Approximating s—t Minimum Cutsin O(n?) Time

Andras A. Benczlr*
Department of Mathematics
M.I.T.

Abstract

Weimprove on random sampling techniquesfor approximately
solving problemsthat involve cutsin graphs. We givealinear-
time construction that transforms any graph on » vertices into
an O(nlog n)-edgegraph onthe sameverticeswhosecutshave
approximately the same value as the original graph’s. In this
new graph, for example, we can run the O (mn)-time maxi-
mum flow algorithm of Goldberg and Tarjanto find an s—¢ min-
imum cut in O(n?) time. This correspondsto a (1 + ¢)-times
minimum s—¢ cut in the original graph. In a similar way, we
can approximate a sparsest cut in O (n?) time.

1 Introduction

Several papers by Karger [Kar94b, Kar94a, Kar96] have re-
cently shownthat random samplingisan effectivetool for prob-
lemsinvolving cutsin graphs. A cut is a partition of agraph’s
verticesinto two groups; its valueisthe number, or in weighted
graphsthetotal weight, of edgeswith oneendpointin eachside
of the cut. Many problemsdepend only on cut values: the con-
nectivity of a graph is the minimum value of a graph cut; the
maximum flow that can be routed from s to ¢ isthe value of the
minimum cut separating s and ¢; a minimum bisection is the
smallest cut that splits the graph into two equal-sized pieces.

Random sampling “ preserves’ the valuesof cutsin agraph.
If we pick each edge of a graph G with probability p, we get
a new graph in which every cut has expected value exactly p
timesit valuein G. Thefollowing lemmafrom [Kar944] shows
that all cuts are near their expected values:

*E-mail: benczur @heory.lcs.mt.edu. Address Laboratory for
Computer Science, 545 Technology Square, Cambridge MA 02139. Research
supported by DARPA contract NO0014-92-J-1799 and NSF contract 9302476-
CCR.

TM.I.T. Laboratory for Computer Science, 545 Technology Square, Cam-
bridge MA 02139. E-mail: kar ger @ heory. | cs. m t. edu.

URL: http://theory.lcs.mt.edu/~karger. Research supportedin
part by ARPA contract NO0014-95-1-1246.

David R. Kargerf
Laboratory for Computer Science
M.I.T.

Lemmal.l LetG haveminimumcut c. Build G’ by including
everyedgefrom with probability p. Ifp > 8(log n) /€ c then
with probability 1—1/r» everycutin G hasvaluewithin (14¢)
of its expectation.

Thus, for example, the minimum cut of G’ is closeto pc.
Therefore, if we are willing to settle for an approximation, we
canfind theminimum cutin G, which hasfewer edgesthan G,
and from it derive an approximately minimum cut of G.. This
scheme can be used to approximatethe minimum cut in O(m)
time [Kar94a).

Unfortunately, the requirement that p > 1/c limits the ef-
fectiveness of this scheme. It means that in a graph with m
edges, we can only reduce the number of edgesto m /c. Thus,
when ¢ is small, we gain little. Results can be even worsein
weighted graphs.

1.1 Our Results

In this paper, we show how nonuniform sampling can be used
to remove random sampling’s dependenceon ¢. Our main re-
sult isthe following:

Theorem 1.2 GivenagraphG andanerror parameter e, there
isagraph G’ such that
o G' hasO(nlogn /¢*) edgesand

o thevalueof everycutin G’ is (1 + ¢) times the value of
the correspondingcut in G.

G’ canbe constructedin O(m log?®) timeif G is unweighted
andin O(mlog® n) time of G is weighted.

It follows that for any algorithm to (even approximately)
solveacut problem, if we are willing to accept an approximate
answer, we can substituten log n for any factor of m in therun-
ning time. Our applications of this result are the following:
Corollary 1.3 In an undirected graph, a (1 + ¢) times mini-
mum s—t cut can befound in O(n?/¢?) time.

Corollary 1.4 In an undirected graph, a (1 + ¢) times mini-
mum s—t cut of value v can befound in O (nv/¢?) time.

Corollary 1.5 An O(log n)-approximation to the spar sest cut
in an undirected graph can be found in O(n? /¢?) time.

Thesecorollaries follow by applying our sampling scheme
to (respectively) the maximum flow algorithm of Goldberg and
Tarjan [GT88], the classical augmenting-paths algorithm for
maximum flow [FF56, AMO93], and the Klein-Stein-Tardos
algorithm for approximating the sparsest cut [KST90].

1.2 Our Methods

Our approach modifiesthe uniform sampling schemedescribed
in Lemma 1.1. That scheme sampled all graph edgeswith the
same probability. Here we show that a graph with many edges
has “ dense regions’ that can be sampled sparsely (with lower
probability than the general graph), ensuring that not too many
edges are sampled overall. Consider a ¢’-connected induced
subgraph of G with ¢’ > ¢. Lemma 1.1 saysthat we can sam-
ple the edges of this subgraph with probability O(1/¢’) with-
out introducing significant error in the cut values. More gen-
erally, we can sample an edge with probability inversely pro-
portional to the connectivity of any subgraph containing that
edge.

To take advantage of this fact, we will show that almost all
the edges are in componentswith large connectivities and can
therefore be sampled with low probability—the more edges,
the less likely they are to be sampled. We can therefore con-
struct an O(n log n)-edge graph that, regardless of the mini-
mum cut value, accurately approximatesall cut values.

In addition to proving that such sampling works, we give
fast algorithms for identifying the dense regions and determin-
ing the correct sampling probabilitiesfrom them. Thisinvolves
an extension of the sparse certificate technique of Nagamochi
and Ibaraki [N192b].

Our approach works for unweighted and weighted graphs.
Initially, we will focus our discussion on unweighted graphs.
We extend our results for weighted graphsin Section 5.

Our ideas are formalized in the following definitions and
theorems.

Strong Connectivity

We first formalize the notion of subgraphs with large connec-
tivities.

Definition 1.6 A graphis k-connected if the value of each cut
inG isatleast k.

Definition 1.7 A k-strong componentisamaximal k-connected
vertex-induced subgraph.

It follows that the k-strong components partition the ver-
tices of agraph and that the (k¥ + 1)-strong components are a
refinement of the partition into k-strong components.

Definition 1.8 The strong connectivity of an edge e, denoted
c., isthe maximumvalue of & such that a k-strong component
contains e. We say e is k-strong if its strong connectivity is &
or more, and k-weak otherwise.

Notethat the strong connectivity of an edgediffersfrom the
standard definition of connectivity:

Definition 1.9 The (standard) connectivity of an edgee is the
minimum value of a cut separating its endpoints.

Consider the graph with edges (s, v;) and (v, t) for i =
1,...,n. Vertices s and ¢ have (standard) connectivity » but
only havestrong connectivity 1. An edge’sstrong connectivity
isalwayslessthanits connectivity sinceacut of valuelessthan
k separating the endpoints of an edge implies that there is no
k-connected component containing both endpoints.

Compression

Aswasstated above, we aimto sampleedgeswith varying prob-
abilities. Thiseliminatesthelinear-scaling behavior of the sam-
pled cut values. To recover this behavior, we make the follow-

ing definition.

Definition 1.10 Given a graph G and compression probabil-
ities p. for each edge e, we build a compressed graph G[p.]
by including edge e in G[p.] with probability p., and giving it
weight 1/p. if it isincluded.

Since the expected weight of any edgein the graphis 1, every
cut’s expected value is equal to its original value.

The Main Theorems

We now usethe abovedefinitionsto describeour results. Inour
theorems, we use a constant compressionfactor p. We choose
the compression factor so asto satisfy a given error bound e:

pe = 16(d + 2)(In n)/e2 .

Theorem 1.11 (Compression) Given ¢ and a corresponding
pe, for each edgee, let p. = min{1, p/c.}. Then with prob-
ability 1 — »~%, every cut in G[p..] hasvalue between (1 — ¢)
and (1 + €) timesitsvaluein G.

Theorem 1.12 If p. = min{1, p/c.} thenwith veryhigh prob-
ability G[p.] hasO(np) edges.

In particular, to achieve any constant error in cuts values,
one can choose p to yield O(n log n) edgesin the compressed

graph.

1.3 Previous results

In this section, we describe someingredients of previouswork
that will be used in our result.

Uniform Sampling

We begin with the edge-sampling scheme of [Kar944].

Definition 1.13 For an unweighted graph G, let each edge e
havearandomvariable X . assignedtoit. WWe obtainarandom
weighted graph G/(X.) by putting weight X. on edgee.

Note the use of parenthesis versus brackets to distinguish
general sampling from compression. Note also that the special
caseof assigningweight 0 to an edge correspondsto not putting
the edgein G(X.) at all—this means G(X.) can have fewer
edgesthan G.

Theorem 1.14 (Sampling [Kar94a]) Let X. be a collection
of randomvariablesfor e € G suchthat 0 < X. < M for all
e. Let ¢ be the minimum expected value of any cut in G(X.).
With probability 1 — O(1/n%), every cutin G(X.) hasvalue
between (1 + €) and (1 — ¢) times its expected value, where

€= \/2(d+2)(M/é)lnn.

What this Sampling Theorem essentially saysisthat thekey
to agood error bound isto haveno one edge contribute asignif-
icant portion to the weight of any cut. Asaparticular example,
supposewetake agraph with minimum cut ¢ and sample every

edge with probability p = ©((log n)/¢?¢). This corresponds
to avariable

X = 1 with probability p,
7 L0 otherwise.

We can plug these variables into the sampling theorem with
M = 1andé = pc = Q(logn). Thusthe sampled graph
will approximate all original graph cutsto within (1 & ¢) (ina
scaled sense).

The Sampling Theorem is used in algorithms for approxi-
mating minimum cuts and maximum flowsand for solving net-
work design problems [Kar94b, Kar944]. It also playsanim-
portant role in a near linear time algorithm for finding mini-
mum cuts exactly [Kar96].

Sparse Certificates
The other tool we useis spar se certificates.

Definition 1.15 A sparse k-connectivity certificate, or simply
a k-certificate, for an n-vertex graph GG isa subgraph H of G
such that

1. H containsat most k(rn — 1) edges, and
2. H containsall edges crossing cuts of value & or less.

It follows from this definition that if acut hasvaluev < k
in G, then it hasthe samevalue v in H sinceall edgesfrom it
must be in the certificate. On the other hand, any cut of value
greater than £ in G hasvalueat least k in H. Therefore, if we
arelooking for cutsof valuelessthan k in G, we might aswell
look for themin H, since they are the same. The advantageis
that H may have many fewer edgesthan G.

Nagamochi and Ibaraki [N192b, N192a] used sparse certifi-
catesinan O(mn)-time algorithm for computing the minimum
cut in agraph. They gave an algorithm [N192b] that constructs
asparsek-connectivity certificatein O(m) time onunweighted
graphs, independent of k. They also gaveaweighted-graph al-
gorithm with an O(m + nlog n) running time [N192a]. Note
that in weighted graphs, we define a sparse certificate as fol-
lows: we equatean edgeof weight w with aset of w unweighted
edges with the same endpoints—the bound on size becomes a
bound on the total weight of certificate edges.

Limitations

We can find approximate minimum cuts efficiently by combin-
ing sparse certificates with the Sampling Theorem. Given that
the minimum cut is ¢, we construct asparse O(¢)-connectivity
certificate with the same minimum cuts but with O(nc) edges.
The edges of this graph can then be sampled with probability
O((log n)/c), yielding an O(n log n)-edge graph with min-
imum cuts corresponding to approximately minimum cuts in
the original graph. In this sample, minimum cuts can be found
in O(n) time using Gabow’s algorithm [Gab95] for minimum
cuts.

Suppose we try to use the above approach to find an s—¢

minimum cutwith valuev. By samplingasparseO(v)-certificate,

we can reduce the number of edgesto O(nv/c). We cannot
take a sparser certificate without potentially damaging the cuts
we aim to find, and we cannot decrease the sampling probabil-
ity without substantially increasing the variance in cut values.
Thus the number of edges, and hence any improved running
time to approximate an s—¢ minimum cut, will depend on the
ratio of » to ¢ which could bearbitrarily large. Our introduction
of nonuniform sampling allows usto overcomethis limitation.

2 Definitions

In the bulk of this paper, G denotes an unweighted undirected
graphwith » verticesand m edges; parallel edgesare allowed.
We also consider weighted graphs. If running times are not rel-
evant, we can treat an edge of weight w as a set of w parallel
edgeswith the same endpoints.

If F isaweighted graph, wt(e, ') denotes the weight of
edgee € F. For aconstant v, vF denotes a graph with all
edge weights multiplied by ~. We extend this notion when r.
is a vector over the edge set and let r. F' denote a graph with
Wt(e, re F') = rewt(e, F).

A cut C is apartition of the verticesinto two subsets. The
valueVAL(C, G) of thecutin (aweighted or unweighted) graph
G isthe total weight (or number) of edges with endpointsin
different subsets. If it doesnot lead to ambiguity, wealsolet G
denotethe vector of all cut valuesof agraph G, ordered canon-
ically by vertex partitions. We thereforesay that G < F if G
and F" havethe samevertex set and thevalueof eachcutin G is
not morethan that of the correspondingcutin F'. Forascalar or
vector v, wesaythat v € (1de)v’ if (1—e€)v’ < v < (1+€)2'.

We say that an event occurswith high probability if its prob-
ability is1 — O(n~) for some parameter d. An event occurs
with very high probability if the probability it doesnot occur is
exponentially small in rn.

Using al of these definitions, the conclusion of the Com-
pression Theorem can be described asfollows: with high prob-
ability, Gp.] € (1 + €)G.

3 Proofs of the Compression Theorem

We now prove Theorems 1.11 and 1.12. Recall that we com-
press with probabilities p. = p/c. where c. isthe strong con-
nectivity of edgee. Compressionisaspecial caseof sampling.
We can use Theorem 1.14, with M = max{1/p. | e € G},
to prove an error bound, but it is extremely weak. Our main
result will beamuch tighter error bound based on connectivity
information encoded in the p.-values.

3.1 Bounding the number of edges

We prove Theorem 1.12 first. We bound the expected num-
ber of edges by np (where p is the compression factor); the
high probability result follows by a straightforward Chernoff
bound [Che52]. We use the following lemma:

Lemma 3.1 Agraphwith total edgeweight k(» — 1) or more
has a k-strong component (which may be the graph itself).

Proof: Let G be a smallest counterexample with » vertices.
Sincein particular G is not k-connected, it must have a cut C
of valuelessthan k. Let usremovethe edgesof C and consider
the two sides G; and G2 with nq andne = n — ny vertices
respectively. Since GG is a smallest counterexampleand G is
not k-strong, G1 must havetotal edgeweight lessthan &(n, —
1). Similarly, G hasedgeweight lessthan k(n, — 1). Adding
back the fewer than & edges of C, we see that the total edge
weight of G isstrictly lessthan k(n1 — 1) + k(n2 — 1)+ &k =
k(n — 1), acontradiction. |

We can now prove Theorem 1.12. The expected number of
edgesin G[p.]is) . pe; Sincewetook p. = min{p/c., 1},
thisvalueisatmost p >~ . ¢z *. Let usbuild agraph G’ by
taking each edge e of G with weight ¢-*. It suffices to show
that this graph has total edge weight at most ». Assume this

is not the case: then by Lemma 3.1, G’ hasa 1-strong compo-
nent /. Let F' bethe correspondingsubgraphof G; let e’ have
¢ minimum over e € F'. By the definition of ¢./, F' cannot
be more than c¢...-connected. Hence thereis acut C of F' with
VAL(C, F') < c.. Thenon onehand, VAL(C, F’) > 1; on
the other hand, by the minimality of c./,

VAL(C, F') = Y e

eeC

>

eeC

c'VAL(C, F)
—1

Ce’ Cet

1,

IA

(VAN

acontradiction.

3.2 A first error bound

We now give an argument that shows a slightly weaker result
than Theorem 1.11. Namely, with the compression factor p.
asabove, the error bound will be O(elog m), instead of € asin
Theorem 1.11. Theactual proof in the next subsection follows
the samelines but is slightly more involved.

The main proof idea is the following. For an edge e with
strong connectivity c., thereis a c.-strong component H of G
containing e. Any cut C containing e must cut A, inducing a
cut C'. Letusfix p = p/c.. If we sample each edge of H
with this probability and give the included edges weight 1/p,
Theorem1.14 appliedto H (with M = 1/p andé = c..) shows
that the total weight of edgesof ¢’ changesby at most e.

The problem with this approachis that the Sampling The-
orem applied to H assumesthat all edgesin H are being sam-
pled with the same probability p/c.. Since some of the edges
in H may actually bein a¢’-strong component with ¢’ > c.,
this assumption could be violated.

To get around this problem, we divide the sampling process
into a series of phases: first we flip sampling coinsfor edgese
with ¢, < 2, thenfor 2 < ¢. < 4, etc. Clearly this division
into phases does not affect the eventual outcome sincewe flip
exactly one coin for each edge. However, in each phaseall the
coinflips haveroughly the same bias so that the Sampling The-
orem applies.

Let us decompose G into graphsgraphs G'; for: > 0, such
thate € G; if 2° < c. < 2'T!. Graph G; containsthe edges
whose coinsweflipin the :-th phase. Let F; = UJ>1. G then

F; is the set of al 2°-strong components. In phase z, we flip
coins for the edges of ¢; while the other edges of G are left
alone. To see how this affects the cutsin G, consider each 2° -
strong component / in G independently. Theedgesof H NG,
are sampled with probability p/c.. Theedgesof H — G; are
left alone—equivalently, we can think of sampling them with
probability 1. Formally, we can define random vari ables x{V
to the edges e by taking p. = p/c. and setting

{ 1/p. with probability p.

0 otherwise ifeeG

ifed G;.

X =

Now consider H(Xgi)). Theorem 1.14 applies with ¢ > 2°
and M = 2°7!/p.. Thuswith high probability

H(XY)Ye(1+e¢/2)H

By combining the disjoint 2°-strong componentsthat make up
F;, wededucethat F; (Xg’)) € (11¢€/2)F;. Noticetheimpor-
tance of defining G; suchthat all ¢. in it are within a constant
ratio: wemust keep ¢ and M near each other in Theorem 1.14.

Thetotal error we incur during compression is bounded by
thesumof all individual e-error termsover all the coin-flipping
phases. Sincethe maximum possiblestrong connectivity of any
edgeis m, there are at most log m phases for a total error of
¢log m. More formally, we have:

> Gilpel @

i<logm

= > Gi(x)

= D (F(XY) = Fi)

= D REXM) =D Fia

€ Y (1£e/)Fi = Fip @)

= Y 0£¢2) (GiUF) =Y Fiur 3

= > (1£e/Gi+Y (1£¢/2)Fip
_ZFM @)

Glpe]

) —
)i
) (
)

= (1£¢/2)G£e/2) Fip

€ (1+e/2)Gef2) G (5)
i<t

= (1+ %log m)G (6)

Here (1) follows by the decompositionof G into G;, (2) by
Theorem 1.14, and (3-4) by F; = G; U F;41. (5) follows by
upper bounding the cut valuesin F; by thosein G O F;. (6)
follows since there are O(log m) termsin the sum.

3.3 An improved error bound

The aboveargument introduces an extralog m factor in the er-
ror bound; our next analysis improves on this bound and thus
letsusget by with fewer sampled edges. We usethe sameideas
asin the previous subsection. We let G; and F; be as before,
and bound the relative error arising by sampling from G; sep-
arately for all values of s.

Our improvement over the previous proof is thefollowing.
There when we flipped coins for G;, we added the edges of
F; 41 sothat we could use Theorem 1.14. Thereason F;41 had
to be added was to embed the edges of G; into 2°-strong com-
ponents; while F; has strong components, G; = F; — Fiq1
might not. However, we show below that we can add a much
lighter graph to GG; to makeit 2*-connected. Since the approx-
imation error in aphaseis proportional to the valuesof the cuts
in that phase, adding a graph with lighter cuts will reduce the
approximation error. We define this lighter graph as follows.
Fore € G, andi < 7, definer” = 2=0U=% anduser!" Fij,
asthe “deterministic part” added to GG; to make the Sampling
Theorem work (recall that r. F' denotes the graph £ with the
weight of edge e multiplied by r.) The main observationis:

Lemma3.2 Let H bea 2t-strong component of . Then the
subgraphri” H of r{") F; is 2¢-strong as well.

Proof: We use downward induction on :. The claim holds for
the largest value of ¢, when F; 11 isempty, sincethen r O =
F;. Intheinductive step, let H be a2°-strong component. If a
cut € of H hasall of itsedgesin G, clearly VAL(C, r{" H) =
VAL(C,G;) > 2°. In general, however, C may contain edges
of F;41 and thus of a2'+*-strong component H’. But then C
cuts H'; therefore by induction, VAL(C, v\t H') > 27+,
Hence

VAL(C, 7V Fy) VAL(C, 7 Fiqq)

VAL(C, Ll)

LVAL(C, ST HY
i+1
227

vV IV

(A

O

We now proceed to prove Theorem 1.11 asin the previous
subsection. For each fixed ¢, define

1/p. with probability p. . ‘
{ 0 otherwise ifeeG

r(ei) ife ¢ G;

X =

Observethat G; = "G = " Fi—rl) Fipy whileGi[p.] =
F(xY = Py

Lemma 3.3 With high probability, F;(X{") € (1ze/2)rl" F.

Proof: Let H be a2*-strong component of F;. Let us apply
Theorem 1.14 for H(XV). Weget M < 2% /p.andé >
2" by Lemma 3.2. Plugging in we find that the error bound is
\/2(d+2)(M/é)Inn = €/2. Theclaim for F; follows by
summing cut values over all 2¢-strong components. O

Now the proof is completed by the samemethod asthe pre-
vious subsection, by using Lemma 3.3 with the new random

variablengi):

G[pe] =

> Gilpl

i<log m

= > RXD) = i F

€ Z(l:l:e/Z)r(ei)Fi—Zr(ei)FiH

= Y2 (V6 U)
L

= > (1e/2)Gi+ Y (1xe/2)rl) Fip
L

= (12¢/2)G£(e/2)Y 1) Fip

= (12e¢/2G£(/2)Y G Y) ()

> 1<i<y
€ (1xed (8)

Here Equation 7 follows by noting that F; = ZDJ G; and
then exchanging the order of the summation. Equation 8 fol-
lows by noting that r'" = 2=U=9) for e € G, implying

S= Y el

1<i<y 1<i<y

This completesthe proof of Theorem 1.11.

4 Finding strong connectivities

We could efficiently compress graphs if we could efficiently
find the strong connectivities of edges. To be able to use the
Compression Theorem, we do not evenrequirethe exact values
ce. For example, if we have estimates ¢. = ©(c.), the Com-
pression Theorem remains true with a constant-factor change
in the expected number of edges and the error bound.

Unfortunately, evento quickly approximate strong connec-
tivities is an open question. However, we now show that it is
possible to find reasonably good lower boundsé. < c.. If we
set p. = p/c. > p/c. inthe Compression Theorem we only
reducethe variancesof our edge variables and therefore get no
worse an error bound than with the correct c. values. In this
modified setting, we can no longer use Theorem 1.12: we must
re-prove that the expected number of edgesin the compressed
graph G[p.] isO(np). A Chernoff bound then provesthat the
bound holds with very high probability.

Our basic planis the following. Lemma 3.1 says that any
graphwith k(rn — 1) or more edges hasa k-strong component.
It followsthat at most k(n — 1) edgesare k-wesk (that is, have
strong connectivity less than k). For otherwise the subgraph
consisting of those edgeswould have a k-strong component, a
contradiction. For eachvaluek = 1,2,4,8,...,m, we will
find a set of k(n — 1) edges containing all the k-weak edges
(note that every edgeis m-weak). We set ¢. = £ for all edges
in this set, thus establishing lower bounds for which the Com-
pression Theorem works. The expected number of edges sam-
pled under this basic scheme would be

log m

> 2'(n=1)(p/2") = O(pnlog m).

1=0

We will eventually describe a more sophisticated scheme that
eliminates the factor of log m.

Our first goal is to identify the k-weak edges. An obvious
tool is a sparse connectivity certificate. Recall that this certifi-
cate contains k(n — 1) edgesthat include all edgeswith (stan-
dard) connectivity less than k—that is, all edges that cross a
cut of valuelessthan k. Nagamochi and Ibaraki [N192b] give
an algorithm Cer ti fi cat e that finds sparse certificates in
O(m) time on unweighted graphsand O(m + nlog n) time
on weighted graphs.

Unfortunately, although a sparse &-certificate contains all
edges with standard connectivity less than &, it need not con-
tain all edgeswith strong connectivity lessthan &, since some
such edges might not cross any cut of value less than k. We
must therefore perform some extrawork. In Figure 1 we give
an algorithm Weak Edges for identifying edgeswith c¢. < k.
It usesthe Nagamochi-lbaraki Cer ti f i cat e algorithm asa
subroutine.

Theorem 4.1 WakEdges outputsa set containing all the k-
weak edgesof G.

procedure WeakEdges(G, k)

dolog, n times
E' — Certificate(G,2k)
output £’
G—G-F

end do

Figure 1: Procedure Weak Edges for identifying c. < &

Proof: First supposethat G' has no k-strong components, i.e.
that c. < k for al edges. Then by Lemma 3.1, there are at
most k(n — 1) edgesin G; henceat least half of the vertices
have at most 2k incident edges (which define a cut of value
at most 2k). In aiteration of the loop in WeakEdges, these
vertices become isolated after removing the sparse certificate
edges. We have shown that in a single loop iteration half of
the non-isolated verticesof G' becomeisolated; henceinlog, n
roundsweisolate all verticesof G. Thusall the edgesof G are
output by Weak Edges.

In the general case, let us obtain a new graph H by con-
tracting each k-strong component of G to avertex. Any sparse
2k-certificate of G containsthe edgesof a sparse 2k-certificate
of H aswell. Thusby the previous paragraph, all edgesof H
areoutput by Weak Edges. Buttheseareall the k-weak edges
of G. O

4.1 Sparse partitions

The abovealgorithm can clearly beimplemented via O(log n)
calls to the Nagamochi-Ibaraki Certi fi cat e algorithm. It
follows that it runsin O(m log n) time on unweighted graphs
and outputs a set of at most k(n — 1) log n edges. In this sec-
tion, we eliminate the log » factor in this approach by finding
edge sets that are “sparser” than the Nagamochi—|baraki cer-
tificate.

Thefirst observationwe useisthat agiven k-certificate £’
may contain edges that are inside a connected component of
G — P'. Theedgesin G — £’ do not cross a cut of value at
most & (sincethey are connected by a path of edgesthat do not
cross such a cut), so the same holds for any edge of £’ whose
endpointsare connected by apathin G — E’. We cantherefore
remove any such edge from £’ and put it back in G.

We can find the resulting reduced edge set by contracting
all edgesnotin E’, yielding anew graph GG'. But now observe
that any edge crossingacut of valueat most & in GG also crosses
suchacutin G’ sincewe contract no edge that crossesa small
cut. Thus we can find all such edges via a certificate in G”.
Since G’ hasfewer vertices, the certificate hasfewer edges. We
can iterate this procedure until al edgesin the certificate cross
some cut of value at most & or until G’ becomesasingle ver-
tex. In the latter case, the original graph is k-connected, while
in the former, if the current contracted graph has »’ vertices,
it hasat most k(rn' — 1) edges. This motivates the following
definition:

Definition 4.2 A sparse k-partition, or k-partition, is a set £’
of edges of G suchthat

1. E’ contains all edges crossing cuts of value k or lessin
&, and

2. If G — £’ hasr connected components, then £’ contains
2k(r — 1) edges.

In fact, the construction just described yields a graph with
at most k(r — 1) edges, but we have relaxed the definition to
O(k(r — 1)) edgesto allow for an efficient construction.

Procedure Par ti ti on in Figure 2 outputs a sparse par-
tition. It uses the Nagamochi—lbaraki Certi fi cat e algo-
rithm and obtains a new graph G’ by contracting those edges
not in the certificate. It repeats this process until the graph is
sufficiently sparse.

procedure Partition(G, k)
input: An n-vertex m-edgegraph G

if m/n < 2k then
output the edgesof G
else
E' — Certificate(G,k)
G’ — contract all edgesof G — £’
Partition(G', k)

Figure2: Par ti ti on findslow-connectivity edges

Theorem 4.3 Parti ti on outputsasparsepartitionin O(m)
time on unweighted graphsand O(m log n) time on weighted

graphs.

Proof: Correctnessis clear since no weak edge is ever con-
tracted; we need only bound the running time. Note that at a
single recursion level the work done is just that of the call to
Certifi cat e which takes linear time [N192b]. Now sup-
posem/n > 2k. Wefind asparse connectivity certificate with
m' < kn edgesand then contract the graph to »’ vertices. If
n' > n/2theninthefollowingiteration wewill havern'/n’ <
(kn)/(n/2) < 2k andthe algorithmwill terminate. It follows
that the number of verticeshalvesin every recursive call except
the last.

Supposed isunweighted. At eachrecursive call, the num-
ber of edgesisat most & timesthe number of vertices—thusthe
number of edges halvesin each recursive call. It follows that
T(m,n) = O0(m)+T(m/2,n/2) = O(m).

If G isweighted, wemust usethe O(m + nlog n)-time al-
gorithm of [N1924] to find sparse certificates. Furthermore, we
cannot ensurethat the number of edgeshalves, but only that the
total weight of edgeshalves. However, the vertex-reduction ar-
gument still applies. Therefore, T'(m, n) = O(m+nlog n)+
T(m,n/2) = O(mlogn). |:[

Lemma4.4 IfPartitionisusedinsteadofCertificate
inacall to WeakEdges (G, k), then algorithm\WeakEdges
runsin O(m log n) timeon unweightedgraphsand O (m log? »)
time on weighted graphsand returnsa set of at most 4k (r — 1)
edgesthat partitions GG into r connected components.

Proof: Therunning timeis clear from the previouslemma. To
prove the edge bound, consider a particular connected compo-
nent remaining in aparticular iteration of WeakEdges. A call
toPartition returns aset of 4k(s — 1) edgesthat breaks
that component into s subcomponents (the multiplier 4 arises
from the fact that we look for a 2k-partition). That is, it uses
at most 4k(s — 1) edgesto increase the number of connected
componentsby s — 1. We can therefore charge 4%k edges to
each of the new components that gets created. Accumulating
these charges over al the callsto Parti ti on shows that if

WeakEdges outputs4k(r — 1) edgesthen those edges must
split the entire graph into at least » components. O

4.2 Assigning Estimates

Wenow giveanalgorithm Est i mat i on for estimating strong
connectivitiesin Figure 3. We use subroutine\\eak Edges to
find a small edge set containing all edgese with c¢. < & but
replace the Nagamochi-lbaraki Certi fi cat e implementa-
tion with our algorithm Par t i t i on to reduce the number of
output edges.

procedureEsti mati on(H, k)
input: subgraph H of G

if H contains edges
E' — WeakEdges(H, 2k)
for eache € B’
Ce — k
for each connected component H' ¢ H — E'
Estimati on(H', 2k)

Figure 3: Procedure Est i mat i on for assigning é.-values

Lemma4.5 After acalltoEsti mati on(G, 1), thelabelse.
satisfy é. < ce.

Proof: Consider any recursive call Esti mati on(H', 2k) .
This call occurred because ' was one component produced
by WeakEdges(H, 2k) . By thecorrectnessof Weak Edges,
every edgein H' is2k-strong in H , and therefore is certainly
2k-strong in G. It istherefore legitimateto set é. = 2k < c.
forany e € H'. Correctnessof Est i mat i on follows by in-
duction. O

Lemma 4.6 AssumethatinprocedureWeakEdges, procedure
Certificate isreplacedbyPartiti on. Thenthevalues
é. output by Est i mat i on(G, 1) are such that the expected
number of edgesin G[p/c.] isO(nlog n).

Proof: We prove the following by induction on »: regardless
of k, for any n-vertex graph G, Esti mati on(G, k) assigns
valuesé. suchthat > 1/é. < 4(n—1). Theexpected number
of edgesthen follows asin Theorem 1.12.

The base case of a single vertex is trivial. For the induc-
tive step, consider acall toEst i mat i on(G, k). Wefirst call
WeakEdges (G, k), which returns a set of 4k(r — 1)) edges
that partition G into r connected components G4, . . ., G of
sizesni, ..., n,. Let usassumewithout loss of generality that
r > 1, since otherwise Est i mat i on simply recurses on the
samegraph without assigning any ¢. valuesuntil thisisso. We
now recursively call Est i mat i on on the graphsG;. By in-
duction, these calls assign values ¢. to the edges of G; such

that
> 1/e <a(ni—1)
e€G;

Meanwhile, we assign value ¢. = k to each of the at most
4k(r — 1) edgesnot in one of the G;. It follows that the as-
signment of ¢. valuessatisfies

e < Z4(m — 1) + (4k(r — 1))/k

(4> ni) —4r +4(r — 1)

B

= 4(n-1)

|

In summary, we have given the necessary construction for
approximating strong connectivities:

Lemma4.7 Esti mati on determinesvaluesé. < c. such
that G[p./é.] hasO(n log n /¢*) edges and approximatesall
cut valuesto within (1 + €) with high probability.

Lemma4.8 Esti mati on runsin O(mlog? =) time on an
unweightedgraphandin O(m log? n log nW) timeonagraph
with maximum edge weight .

Proof: Eachlevel of recursionof Est i nat i on calls subrou-
tine WeakEdges on graphs of total size m. An unweighted
graph has maximum strong connectivity m and therefore has
O(log m) levels of recursion; in aweighted graph the number
of levels of recursion is O(log nWV).

5 Changes in weighted graphs

Now we describehow to extend our resultsto weighted graphs.
The main theorems (Theorems 1.11 and 1.12) hold for muilti-
graphs (graphswith parallel edges). Hencewe can apply these
theorems to weighted graphs by scaling all weights up, round-
ing them to integers, and replacing an edge of weight w be w
parallel copiesof the sameedge. Noticethat the error-bounding
theorems are independent of the number of edgesin G (which
may become huge in this process).

On the algorithmic side, thingsare less simple. First of all,
the simple m-step procedure of selecting each edgewith prob-
ability p. isno longer polynomial in . Thisminor problemis
solved by several linear-time algorithmsfor sampling weighted
graphs[Kar94a—for example, one can sample from the bino-
mial (or Poisson) distribution that each edge of the weighted
graph induceswhen each unit of weight is thought of asanin-
dividual edge.

The main difficulty in weighted graphsisin the estimation
procedure for c.. If the total edge weight M is polynomial,
the solution is straightforward. Nagamochi and Ibaraki give an
O(m + nlog n)-time weighted-graph implementation of their
Certificat e agorithm [NI92a] that we can useto imple-
mentEst i mat i on inO(m log n) time. However, the¢. val-
uesmay now be aslarge as M, meaning that O(log M) levels
of recursionwill berequiredinPar ti t i on. Todeal withthis
problem, we show how to localize our computation of strong
connectivitiesto asmall “window” of relevant connectivity val-
ues.

Lemma’5.1 Suppose we contract all edges of G with weight
exceedingw™* and deleteall edgeswith weight lessthanw = /n?
to get anew graph G’. Supposee has strong connectivity c. in
G, withw™ < c. < w*. Thenits strong connectivity ¢, in G’
satisfies (1 — 1/n)c. < ¢, < ce.

Proof: Wefirst provec. < c.. Supposethat after we contract
the specified edge, wefind edge e inacomponent '’ with con-
nectivity ¢, > c.. Consider the preimage H of that compo-
nent in G—it must have connectivity at most c.. Theclaimis
that contracting all edgesof weight exceedingw™ in H yields
H' with connectivity c.. Since H has connectivity at most c.,

procedure W ndowEst i mat i on(G)

Sort the edgesin decreasing weight order
initialize G’ as an empty graph
repeat
W «— maximum remaining edge weight
add every edge of weight greater
than W/n° to G’
Call Esti mation(G")
Contract every ¢’ edge of weight
exceeding W/n
until no edgesremain

Figure4: W ndowEst i mat i on for weighted graphs

there must be acut of valueat most c. < w™ in H. Sinceonly
edges of weight exceeding w™ are contracted, no edge across
the small cut is contracted, so that A’ still has connectivity at
most ¢c.—a contradiction. Therefore, ¢, < ce.

To provethat c. > c.(1 — 1/n), just note that the total
weight of deleted edgesisat most (7)w™/n® < co/n. [

We now apply the above“windowing” lemmain our algo-
rithms. We begin with a simple rough estimate for the strong
connectivity values. Suppose we construct a maximum span-
ning tree (MST) for GG. Let d. be the minimum weight of an
edge on the M ST-path between the endpoints of e. The quan-
tities d. can be determined in linear time using an MST verifi-
cation algorithm [DRT92]. Clearly, c¢. > d.. However, if we
remove all edges of weight d. or greater, then we disconnect
the endpoints of e. There are at most () such edges, so the

weight removed is at most n?d.. Therefore, c. < n®d.. This
givesusaninitial factor of n® estimated. < c. < nd..

For conveniencewe now delete every edge e whoseweight
islessthan d. /»°. Sincethe minimum cut separating the end-
points of ¢ is at least d., this deletion can change the value of
any cut by arelative factor of at most 1/r»—negligible in our
approximation algorithms. So we can assumethat every edge
e hasweight at least de/n2 > ce/n4.

Now assumethat the maximum edgeweight in G isW, and
that our goal is to find the strong connectivity of every edge e
with c. > W/n. If we consider the subgraph of G made up
only of edges with weight at least 1W/n", we do not signifi-
cantly change any of the strong connectivities we care about.
Thanksto the deletions of the previous paragraph, every edge
e with c. > W/n will have weight at least W/»" and will
therefore be present in our subgraph. In the new graph, we can
run algorithm Est i mat i on with astarting ¢. value of W/n
and thereforefinishin O(m log?) time. Thiswill assign cor-
rect approximate values ¢.. to any edge e with c. > W/n.

Given that all strong connectivities exceeding W/n have
now been correctly assigned, we now contract all edges with
weight exceeding W /. Thisgivesusanew graph whosemax-
imum edge weight is W/nr. We can repeat the previous para-
graph’s algorithm in the new graph, then contract more edges.
Each time, we reducethe maximum edge weight by a factor of
n. Eventually, we will have contracted all the graph edgesand
will have assigned all the ¢. values. This approachis detailed
in our algorithm W ndowEst i mat i on in Figure4.

Lemma5.2 ProcedureW ndowEst i mat i on canbeimple-

mented to run in O(m log® n) time.

Proof: Thecontractionsin W ndowEst i mat i on canbeim-
plemented using a standard union-find data structure [CLR90].
Each time an edge is contracted, a union is called on its end-
points. Each time an edge is added, find operations can iden-
tify its endpoints. Therefore, the additions and contractions of
edgesdo not affect the running time. Instead, the running time
is determined by the repeated calls to Esti mati on. Note,
however, that the “window” of considered edges ranges from
W/n5 to W, and that each iteration of the loop reduces W
by a factor of n. Therefore, every edge is in the window at
most 5 times. It follows that the total size of graphs passed to
Esti mati onisO(m). Theclaimedtimeboundfollows. [

6 Applications

We now prove the application corollaries in the introduction.

6.1 Minimum s—t cuts.

Let usfix apair of verticess and ¢. Let ¢ bethe valueof amin-
imum cut separating s from ¢ in the compressed graph G[p.].
We show that the minimum s—¢ cut value v in G iswithin (1 +
3¢)d. By Theorem 1.11, with high probability the s—t mini-
mum cut C in G has has VAL(C, G[p.]) < (1 + €)v. Thus
% < (1 4 €)v. Furthermore, with high probability every cut of
G with value exceeding (1 4 3¢)v in G will havevalue at least
(1—€)(14+3¢) > (14 €)v inG[p.] and therefore will not be
the minimum cut of G[p.].

We can find an approximate value ¢ of the minimum s—¢
cut (and an s—¢ cut with this value) by computing amaximum
flow in the O(nlog n /¢*)-edge graph G[p.]. The maximum
flow algorithm of Goldberg and Tarjan [GT88] has a running
time of O(nm log(n?/m)) which decreasesto arunning time
of O(n? log® n /¢*) after compression. Alternatively, theclas-
sical augmenting path algorithm [FF56, AMO93] for finding a
flow of value v can be used to find an s—¢ cut of value at most
(14 e)vintime O(nvlogn /62).

6.2 Sparsest cuts
A sparsest cut (C|V — C) of agraph G minimizes the ratio

VAL(C |V = C)
|ClV —Cl.

It is A/P-hard to find the value of a sparsest cut. To find an
a-approximate value of a sparsest cut, we use the approach of
the previous subsection: we computea /3-approximate sparsest
cut in the compressed graph G[p.]. Thiscutisthenan o =
(1 + €)S-approximate sparsest cut of G.

An algorithm of Klein, Stein and Tardos [KST90] finds an
O(log n)-approximation to asparsestcut in O(m? log m) time.
By running their algorithm on G[p.], wewill findan O(log n)-
approximate sparsest cut in O(n” log® n /¢*) time.

7 Conclusion

We have given new, stronger applications of random sampling
to problems involving cutsin graphs. The natural open ques-
tion is whether these approximation algorithms can be made
exact. A partial affirmative answer was given in [Kar94a], but
it only gives auseful speedup for graphs with large minimum

cuts. More recently, sampling has led to an exact linear-time
algorithm for minimum cuts [Kar96]; however, the techniques
used there appear to be specialized to that particular problem.

References

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and

[Che52]

[CLR90]

[DRT92]

[FF56]

[Gabos]

[GT88)]

[Kar94a]

[Karg4b]

[Kar96]

[KST90]

[N1924]

James B. Orlin. Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, 1993.

H. Chernoff. A measure of the asymptotic effi-
ciency for tests of a hypothesis based on the sum
of observations. Annals of Mathematical Statistics,
23:493-509, 1952.

Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. Introductionto Algorithms. MIT
Press, Cambridge, MA, 1990.

Brandon Dixon, Monika Rauch, and Robert E. Tar-
jan. Verification and sensitivity analysis of mini-
mum spanning trees in linear time. SSAM Journal
on Computing, 21(6):1184-1192, 1992.

Lester R. Ford, J. and D. R. Fulkerson. Maxi-
mal flow through a network. Canadian Journal of
Mathematics, 8:399-404, 1956.

Harold N. Gabow. A matroid approach to
finding edge connectivity and packing arbores-
cences. Journal of Computer and System Sciences,
50(2):259-273, April 1995. A preliminary version
appeared in STOC 1991.

Andrew V. Goldberg and Robert E. Tarjan. A new
approach to the maximum flow problem. Journal
of the ACM, 35:921-940, 1988.

David R. Karger. Random sampling in cut, flow,
and network design problems. In Proceedings of
the 26! ACM Symposium on Theory of Comput-
ing, pages 648-657. ACM, ACM Press, May 1994.
Submitted to Mathematics of OperationsResearch.

David R. Karger. Using randomized sparsification
to approximate minimum cuts. In Proceedings of
the 5" Annual ACM-SIAM Symposiumon Discrete
Algorithms, pages 424-432. ACM-SIAM, January
1994. Arlington, VA.

David R. Karger. Minimum cuts in near-linear
time. In Proceedingsof the 28" ACM Symposium
on Theory of Computing. ACM, ACM Press, May
1996. Philadelphia, PA.

Philip N. Klein, Clifford Stein, and Eva Tardos.
Leighton-Rao might be practical: Faster approx-
imation algorithms for concurrent flow with uni-
form capacities. In Proceedingsof the 227¢ ACM
Symposium on Theory of Computing, pages 310—
321. ACM, ACM Press, May 1990.

Hiroshi Nagamochi and Toshihide Ibaraki. Com-
puting edge connectivity in multigraphs and capac-
itated graphs. SIAM Journal of Discrete Mathemat-
ics, 5(1):54-66, February 1992.

[NI192b]

Hiroshi Nagamochi and Toshihide Ibaraki. Linear
time algorithms for finding k-edge connected and
k-node connected spanning subgraphs. Algorith-
mica, 7:583-596, 1992.

