When Optimal is Just Not Good Enough: Learning Fast Informative Action Cost Partitionings

Erez Karpas Michael Katz Shaul Markovitch

Faculty of Industrial Engineering and Management
Faculty of Computer Science
Technion

May 31, 2011
Motivation

General Framework

Algorithmic Details

Empirical Evaluation

Empirical Evaluation of Our Basic Assumption

Empirical Evaluation of Our Approach

Conclusion

Empirical Evaluation
Many state-of-the-art heuristics are based upon some form of action cost partitioning

1. Divide the cost of each action between several subproblems (implicit abstractions, landmarks, ...)
2. Obtain a heuristic estimate for each subproblem
3. The sum of estimates is admissible if each action contributes no more than its total cost

A cost partitioning is optimal (for some state) if it yields the maximal heuristic estimate possible for that state
We focus on heuristics for which a polytime procedure for finding an optimal cost partitioning is known.

In all known cases so far, the procedure for finding an optimal cost partitioning involves solving a Linear Programming (LP) problem.
Cost Partitioning Schemes in Practice

- **Optimal**
 - SLOOOOOOOOOOOOOOOOW
 - Very informative

- **Ad-hoc (usually uniform)**
 - Very fast
 - Less informative

- **A compromise: initial-optimal cost partitioning**
 - Fast
 - Less informative
Goal: create a cost-partitioning based heuristic that allows control over its location in this tradeoff.
Goal: create a cost-partitioning based heuristic that allows control over its location in this tradeoff
Outline

1. Motivation
2. General Framework
3. Algorithmic Details
4. Empirical Evaluation
 - Empirical Evaluation of Our Basic Assumption
 - Empirical Evaluation of Our Approach
5. Conclusion
Basic Assumption

- Our approach is based on the following assumption:

Assumption

An optimal cost partitioning for state s will give a “good” heuristic estimate for state s' if s and s' are “close”

- We will formulate this assumption mathematically later, and provide an empirical evaluation that supports it
- “Close" is defined in terms of some metric between states d
Basic Framework

- Given a planning task, choose \(k \) states in a principled way
- Compute an optimal cost partitioning for each of these states
- During search, use the optimal cost partitionings of these \(k \) states to create a heuristic estimate

- Increasing \(k \) increases accuracy (at the cost of computation-time)
Heuristic Option 1: Nearest Neighbor

Use closest representative to evaluate s

$$h_{nn}(s) = h_{c_{N(s)}}(s)$$

$N(s)$ — closest representative to s
$c_{N(s)}$ — an optimal cost partitioning for $N(s)$
Heuristic Option 2: All \(k \) Representatives

or

Use all representatives to evaluate \(s \)

\[h_{all}(s) = \max_{s' \in R} h_{c_{s'}}(s) \]

\(R \) — set of representative states

\(c_{s'} \) — an optimal cost partitioning for \(s' \)
Choosing Representatives

- How can we choose representatives in a principled way?
- We want to minimize the distance (according to the metric) from each state in the state space to the closest representative
- We can’t deal with the entire state space, so we use a sample
Choosing Representatives — Illustrated

Given a sample of states

\[s_0 \]

\[s_g \]
Choosing Representatives — Illustrated

Run clustering algorithm
Choose a representative from each cluster
Outline

1. Motivation
2. General Framework
3. Algorithmic Details
4. Empirical Evaluation
 - Empirical Evaluation of Our Basic Assumption
 - Empirical Evaluation of Our Approach
5. Conclusion
Filling in the Details

The framework above needs some details

- How to sample the state space?
- Which clustering algorithm to use?
- Which metric to use?
State Space Sample

- We use the sampling procedure of Haslum et. al. (2007)

Repeat 1000k times:

1. Choose depth L distributed binomially around the estimated goal depth
2. Perform a random walk up to depth L from initial state
3. Add last state in walk to sample
Clustering Algorithm

Requirements:
- We need to control the number of clusters k
- We need to get a representative for each cluster

Options:
- k-means seems like a good option, but what is the centroid of $on(A, B)$ and $on(A, C)$?
- We use k-medoids (Hartigan and Wong, 1979), which returns a median representative for each cluster
Metric (In Theory)

- Theoretically, we want to use the distance from s_1 to s_2 in the state space.
- This is somewhat justified by abstraction based heuristics being consistent.
- However:
 - The true distance is not symmetric, and might be infinite.
 - The true distance is P-SPACE Complete to compute.
Metric (In Practice) — d_s

Number of Mismatching Variables:

$$d_s(s_1, s_2) := |\{ v \in V | s_1[v] \neq s_2[v] \}|$$

$d_s(s_1, s_2) = 2$
Metric (In Practice) — d_e

The Euclidean distance between the vectors of estimate values of each subproblem under uniform cost partitioning: $d_e(s_1, s_2)$

\[d_e(s_1, s_2) = |\langle 1.2, 0.3, 1.7, 2.6, 0.1 \rangle - \langle 1.7, 0.1, 2.7, 1.4, 0.4 \rangle|_2 \]
Outline

1. Motivation
2. General Framework
3. Algorithmic Details
4. Empirical Evaluation
 - Empirical Evaluation of Our Basic Assumption
 - Empirical Evaluation of Our Approach
5. Conclusion
Empirical Evaluation

- We implemented our approach on top of Fast Downward, and evaluate it on implicit abstractions heuristics.
- Initial results with h_{nn} were not promising, so we only evaluate h_{all}.
- We evaluate clustering with d_s (clstr-s), clustering with d_e (clstr-e) as well as random choice of representatives (rand).
- We compare to optimal cost partitioning (opt), uniform cost partitioning (uni), and initial optimal cost partitioning (ini).
- With fork implicit abstractions, the resulting LP for optimal cost partitioning is too large to solve for many problems. Here, we present results only for inverted forks.
Evaluating the Basic Assumption

To evaluate our basic assumption empirically, we must first formulate it in statistical terms:

Basic Assumption - Statistically Speaking

Let s, s' be two states, such that the minimal distance from s to s' is d. Denote the relative loss of accuracy from using an optimal cost partitioning of s' to evaluate s by

$$
\Delta_{s,s'} := \frac{h_{cs}(s) - h_{cs'}(s)}{h_{cs}(s)}.
$$

Then $\Delta_{s,s'}$ and $\Delta_{s',s}$ are positively correlated with d.
We perform a statistical test of our hypothesis for each planning task.

We first obtain a sample of pairs of states, with known minimal distance by repeating the following 10 times:

1. Sample a random state \(s \) using random walk
2. Perform BFS from \(s \), up to depth \(h_{FF}(s_0) \)
3. From each layer \(l \) in the BFS, choose state \(s_l \) randomly
4. Add \(\Delta_{s,s_l} \) and \(\Delta_{s_l,s} \) to sample, with minimal distance \(l \)

Perform Kendall \(\tau \)-b rank-correlation test on sample (ignoring tasks with less than 30 pairs in the sample)
Statistical Test - Results

<table>
<thead>
<tr>
<th>Domain</th>
<th>Inverted Forks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------</td>
</tr>
<tr>
<td>airport-ipc4</td>
<td>9</td>
</tr>
<tr>
<td>blocks-ipc2</td>
<td>19</td>
</tr>
<tr>
<td>depots-ipc3</td>
<td>0</td>
</tr>
<tr>
<td>driverlog-ipc3</td>
<td>6</td>
</tr>
<tr>
<td>freecell-ipc3</td>
<td>5</td>
</tr>
<tr>
<td>grid-ipc1</td>
<td>1</td>
</tr>
<tr>
<td>gripper-ipc1</td>
<td>7</td>
</tr>
<tr>
<td>logistics-ipc1</td>
<td>2</td>
</tr>
<tr>
<td>logistics-ipc2</td>
<td>10</td>
</tr>
<tr>
<td>miconic-strips-ipc2</td>
<td>43</td>
</tr>
<tr>
<td>mprime-ipc1</td>
<td>16</td>
</tr>
<tr>
<td>mystery-ipc1</td>
<td>18</td>
</tr>
<tr>
<td>openstacks-ipc5</td>
<td>0</td>
</tr>
<tr>
<td>pathways-ipc5</td>
<td>2</td>
</tr>
<tr>
<td>pw-notank-ipc4</td>
<td>15</td>
</tr>
<tr>
<td>pw-tank-ipc4</td>
<td>0</td>
</tr>
<tr>
<td>psr-small-ipc4</td>
<td>33</td>
</tr>
<tr>
<td>rovers-ipc5</td>
<td>7</td>
</tr>
<tr>
<td>satellite-ipc4</td>
<td>4</td>
</tr>
<tr>
<td>schedule-ipc2</td>
<td>41</td>
</tr>
<tr>
<td>tpp-ipc5</td>
<td>4</td>
</tr>
<tr>
<td>zenotravel-ipc3</td>
<td>7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>249</td>
</tr>
</tbody>
</table>

Overall: accept with $p < 0.05$ in 83.9% of planning tasks
Outline

1. Motivation
2. General Framework
3. Algorithmic Details
4. Empirical Evaluation
 - Empirical Evaluation of Our Basic Assumption
 - Empirical Evaluation of Our Approach
5. Conclusion
We illustrate the tradeoff between heuristic accuracy and heuristic computation time, by plotting them together.

We show average heuristic computation-time per state on the x-axis (in logscale).

We show informativeness on the y-axis, as measured by e_i/e^* where e_i is the number of states expanded by method i and e^* is the minimum over all e_i’s.

Averages are over tasks solved by all methods.
Accuracy/Computation-Time Tradeoff

Tradeoff - Inverted Forks

- ini
- uni
- opt
- rand
- clstr-s
- clstr-e

Metric Score (Expanded)

Avg. Time per State (ms)

- Tradeoff - Inverted Forks
 - ini
 - uni
 - opt
 - rand
 - clstr-s
 - clstr-e

- Tradeoff - Inverted Forks
 - ini
 - uni
 - opt
 - rand
 - clstr-s
 - clstr-e
Solved Tasks

- What really matters is the number of solved tasks
- We plot the number of solved tasks against k
Solved Tasks - Inverted Forks

![Graph showing the number of solved tasks for different methods: rand, clstr-s, clstr-e, ini, uni. The graph plots the number of solved tasks against the parameter k, ranging from 1 to 7.]
Choosing the Best k

- No one is forcing us to use the same k everywhere
- If we choose the best k for each domain, we get much better results

<table>
<thead>
<tr>
<th>Method</th>
<th>ini</th>
<th>uni</th>
<th>opt</th>
<th>$rand$</th>
<th>$clstr-s$</th>
<th>$clstr-e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverted Forks</td>
<td>358</td>
<td>329</td>
<td>238</td>
<td>365</td>
<td>369</td>
<td>369</td>
</tr>
</tbody>
</table>
Outline

1. Motivation
2. General Framework
3. Algorithmic Details
4. Empirical Evaluation
 - Empirical Evaluation of Our Basic Assumption
 - Empirical Evaluation of Our Approach
5. Conclusion
Conclusion

- We presented a method for fast, informative action cost partitioning
- This method allows us control over the computation-time/heuristic accuracy tradeoff
- The new cost partitioning can lead to solving more planning tasks
Thank You