
Searching for Fast Demosaicking Algorithms

KARIMA MA,Massachusetts Institute of Technology
MICHAEL GHARBI, Adobe Systems Inc
ANDREW ADAMS, Adobe Systems Inc
SHOAIB KAMIL, Adobe Systems Inc
TZU-MAO LI, University of California San Diego
CONNELLY BARNES, Adobe Systems Inc
JONATHAN RAGAN-KELLEY,Massachusetts Institute of Technology

0.01 0.1 1 10 100

Throughput (megapixel/s, single threaded)

29

30

31

32

33

34

35

P
S
N

R
(d

B
)

Henz et al.

Demosaicnet

Demosaicnet
grid search

Ours
(40 generations)

LMMSE

VNG4

AHD

Ours

Gradient Halide

Demosaicnet [Gharbi 2016] Gradient Halide [Li 2018] VNG4

OursLMMSE [Zhang 2011]Ground Truth

Fig. 1. We use a combination of learning and program search to automatically synthesize efficient, high-quality demosaicking algorithms. They significantly
advance the Pareto frontier of cost vs. quality over prior state-of-the-art methods from 10s to 1000s of operations per pixel (plot, right). They are at least 1dB
higher quality at the same cost, or 5-10× faster at the same quality, relative to prior published algorithms. Visual quality is noticeably improved on challenging
image content (note the Bayer grid speckling and zippering artifacts in the LMMSE, GradientHalide, and VNG outputs). The only prior methods which offer
higher quality than ours are large convolutional models 2-3 orders of magnitude more computationally expensive (Demosaicnet, Henz at al.). In addition to
traditional Bayer demosaicking shown here, we present Pareto-dominant algorithms for demosaicking from X-Trans sensors, and for joint demosaicking
superresolution and superresolution alone.

We present a method to automatically synthesize efficient, high-quality de-
mosaicking algorithms, across a range of computational budgets, given a loss
function and training data. It performs a multi-objective, discrete-continuous
optimization which simultaneously solves for the program structure and pa-
rameters that best trade off computational cost and image quality. We design
the method to exploit domain-specific structure for search efficiency. We

Authors’ addresses: Karima Ma, karima@mit.edu, Massachusetts Institute of Tech-
nology; Michael Gharbi, mgharbi@adobe.com, Adobe Systems Inc; Andrew Adams,
andrew.b.adams@gmail.com, Adobe Systems Inc; Shoaib Kamil, kamil@adobe.com,
Adobe Systems Inc; Tzu-Mao Li, tzli@ucsd.edu, University of California San Diego; Con-
nelly Barnes, connellybarnes@gmail.com, Adobe Systems Inc; Jonathan Ragan-Kelley,
jrk@mit.edu, Massachusetts Institute of Technology.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
0730-0301/2022/1-ART1
https://doi.org/10.1145/3508461

apply it to several tasks, including demosaicking both Bayer and Fuji X-Trans
color filter patterns, as well as joint demosaicking and super-resolution. In a
few days on 8 GPUs, it produces a family of algorithms that significantly
improves image quality relative to the prior state-of-the-art across a range of
computational budgets from 10s to 1000s of operations per pixel (1dB–3dB
higher quality at the same cost, or 8.5–200× higher throughput at same or
better quality). The resulting programs combine features of both classical
and deep learning-based demosaicking algorithms into more efficient hybrid
combinations, which are bandwidth-efficient and vectorizable by construc-
tion. Finally, our method automatically schedules and compiles all generated
programs into optimized SIMD code for modern processors.

CCS Concepts: • Software and its engineering→Genetic programming;
• Computing methodologies → Image processing; Machine learning;
Artificial intelligence.

Additional Key Words and Phrases: demosaicking, super-resolution, do-
main specific programming, differentiable programming, neural architecture
search, data driven methods

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3508461


1:2 • Karima Ma, Michael Gharbi, Andrew Adams, Shoaib Kamil, Tzu-Mao Li, Connelly Barnes, and Jonathan Ragan-Kelley

ACM Reference Format:
Karima Ma, Michael Gharbi, Andrew Adams, Shoaib Kamil, Tzu-Mao Li,
Connelly Barnes, and Jonathan Ragan-Kelley. 2022. Searching for Fast De-
mosaicking Algorithms. ACM Trans. Graph. 1, 1, Article 1 (January 2022),
18 pages. https://doi.org/10.1145/3508461

1 INTRODUCTION
Demosaicking is among the most ubiquitous and performance-
critical image processing tasks. As the critical first step, it can make
or break the results of the entire camera imaging pipeline: any
detail lost in demosaicking is gone forever, while any false detail
introduced becomes complex spatial structure nearly impossible to
remove downstream. Balancing the two concerns is difficult, and
the problem is ill-posed, so there is no correct answer. At the same
time, demosaicking must often be performed under extreme com-
putational budgets: a single stream of 4K 60 FPS video requires
processing 0.5 gigapixels per second. Even if we dedicate one of the
cores in a high end mobile processor (CPU, GPU, or DSP) just to the
task of demosaicking, with perfect SIMD utilization, this still leaves
time for at most a few hundred operations per pixel.

Faced with this challenge, current demosaickers generally target
one of two extremes (Fig. 1). Most widely-deployed implementa-
tions, from cell phones to Adobe Camera Raw, are limited to at
most 100s of operations per pixel of highly-optimized computation,
hand-crafted to invert a single specific color filter array [Hirakawa
and Parks 2006; Zhang and Wu 2005]. With this, they deliver rea-
sonable image quality, but struggle to avoid artifacts like Moiré
and false detail in challenging situations. Meanwhile, deep learning
and optimization-based methods have emerged which dramatically
improve quality, and more easily generalize to different color filter
arrays and other problem variants, but at the cost of 2-3 orders of
magnitude more computation (hundreds of thousands to millions
of operations per pixel), putting them out of reach of most practical
use cases [Gharbi et al. 2016; Heide et al. 2014]. Depending on the
chosen implementation, demosaicking can take anywhere from 25%
to 85% of the Adobe Camera Raw ISP runtime.
We develop new families of efficient, learned demosaicking al-

gorithms which significantly improve the state-of-the-art image
quality achievable across the whole range from 10s to 1000s of oper-
ations per pixel. In addition to the common Bayer pattern, we also
develop demosaicking algorithms for the Fuji X-Trans pattern, and
that jointly solve demosaicking and super-resolution from a Bayer
pattern.

Our programs are Pareto-dominant: they offer both significantly
higher quality (1dB–3dB) at the same computational cost as any
prior algorithm in the same range, and can deliver comparable or
better image quality at dramatically lower computational cost (8.5–
220× or more). They are designed for efficient streaming SIMD
implementation, and automatically compile to highly-optimized
kernels for modern processors.
We generate this family of new algorithms automatically by de-

veloping a multi-objective, discrete-continuous search which simul-
taneously solves for the program structure and parameters to find
the best trade off between computational cost and image quality in
a target range of computational budgets. The search is driven by
the same loss function and training data as recent demosaicking
and super-resolution neural networks [Anwar and Barnes 2020;

Chu et al. 2021b; Dong et al. 2014; Gharbi et al. 2016; Henz et al.
2018; Shi et al. 2016; Wang et al. 2018]. However, we found stan-
dard neural architecture search techniques to be insufficient for our
task: these methods usually target highly regular and extremely
over-parameterized models. We focus on low cost models, which
requires careful design that exploits domain-specific structure. Our
search produces state-of-the-art results in 4–5 days on 8 GeForce
Titan Xp GPUs — on the same order as the cost of training a single
neural network to convergence. The resulting programs combine
features of both classical and deep learning-based demosaicking
and super-resolution algorithms into more efficient hybrid com-
binations, composing building blocks into algorithms which are
bandwidth-efficient and highly vectorizable by construction. Finally,
our method automatically schedules and compiles any program
produced by the search into highly-optimized SIMD code.
We believe our approach lays the foundation for automatically

optimizing image processing pipelines for performance and quality,
combining the advantages of both classical algorithms and deep
learning to produce better, more efficient algorithms than currently
exist. For example, in addition to three variants of the demosaick-
ing problem, we show that our search method can also produce
Pareto-dominant programs for the task of high-performance super-
resolution, alone.

In summary, we make the following contributions:

• New, state-of-the-art Bayer & X-Trans demosaicking, joint
demosaicking with super-resolution, as well as standalone
super-resolution algorithms that dramatically outperform
prior work across the most commercially relevant range of
computational budgets.

• A method for automatically generating such algorithms that
span a wide range of compute budgets.

• We show that adding domain-specific primitives and search
structures significantly improves the performance-quality
trade-offs achievable by differentiable program search on
image processing tasks in the low-cost regime.

• We define a search space that generates SIMD and locality-
friendly algorithms by construction, and a compiler that ex-
ploits this structure to automatically generate highly-optimized
streaming implementations.

2 RELATED WORK
Our approach combines genetic program search with gradient-based
optimization of differentiable programs, applying insights from
machine learning and classical algorithms, to automatically search
for efficient demosaicking programs that cover a large spectrum of
the quality-performance trade-off space.

2.1 Image Demosaicking
Reconstructing full color images from color filter arrays is a well-
researched, but inherently ill-posed, problem whose solutions must
balance quality and efficiency [Li et al. 2008]. Demosaicking errors
typically occur at edges, creating false “zipper” patterns or “maze”
artifacts, but they can also affect large spatial regions, causing color
fringing, false color Moiré patterns, or over-smoothing. Classical
algorithms share two key design elements: they use edge-adaptive

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3508461


Searching for Fast Demosaicking Algorithmŝ 1:3

directional �lters to avoid smoothing over edges [Hamilton Jr and
Adams Jr 1997; Hibbard 1995], and they exploit cross-channel cor-
relations to guide the interpolation of the missing red and blue
values, using an estimate of the more densely sampled green chan-
nel. For example, the smooth hue prior [Cok 1987] predicts smooth
variations of di�erences or ratios between colors. Many proposed
methods improve edge and color correlation detection, and some-
times jointly address denoising [Alleysson et al. 2005; Buades et al.
2009; Dubois 2005; Duran and Buades 2014; Hirakawa and Parks
2005, 2006; Kiku et al. 2013; Menon and Calvagno 2009; Niu et al.
2018; Zhang et al. 2009, 2011].

A di�erent class of algorithms cast demosaicking as an inverse
problem and solve for the full-color image using optimization [Chang
et al. 2015; Condat and Mosaddegh 2012; Getreuer 2011; Heide et al.
2014; Kokkinos and Lefkimmiatis 2018; Tan et al. 2017a]. While
these methods achieve high-quality demosaicking, the large compu-
tational cost of optimization limits their applicability.

Data-driven techniques optimize the parameters of demosaick-
ing algorithms using ground truth natural images [Go et al. 2000;
Kapah and Hel-Or 2000; Khashabi et al. 2014; Kwan and Wu 2004;
Li et al. 2018]. Recent approaches use convolutional neural net-
works [Gharbi et al. 2016; Henz et al. 2018; Klatzer et al. 2016; Kokki-
nos and Lefkimmiatis 2018, 2019; Liu et al. 2020; Ratnasingam 2019;
Tan et al. 2018, 2017b]. Deep learning methods achieve state-of-the-
art quality, but remain computationally expensive.

2.2 Super-resolution
Super-resolution recovers a high resolution image from one or more
low resolution images. Classical iterative algorithms are often com-
putationally expensive, and rely on image degradation priors which
can hinder their robustness [Yang and Huang 2017]. It is also di�-
cult to avoid over blurring and introducing artifacts like false high
frequencies and jagged edges. SRCNN introduced a modern con-
volutional neural network for super-resolution [Dong et al. 2014].
Subsequent work has introduced much larger models, some with
over 1000 convolutional layers [Zhang et al. 2018]. Despite produc-
ing state of the art image quality, these models are too expensive to
run in most commercial applications. Unfortunately, existing fast
super-resolution models like SRCNN and ESPCN [Shi et al. 2016]
perform dramatically (2�3dB) worse than large models (see Fig. 8).

An even more challenging problem is super-resolving images di-
rectly from raw camera data. An overwhelming majority of photos
are taken today by smartphone cameras. Their portability requires
small sensors with limited resolution. Such cameras would bene�t
greatly from joint super-resolution and demosaicking programs.
Traditional approaches to joint super-resolution and demosaicking
require slow iterative optimization like coordinate descent [Farsiu
et al. 2004] or clustering [Bennett et al. 2006]. Recent deep convolu-
tional models [Qian et al. 2019; Xing and Egiazarian 2021] can take
minutes to process a high-resolution image on a CPU, making them
too slow to run in most commercial image processing pipelines.

2.3 Neural Architecture Search and Genetic Programming
Neural architecture search (NAS) and genetic programming meth-
ods automatically generate programs which maximize some (often

single) objective, such as classi�cation accuracy [Koza and Koza
1992; Zoph and Le 2016]. In graphics, genetic programming has
been used for shader simpli�cation [He et al. 2015; Sitthi-Amorn
et al. 2011; Wang et al. 2014] and image pipeline optimization [Lou
et al. 2016a].

The space of NAS and genetic programming approaches can
be understood in terms of how they de�ne their program search
space, their search strategy, and their performance evaluation cri-
teria [Elsken et al. 2019]. Our search algorithm can be viewed as a
multi-objective NAS via genetic programming. Unlike most NAS
methods, our search procedure focuses on low-cost algorithms and
uses domain-speci�c program structures to design an e�cient search
space. It discovers fast and high-quality demosaicking programs
that signi�cantly outperform models produced by generic NAS base-
lines (Sec. 4.2) and super-resolution programs that achieve nearly
comparable quality to models that are 84� more expensive produced
by a prior multi-objective NAS technique [Chu et al. 2021b].

Search Space.To make the search tractable, NAS search spaces
are often constrained to �xed-structure compositions (e.g., stacks)
of repeated cells made of coarse-grained network building blocks
(convolutions, skip connections, activations, etc.) [Zhong et al. 2018;
Zoph et al. 2018]. This often leads to expensive models, with lim-
ited structural variation. In contrast, because we are interested in
e�cient programs, we search over the complete program struc-
ture via local directed acyclic graph (DAG) mutations, and include
domain-speci�c operators beyond conventional NAS building blocks
(Sec. 3.1). We factor our search space into semantically meaningful
sub tasks, which reduces the combinatorial complexity and improves
quality (Sec. 3.2.3).

Search Strategy and Evaluation criteria.Although network prun-
ing [Blalock et al.2020] remains the most popular technique to speed
up trained models, recent NAS work has explored multi-objective
optimizations that account for model e�ciency [Anderson et al.
2019; Chu et al. 2021b; Gong et al. 2019; Zhou and Diamos 2018].
However, few enable full exploration of the cost�quality trade-o�.
[Tan et al. 2019; Zoph and Le 2016] collapse the two objectives into
a single scalar reward, which prevents sampling along the Pareto
curve during training, and limits user control. We use a variant of
genetic search that allows us to sample the models we mutate and
retain after each generation based on their dominance across the
Pareto frontier. LEMONADE [Elsken et al. 2018] and FALSR [Chu
et al.2021a] also use multi-objective genetic search, but LEMONADE
only samples models to mutate based their costs.

Generated Model E�ciency.All prior NAS approaches we know
search over cost regimes orders of magnitude more expensive than
ours. MnasNet [Tan et al. 2019], which targets image classi�cation
on smartphones, produces models that are 10 to 100� more expen-
sive than ours. FALSR [Chu et al. 2021a] produces super-resolution
models with 326k to 1021k parameters, while our programs have
under 10k.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2022.




	Abstract
	1 Introduction
	2 Related Work
	2.1 Image Demosaicking
	2.2 Super-resolution
	2.3 Neural Architecture Search and Genetic Programming

	3 Technique
	3.1 Building Blocks
	3.2 Search Algorithm
	3.3 Compiling Programs to Optimized Implementations

	4 Evaluation
	4.1 Pareto-Dominant Programs
	4.2 Ablation: Search Space Design
	4.3 Correlation Between Program Cost and Runtime

	5 Future work, limitations, and conclusion
	6 Acknowledgments
	References

