
Feature-rich event detection in social media streams

Denis Antiukhov
aphex@mit.edu

ABSTRACT
Social networking platforms such as Twitter have emerged
in recent years, creating a radically new mode of communi-
cation between people. Monitoring and analyzing rich and
continuous flow of user-generated content can yield unprece-
dentedly valuable information, which would not have been
available from traditional media outlets. However, learning
from Twitter streams poses new challenges, as compared to
traditional media.

Traditional approaches to topic/event detection involve clus-
tering based on semantic features of documents. In this
project, we implement and study different clustering mod-
els based on certain Twitter-specific features that are less
susceptible to noise, which include geo-positional data, time
stamps, hashtags and check-ins. We also implement a clus-
tering algorithm based on bursty behavior of n-grams in
Twitter documents and use it as a baseline.

The clusters produced by our model contain valuable infor-
mation about live events, but they also do contain a lot of
noise. We treat this as a binary classification problem and
use a multilayer perceptron to classify and rank the clusters
based on their textual, social, temporal and other features.
Finally, we summarize top-ranking clusters and output the
results to the end user.

Keywords
Social Media Analytics, Event Detection, Twitter, Social
Media, Digital Journalism, News Aggregation

1. INTRODUCTION
The rise of Social Media platforms in recent years brought
about a radically new mode of communication between peo-
ple. Every day, users send more than 500 million tweets (as
of 2015) on every possible topic. Interactions and communi-
cation in Twitter often reflect real-world events and dynam-
ics, and important events like elections, disasters, concerts,
and football games can have immediate and direct impact
on the volume of tweets posted. Because of its real-time and
global nature, many people use Twitter as a primary source
of news content, in addition to sharing daily life, emotion
and thoughts. Journalists also increasingly adopt social me-
dia as professional tools and are gradually altering their pro-
cesses of news selection and presentation . They use Twit-
ter to monitor the newsworthy stories that emerge from the
crowd, and to find user-generated content to enrich their
stories. However, it is very hard for a person to spot the

useful information in Twitter without being overwhelmed
by an endless stream of redundant tweets.

In contrast to conventional media, event detection from Twit-
ter streams poses new challenges. Twitter streams contain
large amounts of meaningless messages and polluted con-
tent, which negatively affect the detection performance. In
addition, traditional text mining techniques are not suitable,
because of short length of tweets, large number of spelling
and grammatical errors, and the frequent use of informal and
mixed language [1]. Event detection techniques presented in
literature address these issues by adapting techniques from
various fields to the uniqueness of Twitter.

As a response to this problem, we propose a system to de-
tect unspecified novel, newsworthy topics/events as they are
published on Twitter. In order to overcome the challenges
posed by the nature of user-generated content, we focus on
using document features less susceptible to human error:
hashtags, check-ins and geo tags. Provided with an up-to-
date database of latest tweets, the proposed system auto-
matically mines the social stream using a sliding window
approach, providing a set of headlines and complementary
information that summarize the detected topics. Our pro-
posed event detection approach is based on a combination
of aggressive data pre-processing, document clustering based
on certain twitter-specific features, cluster classification and
post-processing.

2. RELATED WORK
Event detection has long been addressed in the TDT (Topic
Detection and Tracking) [2] program, an initiative sponsored
by the Defense Advanced Research Projects Agency, con-
cerned with event-based organization of textual news doc-
ument streams. The motivation for the TDT research ini-
tiative was to provide core technology for news monitoring
tools from multiple sources of traditional media (including
newswire and broadcast news) to keep users updated about
news and developments. Originally, the TDT consisted of
three main tasks: segmentation, detection, and tracking.
These tasks attempt to segment news text into cohesive sto-
ries, detect new (unforeseen) events, and track the develop-
ment of a previously reported event.

Methodologically, general-purpose topic detection can pro-
duce two types of complementary outputs: either the docu-
ments in the collection are clustered or the most important
terms or keywords are selected and then clustered. In the



first method, referred to as document-pivot, a topic is rep-
resented by a cluster of documents, whereas in the latter,
commonly referred to as feature-pivot, a cluster of keywords
is produced instead.

Both methods have advantages and disadvantages. Document-
pivot methods suffer from cluster fragmentation problems
and, in a streaming context, they often depend on arbitrary
thresholds for the inclusion of a new document to an existing
topic. On the other hand, feature-pivot methods are com-
monly based on the analysis of associations between terms,
and often capture misleading term correlations. In general,
the two approaches can be considered complementary and,
depending on the application, one may be more suitable than
the other.

Simple document-pivot approaches cluster documents by lever-
aging some similarity metric between them. The work by
Murata [8] follows this direction to provide a method for
breaking news detection in Twitter. Tweets retrieved us-
ing targeted queries or hashtags are converted into a bag-
of-words representation weighted with boosted tf-idf, em-
phasizing important entities such as names of countries or
public figures. Tweets are then incrementally merged by
considering the textual similarity between incoming tweets
and existing clusters.

Dimensions other than text can also be used to improve the
quality of clustering. TwitterStand [5] uses a leader-follower
clustering algorithm that takes into account both textual
similarity and temporal proximity. Each cluster center is
represented using a centroid tf-idf vector and the average
post-time. Sensitivity to noise (which is a known problem
for document-pivot methods) and fragmentation of clusters
are drawbacks of this approach. Manual selection of trusted
information providers and periodic defragmentation runs are
needed to mitigate such effects.

The task of First Story Detection (FSD) discussed by Petro-
vic et al. [7] is closely related to document-pivot TDT. The
goal is to detect the first document discussing a topic in a
large corpus. A new story is created by a document having
low similarity with all previously detected clusters. For fast
retrieval of nearest neighbors for the incoming document lo-
cality sensitive hashing is used; however, such a solution is
problematic when the nearest neighbors are not very similar
to the query document.

3. SYSTEM ARCHITECTURE
Our approach to event detection in this project is based on:

1. Aggressive tweet and term filtering, designed to re-
move noisy tweets and vocabulary

2. A combination of clustering models based on Twitter-
specific features, aimed at mitigating noise

3. A machine-learning approach to cluster classification
which uses a feature-rich representation of clusters in
order to remove clusters consisting of meaningless mes-
sages, unrelated content and rumors;

Figure 1: Overview of proposed system architecture

4. Cluster post-processing, during which we merge and
summarize qualifying clusters, extract additional in-
formation (like Instagram photos and videos, popular
hashtags, geodata, etc) to provide a more informative
output to the user.

We describe our method in detail in the following subsec-
tions.

3.1 Data collection and storage
For collecting the Twitter stream we use a self-developed
tool built against Twitter public API. The distinguishing
feature of this software lies in it’s ability to connect to mul-
tiple data streams at the same time. Streams are typically
defined by a set of coordinate constraints: for this project
we defined 5 streams corresponding to Boston, New York,
Chicago, Miami and Vancouver cities. During the course of
the project, a total of 8 million tweets were collected and
written to database, resulting in a dataset of 30 GB size.

To organize storage, we chose to use MongoDB. This choice
was motivated mainly by three reasons: 1. MongoDB stores
data in serialized json format, which is also used by Twitter
API to encode tweets. 2. Support of spatial and temporal
indexing, which comes very useful in the framework of event
detection; 3. Deep query-ability. MongoDB supports dy-
namic queries on documents using a document-based query
language, which facilitates easy and fast information re-
trieval.

3.2 Document structure
As we mentioned above, Twitter API allows to collect streams
of tweets documents that are represented in json format.
Apart from the textual content, these json objects contain a
high amount of relevant metadata. A key distinctive feature
of our project lies in the fact that we try to leverage this
data for clustering, in order to overcome the noisy nature of
textual content, and to build a feature-rich representation of
clusters for more accurate classification. For that reason, it
is important to describe the object structure in detail. Each
document in our collections holds information about:

• unique tweet id

• textual content, hashtags, user mentions, language



• timestamp of creation

• geo-data: timezone, country, city, approximate or pre-
cise creation coordinates

• urls, and attached multimedia

• user data: name, id, number of friends, followers, total
tweets

These are just the fields that are used in our system. Overall,
each stored json object holds more than 100 fields, descrip-
tion of them all is outside the scope of this report.

3.3 Pre-processing
Our event-detection algorithm begins with retrieving a col-
lection of latest tweets, that lie within a certain time-window.
During our experiments, we found that a window of 3 hours
works best for our system. Most events that we will be look-
ing for are well contained within such a time period. Con-
sidering a larger timeframe results in more documents being
retrieved, which considerably increases computational cost.
For Boston and Miami, a 3-hour window normally contains
an average of 15000 documents, for New York this amount
is doubled.

The next step is concerned with filtering out very noisy doc-
uments. We begin with normalizing the text. We remove
hyperlinks, digits and other punctuation, extract user men-
tions and hashtags. Next, we tokenize the remaining clean
text, and remove stop words. We check the structure of the
resulting tweet, and filter out tweets that have more than 2
user mentions, more than 5 hashtags, or less than 3 clean
text tokens. We also drop all documents for which the lan-
guage field (as seen in the json) is not equal to EN. The
idea behind this structure-based filtering is that tweets that
have too many user mentions or hashtags, but lack enough
clean text features, do not carry enough news-like content,
or are generally too noisy to be meaningfully clustered. As a
result of this simple preprocessing step, approximately 50%
tweets are discarded. The remaining documents proceed to
the next processing stage: clustering.

4. CLUSTERING
Clustering is the primary approach to data organisation in
TDT. Various clustering-based algorithms have been suc-
cessfully employed for both retrospective and new event de-
tection tasks [4] [9] [10]. In our work, we wanted to study,
how using tweet features not susceptible to noise can help
overcome the challenges posed by the noisy nature of user-
generated content. To this end, we consider 3 different clus-
tering models, which we describe in detail in the following
sections.

4.1 Geo model
As we mentioned in 3.2, documents stored in our collection
include geo positional data. All documents hold information
about some bounding box, within which they have been cre-
ated. This bounding box is usually rather large, even com-
pared to the area defined by the stream constraints (e.g.
Manhattan vs New York), and does not allow to infer much

Figure 2: DBSCAN Clusters for greater Boston area

about the document itself. However, as GPS-capable smart-
phones become more and more widespread, more tweets be-
gin to include precise geo position. In our dataset, approxi-
mately 13% of all documents hold precise coordinates. Users
reporting from a scene of certain event are expected to be
close to each other: hence, we can leverage available geo-
data for event detection. So, our first clustering model relies
solely on available tweet coordinates.

We proceed as follows: from the documents that passed the
preprocessing step, we extract all that contain precise coor-
dinates. This results in a collection of 2000-3000 documents
for an average timeframe of 3 hours. We scale the result-
ing matrix of (lat, long) coordinates using standardization.
Then, we apply DBSCAN algorithm to cluster the dataset.

We chose DBSCAN for this model for the following reasons:

• Does not require the number of clusters to be specified
in advance

• Can find arbitrarily shaped clusters

• Has a notion of noise, and is robust to outliers

We had to rely on empirical observations to choose the ep-
silon parameter for DBSCAN. From our experiments, we
found that a value of ε = 0.03 is optimal, roughly corre-
sponding to a size of a large concert hall. For reference, be-
low we provide a visualization of clustering results for greater
Boston area.

4.2 Entity model
Another interesting (and useful) feature particular to Twit-
ter and other microblogging services is the widespread us-
age of hashtags. By definition, hashtag is a type of label or
metadata tag used on social network which makes it easier
for users to find messages with a specific theme or content.
Users create and use hashtags by placing the #hash char-
acter. Users, relating to a certain event are likely to use
similar hashtags in their tweets. This observation has been
exploited by [8] and [4] in their works on event detection.



However, we go a little further and extract one additional
feature that is becoming more and more widespread in mi-
croblog services. We are talking about Foursquare check-ins.
Foursquare is a social networking service centered around
venue recommendation and location sharing. By taking into
account the places a user goes and the other users whose ad-
vice they trust, Foursquare provides recommendations of the
places to go around a user’s current location. At the core
of Foursquare functionality lies the check-in: term used to
identify when a member has physically visited (or checked in
to) a venue. Since 2010, Foursquare accounts can be linked
to Twitter: in that case, when performing a check-in, a user
may opt to share it on his Twitter network. This will result
in a message like this:

”Having fun at Santacon! #santacon #santaconnewport @
Newport, Rhode Island”

In the above example, the check-in begins with @ symbol
and the first letters are capitalized. Due to such behavior,
it can be easily extracted from raw text. In our dataset,
10% of tweets contain check-ins. We refer to hashtags and
checkins as entities. Entities are useful for event detection
for two main reasons:

• Users tend to use same entities when referring to a
certain concept, venue, or event

• Entities are generated automatically (hashtags have an
autocomplete feature in Twitter app), and thus are not
susceptible to misspelling.

With that in mind, we propose out second, entity-based clus-
tering model. It works as follows:

1. Extract all documents that contain two or more differ-
ent entities.

2. Build a corpus of all entities detected within a time
window.

3. Count occurrences, drop entities that occur less then
5 times (again, this threshold was chosen empirically).

4. Use the remaining entities to build a vocabulary for
the entity space.

5. Represent documents that contain the frequent entities
with a binary count vectorizer in entity space.

6. Apply hierarchical clustering to the vector representa-
tions, using cosine as a metric of distance.

Table 1: Availability of frequent entities
Boston New York Miami Chicago

hashtag 11.7% 14.5% 14.7% 9.1%
check-in 5.2% 8.5% 12.9% 4.3%

both 2.2% 4.7% 6.8% 1.7%

The 5th step, of course, results in even more documents be-
ing discarded, since we only consider documents that contain

frequent entities. In the above table we show, how many of
the original documents contain at least one popular entity.
This data is averaged over one week.

This approach significantly reduces the size and dimension-
ality of the dataset. Hence, performing hierarchical cluster-
ing becomes not computationally intensive and is completed
in a matter of seconds on a reasonably-specced computer.
We cut the resulting dendrogram at 0.5 distance threshold:
this results in clusters being tight enough.

4.3 Bursty n-gram model
Our final model is based on a paper [6] ”Sensing trending
topics in Twitter”. This model is concerned with extract-
ing bursty n-grams to detect events . Bursty n-gram is de-
fined as an n-gram which starts appearing unusually often,
as compared to historical usage statistics. We also use this
language based model as a baseline to evaluate our results.
We implement this model without any modifications. So as
to avoid repetition, we just enumerate the clustering steps
below.

1. From the window tweet corpus, create a binary tweet-
term matrix, where the vocabulary terms are only bi-
grams and tri-grams, that occur in at least 10 tweets

2. Reduce the matrix to only the subset of rows contain-
ing at least 5 terms (tweets with at least 5 tokens from
the vocabulary). This step results in 90% of tweets
being discarded.

3. Compute hierarchical clusters, again, based on cosine
distance between samples.

4. Cut the dendrogram at 0.5 distance threshold

5. Rank the resulting hierarchical clusters, based on the
df-idf weighting statistic proposed in the paper men-
tioned above:

df − idft =
dfi + 1

log
(∑t

j=1 dfi−j

t
+ 1

)
+ 1

Here, dfi corresponds to frequency of an n-gram within a
time window i. This statistic discounts the term-frequency
in the current time window using the average frequency in
the previous t time windows. Setting the parameter t con-
trols, how much of the history affects the current weight of
a term.

Using this approach has an obvious downside: in order to
compute the historical document frequencies of n-grams in
step five, we need to retrieve and process t times more data
from the database, corresponding to t time windows. In our
experiments, we primarily used a value of t = 3, to account
for the last 9 hours of historical observations. We used the
bursty model primarily as a baseline for comparison with
our two other models.



4.4 Model comparison

Figure 3: Number of true events detected in NY,
per day of the week

Based on the gold annotations from the training set that
we developed for the classification stage, above we present
some statistics on how many true event clusters does each
model actually capture. We observe, that despite aggressive
filtering employed by our clustering algorithms, they still
surpass the state-of-the-art n-gram based approach in terms
of newsworthy event detection.

5. CLASSIFICATION
While the methods described above do retrieve clusters cor-
responding to new and newsworthy topics and events, they
also produce many clusters containing spam, rumors, and
meaningless collections. We treat this as a binary classifi-
cation problem, and solve it using a Machine Learning ap-
proach, where class T means true news event cluster and
class F represents false cluster containing spam, hot topics
and heterogeneous collections. So, in the next processing
step, all clusters detected by the 3 models are represented
with a set of cluster-level features, and classified by a feed-
forward multilayer perceptron NN model. All clusters in
class T are passed to the post-processing step and eventu-
ally form a news event result. Features used to represent
clusters are described in the next sections.

5.1 Textual similarity
While we do not rely on textual similarity of documents in
our clustering algorithms, we use it as a metric for cluster
cohesiveness. So, in order to evaluate, how similar are the
documents in each cluster in terms of textual content, we
employ two models.

5.1.1 TF-IDF
Traditional data representation for event detection involves
the term vectors, weighted using the classical term frequency
inverse document frequency (tf-idf) approach, which evalu-
ates how important a word is to a document in a corpus. In
order to learn the vocabulary and weights for the model, we
used our whole 8-million document dataset. This resulted in
a vocabulary of 75000 terms. Documents were represented
as term vectors, similarity was evaluated using cosine as a
metric of distance.

5.1.2 word2vec
While traditional term-vector approach works well with larger
documents, using it in twitter framework has it’s downsides
due to the fact that tweets often contain only 3-5 clean text
tokens. Consider the following example:

”The Paris attacks are still fresh in the minds of Parisians
and tourists here for a visit #prayforparis”
”Commemorating the victims of #ISIS bombings”

Both tweets are related to the same event and relate to
the same, however the TF-IDF vector similarity will be
close to zero for these two documents, because the terms
for the two do not intersect. In order to overcome this
challenge we make use of the recent developments in DNN-
based natural language processing. word2vec is a model
used to produce so-called word embeddings. By analyzing
the co-occurance of terms in the training set, this model
maps each word to a vector of typically several hundred ele-
ments, which represent that word’s relation to other words.
We used an implementation of CBOW word2vec written in
tensorflow, trained the model on our tweet dataset, and ob-
tained the 256-dimensional embeddings to help us evaluate
the similarity of documents. In order to represent docu-
ments, we summed the vectors corresponding to top-5 word
in each document (determined from the TF-IDF weight).
This worked quite well: for instance, our model assigns 0.817
similarity to the example documents presented above.

5.2 Cluster-level features
We compute four types of cluster-level features for the classi-
fier, representing statistical, social and textual information.
Some of the features are designed to filter out heterogeneous
clusters, while others help distinguish news events from hot
topics.

5.2.1 Textual features
1. size: number of tweets in cluster

2. unique unigrams: normalised number of unique uni-
grams found within cluster

3. mean tfidf: mean cosine similarity of tweets, repre-
sented using a weighted TF-IDF vectorizer

4. mean word2vec: mean cosine similarity of tweets, rep-
resented using a word2vec model

5.2.2 Entity features
1. unique hashtags: number of unique hashtags found

2. unique check-ins: number of unique check-ins found

3. frequent entities: number of popular entities found.
Entity is deemed frequent if it was included in the vo-
cabulary by the entity model, at step number 3.

4. mentions: number of tweets that include @user men-
tions

5.2.3 Meta features
1. timeframe: distance in time between the newest and

oldest tweet in cluster



2. unique links: number of unique hyperlinks contained
within cluster

3. instagram links: number of hyperlinks pointing to in-
stagram photo or video content

4. frequent entities: number of popular entities found.
Entity is deemed frequent if it was included in the vo-
cabulary by the entity model, at step number 3.

5. bounding box: represents the size of the bounding box
within which all tweets are contained.

5.2.4 Social features
1. unique users: number of unique tweet authors

2. mean friends: average number of friends of cluster au-
thors

3. mean followers: average number of followers of cluster
authors

4. retweets: represent how many times tweets in cluster
were retweeted

5.3 Learning the model
In order to learn the model using the features described
above, we had to obtain a training set. So, we ran our
clustering models on historical data from our dataset, and
labeled the resulting clusters by hand. We considered a time
frame between November 27 and December 8, and repeated
the clustering process, window by window, city by city. As a
result, we obtained a dataset containing 250 true events and
2800 false event clusters. Due to the fact that the classes
were very imbalanced, we had to employ oversampling for
the true event dataset.

We employed a regularized multilayer perceptron model as
a classifier. We used back-propagation and gradient descent
with adaptive step size for learning the weights. Since the
true event dataset was rather small, we used 10-fold cross
validation. We experimented a lot with the number of hid-
den layers and the number of nodes within. First of all, we
figured out that a network with two hidden layers and a sig-
moid activation function achieved the best result. Then we
started experimented with the number of nodes in hidden
layers.

Figure 4: Adjusting number of hidden nodes

The model with 35 nodes achieved the best f-1 score in our
experiments. We also utilized early stopping for regulariza-
tion: from cross-validation we have learnt that stopping at
iteration 3000 yields the lowest generalization error. Despite
the fact that our training set was very limited, we were able
to achieve reasonably good classification error. The clas-
sification report for our best-performing model is provided
below:

Table 2: Classification report
Precision Recall f1 score support

True 0.72 0.79 0.74 433
False 0.76 0.67 0.70 437

avg/total 0.74 0.73 0.72 870

5.4 Sample output
The events classified as True are passed to a post-processing
step. There, clusters are summarized, instagram hyperlinks
are extracted and corresponding pictures are presented to
the user. Currently, summarization is performed simply by
extracting top-5 most frequently occurring entities. Below
we present an example of an output of our system. Since one
does not simply download images from Instagram (developer
access is required), in the actual output only the links are
present: we followed the links and extracted the photos by
hand for the purpose of this demonstration. Implementing
an automatic Instagram picture scrapper is possible, but will
require some more work.

Figure 5: Sample system output

6. CONCLUSIONS
We proposed 3 clustering models and a feature-rich classi-
fier to recognize news events for event detection. We defined
novel statistical, social and textual features for the classifier
and trained and 2 hidden layer neural network model using
a self-developed event dataset. Experiments showed the ef-
fectiveness of the proposed method. The feature-rich event
filter led to significantly higher precision and recall when
compared to the state-of-the-art baseline system Twevent by
Chenliang Li et al [3]. In our experiments we observed that
a news event can be detected more than once in one time
window, which each appearance representing one aspects of
the event. Merging these sub-events into a hierarchy will be
explored in the future work.



7. FUTURE WORK
We have shown that using non-textual features of documents
available in Twitter for clustering and classification provides
a considerable boost to the quality and quantity of events
detected. The next step would be to combine the described
clustering models into one model. This will require com-
puting some weighted combination of document similarities
based on entity, geodata, text and thus can be seen as a
multi-kernel learning problem. We plan to tackle this prob-
lem in the future work.

8. REFERENCES
[1] C. C. Aggarwal and C. Zhai. A survey of text

clustering algorithms. in mining text data. Springer:
New York, 2012.

[2] J. Allan. Topic detection and tracking: event-based
information organization. Springer, volume 12, 2002.

[3] Aixin Sun Chenliang Li. Twevent: segment-based
event detection from tweets. CIKM ’12 Proceedings of
the 21st ACM international conference on Information
and knowledge management, 2012.

[4] Luis Gravano Hila Becker, Mor Naaman. Beyond
trending topics: Real-world event identification on
twitter. Fifth International AAAI Conference on
Weblogs and Social Media, 2011.

[5] Hanan Samet er al. Jagan Sankaranarayanan.
Twitterstand: News in tweets. University of
Maryland, 2009.

[6] Carlos Martin Dancausa et al. Luca Maria Aiello,
Georgios Petkos. Sensing trending topics in twitter.
IEEE Transactions on Multimedia, 2013.

[7] Sasa Petrovic. Real-time event detection in massive
streams. University of Edinburgh, 2012.

[8] Tsuyoshi Murata Swit Phuvipadawat. Breaking news
detection and tracking in twitter. 2010
IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, 2010.

[9] T. Pierce Yaang, Y. and J. Carbonell. A study of
retrospective and on-line event detection. SIGIR 98,
ACM, New York, NY, 1998.

[10] J. Zhang J. Carbonell Yang, Y. Topic-conditioned
novelty detection. KDD 02, ACM, New York, NY,
2002.


