), a contradiction.

We can now prove Theorem 1.12. The expected number of
edges inG[pe] is

Pe2G pe; since we took pe = minf�=ce; 1g,
this value is at most �Pe2G c�1e . Let us build a graph G0 by
taking each edge e of G with weight c�1e . It suffices to show
that this graph has total edge weight at most n. Assume this

is not the case: then by Lemma 3.1, G0 has a 1-strong compo-
nentF 0. LetF be the correspondingsubgraph ofG; let e0 havece0 minimum over e 2 F . By the definition of ce0 , F cannot
be more than ce0 -connected. Hence there is a cut C of F with
VAL(C; F) � ce0 . Then on one hand, VAL(C; F 0) > 1; on
the other hand, by the minimality of ce0 ,

VAL(C; F 0) = Xe2C c�1e� Xe2C c�1e0= c�1e0 VAL(C; F)� c�1e0 ce0= 1;
a contradiction.3.2 A �rst error bound
We now give an argument that shows a slightly weaker result
than Theorem 1.11. Namely, with the compression factor ��
as above, the error bound will beO(� logm), instead of � as in
Theorem 1.11. The actual proof in the next subsection follows
the same lines but is slightly more involved.

The main proof idea is the following. For an edge e with
strong connectivity ce, there is a ce-strong componentH of G
containing e. Any cut C containing e must cut H , inducing a
cut C0. Let us fix p = �=ce. If we sample each edge of H
with this probability and give the included edges weight 1=p,
Theorem 1.14 applied toH (with M = 1=p and ĉ = ce) shows
that the total weight of edges of C0 changes by at most �.

The problem with this approach is that the Sampling The-
orem applied to H assumes that all edges in H are being sam-
pled with the same probability �=ce. Since some of the edges
in H may actually be in a c0-strong component with c0 � ce,
this assumption could be violated.

To get around this problem, we divide the sampling process
into a series of phases: first we flip sampling coins for edges e
with ce < 2, then for 2 � ce < 4, etc. Clearly this division
into phases does not affect the eventual outcome since we flip
exactly one coin for each edge. However, in each phase all the
coin flips have roughly the same bias so that the Sampling The-
orem applies.

Let us decomposeG into graphs graphsGi for i � 0, such
that e 2 Gi if 2i � ce < 2i+1 . Graph Gi contains the edges
whose coins we flip in the i-th phase. Let Fi = Sj�iGj; thenFi is the set of all 2i-strong components. In phase i, we flip
coins for the edges of Gi while the other edges of G are left
alone. To see how this affects the cuts in G, consider each 2i-
strong componentH inG independently. The edges ofH\Gi
are sampled with probability �=ce. The edges of H � Gi are
left alone—equivalently, we can think of sampling them with
probability 1. Formally, we can define random variables X(i)e
to the edges e by taking pe = �=ce and settingX(i)e =8<: � 1=pe with probability pe0 otherwise

�
if e 2 Gi1 if e =2 Gi :

Now consider H(X(i)e). Theorem 1.14 applies with ĉ � 2i
and M = 2i+1=�� . Thus with high probabilityH(X(i)e) 2 (1� �=2)H:

By combining the disjoint 2i-strong components that make upFi, we deduce thatFi(X(i)e) 2 (1��=2)Fi. Notice the impor-
tance of definingGi such that all ce in it are within a constant
ratio: we must keep ĉ andM near each other in Theorem 1.14.

The total error we incur during compression is bounded by
the sum of all individual �-error terms over all the coin-flipping
phases. Since the maximum possible strong connectivity of any
edge is m, there are at most logm phases for a total error of� logm. More formally, we have:G[pe] = Xi�logmGi[pe] (1)= XGi(X(i)e)= X(Fi(X(i)e) � Fi+1)= XFi(X(i)e)�XFi+12 X(1� �=2)Fi �XFi+1 (2)= X(1� �=2) � (Gi [Fi+1)�XFi+1 (3)= X(1� �=2)Gi +X(1� �=2)Fi+1�XFi+1 (4)= (1� �=2)G� �=2XFi+12 (1� �=2)G� �=2Xi�` G (5)= (1� �2 logm)G (6)

Here (1) follows by the decomposition ofG into Gi, (2) by
Theorem 1.14, and (3–4) by Fi = Gi [Fi+1. (5) follows by
upper bounding the cut values in Fj by those in G � Fj . (6)
follows since there are O(logm) terms in the sum.3.3 An improved error bound
The above argument introduces an extra logm factor in the er-
ror bound; our next analysis improves on this bound and thus
lets us get by with fewer sampled edges. We use the same ideas
as in the previous subsection. We let Gi and Fi be as before,
and bound the relative error arising by sampling from Gi sep-
arately for all values of i.

Our improvement over the previous proof is the following.
There when we flipped coins for Gi, we added the edges ofFi+1 so that we could use Theorem 1.14. The reasonFi+1 had
to be added was to embed the edges of Gi into 2i-strong com-
ponents; while Fi has strong components, Gi = Fi � Fi+1
might not. However, we show below that we can add a much
lighter graph to Gi to make it 2i-connected. Since the approx-
imation error in a phase is proportional to the values of the cuts
in that phase, adding a graph with lighter cuts will reduce the
approximation error. We define this lighter graph as follows.
For e 2 Gj and i � j, define r(i)e = 2�(j�i) and use r(i)e Fi+1
as the “deterministic part” added to Gi to make the Sampling
Theorem work (recall that reF denotes the graph F with the
weight of edge e multiplied by re) The main observation is:

Lemma 3.2 Let H be a 2i-strong component of G. Then the
subgraph r(i)e H of r(i)e Fi is 2i-strong as well.

Proof: We use downward induction on i. The claim holds for
the largest value of i, whenFi+1 is empty, since then r(i)e Fi =Fi. In the inductive step, let H be a 2i-strong component. If a
cut C ofH has all of its edges in Gi , clearly VAL(C; r(i)e H) =
VAL(C;Gi) � 2i . In general, however, C may contain edges
of Fi+1 and thus of a 2i+1-strong component H 0. But then C
cuts H 0; therefore by induction, VAL(C; r(i+1)e H 0) � 2i+1 .
Hence

VAL(C; r(i)e Fi) � VAL(C; r(i)e Fi+1)� VAL(C; 12r(i+1)e Fi+1)� 12VAL(C; r(i+1)e H 0)� 122i+1:
We now proceed to prove Theorem 1.11 as in the previous

subsection. For each fixed i, defineX(i)e =8<: � 1=pe with probability pe0 otherwise

�
if e 2 Gir(i)e if e =2 Gi

Observe thatGi = r(i)e Gi = r(i)e Fi�r(i)e Fi+1 whileGi[pe] =Fi(X(i)e) � r(i)e Fi+1.

Lemma 3.3 With high probability,Fi(X(i)e) 2 (1��=2)r(i)e Fi.
Proof: Let H be a 2i-strong component of Fi. Let us apply
Theorem 1.14 for H(X(i)e). We get M � 2i+1=�� and ĉ �2i by Lemma 3.2. Plugging in we find that the error bound isp2(d+ 2)(M=ĉ) ln n = �=2. The claim for Fi follows by
summing cut values over all 2i-strong components.

Now the proof is completed by the same method as the pre-
vious subsection, by using Lemma 3.3 with the new random
variables X(i)e :G[pe] = Xi�logmGi[pe]= XFi(X(i)e)�X r(i)e Fi+12 X(1� �=2)r(i)e Fi �X r(i)e Fi+1= X(1� �=2) � (r(i)e Gi [r(i)e Fi+1)�X r(i)e Fi+1= X(1� �=2)Gi +X(1� �=2)r(i)e Fi+1�X r(i)e Fi+1= (1� �=2)G� (�=2)X r(i)e Fi+1= (1� �=2)G� (�=2)Xj�1 Gj X1�i<j r(i)e (7)2 (1� �)G (8)

Here Equation 7 follows by noting that Fj = Pi�jGi and
then exchanging the order of the summation. Equation 8 fol-
lows by noting that r(i)e = 2�(j�i) for e 2 Gj , implyingX1�i<j r(i)e = X1�i<j 2�(j�i) < 12 :

This completes the proof of Theorem 1.11.4 Finding strong connectivities
We could efficiently compress graphs if we could efficiently
find the strong connectivities of edges. To be able to use the
CompressionTheorem, we do not even require the exact valuesce. For example, if we have estimates ~ce = �(ce), the Com-
pression Theorem remains true with a constant-factor change
in the expected number of edges and the error bound.

Unfortunately, even to quickly approximate strong connec-
tivities is an open question. However, we now show that it is
possible to find reasonably good lower bounds ~ce � ce. If we
set pe = �=~ce � �=ce in the Compression Theorem we only
reduce the variances of our edge variables and therefore get no
worse an error bound than with the correct ce values. In this
modified setting, we can no longer use Theorem 1.12: we must
re-prove that the expected number of edges in the compressed
graph G[pe] is O(n�). A Chernoff bound then proves that the
bound holds with very high probability.

Our basic plan is the following. Lemma 3.1 says that any
graph with k(n� 1) or more edges has a k-strong component.
It follows that at most k(n�1) edges are k-weak (that is, have
strong connectivity less than k). For otherwise the subgraph
consisting of those edges would have a k-strong component, a
contradiction. For each value k = 1; 2; 4; 8; : : : ;m, we will
find a set of k(n � 1) edges containing all the k-weak edges
(note that every edge is m-weak). We set ~ce = k for all edges
in this set, thus establishing lower bounds for which the Com-
pression Theorem works. The expected number of edges sam-
pled under this basic scheme would belogmXi=0 2i(n � 1)(�=2i) = O(�n logm):
We will eventually describe a more sophisticated scheme that
eliminates the factor of logm.

Our first goal is to identify the k-weak edges. An obvious
tool is a sparse connectivity certificate. Recall that this certifi-
cate contains k(n� 1) edges that include all edges with (stan-
dard) connectivity less than k—that is, all edges that cross a
cut of value less than k. Nagamochi and Ibaraki [NI92b] give
an algorithm Certificate that finds sparse certificates inO(m) time on unweighted graphs and O(m + n log n) time
on weighted graphs.

Unfortunately, although a sparse k-certificate contains all
edges with standard connectivity less than k, it need not con-
tain all edges with strong connectivity less than k, since some
such edges might not cross any cut of value less than k. We
must therefore perform some extra work. In Figure 1 we give
an algorithm WeakEdges for identifying edges with ce < k.
It uses the Nagamochi-Ibaraki Certificate algorithm as a
subroutine.

Theorem 4.1 WeakEdges outputs a set containing all the k-
weak edges of G.

procedure WeakEdges(G; k)
do log2 n timesE0 Certificate(G; 2k)

output E0G G� E0
end do

Figure 1: Procedure WeakEdges for identifying ce < k
Proof: First suppose that G has no k-strong components, i.e.
that ce < k for all edges. Then by Lemma 3.1, there are at
most k(n � 1) edges in G; hence at least half of the vertices
have at most 2k incident edges (which define a cut of value
at most 2k). In a iteration of the loop in WeakEdges, these
vertices become isolated after removing the sparse certificate
edges. We have shown that in a single loop iteration half of
the non-isolated vertices ofG become isolated; hence in log2 n
rounds we isolate all vertices ofG. Thus all the edges ofG are
output by WeakEdges.

In the general case, let us obtain a new graph H by con-
tracting each k-strong component ofG to a vertex. Any sparse2k-certificate ofG contains the edges of a sparse 2k-certificate
of H as well. Thus by the previous paragraph, all edges of H
are output by WeakEdges. But these are all the k-weak edges
of G.4.1 Sparse partitions
The above algorithm can clearly be implemented via O(log n)
calls to the Nagamochi-Ibaraki Certificate algorithm. It
follows that it runs in O(m log n) time on unweighted graphs
and outputs a set of at most k(n� 1) log n edges. In this sec-
tion, we eliminate the log n factor in this approach by finding
edge sets that are “sparser” than the Nagamochi–Ibaraki cer-
tificate.

The first observation we use is that a given k-certificate E0
may contain edges that are inside a connected component ofG � E0 . The edges in G � E0 do not cross a cut of value at
most k (since they are connected by a path of edges that do not
cross such a cut), so the same holds for any edge of E0 whose
endpoints are connected by a path in G�E0. We can therefore
remove any such edge from E0 and put it back in G.

We can find the resulting reduced edge set by contracting
all edges not in E0 , yielding a new graphG0 . But now observe
that any edge crossing a cut of value at most k inG also crosses
such a cut in G0 since we contract no edge that crosses a small
cut. Thus we can find all such edges via a certificate in G0.
SinceG0 has fewer vertices, the certificate has fewer edges. We
can iterate this procedure until all edges in the certificate cross
some cut of value at most k or until G0 becomes a single ver-
tex. In the latter case, the original graph is k-connected, while
in the former, if the current contracted graph has n0 vertices,
it has at most k(n0 � 1) edges. This motivates the following
definition:

Definition 4.2 A sparse k-partition, or k-partition, is a set E0
of edges of G such that

1. E0 contains all edges crossing cuts of value k or less inG, and

2. If G�E0 has r connectedcomponents, thenE0 contains2k(r � 1) edges.

In fact, the construction just described yields a graph with
at most k(r � 1) edges, but we have relaxed the definition toO(k(r � 1)) edges to allow for an efficient construction.

Procedure Partition in Figure 2 outputs a sparse par-
tition. It uses the Nagamochi–Ibaraki Certificate algo-
rithm and obtains a new graph G0 by contracting those edges
not in the certificate. It repeats this process until the graph is
sufficiently sparse.

procedure Partition(G; k)
input: An n-vertex m-edge graph G

if m=n < 2k then
output the edges of G

else E0 Certificate(G; k)G0 contract all edges of G �E0
Partition(G0 ; k)

Figure 2: Partition finds low-connectivity edges

Theorem 4.3 Partition outputs a sparsepartition inO(m)
time on unweighted graphs and O(m log n) time on weighted
graphs.

Proof: Correctness is clear since no weak edge is ever con-
tracted; we need only bound the running time. Note that at a
single recursion level the work done is just that of the call to
Certificate which takes linear time [NI92b]. Now sup-
posem=n > 2k. We find a sparse connectivity certificate withm0 � kn edges and then contract the graph to n0 vertices. Ifn0 > n=2 then in the following iteration we will havem0=n0 <(kn)=(n=2) � 2k and the algorithm will terminate. It follows
that the numberof vertices halves in every recursive call except
the last.

SupposeG is unweighted. At each recursive call, the num-
ber of edges is at mostk times the number of vertices—thus the
number of edges halves in each recursive call. It follows thatT (m;n) = O(m) + T (m=2; n=2) = O(m).

If G is weighted, we must use theO(m+n log n)-time al-
gorithm of [NI92a] to find sparse certificates. Furthermore, we
cannotensure that the number of edges halves, but only that the
total weight of edgeshalves. However, the vertex-reduction ar-
gument still applies. Therefore, T (m; n) = O(m+n log n)+T (m;n=2) = O(m log n).
Lemma 4.4 IfPartition is used instead ofCertificate
in a call to WeakEdges(G; k), then algorithm WeakEdges
runs inO(m log n) time on unweightedgraphsandO(m log2 n)
time on weighted graphs and returns a set of at most 4k(r�1)
edges that partitions G into r connected components.

Proof: The running time is clear from the previous lemma. To
prove the edge bound, consider a particular connected compo-
nent remaining in a particular iteration ofWeakEdges. A call
to Partition returns a set of 4k(s � 1) edges that breaks
that component into s subcomponents (the multiplier 4 arises
from the fact that we look for a 2k-partition). That is, it uses
at most 4k(s � 1) edges to increase the number of connected
components by s � 1. We can therefore charge 4k edges to
each of the new components that gets created. Accumulating
these charges over all the calls to Partition shows that if

WeakEdges outputs 4k(r � 1) edges then those edges must
split the entire graph into at least r components.4.2 Assigning Estimates
We now give an algorithm Estimation for estimating strong
connectivities in Figure 3. We use subroutine WeakEdges to
find a small edge set containing all edges e with ce < k but
replace the Nagamochi-Ibaraki Certificate implementa-
tion with our algorithm Partition to reduce the number of
output edges.

procedure Estimation(H; k)

input: subgraphH of G
if H contains edgesE0 WeakEdges(H,2k)

for each e 2 E0~ce k
for each connected componentH 0 � H �E0

Estimation(H 0,2k)
Figure 3: Procedure Estimation for assigning ~ce-values

Lemma 4.5 After a call to Estimation(G; 1), the labels ~ce
satisfy ~ce � ce.

Proof: Consider any recursive call Estimation(H 0 ; 2k).
This call occurred because H 0 was one component produced
byWeakEdges(H; 2k). By the correctnessofWeakEdges,
every edge in H 0 is 2k-strong in H , and therefore is certainly2k-strong in G. It is therefore legitimate to set ~ce = 2k � ce
for any e 2 H 0. Correctness of Estimation follows by in-
duction.

Lemma 4.6 Assume that in procedureWeakEdges, procedure
Certificate is replaced by Partition. Then the values~ce output by Estimation(G; 1) are such that the expected
number of edges in G[�=~ce] is O(n log n).
Proof: We prove the following by induction on n: regardless
of k, for any n-vertex graph G, Estimation(G; k) assigns
values ~ce such that

P 1=~ce � 4(n�1). The expected number
of edges then follows as in Theorem 1.12.

The base case of a single vertex is trivial. For the induc-
tive step, consider a call to Estimation(G; k). We first call
WeakEdges(G; k), which returns a set of 4k(r � 1)) edges
that partition G into r connected components G1; : : : ;Gr of
sizes n1; : : : ; nr . Let us assume without loss of generality thatr > 1, since otherwise Estimation simply recurses on the
same graph without assigning any ~ce values until this is so. We
now recursively call Estimation on the graphs Gi . By in-
duction, these calls assign values ~ce to the edges of Gi such
that Xe2Gi 1=~ce � 4(ni � 1)
Meanwhile, we assign value ~ce = k to each of the at most4k(r � 1) edges not in one of the Gi. It follows that the as-
signment of ~ce values satisfiesXe 1=~ce � Xi 4(ni � 1) + (4k(r � 1))=k

= (4Xi ni) � 4r + 4(r � 1)= 4(n � 1)
In summary, we have given the necessary construction for

approximating strong connectivities:

Lemma 4.7 Estimation determines values ~ce � ce such
that G[��=~ce] has O(n log n=�2) edges and approximates all
cut values to within (1� �) with high probability.

Lemma 4.8 Estimation runs in O(m log2 n) time on an
unweightedgraph and inO(m log2 n log nW) time on a graph
with maximum edge weight W .

Proof: Each level of recursion of Estimation calls subrou-
tine WeakEdges on graphs of total size m. An unweighted
graph has maximum strong connectivity m and therefore hasO(logm) levels of recursion; in a weighted graph the number
of levels of recursion is O(log nW).5 Changes in weighted graphs
Now we describe how to extend our results to weighted graphs.
The main theorems (Theorems 1.11 and 1.12) hold for multi-
graphs (graphs with parallel edges). Hence we can apply these
theorems to weighted graphs by scaling all weights up, round-
ing them to integers, and replacing an edge of weight w be w
parallel copies of the same edge. Notice that the error-bounding
theorems are independent of the number of edges in G (which
may become huge in this process).

On the algorithmic side, things are less simple. First of all,
the simple m-step procedure of selecting each edge with prob-
ability pe is no longer polynomial in n. This minor problem is
solved by several linear-time algorithms for sampling weighted
graphs [Kar94a]—for example, one can sample from the bino-
mial (or Poisson) distribution that each edge of the weighted
graph induces when each unit of weight is thought of as an in-
dividual edge.

The main difficulty in weighted graphs is in the estimation
procedure for ce. If the total edge weight M is polynomial,
the solution is straightforward. Nagamochi and Ibaraki give anO(m+n log n)-time weighted-graph implementation of their
Certificate algorithm [NI92a] that we can use to imple-
mentEstimation inO(m log n) time. However, the ~ce val-
ues may now be as large as M , meaning that O(logM) levels
of recursion will be required in Partition. To deal with this
problem, we show how to localize our computation of strong
connectivities to a small “window” of relevant connectivity val-
ues.

Lemma 5.1 Suppose we contract all edges of G with weight
exceedingw+ and delete all edgeswith weight less thanw�=n3
to get a new graphG0. Suppose e has strong connectivity ce inG, with w� < ce < w+. Then its strong connectivity c0e in G0
satisfies (1� 1=n)ce � c0e � ce.

Proof: We first prove c0e � ce. Suppose that after we contract
the specified edge, we find edge e in a componentH 0 with con-
nectivity c0e > ce. Consider the preimage H of that compo-
nent in G—it must have connectivity at most ce. The claim is
that contracting all edges of weight exceedingw+ in H yieldsH 0 with connectivity c0e. Since H has connectivity at most ce,

procedure WindowEstimation(G)
Sort the edges in decreasing weight order
initialize G0 as an empty graph
repeatW maximum remaining edge weight

add every edge of weight greater
than W=n5 to G0

Call Estimation(G0)
Contract every G0 edge of weight

exceedingW=n
until no edges remain

Figure 4: WindowEstimation for weighted graphs

there must be a cut of value at most ce < w+ in H . Since only
edges of weight exceedingw+ are contracted, no edge across
the small cut is contracted, so that H 0 still has connectivity at
most ce—a contradiction. Therefore, c0e < ce.

To prove that c0e > ce(1 � 1=n), just note that the total
weight of deleted edges is at most

�n2�w�=n3 < ce=n.

We now apply the above “windowing” lemma in our algo-
rithms. We begin with a simple rough estimate for the strong
connectivity values. Suppose we construct a maximum span-
ning tree (MST) for G. Let de be the minimum weight of an
edge on the MST-path between the endpoints of e. The quan-
tities de can be determined in linear time using an MST verifi-
cation algorithm [DRT92]. Clearly, ce � de. However, if we
remove all edges of weight de or greater, then we disconnect
the endpoints of e. There are at most

�n2� such edges, so the
weight removed is at most n2de. Therefore, ce � n2de. This
gives us an initial factor of n2 estimate de � ce � n2de.

For conveniencewe now delete every edge ewhose weight
is less than de=n3. Since the minimum cut separating the end-
points of e is at least de, this deletion can change the value of
any cut by a relative factor of at most 1=n—negligible in our
approximation algorithms. So we can assume that every edgee has weight at least de=n2 � ce=n4 .

Now assume that the maximum edge weight inG isW , and
that our goal is to find the strong connectivity of every edge e
with ce > W=n. If we consider the subgraph of G made up
only of edges with weight at least W=n5 , we do not signifi-
cantly change any of the strong connectivities we care about.
Thanks to the deletions of the previous paragraph, every edgee with ce > W=n will have weight at least W=n5 and will
therefore be present in our subgraph. In the new graph, we can
run algorithm Estimation with a starting ~ce value of W=n
and therefore finish in O(m log2 n) time. This will assign cor-
rect approximate values ~ce to any edge e with ce �W=n.

Given that all strong connectivities exceeding W=n have
now been correctly assigned, we now contract all edges with
weight exceedingW=n. This gives us a new graph whosemax-
imum edge weight is W=n. We can repeat the previous para-
graph’s algorithm in the new graph, then contract more edges.
Each time, we reduce the maximum edge weight by a factor ofn. Eventually, we will have contracted all the graph edges and
will have assigned all the ~ce values. This approach is detailed
in our algorithm WindowEstimation in Figure 4.

Lemma 5.2 ProcedureWindowEstimation can be imple-

mented to run in O(m log2 n) time.

Proof: The contractions in WindowEstimation can be im-
plemented using a standard union-find data structure [CLR90].
Each time an edge is contracted, a union is called on its end-
points. Each time an edge is added, find operations can iden-
tify its endpoints. Therefore, the additions and contractions of
edges do not affect the running time. Instead, the running time
is determined by the repeated calls to Estimation. Note,
however, that the “window” of considered edges ranges fromW=n5 to W , and that each iteration of the loop reduces W
by a factor of n. Therefore, every edge is in the window at
most 5 times. It follows that the total size of graphs passed to
Estimation isO(m). The claimed time boundfollows.6 Applications
We now prove the application corollaries in the introduction.6.1 Minimum s{t cuts.
Let us fix a pair of vertices s and t. Let v̂ be the value of a min-
imum cut separating s from t in the compressed graph G[pe].
We show that the minimum s–t cut value v in G is within (1�3�)v̂. By Theorem 1.11, with high probability the s–t mini-
mum cut C in G has has VAL(C;G[pe]) � (1 + �)v. Thusv̂ � (1+ �)v. Furthermore, with high probability every cut ofGwith value exceeding (1+3�)v in Gwill have value at least(1� �)(1+ 3�) � (1+ �)v in G[pe] and therefore will not be
the minimum cut of G[pe].

We can find an approximate value v̂ of the minimum s–t
cut (and an s–t cut with this value) by computing a maximum
flow in the O(n log n =�2)-edge graph G[pe]. The maximum
flow algorithm of Goldberg and Tarjan [GT88] has a running
time ofO(nm log(n2=m)) which decreases to a running time
ofO(n2 log2 n =�2) after compression. Alternatively, the clas-
sical augmenting path algorithm [FF56, AMO93] for finding a
flow of value v can be used to find an s–t cut of value at most(1 + �)v in time O(nv log n=�2).6.2 Sparsest cuts
A sparsest cut (CjV �C) of a graph G minimizes the ratio

VAL(C j V �C)jCjjV �Cj :
It is NP-hard to find the value of a sparsest cut. To find an�-approximate value of a sparsest cut, we use the approach of
the previous subsection: we compute a �-approximate sparsest
cut in the compressed graph G[pe]. This cut is then an � =(1 + �)�-approximate sparsest cut of G.

An algorithm of Klein, Stein and Tardos [KST90] finds anO(log n)-approximation to a sparsestcut inO(m2 logm) time.
By running their algorithm onG[pe], we will find anO(log n)-
approximate sparsest cut in O(n2 log3 n =�4) time.7 Conclusion
We have given new, stronger applications of random sampling
to problems involving cuts in graphs. The natural open ques-
tion is whether these approximation algorithms can be made
exact. A partial affirmative answer was given in [Kar94a], but
it only gives a useful speedup for graphs with large minimum

cuts. More recently, sampling has led to an exact linear-time
algorithm for minimum cuts [Kar96]; however, the techniques
used there appear to be specialized to that particular problem.References
[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and

James B. Orlin. Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, 1993.

[Che52] H. Chernoff. A measure of the asymptotic effi-
ciency for tests of a hypothesis based on the sum
of observations. Annals of Mathematical Statistics,
23:493–509, 1952.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

[DRT92] Brandon Dixon, Monika Rauch, and Robert E. Tar-
jan. Verification and sensitivity analysis of mini-
mum spanning trees in linear time. SIAM Journal
on Computing, 21(6):1184–1192, 1992.

[FF56] Lester R. Ford, Jr. and D. R. Fulkerson. Maxi-
mal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956.

[Gab95] Harold N. Gabow. A matroid approach to
finding edge connectivity and packing arbores-
cences. Journal of Computer and System Sciences,
50(2):259–273, April 1995. A preliminary version
appeared in STOC 1991.

[GT88] Andrew V. Goldberg and Robert E. Tarjan. A new
approach to the maximum flow problem. Journal
of the ACM, 35:921–940, 1988.

[Kar94a] David R. Karger. Random sampling in cut, flow,
and network design problems. In Proceedings of
the 26th ACM Symposium on Theory of Comput-
ing, pages 648–657. ACM, ACM Press, May 1994.
Submitted to Mathematics of Operations Research.

[Kar94b] David R. Karger. Using randomized sparsification
to approximate minimum cuts. In Proceedings of
the 5th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 424–432. ACM-SIAM, January
1994. Arlington, VA.

[Kar96] David R. Karger. Minimum cuts in near-linear
time. In Proceedings of the 28th ACM Symposium
on Theory of Computing. ACM, ACM Press, May
1996. Philadelphia, PA.

[KST90] Philip N. Klein, Clifford Stein, and Éva Tardos.
Leighton-Rao might be practical: Faster approx-
imation algorithms for concurrent flow with uni-
form capacities. In Proceedings of the 22nd ACM
Symposium on Theory of Computing, pages 310–
321. ACM, ACM Press, May 1990.

[NI92a] Hiroshi Nagamochi and Toshihide Ibaraki. Com-
puting edge connectivity in multigraphs and capac-
itated graphs. SIAM Journal of Discrete Mathemat-
ics, 5(1):54–66, February 1992.

[NI92b] Hiroshi Nagamochi and Toshihide Ibaraki. Linear
time algorithms for finding k-edge connected andk-node connected spanning subgraphs. Algorith-
mica, 7:583–596, 1992.

