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Abstract

Asking questions is an essential tool that hu-
mans use to learn. In this paper, we explore
the use of questions to model the dynamics
of the world in text-aware, high-level planning
agents. In contrast to previous work, our plan-
ning agent starts with no text and acquires in-
formation live by asking questions. Our model
jointly learns what question to ask, when to
ask them, how to interpret natural language
answers, and finally how to perform high-
level planning. We train our model via the
reinforcement learning framework, using plan
success as a reward signal. Our work extends
the Minecraft high-level planner proposed by
Branavan et al. (2012), and introduces the
question answering tool, implemented as a
simple word matching between questions and
sentences in our knowledge base. We exper-
iment different methods, report our work in
progress, showing a 4% improvement on the
baseline, where no text is given.1

1 Introduction

Asking questions is a natural behavior that we, hu-
mans, use to learn about our world. Can this help for
artificial intelligent systems? In this paper, we pro-
pose to build AI agents more robust to the lack of
information. Particularly, we explore the possibility
of asking questions about the dynamics of the world,
while solving problems. This work can be useful in
the context of agents collaborating with humans as

1Our implementation is available on https://github.
com/flare-ai/learning_from_questions

well as groups of AI agents exchanging information
with each others.

Pre-conditions are the logical requirements to
reach states in the world. For example, in the sen-
tence “wood is required to build a wooden door”,
wood is a precondition to wooden door. Previous
research shows that planning agents can learn these
pre-conditions directly from a text given a-priori
(Branavan et al., 2012). These techniques performs
better than having no text, and nearly as good as
knowing the gold pre-conditions. This is particu-
larly useful in the context of complex problems for
which text information can be provided a-priori.

Current approaches are limited to the amount of
text that is provided in advance. Complex problems
often require breadth in understanding the dynamics
of the world. Although we could provide all the im-
portant text a-priori to make our high-level planner
robust, it can be difficult to collect all the potentially
useful information.

The central idea of our work aims is to make
planning agents robust to lack of information by
asking questions. We design a planning agent that
can jointly learn what question to ask, when to ask
questions, how to extract pre-conditions from the
answers obtained and finally to perform high-level
planning. In this paper, we extend the high-level
planner proposed by Branavan et al. (2012) which
consist in training a model via the reinforcement
learning framework, using feedback automatically
obtained from plan execution attempts. We aug-
ment the current actions space with questions. The
high-level planner can now sample questions as sub-
goals, described in Section 3. While action sub-

https://github.com/flare-ai/learning_from_questions
https://github.com/flare-ai/learning_from_questions
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goals are executed by the low level planner Met-
ricFF, we send our questions to our Question An-
swering system, described in Section 4. We sam-
ple subgoals and classify precondtion-condition re-
lationships from text using two simple log-linear
models. Both are updated as shown in (2) and (3)
through plan execution attempts. We show how a
very simple model can outperform on the baseline
where no text is provide, in Section 6 and 7. Finally,
we discuss areas of improvement and further work,
in Section 8 and 9.

2 Related Work

The previous work on question can be split in two di-
rections: resolution of ambiguity, dealing with fail-
ure.

Resolution of Ambiguity. Tellex et al. (2014) ex-
plored using question asking as a way to resolve
grounding ambiguity in agents in the context of in-
struction following robots. A robot might be given
the instructions to move a steal plate to the truck.
Suppose there are two trucks in the robots environ-
ment. The robot must now deal with ambiguity.
The authors tackle this problem by asking questions.
More specifically, they explore two models for iden-
tifying when a question is necessary (entropy on the
grounding level, and entropy on the planning level),
and ask questions via simple templates, similarly
to our approach. The robot then receives a natural
language response and is more able to completely
tackle the task.

Dealing with failure. It is not uncommon for an
agent to be unable complete a task. What a human
might do in this case is ask for help. In Tellex et
al. (2014), researchers explore how a robot could
generate an effective ask for help, to best empower
humans to make a difference. More specif-
ically, she applies an inverse mapping from her
ground graph for instruction following to a question.

However, compared to previous research, we are
tackling a different problem, guiding the planning
process itself.

3 Background

Our goal is to build a question asking agent that can
use answers to better understand and act in a com-

plex world. In this section, we define the terminol-
ogy of our problem.

3.1 Predicates, States and Actions

In our system, we combine predicates, xi ∈ X , to
represent the state of our system, S = {s ⊂ X}
(e.g. have(wood) have(stone)).

Executing action, a ∈ A, from state, s, leads
to a new state, s′, according to a fixed distribution
T (s′|s, a). For each problem, g, the agent is given
start state, sg0 ∈ S, and an end state, sgf ∈ S.

3.2 Learning High-Level Planning

The high-level plan is a sequence of single-term
predicates (also called sub-goals). Transition be-
tween sub-goals can have several actions and can
are executed by a low level planner. We enforce a
1 minute time limit on low level planning, and any
uncompleted plan is counted as a failure. If a tran-
sition between two sub-goals is too complex or im-
possible, the transition fails. For the purpose of this
paper the low level planner used is Metric-FF (Hoff-
mann and Nebel, 2011) and we will consider as a
black-box.

Given a set of goals, a planning agent learns to
map appropriate high-level plans to goals. Partic-
ularly, our agent uses the reinforcement learning
framework to learn how to sample a sequence of
sub-goals appropriate to a given goal. Using the out-
come of a given sequence of sub-goals (did all the
transition between sub-goals succeeded ?) for a par-
ticular goal g, the agent updates its belief of the dis-
tribution p(~x|sg0, s

g
f ) where ~x stands for the sequence

of sub-goals. We assume a Markovian structure of
sub-goal sequences.

3.3 Pre-conditions

As previously mentioned, our agent tries to learn
pre-conditions in order to make appropriate plans.
The aim is to predict whether sub-goal xi is a pre-
condition sub-goal xj . We encapsulate the current
knowledge of the agent about all preconditions in a
binary square matrix C (where C[i, j] = 1 if and
only if xi is a precondition for xj). Equation 1 de-
scribes the sub-goal sequence distribution used by
the planning agent, where θx parametrizes the dis-
tribution (learnt by the agent) and n is the length of
the sub-goal sequence.
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Question Answering 
Module

“Tell me more about stone” “A pickaxe .. from wood”

…
make glass

make pickaxe

make pickaxemak
e g

las
s

humans, Google, …or

Knowledge before 
question

Knowledge after 
question

Figure 1: The above is an example of our system. The blue cir-

cle containing wood is a sub-goal, the square containing stone is

a question, finally the grey circle is the final goal. In this exam-

ple, the final goal is “Make a pickaxe”. At the initial step, our

system has no knowledge of pre-conditions (hence the empty

pre-conditions matrix, C). At this point in time, the planner

could decide to ask about stone and after retrieving answer sen-

tences from the Question Answering module, we can update C

to finally make better decisions.

p(~x|sg0, s
g
f , C; θx) =

n∏
t=1

p(xt|xt−1, sg0, s
g
f , C; θx)

4 Question-asking model

The central challenge of our work is to learn how
to acquire the right information at the right time for
each problem. In this Section, we present how we
designed the question asking model and a simple
implementation of an external questioning answer-
ing tool. An overview of how our system works is
presented in Figure 1.

4.1 Asking questions

The Minecraft vocabulary is restricted to 131 dis-
tinct symbols, these are divided into 56 Objects (e.g.
wood, pickaxe, etc.), 68 Actions (e.g. craft-wood-
pickaxe) and 7 Predicates (e.g. player-at-map, craft-
ing).

Most of the problem goals are Planning Do-
main Definition Language (PDDL) formulas
composed of one or two terms, for example:
”have n amount of object x” (in PDDL syntax
thingAvailable(x) = n). Given this template
of goals, we decided to generate two different
templates for our questions:

1. “Tell me about object”
2. “Tell me how to action”

The use of question based templates was motivated
by the recent work (Tellex et al., 2014) in resolving
groundings through template based questions. Fi-
nally we generate the list of possible questions us-
ing template and term pairs and we add these to the
vocabulary of the planning agent. In this way, we in-
troduce new question sub-goals that can be sampled
either separately or together with the other sub-goals
as we discuss in Section 4.2. Normal sub-goals (like
have pickaxe) are sent to the low level planner and
questions are sent to our Question Answering Mod-
ule described in Section 4.3.

4.2 Two question-asking schemes
To do this, we explored several different approaches.

1. Embedding questions within the sub-goal pol-
icy In this approach, we expand the state-space of
the sub-goal policy and treat questions as special
types of sub-goals. The only difference between
questions and sub-goals is that questions must be
”solved” by asking the IR system, and sub-goals are
sent to a low level planner. Questions and sub-goals
share the same feature space, and the policy now has
to learn over a 40% larger state space. This comes
with a couple caveats. Whereas sub-goals are all
sampled, then all solved, questions must be solved
immediately, in order to update the knowledge base
(the pre-conditions matrix C) and impact the choice
of subsequent sub-goals within the same problem.

2. Creating and learning a separate question
model given the initial and target states. In this ap-
proach, we build a separate log-linear model to pick
which questions to ask with it’s own state space and
feature space. This model conditions over the ini-
tial state, and target problem, and generates a short
sequence of questions. The agent then learns from
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these questions (updating the preconditions matrix,
C) before starting to plan.

3. Creating and learning a separate question
model over initial, target, and sub-goal sequence. In
this approach, we take (2) and also condition over
the attempted sampled sub-goal sequence. After an-
swering the questions, we then re-sample the sub-
goal sequence.

4.3 Answering Questions
As an end goal, we would like to build collabora-
tive agents that ask question and get answers from
humans and other agents. To simulate these help-
ful humans, we built a simple Question Answering
system: questions are answered by a set of k sen-
tences in the Minecraft’s Wiki that contain the action
or the object of interest. To achieve this we build an
Inverted Index for each relevant word and the sen-
tences it appears in.

More specifically, we stemmed and transformed
each question object to a natural language name. An
example of this would be the simple transformation
from iron-door to iron door. We then built indexes
to these words to sentences in the corpus. When
asked a question, we would select some matching
sentences to return at random. This had several
favorable properties. First, it keeps our results
comparable to Branavan et al. (2012)’s results, since
the maximum amount of information that can be
acquired is equivalent to the amount given a-priori
in the original paper. Secondly, it is cheap to
generate answers, allowing our system to leverage
hundreds of iterations and learn our model via
reinforcement learning.

In summary, our core contribution is a framework
to ask and answer questions as part of the planning
process.

4.4 General learning framework
We describe our two main design approaches for our
question asking system in the pseudo codes that fol-
low. Algorithm 1 describes the first method, where
we embedded questions into the sub-goal policy. Al-
gorithm 2 describes the second method, where we
learn a different model to ask questions and we ask
then at the beginning of each task. We note that the
third method will be described by a slightly modi-

fied version of Algorithm 2 where we first sample
a sequence of sub-goals ~x, then ask N questions
based on sg0, s

g
f , ~x, and finally re-sample a sequence

~x′ based on the updated C.

Algorithm 1 Question-As-Subgoal method
1: Input :
2: A document d, Set of plannings tasks G,
3: reward function r(.), Number of iterations T
4: A question answering system Q(.)
5:

6: Initialization :
7: Model parameters θx = 0 and θc = 0
8:

9: Learning :
10: for i=1...T do
11: Reinitialize knowledge
12: C ← 0
13: for g ∈ G do
14: Try to complete task g
15: for t = 1...n do
16: Sample new subgoal/question
17: xt ∼ p(x|xt−1, sg0, s

g
f , C; θx)

18: if xt is a question about y then
19: Ask and receive answer
20: s← Q(xt)
21: for x ∈ X do
22: vx,y ← p(x→ y|s, θc)
23: vy,x ← p(y → x|s, θc)
24: if vx,y = 1 then
25: C = C ∪ {x, y}
26: if vy,x = 1 then
27: C = C ∪ {y, x}
28: else
29: Execute task xt−1 → xt

30: Update parameters in θc
31: Update parameters in θx

Here we describe the equations corresponding to
the respective parameters updates. The equations are
the same for both methods though equation 4 only
matters for method 2 (and φq should be conditioned
on ~x as well when used in method 3.).

∆θc ← αcr[φc(xi, xj ;wk, qk)

− E
[
φc(xi′ , xj′ ;wk, qk)

]
]

(2)
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Algorithm 2 Question-First method
1: Input :
2: A document d, Set of plannings tasks G,
3: reward function r(.), Number of iterations T
4: A question answering system Q(.), the number
5: of questions to ask first N
6:

7: Initialization :
8: Model parameters θx = 0, θc = 0 and θq = 0
9:

10: Learning :
11: for i=1...T do
12: Reinitialize knowledge
13: C ← 0
14: for g ∈ G do
15: Ask N questions first
16: for i = 1...N do
17: Ask and receive answer
18: qi ∼ p(q|xt−1, sg0, s

g
f , C; θq)

19: s← Q(qi)
20: for x ∈ X do
21: vx,y ← p(x→ y|s, θc)
22: vy,x ← p(y → x|s, θc)
23: if vx,y = 1 then
24: C = C ∪ {x, y}
25: if vy,x = 1 then
26: C = C ∪ {y, x}
27: Try to complete task g
28: for t = 1...n do
29: Sample new sub-goal
30: xt ∼ p(x|xt−1, sg0, s

g
f , C; θx)

31: Execute task xt−1 → xt

32: Update parameters in θc and θq
33: Update parameters in θx

∆θx ← αxr
∑
t

[φx(xt, xt−1, s
g
0, s

g
f , C)

− E
[
φx(x′t, xt−1, s

g
0, s

g
f , C)

]
]

(3)

∆θq ← αqr[φq(s
g
0, s

g
f )

− E
[
φq(s

g
0, s

g
f )
]
]

(4)

5 Technical Challenges

In developing this research, we faced three main
challenges. In this Section we will discuss them in
order of importance: (1) Code Complexity, (2) Fea-
ture Engineering, (3) Learning.

5.1 Code Complexity
Our work is built upon an extensive code base that
spans over 70.000 lines of code written in C++. Un-
derstanding the different part of code was an intense
work of reverse engineering. Most of the time, the
language was a barrier to a small tests or experi-
ments, slowing down development cycles. However,
we succeeded in introducing the ability of asking
questions into the current system, hence setting the
ground for further developments.

5.2 Feature Engineering
The existing work relies on large amounts of fea-
tures engineered to work very well with the current
action sub-goal system. Extending the feature space
by adding questions does not fit well with the ex-
isting feature engineering. Depending on how we
structure the question PDDL, this causes the sys-
tem to either ask too few questions or have difficulty
learning to differentiate between questions and sub-
goals.

5.3 Learning
Given our agent is likely to only have any one spe-
cific line of text available for short periods of time
during only some iterations, we face several large
challenges

Learning to interpret text
It is difficult for the agent to learn how to extract

the precondition, condition relationships. The pre-
vious system leveraged success and failure of each
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sub-goal pair to better tune it’s understanding of the
text (as described in Equation 3). In our system, sen-
tences, which are sporadically acquired, have less
opportunity to have reward attributed to their inter-
pretations.

Learning to weight the acquired-preconditions
It is also difficult to learn to weight specific pre-

condition condition features as important if they are
sporadically acquired through questions. Given all
weights are initialized to zero, if our system acquires
some useful information, our log linear model may
fail to use it and fail during the first iteration. The
model would then tune its weights, but might not
ask that same question again for many iterations.

6 Experiments

To evaluate the effectiveness of our approach, and
the fundamental challenges of the problem, we ran
several experiments. We discuss each of them bel-
low.

• Random questions. We tried asking 5 random
questions at the beginning of each problem.
This was done to evaluate the importance of
asking the right question for a problem in our
domain. We tried this both returning all re-
sponses and 5 responses.

• Simple heuristics As a next step, we developed
an experiment to ask about the end goal at the
beginning of each problem. This was done
to establish a baseline to see how well simple
methods perform. This approach is already de-
veloped, but awaiting results due to some tech-
nical issues with our server. As an example, if
the end goal was have pick axe, the heuristics
experiment would ask tell me about the object
pick axe.

• Approach 1 We use one log linear model and
one combined state space to sample questions
and sub goals. Each question would get 5 sen-
tences as a response.

• Approach 2 We use two separate log linear
models and two state spaces to sample ques-
tions and separately. We condition sampling
questions over the initial state, and target goal.

Method % Plans
FF 40.8
No Text 69.4
Full Model 80.2
No Answers 69.4
With Answers 73.4

Table 1: The first part of the Table shows Branavan et al. (2012)

models: (1) FF, the low-level planner with no text, (2) No Text,

the high-level planner with no text, (3) Full Model, the high-

level planner with text. The second part shows our results with-

out Answers (comparable to No Text) and with Answers

This approach is still under development, and
waiting for results.

• Approach 3 We use two separate log linear
models but also condition over a sampled sub
goal sequence. We condition sampling ques-
tions over the initial state, and target goal and
one pass of the subgoal model. This approach
is still under development, and waiting for re-
sults.

• Decoupling the text interpretation problem We
run each of the above experiments but with a
pre-trained text-interpretation model. We do
this to evaluate how well our model can learn
to ask the right questions.

7 Results

Our primary motivation was to develop more robust
agents by empowering to ask questions. In that re-
gard, we have shown results. The agent, without a-
priori information, is able to solve 69% of the prob-
lems. Our agent with question asking (as described
in Approach 1) is able to solve 73%. In proving how
robust we can make our planner with question ask-
ing, we have only taken a step. We are still actively
tackling engineering challenges and developing ap-
proaches 2 and 3. Our results are shown in Table 7
compared to Branavan et al. (2012) original results.

8 Future Work

There is a lot of opportunity to explore richer archi-
tectures along several dimensions.

• Learning paradigms. We can explore richer
learning architectures, with deep reinforcement
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learning (Narasimhan et al., 2015) or any tech-
nique to avoid manual feature engineering.

• Information sources. Our work can be ex-
tended by evaluating the relevance of different
sources of information for a particular world
(as well as mixture of those sources). For the
Minecraft’s world, one could use human an-
swers from online forums or Google search en-
gine in addition tot the wiki we used.

• World complexities. Testing our ideas in more
complex world would inform how scalable our
emthod can be for real life tasks. A simple
way to do it would be to increase the size of
the Minecraft’s world given to the agent. But
we also think about testing our scheme on more
complex games such as Civilization.

9 Conclusion

We explored the use of questions to help high-level
planning agents model the dynamics of the world.
We reverse the paradigm of using a-priori text-
information to guide agents, to an online paradigm,
where agents acquire information live as they need
it. Our agents jointly learn what questions to ask,
when to ask them, how to interpret natural language
answers and how to perform high-planning. We
have shown that planners can be made more robust
to lack of information, and surpass agents with no
a-priori information, if we extend them with basic
question asking. When bench-marked on a small
Minecraft world, question asking allows our agent
to complete 4% more goals. We consider our work
to be a first step toward a new paradigm for text-
aware planners. We still have several experiments in
the pipeline and aspire to influence the way for new
research endeavors in this area.
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