Finding Maximum Flows in Undirected Graphs Seems Easier than
Bipartite Matching

David R. Karget and Matthew S. Levirie

Abstract O(n®/3) time! on graphs whose edge capacities are polyno-
mially bounded.

Recently, several algorithms have been developed that
exploit the special properties ahdirectedgraphs to get bet-
ter time bounds for finding small flows. Karger [12, 14],
has given several randomized algorithms culminating in an
O(vy/mn) = O(n%2) time bound. Note that Karger's latest
algorithms do apply to graphs with capacities, although they
are only useful whem is small. At the same time, Goldberg
and Rao [8] gave a blocking-flow based algorithm that runs
in O(ny/mn) = O(n®?2) time on simple graphs.

The main result of this paper is inspired by the simple-
graph algorithm of Goldberg and Rao [8]. They use bounds
on the residual flow in a graph and a sparsification technique
due to Nagamochi and Ibaraki [17] to throw away edges that
need not be used by a maximum flow. We use a related idea,
showing that we can find augmenting path®im,/v) amor-

In this paper we consider the problem of finding maximum tized time per path by putting aside most of the edges and
flows in undirected graphs with small flow values. Tradi- only bringing them back when necessary. Our approach is
tionally, only a special case of this problem has been con- different from theirs in that they always keep enough edges
sidered: unit-capacity graphs with no parallel edges (called to find all of the flow, reducing when possible, whereas we
simplegraphs). Until recently, the best known algorithm for only ever work with enough edges to find a few augmenting
this special case used the blocking flow method of Dinitz paths, adding when necessary.

[2], which Karzanov [15] and Even and Tarjan [3] showed As a first application, we get simple deterministic algo-
runs inO(mmin{n?/3,m"/2,v}) time. Heren is the number rithms that are faster than all previous ones for the most dif-
of nodesmis the number of edges, ands the value of the ficult values ofm andv on simple graphs. First, we can find
maximum flow. Note that for graphs with no parallel edges flow by augmenting paths i®(m+ nv?/2) time (substituting

m < n? and for simple graphg < n, so the above bound is O(n,/v) for min the classicO(my)-time algorithm). Sec-
O(n®/3). In an exciting new result, Goldberg and Rao [7] ond, by incorporating a blocking flow subroutine, we can
extended Dinitz's algorithm teapacitatedgraphs, achiev- find flow in O(nm?/3v1/8) time. The first algorithm is the

Consider am-vertex,mredge, undirected graph with max-
imum flow valuev. We give a method to find augmenting
paths in such a graph in amortized sub-lingam,/Vv)) time

per path. This lets us improve the time bound of the clas-
sic augmenting path algorithm ©(m-+ nv¥/2) on simple
graphs. The addition of a blocking flow subroutine gives a
simple, deterministi©(nn?/3vY/6)-time algorithm. We also
use our technique to improve known randomized algorithms,
giving O(m+nv?/4)-time andd(m-+ nY/v)-time algorithms

for capacitated undirected graphs. For simple graphs, in
whichv < n, the last bound i©(n?2), improving on the best
previous bound o®(n?°), which is also the best known time
bound for bipartite matching.

1 Introduction

ing Even-Tarjan-like bounds ad(mmin{n?/3,m"/2,v}) = best known deterministic algorithm for dense graphs with
*MIT Laboratory for Computer Science, Cambridge, MA 02138pS _5ma||v: th_e second algorlthm 1S th? best known determin-
ported by NSF contract CCR-9624239 and an Alfred P. Sloanedation istic algorithm for dense graphs with large The second
Fellowship. _ ' time bound is also at least as good as the Goldberg-Rao time
email: {kar ger , ms| evi ne}@heory. | cs. mit. edu. bound ofO(n%2m?/2) for all values ofm andv. Both al-

URL:http://th .les.mit. edu/ ~{k , msl evi . . .
P eory.les.mt. edu/~{karger, nsl evine} gorithms are clearly practical to implement, so only exper-

iments can tell what is actually best for practical purposes.
The first algorithm works for the capacitated case as well,
running inO(m+ nv®/?) time.

1 (n) = O(g(n)) if 3c such thatf (n) = O(g(n)log® n)

Source Year Time bound Capacities? Directed?| Deterministic?
Ford-Fulkerson [4]| 1956 Oo(mv) Vv Vv Vv
Even-Tarjan[3] | 1975| O(mmin{n%3 m/?}) v v
Karger [13] 1997 O(m?/3n1/3y)

Goldberg-Rao [7] | 1997 | O(mmin{n%3 m/2}logv) V v V
Goldberg-Rao [8] | 1997 O(n,/nm) 4
Karger [14] 1998 O(vy/nm) v

this paper 1998 O(m+nv¥/2) v
this paper 1998 O(nn?/3y1/6) V
this paper 1998 O(m+nv¥/?) v v
this paper 1998 O(m-+nv¥/%) v

this paper 1998 O(m-+ nty) v

Table 1: Summary of algorithms. The long histor;fl(fmn)-time algorithms, which are still best for largehave been omitted.

We also extend Karger's most recent algorithm [14], get-
ting two Las Vegas randomized algorithms with expected
running times ofO(m+ n/4) and O(m+ n'Y%). The
latter time bound i90(n??) in the worst case for simple
graphs, which is better thad(n?®), the best bound previ- log,m
ously known [8, 14]. These algorithms are complicated, so

Uninteresting

likely not practical, but they do demonstrate ti@n?°) is A2
not the right time bound for maximum flow in undirected
simple graphs. Both of these algorithms also work for the my/m
capacitated case. mv
Even more notable, however, than the fact tbat?®) is 1 !

. . : 23, - 0 logyv 1
not the right time bound for flow, is the fact th@(n=<) is

better than the best known time bound for bipartite matching, gigre 1: pictures of the best deterministic bounds. (See text
which isO(my/n) = O(n?%). This suggests that we should be for explanation.)

able to improve the time bound for bipartite matching! Un-

fortunately, the well known reduction from bipartite match-

ing is to flow on adirectedgraph, and does not work if we dently simplified the proofs of Galil and Yu, using essentially
try to make the graph undirected [6]. So we do not improve the same argument we use. Our result is stronger: we show
the time bound for bipartite matching, but this work suggests that any acyclic flow uses few edges, even oapacitated

that it may be possible to do so. graphs.

Another way to look at our results is as follows. We In order to summarize the restrictions and performance
prove that a flow of value never needs to use more than of the various algorithms, we have done two things. Table 1
O(ny/v) edges. This suggests that we should be able to re-summarizes the history of the various algorithms we refer to
strict attention to these “important” edges, thereby effecting in this paper. (The long history @(mn)-time algorithms,
areplacement ahby O(n,/V) in the time bound of any flow which are still best for large, and were until recently [7]
algorithm. For example, ou®(m + n\/'s/“)-time~ bound is the only option for graphs with capacities, has been omit-
achieved by applying this substitution to Kargeps/,/mn)- ted.) Further, in order to show which algorithms have the
time algorithm. Unfortunately, we do not know how to iden- best performance for different values mfandv relative to
tify the rightO(n,/v) edges without finding a flow. Neverthe- n, we have drawn pictures (Figures 1 and 2): one for deter-
less, we devise methods to achieve all or part of this speedupministic algorithms only, and one including randomized al-
on undirected graphs. gorithms. A pointin the picture represents the valusmaind

Note that Galil and Yu [5] previously proved that flows v relative ton. Specifically,(a, b) represents = n®, m= n°.
need only us®(n,/v) edges on simple graphs, but they did Each region is labeled by the best time bound that applies
not show how to exploit the fact. Their proof was also some- for values ofm andv in that region. Note that the region
what complex. Henzinger, Kleinberg, and Rao [9] indepen- m> nvis uninteresting, because the sparsification algorithm

of Nagamochi and Ibaraki [17] can always be used to make directed graph, because flows are directed. 2) Undirected
m < nvin O(m) time. The shaded regions correspond to al- graphs have special properties that we can exploit. Since
gorithms given in this paper. Note that tagnn?/3v/6)- most flow algorithms work by repeatedly finding some flow
time algorithm (which is the fastest algorithm for the region and then restricting attention to the residual graph, it would
surrounded by a dashed line) is the only one in the picture seem that fact 1 renders fact 2 useless. However, the sym-

that cannot handle capacities or parallel edges, so the picturanetry of an undirected graph is not entirely lostGr. In

looks strange at = n. If capacities are being considered,
then this algorithm should be removed from the picture; if

particular, since the capacity of a directed edgé&inis its
capacity inG minus the value off on that edge in that di-

only simple graphs are being considered, then the picturerection, it is only the edges with non-zero flow that “become

should end a¥ = n. The complexity of these diagrams sug-
gests that more progress can be made.

2
Uninteresting mr2/3
log,m /3,/1/6
S/ nm/3y
my/m
vy/mn vm
1 I
0 log,v 1

Figure 2: Pictures of the best randomized bounds. (See tex
for explanation.)

The rest of this paper is organized as follows. In Sec-
tion 2 we review some notation and basic definitions. In
Section 3 we give two algorithms for fast augmenting paths
in simple graphs. In Section 4 we give two deterministic al-
gorithms based on our fast augmenting paths subroutine. |
Section 5 and 6, we apply fast augmenting paths to some ran
domized algorithms of Karger [12, 14]. In Section 7 we show

how to extend fast augmenting paths to capacitated graphs,

and discuss the implications for our other algorithms. We
conclude and discuss some open questions in Section 8.

2 Notation and definitions

We use the following notation:

the graph

the source

the sink

number of nodes

number of edges

value of a maximum flow
a flow

residual graph o6 with respect tof
st distance irGs

the value of flowf

the edges o carrying flow

@+<33"0Q

ds
|f
Ef

The only unusual item here ;. Two facts motivate
this definition: 1) The residual grapB; is necessarily a

n.

directed”. The unused edges still have the same capacity in
both directions, so they may still be considered undirected.
Therefore, in order to make good use of the properties of
undirected graphs, we think & as having an undirected
part, the unused edges, and a directed [art,

We also use the following definitions:

Definition 2.1 A graph issimpleif all edges have unit ca-
pacity and there are no parallel edges.

Definition 2.2 Aflow f isacyclicif there is no directed cycle
on which every edge has positive flow in the cycle direction.

3 Finding augmenting paths quickly

In this section we show how to find augmenting paths in an
undirected simple graph i@(n,/v) amortized time per path.
We focus on simple graphs, deferring discussion of graphs
with capacities to Section 7. There are two facts that make
our result possible. The first is that an acyclic flow in a sim-
ple graph uses onl®(n,/V) edges. The second is that in
an undirected graph, a maximal spanning forest on the un-
used edges, together with the flow-carrying edgescon-
tains an augmenting path if there is one. So the basic idea
is to maintain a maximal spanning fordsbf the undirected
‘edges and usg& U E; to search for an augmenting path in
O(n+ ny/v) = O(ny/v) time.
There are two ways to do this. The direct approach is
to use a dynamic connectivity data structure to maintain a
maximal spanning forest. The other possibility is to compute
many spanning forests at once and use them for many paths,
amortizing away the cost of finding the forests. We describe
both approaches.

We begin by proving the structure theorems we need, and
then give the details of the two approaches.

3.1 Structure theorems
3.1.1 Flows use few edges

The first important theorem is that small flows in simple
graphs use few edges:

Theorem 3.1 An acyclic flow f in a simple graph uses at
most3n,/|f| edges.

Note that this theorem is very close to a theorem proved
by Galil and Yu [5] and simplified by Henzinger, Klein-
berg, and Rao [9] that says there exists a flow that uses only

O(n,/v) edges. Our proof is very much the same as that of
Henzinger, Kleinberg and Rao, although we proved it inde-
pendently.

We use two lemmas to prove the theorem:

A\

Na=aEa
OB 5
A, g
BRRE

A VA

Lemma 3.2 [3] In a simple graph with a flow f, the maxi-
mum residual flow value is at mﬂm/df)z. (Recall thatd
is the length of the shortest source-sink path in)G

Every cut defined by a vertica
line hasv edges crossing it.

Proof. Define the distance of a node to be the length of the
shortest path (in the residual graph) from that node to the
sink. LetV; be the set of nodes at distaric&incesis in Vg, Figure 3: A graph with an acyclic flow that us€n,/v)
and the sink is i/, the cut separating<;Vj from UjV; edges
is anst cut. Call this cut thecanonical cutseparatingi
fromV;;1. Observe that a node W1 cannot have an edge
to a node inv; for any j < i since it would then be V1.
So edges leavin¥i;1 can only go tovj with j >i. Since
there are no parallel edges, the number of edges crossing the
canonical cut separating,1 fromV is at mostVi1||Vi|. The second important structure theorem is that the flow-

Now consider th&/ in pairs:VoUV1,Vo UV;3,.... There carrying edges together with a maximal spanning forest of
are|(ds +1)/2] such pairs, and they are vertex disjoint, so unused edges have an augmenting path if and onGyy if
some pair has at mosn2ds vertices in it. The canonical does:
cut separating this pair has at most m@x(2n/ds —x) =
(n/d¢)? edges crossing it. Each edge of the residual graph
has capacity at most 2 (one original unit and possibly one
more if it is carrying flow in the wrong direction), so the
maximum residual flow value is(8/df)2. [Proof. LetG' = T UE¢. SinceG' is a subgraph o6y, it is

clear that ifG’' has an augmenting path th&y does. For

Lemma 3.3 (Small modification to Theorem 6 in [3]) In a the other direction, suppose that there is an augmenting path
simple graph, if a flowf| is found by repeatedly findingand in G¢, but not inG'. By the max-flow min-cut theorem, we
augmenting on a shortest path inn Ghen the total length of ~ can restate this condition as follows: there isdrcutC that

3.1.2 Unused edges can be reduced to a
spanning forest

Theorem 3.4 Let T be any maximal spanning forest of G
Es. Then TUE¢ has an augmenting path if and only iffG
does.

the paths is at mosn,/| f|. has a residual edgecrossing it (from thes to thet side) in
Gt, but no edges crossing it i@'. If eis in Ef, then it is
Proof. Restating Lemma 3.2, we have that wheffow re- in G, a contradiction. S@ must be inGs —E;. ButT is

mains inGg, the length of the shortest source-sink path in a maximal spanning forest @ — E¢, which means that it
Gt is at mostny/2/x. In the execution of any augmenting contains an edge from every nonempty cuBef- E¢. Since
path algorithmx takes on each value from 1 t6| once, so Cis nonempty inGs — E¢ (e crosses it) some edge ©f and

if we always use the shortest augmenting pattsjnwe see thus ofG', crosse€. This contradicts our (restated) original
that the total length of the paths is assumption. []

With these two results, we can now give some algo-

1] :
3 nv2 <3/ rithms.

SIE 3.2 An algorithm based on a dynamic
m connectivity data structure.
Proof of Theorem 3.1. ConsiderEs. By definition, f isan | this section we show how to exploit Theorem 3.4 in the
st max-flow inEs of value|f|. Further, sincef is acyclic, most literal way: by maintaining an acyclic floss and a
there can be no residual cyclefy, so the maximum flow maximal spanning forest db; — E;. The most important
in Ef is unique. That isf is the only max-flow inEs. By piece of this implementation is a data structure for dynamic

Lemma 3.3, if we were to find a max-flow t by shortest connectivity:

augmenting paths, the total length of these paths would be

at most 31\/]f], meaning that at mostn®/[f| edges were Lemma 3.5 [10] It is possible to maintain a maximal span-
used. But this (unique) max-flow i, so f uses at most ning forest of an undirected graph under edge insertions and
3n,/[f] edges. - deletions in Qlog?n) amortized time per operation.

Observe that Theorem 3.1 is tight up to constant factors. We also need to worry about whether our flow is acyclic,
Figure 3 gives an example of a graph with an acyclic maxi- because Theorem 3.1 only applies if it is. Fortunately, us-
mum flow that use®(n,/v) edges. ing a procedure due to Sleator and Tarjan [18], it is easy to

remove all cycles from a flow (we will refer to this proce- It remains to account for the dynamic connectivity oper-
dure asdecycling. Since we are largely concerned with the ations. First consider deletions. An edge is deleted from the
simpler case of unit-capacity graphs, we observe that theirdata structure when we place flow on it. This happens to at
algorithm minus the dynamic trees works a little faster in a mostn edges in any one augmenting path, for a totahiof
unit-capacity graph: deletions taking(nrlog?n) time. Now consider insertions.
Initially, we insert all edges in the structure @(mlog2 n)

X . time. Later, edges are inserted in the data structure when
ﬂOW, f and f|nd. an acyclic flow’fof the same value/ | = flow is removedgfrom them. Note, however, that flow can-
[f])in O(|Es]) time. not be removed from an edge until flow has been added to

Proof. Do a depth first search from the source on edges car-the edge, We have already counted the cost of deleting edges
rying flow. Whenever the sink is reached, retreat. Whenever When we add flow to them; this cost can also absorb the equal
a back edge (an edge leading to vertex already on the cur-Cost of inserting those edges when the flow is removem.

rent depth-first search path) is found, we have found a cycle. . -

Delete the cycle and continue the search from the head of the3'3 An "?"_go”thm based on sparse connectivity

back edge. (The head of the back edge is the node furthest certificates

from the source and still on the current depth-first search Another way to exploit Theorem 3.4 is to find several span-
path.) Deleting a cycle leaves a flow of the same value. The ning forests at once and use them to find several augmenting
search only advances over each edge once, and only deletegaths, thus achieving the same average time per augment-
each edge once, so it tak®g|E¢|) time. Note thatitis easy ing path. To do this, we use an idea and algorithm given by
to show by contradiction that there are no cycles lefEin Nagamochi and lbaraki [17]:

Lemma 3.6 In a unit-capacity graph, it is possible to take a

when this procedure terminates. [] o _
We can now give the basic algorithm for fast augmenting Definition 3.8 For an undirected graph G- (V, E), asparse
paths: connectivity certificatés a partition of E such that Es a
maximal spanning forest in GE;UE,U---UE;_4, fori =
SparseAugment1(G, f) 1,2,...,|E|, where possibly E= Ej;1 = --- = Ejg) = 0 for
some i.
Input: GraphG, flow f
Output: maximum flow irG Definition 3.9 A sparsek-certificateis the subgraph G=
(V,E1UE2U---UEy) derived from a sparse connectivity cer-
insert all edges of that are not carrying flow tificate.

into a dynamic connectivity data structure,

and use it to maintain a maximal spanning fores
repeat:

look for an augmenting path iB: UT

if no such path exists

Lemma 3.10 [17] The value of a minimum s-t cut in a
sparse k-certificate of G is equal to the smaller of k and
the value of the minimum s-t cutin G.

—

Lemma 3.11 [17] In an undirected graph with unit capacity

elséeturnf edges, it is possible to construct a sparse connectivity certifi-
. cate in m) time.
augmentf using the path
f < decycle(f) Notice that one easy application of this construction is to

update the connectivity structure as appropriate reducemto nv. By Lemma 3.10, using a spamecertificate

Note that in practice we might decycle the flow only d0€S notreduce the value of asy cut belowv, so a maxi-
when it has many edges. To show that this algorithm is cor- MUM flow in the certificate is a maximum flow in the original
rect, we just need to know th@ contains an augmenting 9raph. This gives a®(m+ nv?)-time flow algorithm using

path if and only ifG; does. This result is immediate by The- Standard augmenting paths. .
orem 3.4. It remains to analyze the running time. This construction turns out to be precisely what we want.

We formalize this idea with the following generalization of

Theorem 3.7 SparseAugment1 runs in Q((m+rn)log?n+ Theorem 3.4:
rny/v) time, where r=v— |f| is the number of augmenting
paths that need to be found. Theorem 3.12 Let G be a sparse k-certificate of{G- E;.

Then & UGy contains i< k augmenting paths if and only if

Proof. For now ignore the dynamic connectivity operations. G; has i augmenting paths, and Bl G, contains at least k
Since we decycle the flow in each iteration, every augment- paths if G contains at least k.

ing path search takes place in a graph vittn,/v) edges

and therefore take®(n,/v) time. Similarly, every decycling Proof. The idea here is the same as that of Theorem 3.4,
takesO(n,/v) time. Since there ameiterations, the totaltime ~ except that now we have several spanning forests instead of
is O(rny/v). one. AgainG' = Ef UGy is a subgraph o6, so can have

no more augmenting paths thén. For the other direction,
consider a minimunst cut of G. SupposeGs has more
residual edges crossing this cut, that is, has an edge crossin
the cut that is not irG'. It is impossible for this edge to be

in Ef, becauseS’ contains all edges dEs. So there must

be more unused edges crossing the cuBin- Es than in

Gk. But by Lemma 3.10, this can only happen if more tkan
edges cross the cut &s — E¢, in which case at leagtedges
must cross the cut iGy. This completes the proof.]

We now give the basic algorithm using sparse certifi-
cates:

SparseAugment2(G, f)

k« [\ /m/ n]
repeat:
f < decycle(f)
Gk < a sparsd-certificate of unused edges Gf
G «+ E; UGy
run augmenting paths d& until
k paths are found or no more paths exist
if the previous step found less th&ipaths
return f

To show the correctness of this algorithm, we just need
to know that when we find less th&maugmenting paths in
G, we have a maximum flow it. This is immediate from
Theorem 3.12. It remains to analyze the running time.

Lemma 3.13 The running time ofSparseAugment2(G, f)
on a simple graph is @n+r(ny/vV++/mn)), where r is the
number of augmenting paths that need to be found.

Proof. By Lemma 3.11 and Lemma 3.6, the cost per iteration
of the first two steps in the loop ®(m). The cost of the
augmenting paths step &(m'k), wherem' is the number

of edges inG'. By definition of a sparsé&-certificate and
Theorem 3.1m < nk+ ny/V = y/mn+n/v. The number of
iterations is[r /K], so the total time i©((m+ k) [r/K]) =

o(m+r(ny/v+/mn)). [

This bound is somewhat unsatisfactory, in that the cost
per augmenting path becomg®nwhenm > nv. But if we
knewv at the beginning, we could find a spasseertificate
and ensure that we only worked witlr edges for the rest of
the algorithm. This would give the amortiz€in,/v) time
per path that we want. A complicated way to solve this prob-
lem is to use the graph compression technique of Benczlr
and Karger [1] to get a 2-approximation van 6(m+ nv)
time. A simpler approach is to simulate knowingy taking
a small guess and doubling it until we are correct:

SparseAugment3(G, f)

0 compute a sparse connectivity certificate of
unused edges @

For anyw, let Gy, denote the firstv forests of this
sparse certificate (a spansecertificate)

W |f|

repeat:
w < minw such thatG,y| > 2|Gy/|
SparseAugment2(Gy, f), stopping whenf| > w

until | f| <w

returnf

Notice thatG,, C Gy, SO we do not start over each itera-
tion, we just continue with more of the edges fr@nThis is
irrelevant to the time bound, but seems likely to yield better
constant factors in practice.

Theorem 3.14 The running time oSparseAugment3(G, f)
on a simple graph is @n+rn,/V), where r is the number of
augmenting paths that need to be found.

Proof. The running time of the initial step i©®(m). The
running time of theth iteration isO(m + r;(n/V+ ,/mn))

by Lemma 3.13. (Here the notationis used to mean the
value ofx in theith iteration.) Sincamy doubles with each
iteration, the sum over iterations of the first termQsm).
Let k be the number of iterations. It must be the case that
Wi_1 < vin order for the(k — 1)%t iteration to not terminate.
Thusmy_; < nv. Since we attempt to doubte, ending up
with at most one spanning forest too mamy, < 2nv+n=
O(nv). Sincey r; =r, the sum over iterations of the second
term isO(rn/Vv). The total iSO(m+ rny/v). [

4 Applications of fast augmenting paths

The main result of Section 3 can be used in several ways
to give fast flow algorithms. Most obviously, direct ap-
plication of SparseAugment3 gives a simple, deterministic
O(m+ nv¥/?)-time flow algorithm. In the worst case, when
m= O(n?) andv = O(n), this gives arO(n?) time bound,
which is as good as all previous known algorithms’. For
smallerv this is the best deterministic algorithm known.
Note that ours is the first deterministic algorithm to achieve
this bound without blocking flows, and unlike previous
blocking flow approaches it benefits from smalllf we do
use blocking flows, we can do better for large

BlockThenAugment (G, k)

f < the result of computing blocking flows on
shortest paths i+ until df > k
returnSparseAugment3(G, f)

Theorem 4.1 On an undirected simple grapiBlock-
ThenAugment (G,n/6/m'/3) runs in Qnn?/3v1/6) =
O(n%/2) time.

Proof. Finding a blocking flow takeO(m) time. We
compute at mosk blocking flows, which take©(mk) =
O(nn?/3v1/®) time. We then have >k, so by Lemma 3.2
the remaining flow igD((n/k)?). Thus the time for the sec-
ond step i€O(n%,/V/k?), which is alscO(nn?/3vY/6), m

This algorithm also take®(n®?) time in the worst case,
but it is better when the graph is sparse but the flow value
is large. It is always at least as good as the bound of
O(n%2m*/2) given by Goldberg and Rao [8], and in general
better by a factor ofn®/mv)*/6.

Note that unlike Dinitz’s algorithm, where the improved
running time arose by changing thealysisof the algorithm
to augmenting paths at a certain point, we must explicitly
change theexecutionof the algorithm at a certain point to

in the sampled graph are withiflL + /8Inn/pc)) of their
expected values.

Thus when we divide the edges into two groups (effect-
ing p=1/2 in each group), the minimurst cut in each
group is at least(1— O(y/logn/c)). So the flow in each
half has at least this value, giving us a flow of value at
leastv(1 — O(y/logn/c)) when we put the two halves to-
gether. This leaves onl®(v4/logn/c) augmenting paths to
be found in Step (*). It turns out that this step is the dom-
inant part of the running time (the time bound fAUG is
O(mwy/logn/c)), so it makes sense to uSearseAugment.

We refer to this new algorithm agwDAUG.
Now, by Theorem 3.14, the time to find the augmenting

achieve our bounds. Since our algorithm must change itsPaths isO(m-+nvy/viogn/c). So a recurrence for the run-

actions, we need to know what that point is. In particular,
we need to know in order to achieve our bound. We can
again get around this limitation by either estimatingith

another algorithm and computing a sparse certificate or using

the iterative doubling trick ogparseAugment3.

5 New tricks for an old DAUG

Using our fast augmentation, we can also improve the run-
ning time of the “divide and augment” algorithrDAUG)
given by Karger [12]. This result is of relatively minor inter-
est in itself, but we make good use of it in the next section.
The idea 0DAUG is that if we randomly divide the edges
of a graph into two groups, then about half of the flow can
be found in each group. So we can recursively find a max-
imum flow in each half, put the halves back together, and

use augmenting paths to find any flow that was lost because

of the division. In the original version, the time spent find-

ing augmenting paths at the top level dominated the running

time, so it is natural to expect an improvement with faster
augmentations. Here is the original algorithm:

DAUG(G)

if G has no edges, return the empty flow
randomly divide the edges & into two groups,
giving G; andG;

f1 (—DAUG(Gl)
fo (—DAUG(Gz)
ffr+1f

(*) use augmenting paths to tuifninto a maximum flow
return f

The key fact that makd3AUG work is that random sam-
pling preserves cut values fairly well as long as all cuts are
large enough:

Definition 5.1 A graph is econnectedf the value of each
cutis at least c.

Theorem 5.2 [12] If G is c-connected and edges are sam-
pled with probability p, then with high probability all cuts

ning time ofnewDAUG is
T(mv,c) =2T(m/2,v/2,c/2) + O (m+ nv\/vlogn/c)

This solves t@(m+nvy/v/c), but unfortunately, because of
the randomization in the algorithm, the problem reduction is
expected, not guaranteed, so solving this recurrence does not
actually prove anything about the running timeneivDAUG.

We need to look at the recursion tree (See [12] for a full
discussion). This proof is more technical than interesting,
and goes the same way as in [12], so we just sketch it.

Theorem 5.3 The running time ofnewDAUG on a c-
connected graph i©®(m+ nvy/v/c).

Proof. (Sketch) As in the original algorithm, the depth of the
recursion tree i©(logm), and the time spent looking unsuc-
cessfully for augmenting paths @(mlogm). It remains to
bound the time spent in successful augmentations. Consider
a recursion nod&\ at depthd. Each edge of the original
graph ends up &l independently with probability &, so

the graph at this node is equivalent to one obtained by sam-
pling with probability 2-9.

Consider the nodes at depths exceedingdppgn). By
Theorem 5.2, at these nodes the flovdis//c). So by The-
orem 3.14, the total time spent on successful augmenting
paths isO(nvy/v/c). At the nodes at deptth < log(c/ logn),
the argument from [12] continues to apply, showing that
the number of augmenting paths that need to found is
O(vy/logn/2dc). Since the value of the flow i©(v/29),
the time taken iSO((vy/2/c)ny/v/29) = O(nvy/v/c/2%).
Adding this up over the whole recursion, we get the claimed
bound. [|

Note that this time bound is very goodvfis not much
bigger thart. In particular, we get the following easy corol-
lary:

Corollary 5.4 In a simple graph where ¥ ﬁ(c), the run-
ning time ofnewDAUG is O(m+ nv) = O(m). (Note that
m> nc/2in a c-connected simple graph.)

6 O(m+n¥/4)-and O(m+ ntY¥%)-time algorithms

The algorithm of the previous section is only an improve-
ment over the(m-+nv¥/?)-time algorithm ifcis large. Nev-

Proof. Use Theorem 6.1 witth; = the O(mr?/3)-time al-
gorithm of Goldberg and Rao [7]A2 = newDAUG, and
SparseAugment to find the augmenting paths at the end. The
time is

ertheless, we can take advantage of it by using ideas from
[14]. Inthat paper, a number of ideas are put together to get a 6((nk) n2/3) + 6(n\/3/2/k1/2) + Z é(nv) + f)(n\/_/- v/\/E)

fast flow algorithmCompressAndFill, that runs inO(v,/mn)

time on any undirected graph. For our purposes, that algo-

rithm can be summarized with the following theorem:

Theorem 6.1 [14] Let T(m,n,v,c) denote the time to find a
maximum flow of value v in a c-connected undirected graph
with m edges and n nodes. Given flow algorithmaid A,

(A1 must handle capacities), with running timesand b
respectively, it is possible to define a flow algorithgwth
expected running time (up to log factors) given by

+ time to find @v/vk) augmenting paths

(There is a technicality that the bound ob Thust be
“reasonable”—at least linear in n or m— for this theorem
to be true.)

CompressAndFill results from pickingk ~ m/4n, using
CompressAndFill (recursively) forA1, and usindpAUG (with
runtimeO(mv/+v/k) for Ay. Thus the recurrence for the run-
ning time is

T(mn,v,c) < T(m/2,n,v,c) + O(mwk) +O(mvk) +
O(mw/k)
T(m/2,n,v,c) + O(vy/mn)
O(vy/mn)

We improve on this algorithm by replacing the subrou-
tinesA; andA; and the augmenting path step appropriately.
In particular, we us@ewDAUG instead ofDAUG for A; and
we find augmenting paths at the end wiharseAugment.

We alsq consider two possibilities féq: CompressAndFill
and theO(mr?/3)-time algorithm of Goldberg and Rao. Note

<
<

that we investigated using a recursive strategy again, but we

were unable to get an improvement that way.

Theorem 6.2 On undirected simple graphs, we can find a
maximum flow in expected tirG¥m+ nv/4).

Proof. Use Theorem 6.1 witlh; =CompressAndFill, Ay =
newDAUG, andSparseAugment to find the augmenting paths
at the end. The resulting time bound is

O(vv/(nk)n) + O(nv¥/2/kY/2) + &(nv) + Oy - v/ Vk)
= O(vnvk+ nv¥/?2/Kk/?)

Pickingk = /v completes the proof.]

Theorem 6.3 On undirected simple graphs, we can find a
maximum flow in expected tirG¥m+ n'Y/%).

= O(kr?/® + nv¥/2/K1/2)

Pickingk = v/n4/9 completes the proof.

7 Extensions to graphs with capacities

In this section we show that much of what we have already
shown for simple graphs actually applies to graphs arbitrary
integer capacities. The key fact is that Theorem 3.1 continues
to hold:

Theorem 7.1 An acyclic flow f in a graph with integer ca-
pacities and no parallel edges uses at nﬁnsvm edges.

Besides extending to capacitated graphs, this theorem
yields better constants, even for the simple-graph case, than
the similar theorems of Galil and Yu [5] and Henzinger et
al [9]. The lower-bound example of Figure 3 shows that our
bound is tight to within a factor of 2.

Notice also that restricting a capacitated graph to have no
parallel edges is no restriction at all, because in time linear
in the input we can merge parallel edges into one edge with
capacity equal to the sum of the capacities of the edges that
make it up, and at the end we can split the flow on such an
edge among the edges that make it up.

Our proof of Theorem 3.1 bounded the number of edges
used by a flow by breaking it down into augmenting paths
and counting their total length. That argument does not
work, because a single path of lengthnd capacity would
cause the total length of augmenting paths tayaeHow-
ever, a very similar argument does work. The problem is
that one edge can be in many paths, so our old proof counts
it many times. The idea of the new proof is to redefine the
length of an edge so that the total length of augmenting paths
gives a more accurate bound. Specifically, define the length
of a residual edge to be 1 if it has unit capacity and O if its
capacity is larger. Again we begin with a lemma:

Lemma 7.2 In a graph with flow f that has no parallel
edges, the maximum residual flow value is at njogtls)?,
where d is the length of the shortest (with respect to the
length function defined above) source-sink path in G

Proof. The argument used in the proof of Lemma 3.2 contin-
ues to imply that there is a canonical cut with ofihy/ds)?
edges crossing it. The only difference now is that the edges
of Gt are not limited to capacity 2. However, no length 0
edge can cross a canonical cut from thede to thet side,
because that would violate the definition of the cut. (A node
w at distance from the sink cannot possibly have a length-0

edge to a node at distance less thamecausev would then Corollary 7.7 A maximum flow in an undirected graph can
be at distance less tha) Therefore only length 1—thatis, be found inO(m+ nv?/4) expected time.

capacity 1—edges cross canonical cuts, so the residual flow
value is at mostn/ds)2. u Corollary 7.8 A maximum flow in an undirected graph can

S 11/9 ;
Proof of Theorem 7.1. As in the proof of Theorem 3.1, be found inO(m+n/*v) expected time.

we consider finding a max-flow i&s. To do this, define a
graphG' = (V,E;) where the capacity of an edge is equal
to the value off on it. Again, sinceE; has no cycles, the

Notice thatBlockThenAugment does not extend, because
it relies on Lemma 3.2 to bound the remaining flow after
_ '] A several blocking flow computations. However, the remain-
maximum flow inG’ is unique and therefore must use all the ing algorithms do extend. In [14], Karger shows how to ex-
capacity of all the edges. _ tend DAUG to graphs with capacities. Ignoring the details,

Consider finding a maximum flow iG' by repeatedly he pottom line is thamn has to be increased to+ nc. The
finpling and augmenting one unit of flow on a shortest path {ime bound fomewDAUG is independent af, so it remains
(with respect to the length function above)Gh. Lemma 7.2 ﬁ(nv\/v/_c). CompressAndFill was originally designed to
tells us that the length of the path is at magt/x. Inthe \ork with capacities, so given thatwDAUG and fast aug-
execution of any augmenting path algorithatakes on each menting paths continue to work with the same time bounds

value from 1 to|f| once, so if we always use the shortest (yp to logarithmic factors), our algorithms of Section 6 do as
augmenting path we see that the total length of the paths is el

fon 8 Conclusion
— < 2ny/|f
x;\/)_(- I

We have given algorithms that improve the time bounds for

Since every edge is reduced to 0 capacity at the end, everyg;aéxr;]mtgn; ﬂgrvlvr':ol;:d'lzzcstt?:ngr;gms'thgovr\/:sv;:/’eoué resil\J/Iitns
edge has length 1 at least one of the times it is on an aug- P q y - By giving

; & 11/9%) — A(n2-2) ti
menting path. It follows that the total length of the augment- an algorithm that runs i®(m-+ /%) = O(n*?) time, we

25y i i i i
ing paths is an upper bound on the number of edges used bfho"_’ thatQ(n) is not the right time bound for maximum
£ flow in undirected simple graphs. Further, for the case when

Note that during the augmenting path algorithm the v=0(c), we give an algorithm that runs @(m) time. This

lengths of edges can change in unpredictable ways, but thisLeOper;]S thﬁ ql_Jestign ofdv;/1hat th? riglhtftimelbognd is. The
does not affect our analysis. All we care is that each edge ope that the time bound has a simple form leads us to con-

has length 1 during at least one augmentation througtmit. 1eCture trlatzit is possible to find flows B(m+nv) time,
which isO(n<) on simple graphs.

Given that|E¢/| is still small for a capacitated graph, we We have also shown that maximum flow in undirected

need to make sure that we can still decycle and that ourgimple graphs can be found faster than bipartite match-
methods to sparsify the unused edges still work. Fortunately,ing_ As discussed before, the standard reduction of bipar-

the original Sleator-Tarjan decycling algorithm [18] already jie matching to flows is to directed flows, so our techniques
takes care of capacitated graphs, and a later paper of Naggo not help. This opens the question of whether bipartite
amochi and Ibaraki [16] says that we can still find sparse atching can be reduced to undirected flow or, more gener-
certificates quickly. ally, whether the time for bipartite matching is really correct.

It is also natural to ask whether our techniques can be
extended further. The best performance improvement we
could hope for from our present techniques is reduction of
mto n,/v; we achieve this reduction for augmenting paths,
but only get part-way when blocking flows are involved. It
would be nice to find a way to sparsify for a blocking flow
computation. In particular, if we could achieve a full re-
duction ton,/v edges when blocking flows were involved,
it would imply an O(n,/r?/3) = O(n?16)-time algorithm.
Further, the structure theorem, that a flow does not use many
edges, holds for directed graphs, but our sparsification tech-
niques do not. It would be nice to close the gap between
directed and undirected graphs.

Lemma 7.3 [18] It is possible to take a flow f and find an
acyclic flow f of the same valug{’| = |f|) in O(|E¢|logn)
time.

Lemma 7.4 [16] In an undirected graph, it is possible to
construct a sparse connectivity certificate ifind+ nlogn)
time.

It follows immediately that we can find augmenting paths
in a capacitated graph in amortiz&¢n./v) time. Almost all
of our simple-graph time bounds extend as easy corollaries.

Theorem 7.5 In an undirected graph, it is possible to find r
augmenting paths i@(m+ rn,/v) time. Acknowledgments

Corollary 7.6 A maxirznu_m flow in an undirected graph can e thank Allen Knutson and Joel Rosenberg for assistance
be found inO(m-+ nv¥/2) time. in proving Theorem 7.1.

References

[1] A. A. Benczirand D. R. Karger. Approximaset min-

University Press, Moscow, 1973. In Russian; title trans-
lation: On Finding Maximum Flows in a Network with
Special Structure and Some Applications.

cuts inO(n?) time. In G. Miller, editor,Proceedings [16] H. Nagamochi and T. Ibaraki. Computing edge con-

of the28" ACM Symposium on Theory of Computing nectivity in multigraphs and capacitated grapB$AM

pages 47-55. ACM, ACM Press, May 1996. Journal on Discrete Mathematics5(1):54-66, Feb.
[2] E. A. Dinitz. Algorithm for Solution of a Problem of 1992.

Maximum Flow in Networks with Power Estimation. [17] H. Nagamochi and T. Ibaraki. Linear time algorithms

Soviet Math. Dok].11:1277-1280, 1970. for finding k-edge connected ankinode connected
[3] S. Even and R. E. Tarjan. Network Flow and Test- spanning subgraphalgorithmica 7:583-596, 1992.

ing Graph ConnectivitySIAM Journal on Computing [18] D. D. Sleator and R. E. Tarjan. A data structure for dy-

4:507-518, 1975.

[4] L. R. Ford, Jr. and D. R. Fulkerson. Maximal flow
through a networkCanadian Journal of Mathematics
8:399-404, 1956.

[5] Z. Galil and X. Yu. Short length versions of Menger’s
theorem (extended abstract).Rmoceedings of tha 7"
ACM Symposium on Theory of Computipgges 499—
508. ACM, ACM Press, May 1995.

[6] A. Goldberg. Personal communication, Oct. 1997.

[7]1 A. Goldberg and S. Rao. Beyond the flow decompo-
sition barrier. InProceedings of th80" Annual Sym-
posium on the Foundations of Computer Scieidg,
pages 2-11.

[8] A. Goldberg and S. Rao. Flows in undirected unit ca-

pacity networks. InProceedings of th&0d" Annual

Symposium on the Foundations of Computer Science

[11], pages 32-35.

M. R. Henzinger, J. Kleinberg, and S. Rao. Short-

length Menger theorems. Technical Report 1997-022,

Digital Systems Research Center, 130 Lytton Ave.,

Palo Alto, CA 94301, 1997.

J. Holm, K. de Lichtenberg, and M. Thorup. Poly-

logarithmic deterministic fully-dynamic graph algo-

rithms I: Connectivity and minimum spanning tree.

Technical Report DIKU-TR-97/17, University of

Copenhagen, 1997. To appear in STOC 1998.

IEEE. Proceedings of th&80" Annual Symposium on

the Foundations of Computer ScientfeEE Computer

Society Press, Oct. 1997.

D. R. Karger. Random sampling in cut, flow, and net-

work design problemdviathematics of Operations Re-

search 1998. To appear. A preliminary version ap-

peared in STOC 1994.

D. R. Karger. Using random sampling to find maximum

flows in uncapacitated undirected graphsPhoceed-

ings of the29" ACM Symposium on Theory of Com-

puting, pages 240-249. ACM, ACM Press, May 1997.

D. R. Karger. Better random sampling algorithms for

flows in undirected graphs. IRroceedings of the

9" Annual ACM-SIAM Symposium on Discrete Algo-

rithms, pages 490-499. ACM-SIAM, Jan. 1998.

A. V. Karzanov. O nakhozhdenii maksimabgo

potoka v setyakh spetsinbgo vida i nekotorykh

prilozheniyakh. In Matematicheskie Voprosy Up-
ravleniya Proizvodstvomvolume 5. Moscow State

namic treesJournal of Computer and System Sciences
26(3):362-391, June 1983.

9]

[10]

[11]

[12]

[13]

[14]

[15]

