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Abstract
Why do some webpages receive massive numbers of page views? To determine how content
drives viewership, we construct a unique dataset of all articles published by the New York
Times (NYT) in August 2013. Our dataset is built from 2 major components, the NYT’s internal
web traffic data and web content data extracted from the NYT website. We use the internal
web traffic data to accurately track the number of page views for each article, and to construct
a set of robust control variables such as the desk and section of each article. To build textual
content features, we use various machine learning and statistical natural language processing
techniques on our extracted content data to produce perplexity scores and to determine the
sentiment and reading difficulty of each article. Lastly, we use secondary data sources to
build additional control features such as estimated author gender and author popularity. We
combine all these features and build a predictive regression model. Overall, we do find that
our textual features improve our predictive power, though rather modestly. However, there
remain many textual features we haven’t yet implemented due to time constrains. We believe
that adding these additional features may offer significant improvements in performance.
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1. Introduction
In today’s digital economy, both individuals and
companies are interested in attracting users to their
websites in order to earn ad revenue. While many
factors might motivate a user to visit a particular
page, certainly one important factor is that web-
page’s content. This paper explores the relationship
between the content of a webpage and the number
of page views it receives by constructing a unique
dataset of all articles published by the New York
Times (NYT) during August 2013. This dataset
is built from two major components: the NYT’s
internal web traffic data and webpage content data
parsed from the NYT website.

Typically, a study such as ours tends to be very
difficult to conduct. Accurate measures of view-
ership are either private of unavailable1. Even in

1While precise viewership data tends to be not available
openly, oftentimes researchers use related observables, such

https://github.com/mit-6867/mit_6867/tree/master/Project
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cases where page views are publicly, for example
Youtube or various other video sharing sites, feature
extraction of the content is far too challenging given
the tools available to us today2. Fortunately, our
access to the the NYT’s internal web traffic data
allows us to exactly measure the number of page
views an article receives. The web traffic data is
rather rich and also includes internal meta-data that
we use to build various control features. Moreover,
since we are working with mostly textual data, we
are able to take advantage of recent advancements
in machine learning and statistical NLP to do fea-
ture extraction on article text.

A similar study by Berger and Milkman (2012)
[1] examines the relationship between content and
word-of-mouth virality. They find that the emo-
tional content of a NYT article is predictive of its
virality. Using simple measures of an article’s senti-
ment and emotionality, Berger and Milkman show
that positive articles are more likely to show up on
the New York Times ”Most-Emailed” list. They
also show that articles that evoke high physiolog-
ical positive or negative arousal (such as awe or
anger) tend to be more viral than articles that evoke
deactivating emotions (sadness). We build on this
study in two ways: first, we relate an article’s con-
tent back to the number of page views it receives
rather than its virality3. Second, we employ more
sophisticated machine learning feature extraction
techniques than those used by Berger and Milkman.

2. Data
2.1 NYT Internal Web Traffic Data
Our NYT internal web traffic dataset is a record
of all individual user activity on the NYT website
covering the period of April 3rd, 2013 to October
31st, 2013. Each time a user4 moves from one page

as Facebook likes, or number of Tweets and Retweets
2Though this is quickly changing with advances in com-

puting power and development of better and better machine
learning methods

3Which is arguably more important to companies, since
word-of-mouth virality is usually a means to increase page
views

4In this case, a “user” is uniquely defined by a de-
vice/browser id. So while the same person might have multi-

to another on the NYT website, this activity is cap-
tured as an individual JSON object. This data is
incredibly detailed and can potentially tell us who
accessed what page when and from what location.
In addition, it tracks the amount of time a user stays
on a webpage and path a user took to get to her
current webpage. Overall, this dataset is over 20
terabytes in size and contains over 3 billion page
views. It’s important to note that not all page views
are page views of content we care about. For ex-
ample, searches or changes in user account settings
are also recorded in our dataset. Since the scope
of this dataset is so large, we initially restrict this
project to a single month, August 2013, with plans
of extending our analysis to our entire dataset in
the future. We further restrict our dataset to only
include articles or blogposts, since these are the
pieces of content that contain readily extractable
text data. For the sake of brevity, we use the term
“articles” to refer to both articles and blogposts un-
less we explicitly state otherwise.

We conducted a first pass through the data to
simply to obtain a list of URLs. After cleaning up
the url data to ensure each url mapped uniquely to a
particular piece of content, we were left with a total
of 6,6825 URLs. We then parses all the web data for
the month of August and the first week of Septem-
ber, counting the number of impressions each URL
received. In order to make an apples to apples com-
parison between articles, we only count the number
of page views received in the 7 days immediately
following publication, since an article that’s been
out longer should have more page views in expec-
tation. Given the tendency for viewership of an
article to drop off sharply soon after publication (as
recency is an important factor in news readership),
our 7-day measure generally represents the vast ma-
jority (well over 90%) of total page views that an

ple devices or may use multiple browsers, the NYT backend
treats each device/browser combination as a unique “user”
even though in reality its all the same person. In some cases,
we are able to link various id’s together if the person happens
to register an official user account on the NYT website and
then logs into her account from multiple devices/browsers.

5If we had just included a few more URLs, we could have
had 6,867 observations!
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article receives6. Even after all this subsampling,
our data still consists of 248,161,455 page views7.
As seen in Figure 1 below, the distribution of page
views is highly skewed with very heavy tails. After
applying a log transformation (as seen in Figure 2),
our distribution looks considerably more normal.

Figure 1. Histogram of Articles by Number of
Page Views

Table 1. Page Views Distribution Summary
Statistics

Min 1
Max 2545288

Mean 37138.8
Median 10298.5
StDev. 88972.9
Skew 9.52191
Kurt. 173.061

Obs 6682

In addition to counting page views, when pars-
ing the internal web traffic data we extract various
relevant article meta-data features, such as the head-
line, time of publishing, authors, section, desk, and
the NYT’s internal article content description tags
(if available).

6at least for a reasonable stretch of time
7Though one video by PSY completely crushes this num-

ber

Figure 2. Histogram of Articles by Log of Page
Views

Table 2. Log Page Views Distribution Summary
Statistics

Min 0
Max 14.74975

Mean 9.122868
Median 9.239754
StDev. 2.028668
Skew -1.270368
Kurt. 3.800911

Obs 6682

2.2 Parsed NYT Webpage Content Data
Unfortunately, the NYT internal web traffic data
does not contain the actual content displayed on
each webpage, which is a very important aspect of
our project. Luckily, all this content is freely hosted
on the NYT website! Although the NYT limits the
number of free articles you can access per month,
the tracking system is cookie based. This means
that scraping the raw HTML content via wget or
something similar does not contribute to your arti-
cle count limit8. Specifically, we used the python
library “newspaper” to download the html content
from the NYT website and then extract all the raw
textual data from the html. We applied some addi-
tional regular expressions filters to clean up what
the library missed. In total, our 6682 articles contain
4,685,021 words of text. We find that the distribu-

8Alternatively, you can just keep clearing your cookies
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tion of article length, much like the distribution of
page views, is highly skewed and heavy tailed. We
again apply a log transformation. Histograms and
various summary statistics for the distribution of
article length and log article length are provided
below:

Figure 3. Histogram of Articles by Word Count

Table 3. Log Page Views Distribution Summary
Statistics

Min 7
Max 8941

Mean 701.1405
Median 625
StDev. 591.9535
Skew 3.335127
Kurt. 24.35949

Obs 6682

In addition to extracting the raw text data, we
checked for the presence of additional non-textual
content such as pictures or videos in each articles
HTML content. We created indicator variables that
denote the presence of such content within an arti-
cle.

3. Constructed Features
Using our collected NYT article data, as well as
some additional data from secondary sources, we
construct the features that will be fed into our pre-
dictive regression model. These features include

Figure 4. Histogram of Articles by Log Word
Count

Table 4. Log Page Views Distribution Summary
Statistics

Min 1.945910
Max 9.098403

Mean 6.181044
Median 6.437751
StDev. 1.004414
Skew -1.178993
Kurt. 1.944611

Obs 6682

the Flesch reading ease, the estimated gender of the
author(s), the popularity of the author(s), variables
indicating the section the article appeared in and
the article’s content type, the sentiment of the arti-
cle text, and the perplexity of the article text. We
provide a full list of these features below, as well
as the methodology used to extract them. Where
appropriate, we include discussion of testing and
validation of our features and our algorithms.

Flesch Reading Ease One can conceive of a few
competing hypotheses that relate the reader-
ship of content to the ease with which people
can read it. Maybe more complicated pieces
of text are more engaging, and are more likely
to be read. On the other hand, perhaps pieces
of text that are easier to read will be con-
sumed by more people. In order to capture
relationships such as these in our data, we
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calculate the Flesch reading ease. The Flesch
reading ease is a metric developed by Flesch
in 1948 [2]. The score indicates how diffi-
cult a piece of English text is to understand.
Lower scores correspond to more difficult
passages, with 120.0 being the highest attain-
able score. The formula for calculating a
passage’s Flesch reading ease is

206.835−1.015
(

# words
# sentences

)
−84.6

(
# syllables

# words

)
(1)

To calculate the Flesch reading ease, we use
the python library “textstat.” Despite the fact
that the above formula is relatively straight-
forward, the task of counting the number of
syllables in a block of text is non-trivial, so
we rely on “textstat” to do so accurately. In
cases where the Flesch reading ease was for
some reason null (e.g., a blog post containing
only a picture), we assign the Flesch reading
ease its median value.

Figure 5. Histogram of Articles by Flesch Reading
Ease

Author Popularity We also want to include some
measure of a particular author’s popularity.
It stands to reason that a new article by Paul
Krugman or A.O. Scott should garner more
readership than a blog post by an unknown
graduate student enrolled in 6.867 at MIT!

In order to measure something that will serve
as a decent proxy for popularity, we program-
matically searched for every distinct author
in our dataset on Bing and recorded the num-
ber of search results that were returned by the
query. In cases where a particular article has
more than one distinct author, we calculate
an “effective” popularity by simply averaging
number of search results over all article au-
thors. A histogram showing the distribution
of the number of bing search results can be
found in Figure 6. We note that this distribu-
tion, like many of those we consider, is highly
skew. We correct for this by transforming this
variable with a log transformation. The distri-
bution of log(number of Bing search results)
is found in Figure 7.

Figure 6. Histogram of Articles by Bing Search
Results

Figure 7. Histogram of Articles by log(Bing
Search Results)
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Author Gender While we certainly don’t think
that an author’s gender has a causal impact
on the readership on an article, we believe
that this feature allows us to control for some
latent unobserved heterogeneity. For exam-
ple, its not a stretch to think that the experi-
ences of women authors are drastically dif-
ferent male authors and these differences are
reflected in their writing style and the topics
they write on. For each (set of) author(s), we
record the most likely gender of the author.
In cases where the gender of the author is un-
clear (e.g., Robin) or there are likely multiple
authors with different genders (e.g., The New
York Times Staff), we record a third gender
value, “ambiguous / unknown.”

Our gender data is gathered by cross-referencing
the first names of all of the authors in our
dataset against U.S. Social Security Admin-
istration baby name data from 1935 to 1997.
If over 90% of the babies with a given name
have been male, we assume a given author is
male. If over 90% of the babies with a given
name have been female, we assume a given
author is female. Otherwise, we record “am-
biguous / unknown.” We find that this method-
ology is robust to changes in our threshold
(chosen as 90%). Changing this threshold to
other reasonable values does not have very
much impact on our predicted genders.

Material Type, Section, Desk, and Article Type
We also include a number of dummy vari-
ables, indicating the material type (e.g., ‘News’
or ‘Obituary’), publishing desk (e.g., ‘Week-
end’ or ‘Real Estate’), article type (‘Blog
post’ or ‘Article’), section (e.g., ‘Movies’ or
‘World’), and the day of week and time of
day that the article was published. The hy-
pothesis driving the decision to include these
variables is that certain types of content (e.g.,
political news or international affairs) may be
more widely read than local material (such
as real estate) or less popular sections of the
NY Times (e.g., the sports section). We also
suspect that publishing an article on certain

days of the week (for example, weekends) or
at particular times of day (such as lunch hour)
may correspond to higher levels of reader-
ship.

We also build features that attempt to capture
the article sentiment and the article text perplexity.
Since the design and computation of these features
was considerably more complex and our algorithms
required some amount of validation, we discuss
these two features in separate subsections.

3.1 Article Sentiment
In order to measure article sentiment, we use a
Naives Bayes text classification algorithm, as de-
scribed in Rennie et al (2003) [3]. We assume that
each article in our corpus can belong to one of three
classes - ‘negative’ sentiment, ‘neutral’ sentiment,
or ‘positive’ sentiment, which we will denote as Ck.
The Naive Bayes model assumes that the likelihood
of observing a given article x = (x1, ...,xn), where
xi is the number of times that word i appears in the
article, is

p(x|Ck) =
(∑i xi)!
∏i xi!

∏
i

pxi
ki, (2)

where pki is the probability of word wi conditional
on a document belonging to class K. Applying a log
transformation to this expression, we can compute
log(p(x|Ck)) as:

log(p(x|Ck)) = log(p(Ck))+
n

∑
i=1

xi · log(pki). (3)

to classify a given article, we simply compute p(x|Ck))
for each class, and select the class with the highest
log-likelihood.

We coded up a basic implementation of the
Naive Bayes algorithm, drawing heavy inspiration
from Greg Lamp’s 2014 python tutorial on Naive
Bayes [4]. In order to get the probabilities p(Ck)
and pki, we needed some labeled training data. In
order to obtain these labels, we selected a random
subset of 200 articles from our dataset and created
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a task on Amazon Mechanical Turk. Each Turker
was asked to score the sentiment toward the subject
of the article in question. Scoring was done on a
scale from -2 to +2, with -2 being extremely neg-
ative and +2 being extremely positive. In order to
make sure these scores were relatively robust, we
recorded 5 scores for every article from 5 differ-
ent Turkers and calculated the average sentiment
score. We classified any article having an average
score greater than 0.5 as ‘positive’. Any article with
an average sentiment less than -0.5 was classified
as ‘negative.’ Any other articles were classified as
‘neutral.’ Ultimately, our labels were 66% neutral,
14.5% negative, and 19.5% positive. This is un-
surprising, as a newspaper such as the New York
Times likely strives for neutrality when reporting
on most topics.

We wanted to measure how our Naive Bayes
implementation did compared to an off-the-shelf
implementation of the same algorithm. In order to
do so, we trained NLTK’s multinomial Naive Bayes
classifier [5] on the same training data, and then
compared the predicted sentiment between the two
articles on a 1,000 article subset of our data. We
limited the comparison to 1,000 articles because
the NLTK implementation of multinomial Naive
Bayes actually took an incredibly long time to run.
A comparison of the two implementations’ classifi-
cations is found below, where the columns indicate
the prediction by the NLTK Naive Bayes imple-
mentation and rows indicate the prediction by our
implementation:

negative neutral positive

negative 0 54 0
neutral 2 894 0
positive 0 50 0

Overall, we find 89.4% agreement between the
two algorithms. Alarmingly, however, the NLTK
implementation seems to predict neutral an over-
whelming percentage of the time (99.8%). This
warrants further investigation, and may be due to

small differences in implementation, or peculiarities
in the sample of 1,000 articles we chose to compare
the two algorithms. In any case, the predictions of
our algorithm are in the same neighborhood as the
NLTK implementation and are of comparable, if
not better, quality. As a result, we feel relatively
comfortable moving forward using our sentiment
labels.

3.2 Article Perplexity
In order to determine the perplexity score, we first
need to build some language model that gives us
the probabilities of each word. While perplexity
typically is a measure of how well a probability
distribution can predict a sample, in our context,
we interpret perplexity essentially as a measure of
article “uniqueness”. The argument here is that if
our language model can’t predict the language used
in article very well, then the language used in the
article is atypical relative to the corpus used to build
the language model. Hence, given some language
model, an article’s perplexity is given by:

2−n·∑n
i=1 log p(wi) (4)

where n is the length of the article, and p(wi) is the
probability of the i-th word in the article. We think
that perplexity might have some predictive power
since people generally have a preference for novelty.
If many news articles about the same story are all
using highly similar language, an article that covers
the story using atypical language is likely unique
in some way or another which may drive people to
read it more or less. For this section we generally
follow the 6.864 Lecture Notes 2 and 3 [6].

As for our paper, we construct a couple of dif-
ferent language models. First, we build a simple
bigram language to use as a baseline. We also build
more sophisticated word vector based n-gram neu-
ral network language models.

We split our articles into training ( 70%), vali-
dation ( 15%), and test corpora ( 15%). In order to
keep the size of our vocabulary relatively manage-
able, we ignore any case sensitivities (so “Cat” is
the same as “cat”). Furthermore, we only include
a word if it appears at least 5 times. Words that
don’t make this cutoff are mapped to a generic “rare
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word” indicator. Lastly, we also map any numbers
(that is numbers comprised of digits, not numbers
written with words) to a generic “number” indica-
tor. Ultimately, this leaves us with a vocabulary
size |V | of 29,359. To estimate a bigram model, we
simply need to compute the counts in our training
corpus. Specifically, the probability of some word
wi conditional on its preceding word wi−1 is given
by:

p(wi|wi−1) =
count(wi−1,wi)

count
(5)

However, its reasonable to expect that there might
be bigrams in the development or test corpora that
aren’t observed in the training corpus. This is par-
ticularly likely given that for our vocabulary size,
there are nearly 900 million unique bigrams and
our training data contains just over 3 million obser-
vations. If this is the case, then any article with a
bigram unobserved in the training corpus would be
assigned a predicted likelihood of 0. Needless to
say, this is very bad. In order to avoid this issue, we
apply a technique called add-α smoothing. Add-α
smoothing adds α to each cell in the probability
table. Hence, after smoothing, no bigram, given
a fixed vocabulary V , will ever have 0 probability.
This changes our our estimated word probabilities
to:

p(wi|wi−1) =
count(wi−1,wi)+α

count+α|V |
(6)

Essentially, this smoothing is acting like a probablis-
tic Robin Hood. It takes probability mass from the
“rich” and distributes it to the “poor”. Additionally,
this smoothing actually has a nice Bayesian inter-
pretation. For the bigram language model case, we
can say that words follow a multinomial distribution
conditional on its preceding word. The smoothed
language model is equivalent to the posterior of
horizontally stacked multinomial likelihoods with
a symmetric Dirichlet prior with a parameter value
of α .

We use our validation set to determine the opti-
mal value of of α by seeing what value of α mini-
mizes the negative average log-likelihood per word
(NALL) of our validation corpus:

Figure 8. Negative Average Log-Likelihood per
Word as a Function of α

Here we see exactly what we should expect.
The NALL on the training corpus is lower than
the NALL on the validation corpus. Furthermore,
the NALL on our training corpus monotonically in-
creases as we increase α while the NALL on the val-
idation corpus initially decreases, hits a minimum,
and starts to increase. For our language model, the
optimal α is 0.004. This level of smoothing pro-
duces the following NALLs for our 3 corpora:

Table 5. Negative Average Log-Likelihood for
Smoothed Bigram Language Model

Training Validation Test

4.98487 6.42916 6.41888

One criticism of standard n-gram language mod-
els is that they are rather sensitive to the train-
ing data. Suppose that two words generally have
fairly interchangeable use cases (that is the sets of
words that tend to precede these words tend to be
highly similar). For example, consider “coffee” and
“tea”. Further, suppose that for whatever reason, the
phrase “drink coffee” is predominantly featured in
the training data but “drink tea” is not. Then a stan-
dard bigram language model would assign a very
low probability to “tea” if it were preceded by the
word “drink” even if the training data contains many
instances in which they are fairly interchangeable
(“buy coffee/tea”, “brew coffee/tea”, etc.).

Hence, we build word vector n-gram neural net-
work models to see if we can achieve better perfor-
mance. By using dense word vectors rather than
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one-hot encodings to represent words, we’re able to
capture the underlying similarity of words and their
meanings. For example, “coffee” is more similar
to “tea” that it is to “car”. Rather astonishingly,
these word vector values can be trained through
back propagation just like the weights in a neural
network as long as they’re randomly initiated!

In particular, we train both a bigram neural net-
work language model and a trigram neural network
language model. In both cases, we use word vectors
of length 10 meaning that the input layer of the bi-
gram NN is a 10 (a single word) and the input layer
of the trigram is 20 (2 words concatenated together).
This input layer then maps to the single hidden layer
with 10 hidden units through a tanh activation func-
tion. Finally, the hidden layer is then connected to
the output layer which has size |V | through a soft-
max activation function. We use stochastic adaptive
gradient descent so that the errors can be properly
backpropagated to the word vectors. We purpose-
fully keep our network relatively small since our
data set is rather large and training even this small
neural network takes considerable time.

Unfortunately, our neural networks are still in
the process of training. Due to various compli-
cations, we were not able to train our model for
as long as we would’ve liked. Since our training
corpus contains over 3,000,000 observations, each
complete pass through it takes approximately 4.5
hours. At the time of writing this section, we’ve
only completed 4 full passes.

We adapted our code so it saved a useable snap-
shot of the network after each full pass through the
data. Unfortunately, as a result of an oversight in
the code, we forgot to store the NALL of training
data in this snapshot. All is not lost since we remem-
bered to at least store the NALL on the validation
corpus. We are highly confident our neural network
is working as intended since we see in Figure 10
that the NALL decreases on every pass through the
validation corpus.

We fully expect the validation corpus NALL to
eventually start increasing once the neural network
begins to overfit the training corpus, however we
simply haven’t reached that point yet.

Despite the fact that our training isn’t finished,

Figure 9. The negative average log-likelihood of
the bigram and trigram models

both our neural network-based language models
have already achieved lower negative average log-
likelihood compared to the smoothed standard bi-
gram model. We build 2 sets of article perplexity
scores. One set is derived from the smoothed bi-
gram model to serve as a base comparison. Our
other set is derived from the most recently com-
pleted pass of our trigram NN language model. We
report the following article perplexity scores distri-
bution:

Figure 10. Histogram of Articles by bigram and
trigram perplexities

Its important to note however, that we only
care about the goodness of the underlying language
model insofar that a better language will produce
features with better predictive power. However, it
could very well be the case features generated by a
worse language model can work just as well as well
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as features generated by a better language model in
the regression model if the relative variation of arti-
cles is maintained. Hence our reasoning to produce
the two sets of perplexity scores.

4. Predictive Regression Model
Using our full set of features, we are now able
to perform the regression task we originally had
in mind, and attempt to determine how (if at all)
content drives viewership. We regress log(article
pageviews), y, on our design matrix, Φ, which in-
cludes entries for each of our k−1 features, plus an
intercept term (in this case, k = 102).. We estimate
the feature weights using the closed form solution
for OLS and ridge regression:

β = (ΦT
Φ+λ I)−1

Φ
T y, (7)

where I is the k× k identity matrix, and λ is our
regularization parameter. Setting λ = 0 corresponds
to OLS, whereas a non-zero value of λ corresponds
to ridge regression. The motivation for performing
ridge regression as opposed to OLS is to not overfit
on our data, and the value of λ can be interpreted
as the strength of our Bayesian prior on the feature
weights being equal to 0 [7].

In order to choose an appropriate value of λ ,
we split our data into training, validation, and test
sets. 90% of the data is allocated to the training
set, 10% to the validation set, and 10% to the test
set. Although we estimate β on the training data
using the above closed-form solution, we cross-
validate on our validation set for each λ , and choose
the value of λ that produces the lowest MSE on
our validation dataset. To ensure that we have not
overfit β to our validation dataset, we also calculate
the MSE on the test set as a final step. A comparison
of the training, validation, and test MSEs for various
values of λ is found in Figure 13.

We find that λ = 100 minimizes the MSE on
our validation set. Table 6 displays the 20 feature
weights with the largest magnitudes λ = 100. Two
charts showing weights for the full set of features
(excluding the intercept term) can be found in Fig-
ures 11 and 12.

Table 6. 20 Most Significant Weights

Feature Weight

intercept 8.964
log(Word Count) 0.741
Desk: Foreign 0.550
Desk: Travel -0.465
Section: World -0.402
Section: Opinion 0.283
Type: BlogPost -0.282
Type of Material: Schedule -0.267
Desk: None -0.262
Section: Movies -0.239
Time of Day: 12-17 0.232
Type of Material: Review -0.218
Desk: National 0.211
Section: Health 0.210
Section: Books 0.201
Type of Material: Letter -0.200
Type of Material: News 0.187
Section: Sports -0.175
Type of Material: Op-Ed 0.170
Desk: BookReview -0.154

It’s worth taking the time to discuss Figure 13,
which shows the training and holdout MSE for vari-
ous values of λ , in slightly more depth. There are
a few things in this plot worth discussing. First,
note that the validation MSE is consistently higher
than the training data MSE, which is consistently
higher than the test data MSE. Given the (relatively)
small size of our dataset (6,682 observations), this
is likely due to the sampling we used to separate our
data into training, validation, and test data. How-
ever, we don’t expect this effect the validity of our
cross validation.

Another thing worth noting is that even on the
training dataset, there exist non-zero values of λ

that achieve a lower MSE than the OLS estimate
of β . At first, this was surprising to our group, as
conceptually OLS is often thought of as the linear
regression method that minimizes MSE. However,
it is important to note that OLS only holds this
distinction amongst unbiased estimators. Hoerl and
Kennard (1970) [8] prove the existence theorem
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Figure 11. Linear Regression Feature Weights (excluding intercept term) (1 of 2)

for ridge regression, which claims the existence of
some λ such that βridge produces a lower MSE than
βOLS.

Another way of framing this finding is through
bias-variance tradeoff. Recall that the MSE can be
written as a function of the bias and variance:

MSE = (Bias)2 +Var. (8)

For some values of λ , ridge regression is able to
lower the MSE by decreasing variance, but increase
the bias from zero to some non-zero value. We be-

lieve the changes in MSE we observe in our dataset
as we vary λ can be explained by this phenomenon.

In general, we can now interpret the strength
of the feature weights produced by our regression
to determine how predictive a particular feature is
of readership. Note from Table 6 that most of the
features with the most predictive power are not the
text-based features. The intercept term in our regres-
sion is orders of magnitude larger than any other
feature, implying that most of the NYTimes articles
receive many pageviews in the baseline case. The
strongest coefficients tend to be those that indicate
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Figure 12. Linear Regression Feature Weights (excluding intercept term) (2 of 2)

the publication desk, section, and time of publica-
tion of the article. This suggests that the content
of an article itself may not be as important as the
context in which it is published. The one exception
we see is that a higher word count is predictive of
higher viewership. We suspect that what’s going on
here is correlative, rather than causal - the quality
of longer pieces (e.g., NYTimes Magazine articles)
is likely higher, thus driving more readership. But
we don’t expect that a website full of low-quality,
5,000 word pieces would be successful.

4.1 The Effect of Textual Features

Given the large amount of work we put into building
numerous text-based features (such as the trigram
neural network perplexity, the sentiment labels, and
the Flesch reading ease) and the relatively low im-
pact they seem to have had on our regression (based
on feature weights), we want to specifically evalu-
ate the impact of these features on our regression.
Specifically, how much incremental reduction in
MSE are we getting by including them? We first
re-run the exact same regression specification, but
instead of using the trigram perplexity calculated
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Figure 13. The effect of regularization on MSE

from a neural network, we instead use the simple
bigram perplexity discussed earlier in this paper.
We find that this actually leads to a reduction in
MSE, from 2.392 to 2.389. This small, but modest
change suggests that there is currently almost no
incremental value from using a neural network lan-
guage model as opposed to a more straightforward
language model.

As a next step, we ask if text features in general
add much value to our model. Given that, in general,
the magnitude of text feature weights is dwarfed
by the magnitude of contextual feature weights, we
might expect that text features do not add much.
We find that removing the perplexity, sentiment,
reading ease, and word count features from our re-
gression leads to an increase in MSE, from 2.392 to
2.502. This result is encouraging, as it suggests that
even if text features currently aren’t contributing as
much as we had hoped, they are doing something!
Removing them from our model leads to a 4.6%
increase in the MSE.

Table 7. Comparison of MSEs for different model
specifications

NN Trigram Bigram No Text

Best Val. MSE 2.392 2.389 2.502
Train. MSE 2.011 2.011 2.274

OLS Val. MSE 2.407 2.405 2.506

5. Future Work
Unfortunately, we were unable to implement all of
several important features we initially wanted to
include in our regression, due to a combination of
time constraints and various unanticipated technical
difficulties and errors. Most notably, this paper cur-
rently lacks some form of topic modeling, which we
expect to be a strong predictor of content viewership
(at least in our context). We also suspect that the
addition of features containing information about
article headlines may provide some improvement.
It seems reasonable to assume that an article’s head-
line is a fairly important factor in a user’s decision
to click through or not.

There is also room for improvement in the de-
sign and extraction of our existing features. For
example, the perplexity score feature ultimately
provided very little predictive power. This may
be due to the issues in the quality of the underlying
language model. This is particularly likely given
that the neural network model was not able to com-
plete many iterations, and has not yet converged.
Although we observed virtually no difference in per-
formance moving from the bigram perplexity scores
to the trigram neural network perplexity scores, this
again may be due to insufficient training time for
the neural network. We find it conceivable that,
given many more cycles to train, our neural net-
work would start to yield visible performance gains
over the bigram perplexity score. Another hypothe-
sis is that rather than measuring the the perplexity
of an article relative to the entire corpus of articles,
it would be more effective to measure a given arti-
cle’s perplexity relative to other articles that cover
the same event or topic.

There is ample room to improve our sentiment
analysis methodology. The training dataset gener-
ated using mechanical turk is relatively small (200
training articles). Because of this, there may exist
many words that have a strong probability of ap-
pearing in an article conditional on sentiment that
simply do not appear in our training set. With more
time (and money!), we could label more data and
improve the accuracy of our model. Furthermore,
the model currently skips words that do not occur
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in the training corpus. An extension of our Naive
Bayes implementation could use a method such
as Laplace smoothing, so as to not simply ignore
words we haven’t seen in our training data.

In addition, the current discrepancies between
our implementation of Naive Bayes and NLTK im-
plementation of the algorithm, while not large in
magnitude, are alarming. In the future, we hope
to dig deeper into this discrepancy and identify the
root cause. Our current hypothesis is that NLTK’s
implementation of Naive Bayes does not take into
account the number of times a particular word ap-
pears in a document. Because of this, a larger num-
ber of distinct informative words are required in
order to overcome the strong prior belief that a
given article’s sentiment is neutral.

Another avenue for potential improvement to
our model is the application of basis expansion to
our variables. This would allow us to include poly-
nomial and interaction terms. In many cases, there
is no good justification for assuming a feature is
linearly related to the output feature. Hence, ap-
plying a polynomial expansion might uncover an
entirely different relationship between our depen-
dent variable and its covariates. By a similar line
of reasoning, we suspect that interaction terms may
have significant predictive power.

Given that we have access to six full months of
NYTimes data, we also hope to expand our dataset
to include the full body of NYTimes articles we
have available to us. With a larger sample size
and more expansive corpus, we might expect to see
drastically different optimal weights, as our results
will be less sensitive to time-dependent trends in
viewership and content. Since we also have access
to Twitter data tracking every tweet and retweet
involving a NYT article, we also hope incorporate
this data into a future version of our model. This
would enable us to explore potential cross effects,
such as the relationship between article content and
Twitter sharing.

6. Division of Labor
The work for this project was divided as follows.
Michael extracted the New York Times contextual

data and page view counts and wrote the NYT web-
site scraping script. Dave and Jeremy built out
many of the content-driven features and additional
contextual features, such as word count, author gen-
der, popularity, and Flesch reading ease. Dave and
Jeremy built the implementation and validation of
the Naive Bayes classifier, while Michael focused
his efforts on the construction and validation of
the language model. Dave, with assistance from
Michael, focused on the implementation of OLS
and ridge regression, along with validation and dis-
cussion. Plot generation, table creation, writing,
and editing was evenly split between Michael and
Dave. Extenuating personal circumstances unfor-
tunately prevented Jeremy from contributing to the
project as much as originally anticipated - he will
likely be in touch soon with the instructors regard-
ing this issue.
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