
End-to-End Memory Networks as Language Models:
Investigation and Implementation

William W. Jack — MIT 2017
6.806 Final Paper
wjack@mit.edu

Abstract

We present a TensorFlow based open source implementation of the end-to-end
memory network model for language modelling developed by Sukhbaatar et al.
[2]. We investigate various properties of these models including the number of
recurrent memory hops used and the optimization method used. We provide both
quantitative and qualitative results from these models, in particular examples of
sentences generated using them, something not demonstrated in the Sukhbaatar et
al. paper. Finally, we examine our models’ performance and propose interesting
topics for research moving forward.

Code: https://github.mit.edu/wjack/MemNetLanguageModel

1 Background

1.1 Motivation

Memory networks have demonstrated to be powerful frameworks for NLP tasks such as question
answering [1]. In their November 2015 paper, End-To-End Memory Networks, Sukhbaatar et al.
(Sukhbaatar) demonstrated a framework for implementing memory networks trainable in an end-to-
end manner [2]. Furthermore, they show this frameworks success in question answering as well as
language modelling, demonstrating it to be more successful than traditional RNN language models.

Sukhbaatar’s analysis and investigation of memory networks as language models leaves many ques-
tions unanswered regarding their behavior, and the reasons behind Sukhbaatar’s choice of particu-
lar aspects of the framework remain unexplained. For instance, Sukhbaatar does not demonstrate
sentences generate by the memory network models, and does not explain why they chose to use
stochastic gradient descent (SGD) optimization rather than more modern methods such as AdaGrad
or ADAM.To investigate these aspects of memory networks, as well as to provide the community
with an open implementation of an end-to-end memory network, we decided to implement a mem-
ory network in Google’s new machine learning framework, TensorFlow.

1.2 Memory networks as question answering models

Sukhbaatars end-to-end memory networks are originally presented in the context of a question an-
swering system, and subsequently adapted to question answering. In the question answering model
individual sentences, xi, containing contextual information, are embedded into two memory banks,
each sentence occupying a memory space mi. This embedding is performed with an embedding
tensor A and a learned temporal encoding vector TA(i), such that mi =

∑
j Axij + TA(i). Each

memory bank has a unique embedding tensor and temporal encoding vector. The embedding matri-
ces and positional biases for each memory bank are unique. The question is then embedded, and its
similarity with past memories is evaluated by taking its inner product with each memory in one of

1

https://github.mit.edu/wjack/MemNetLanguageModel


Figure 1: An end-to-end memory network as a language model. Graphics adapted from Sukhbaatar
et al.

the banks. The resulting distribution is passed through a softmax, turning it into a probability dis-
tribution over the memories, and this distributions inner product is taken with the second memory
bank. This second inner product represents each memory weighted by the relevancy of that memory
to the question to be answered. These weighted memories are summed, producing an output vector
in the embedding space. The output vector is summed with the embedded question, and passed
through a tensor back into the original sentence space as an output representing the answer to the
question. The authors found that this operation could be stacked and repeated, with the answer of
one memory hop operation serving as the question for the next. They demonstrate great success
with this model in question answering.

1.3 Memory networks as language models

We now turn our attention toward how to implement this model as a system for language modelling.
Sukhbaatar accomplishes this by replacing each sentence with a single word, holding the question
vector constant, and using RNN-like weight sharing in each memory hop. That is, the learned
components are held constant through each recurrent memory hop. This framework is trainable
as a language model by feeding N-1 words (represented as one hot vectors) from a corpus into
memory, with the objective of predicting the next word. Sukhbaatar found that recurrently stacking
the memory hop operation improves language model performance as well. It is important to note
that without the temporal encoding parameters mentioned earlier, TA, this model will act as a bag-
of-words model.

Figure 1 shows the memory network as a language model, using a graphic adapted from Sukhbaatar’s
paper.

2 Implementation

We investigate four implementations of such a model, a one-hop memory network, a three hop
memory network trained using SGD, a three hop memory network using ADAM, and a six hop
memory network using SGD, similar to the model presented in Sukhbaatars paper that achieved the
best results.

2.1 Details

The models were implemented in TensorFlow and trained on Amazon EC2 g2.2xlarge instances.
Significant troubles were encountered when training larger models on these instances. During train-
ing, the gradients and values of the learned parameters would repeatedly and erratically rise to NaN
or infinity at various points in training. Assuming this to be an error in our implementation leading

2



to an exploding gradient, we spent approximately a week attempting to debug and eliminate this
problem using techniques including gradient clipping, gradient normalization, lower learning rates,
and different optimization methods – nothing seemed to work. As other TensorFlow users began
to experience similar issues with larger models on g2.2xlarge instances, it became clear that there
was a compatibility issue with these instances GPUs and TensorFlow. We modified the code to train
the model on a CPU, and it succeeded immediately. Due to this CPU limitation, the training time
of the model increased dramatically, and we were not able to train models nearly to the extent that
Sukhbaatar was able to. Nonetheless, we believe that valuable insight into memory networks as
language models was garnered from the work accomplished. All models were trained on the first
512kb of the Text8 dataset, and evaluated on the second 512kb. Text8 is a dataset consisting of the
first 100MB of Wikipedias text. The combined vocabulary of the first two segments of text8 used
is 22661 words. All models used gradient normalization to an l2 norm of 50. Meaning that the l2
norm of the gradient of all parameters was measured, and if larger than 50, the gradient was scaled
down linearly to have an l2 norm 50.

2.2 One hop memory network

The first model we examine is a simple one hop memory network. We found that this model was
capable of training far faster than the more complex models discussed later. The model was trained
using Adagrad with an initial learning rate of .1.

After two epochs of training, this simple one hop model achieves a train perplexity of 369.54, and
test perplexity of 1870.63 respectively. After one epoch of training, the model gave a train perplexity
of 385.36 and a test perplexity of 1689.064. It seems that this model has fully converged and is no
longer learning. Below are examples of words generated using this model given the context of
30 words. Throughout this paper, those sentences labelled as ML were generated by selecting the
most likely word as the next word, and those sentences labelled as RC were generated by randomly
choosing a word from the generated probability distribution over all words that the model produces.

ML:

• Context: ribbon worms the sipuncula and several phyla that have a fan of cilia around the
mouth called a lophophore these were traditionally grouped together as the lophophorates
but it now

Prediction: being found in the united states and the most of the united states and
the most

• Context: luanda s o paulo de loanda port railhead major cities amboim porto amboim
bailundo vila teixeira da silva benguela s o felipe de benguella port railhead ca la vila robert

Prediction: stadler is a is a is a is a is a is a is a is

RC:

• Context: the british empire hungarian philosophers hungarian novelists hungarian writers
khazar studies writers who committed suicide the atlantic ocean is earth s second largest
ocean covering approximately one fifth of its

Prediction: compass of usage minarchists says that is controversial doublespeak
much sink represented rationally also reviewers widely

• Context: make bricks for mortar when laying the bricks and for plaster on the interior
and exterior walls some ancient cultures used concrete for the plaster to avoid rain damage it

Prediction: is also in order british states molossians anatolia mvd notoc candidly
culture states nations writings sessile

2.3 Three hop memory networks: ADAM and SGD

We examined two implementations of three hop memory networks that were identical in every way
except for the optimization method used – ADAM for one, and SGD for the other. ADAM is a mod-

3



ern optimization method presented in [3] that adapts the learning rate based on an estimate of the
quotient of the gradient vectors mean and variance evaluated for each parameter across steps. The
memory networks we study include a variety of types of parameters to be optimized, and one could
intuit that having parameter-specific learning rates could be highly advantageous for optimizing both
temporal encoding parameters and word-embedding parameters, for instance. Additionally, the au-
thors of [3] hold that ADAM works well for sparse gradients and is a method where hyperparameters
typically require little tuning. As such, the author thought it would be interesting to compare ADAM
to the technique presented in Sukhbaatar’s paper, SGD.

Two memory networks were implemented, the only difference between the two being the optimiza-
tion method. The first used a SGD optimizer with learning rate .01, and the second used an ADAM
optimizer with learning rate of .01. The networks were trained for 2.5 epochs each. Both networks
decreased in test perplexity from epoch 1 to epoch 2, so it is clear that they were continuing to learn
and improve at this point in training.

2.4 Three hop memory network: SGD

The SGD optimizer achieved a train perplexity of 4797.85, and a test perplexity of 5776.39

ML:

• Context: zero mi a great rift valley also extends along the ridge over most of its length the
depth of water over the ridge is less than two seven zero zero

Prediction: in in in in in in in in in in in in in in in in

RC:

• Context: six metres one two eight eight one ft the greatest depth eight six zero five metres
two eight two three two ft is in the puerto rico trench the width

Prediction: rivers that a zero blood ruling in swan occupations part cataclysmic
according a albedo in ism

2.5 Three hop memory network: ADAM

The ADAM optimizer achieved a train perplexity of 7969.99, and a test perplexity of 8519.64

ML:

• Context: ”premise asserts if and only if rather than if similarly the converse of a statement
can be validly assumed to be true so long as the if and only if”

Prediction: be such in the the three and the the three three three three three three
three

RC:

• Context: six metres one two eight eight one ft the greatest depth eight six zero five metres
two eight two three two ft is in the puerto rico trench the width

Prediction: rivers that a zero blood ruling in swan occupations part cataclysmic
according a albedo in ism

2.6 Six hop memory network

We now examine a six hop memory network optimized using stochastic gradient descent. This
realization of a memory network is most similar to the one presented by Sukhbaatar et al. in their
paper.

4



After training for two epochs, this model achieved a train perplexity of 8009.86, and a test perplexity
of 10508.944. The model decreased n test perplexity from epoch 1 to 2, so it is evident that it was
still continuing to learn.

ML:

• Context: ”s opposite other examples of modest proposals modest proposals and other
literary hoaxes report from iron mountain sokal affair miscegenation origin of the word
dihydrogen monoxide jack thompson attorney has”

Prediction: a a a a a a a a a a a a a a a a”

RC:

• Context: continent shaking wars he did indeed maintain his aloof position of minding not
the times but the eternities schopenhauer on women schopenhauer is also famous for his
essay on women

Prediction: repeatedly mammary widow milligray ships bernazzani littoral reign
saw buzkashi equalization moves caribou layer filament snipe

3 Discussion

3.1 Comparison of models implemented

Figure 2: Train and test perplexity of the different models implemented

Due to the severe limitations arising from training these models on a CPU, only 2 epochs of training
were possible for each model. Because all of the models are still in the process of learning rapidly
and training has not converged to a constant train perplexity, it is difficult to draw absolute conclu-
sions about which model performs the best. However, what we can tell is that smaller models do
seem to converge faster, as evidenced by the one hop model fully converging after two epochs of
training, whereas the three and six hop models are still learning after two epochs. Furthermore, we
can see the efficacy of SGD optimization rather than ADAM through a comparison between the two
three hop models. It seems that SGD trains the model far faster, achieving a test perplexity 32 %
lower than the ADAM models after two batches. As neither model has converged, it is impossible to
make conclusions about which optimization method leads to better post-convergence performance.

Additionally, one may note that the network optimized using SGD predicts the same word every time
in the ML prediction, whereas the model optimized using ADAM predicts different, albeit common

5



words. This is evidence that the model optimized using ADAM has learned more in the way of
temporal encoding parameters than the model optimized using SGD, which seems to be acting as
something of a bag-of-words model.

3.2 Comparison with Sukhbaatar et al’s results

It is difficult to compare our results with Sukhbaatars baselines, as their group trained each model
for 50 epochs on a dataset 20 times larger than ours. Furthermore, they used 100 words as context
to predict the next word, whereas we used 30 words. Additionally, they used a 500 dimensional
embedding space, whereas we embedded into 300 dimensions. These compromises were made to
speed up training. As expected, our models performed considerably worse than theirs. Sukhbaatars
6 hop model trained on text8 achieved a test perplexity of 147, far off from our 6 hop model, or our
best performing model, the 1 hop memory network. (Figure 3)

Model Author Train performance Test performance
RNN Sukhbaatar - 184
LSTM Sukhbaatar 122 154
Memory net, 6 hops Sukhbaatar 124 155
Memory net, 6 hops Jack 8009.86 10508.94
Memory net, 3 hops, ADAM Jack 7969.99 8519.64
Memory net, 3 hops, SGD Jack 4797.85 5776.39
Memory net, 1 hop Jack 369.54 1870.63

4 Conclusions

In conclusion, we have implemented a variety of end-to-end memory network models in Tensor-
Flow and have gained valuable insight into how the choice of optimizer affects the training of a
model, both quantitatively in terms of the perplexity it achieves, and qualitatively in the language
it generates. We also give examples of sentences generated by end-to-end memory networks. Fi-
nally, we have provided to the community the first open source example of an end-to-end memory
network written in TensorFlow. It is the hope of the author that this will accelerate research into this
fascinating neural architecture.

Moving forward, the author aims to acquire a GPU that will enable further training of these models,
and study the convergence behavior of models optimized with both ADAM and SGD. Additionally,
the author would like to try feeding dense word vectors from word2vec into the model rather than
one hot word vectors. The author hypothesizes this will decrease the size of the model, aid training,
and eliminate one of the major tasks the current networks must perform during training, learning a
dense representation of the words fed in.

5 Related work

5.1 Character level language model

We also implemented a character level language model using the end-to-end memory network frame-
work. This network used 12 memory hops, gradient normalization to an l2 norm of 15, embedded
character vectors into a 100 dimensional space, and used 400 characters as context for predicting the
next. It was trained using SGD, with parameter updates applied after every training example. We
found that this online learning method helped avoid local minima such as guessing a space for every
character, while holding the probability distribution across all other characters constant. This model
did not seem to learn anything beyond a bag of characters model, even when we tried optimizers
such as ADAM. It always predicts the space character as the most likely next character, but did
learn that certain letters such as e and a are more likely than other characters. The train perplexity it
achieved was 21.40, the test perplexity it achieved was 18.10.

6



Acknowledgements

I would like to thank the staff of the 6.806/864 course, particularly Profs. Tommi Jaakkola and
Regina Barzilay for fostering a phenomenal environment for learning and research in 6.806/864.
I’ve yet to encounter an ’undergraduate’ class at MIT that does this so well.

References

[1] Jason Weston, Sumit Chopra, Antoine Bordes: Memory Networks, 2014; [http://arxiv.org/abs/1410.3916
arXiv:1410.3916]

[2] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, Rob Fergus: ”End-To-End Memory Networks”, 2015;
[http://arxiv.org/pdf/1503.08895]

[3] Diederik Kingma, Jimmy Ba: ”Adam: A Method for Stochastic Optimization”, 2015;
[http://arxiv.org/abs/1412.6980]

7


	Background
	Motivation
	Memory networks as question answering models
	Memory networks as language models

	Implementation
	Details
	One hop memory network
	Three hop memory networks: ADAM and SGD
	Three hop memory network: SGD
	Three hop memory network: ADAM
	Six hop memory network

	Discussion
	Comparison of models implemented
	Comparison with Sukhbaatar et al's results

	Conclusions
	Related work
	Character level language model


