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1 Abstract

We develop and test dependency parsers that use an LSTM neural network to directly predict head-tail relationships
from input words. This represents a simpler approach to parsing than shift-reduce parsing with a neural classifier,
which is the state of the art in dependency parsing. We demonstrate a first-order neural network parser, as well as
a method of introducing higher-order dependencies into the LSTM parsing framework.

2 Background and Prior Work

As discussed in class, dependency parsing is a way to create a hierarchy (a tree) from the words in a sentence. In
this hierarchy, if a word A has a child B, then B modifies A grammatically. For example, in “a fat dog”, “a” and
“fat” are children of “dog”. A dependency parse can be thought of as a flattening of a full constituency parse, in
which each word is also labeled with a part of speech. [1]

The state-of-the-art approach to dependency parsing is using a shift-reduce parser. In a shift-reduce parser, words
are copied one at a time into a stack. A machine learning classifier is used to determine what operation to perform
on each word as it appears in the stack: the top two words in the stack may be connected with a parent-child
relationship, or a new word may be introduced onto the stack. A complete tree is built by repeatedly using the
classifier to make local decisions. This class of algorithms can produce any parse tree that is projective, meaning the
tree’s branches do not overlap if the tree is drawn on top of the sentence.

Shift-reduce parsers differ in the machine learning algorithm that is used to choose the operation at each step.
In more traditional parsers like Maltparser [2], a linear classifier like a SVM is used to control the parser. The SVM
takes hand-engineered sparse input features, built from the top words on the stack, the state of the already-parsed
words, and other state variables of the parser. The classifier is walked through the steps of parsing training data,
and is trained to make the correct decision at each step.

More recently, neural nets have been applied to shift-reduce parsing. In [3], the stack and parse state of the
parser are transformed via word vectors into a dense representation. This dense representation is then fed through
a 2-layer neural network, whose output determines the parser’s next action. The neural net requires fewer features
to make a good decision, a fact that makes this parser faster than Maltparser.

Currently, the best-performing dependency parser is the RBGParser, described in [4]. This parser uses a learned
linear combination of a variety of hand-engineered features to score a candidate parse tree. A greedy hill-climbing
algorithm is used to explore the space of candidate trees during testing.

We investigate a simpler approach to dependency parsing that does away with the shift-reduce framework. Since
the goal of a dependency parser is to output arcs that go from heads to dependents, learning a parse tree of a
sentence reduces to finding the index of the head word for each word in the sentence. Inspired by the neural
translation models by [6] and [7], our parser uses LSTMs (long-short term memory neural networks) to process the
entire sentence directly, in essence translating the sequence of input words to a sequence of heads. LSTMs (see [5]



for a review) are a type of recurrent neural network, which means they share weights across a time dimension. An
LSTM is composed of one unit for each timestep of the input data; in this case, each word of the input sentence would
correspond to a timestep. Each unit has the same weights, and each unit receives an input from the unit before it (in
addition to the regular input) and emits an output to the unit after it (in addition to the regular output). The result
is a neural network that is constrained to learn sequence patterns. We are interested in using bidirectional LSTMs,
which consist of two LSTM layers stacked on top of each other; one propagating state in the forward direction, and
one in the reverse direction.

3 Technical Approach

3.1 Learning Problem

Given sentence x = [z1,...%,] and its corresponding sequence of heads y = [y1,...yn], we formulate the learning
problem of the dependency parser to computing the estimates y as

argmin D(y, y|x) (1)
y
where D is the categorical cross-entropy distance function.

In the rest of this paper, our notation will be as follows. A sentence is represented by x1.,, where x; is the i-th
word. y; represents the index of the head of the i-th word. The root of a sentence is represented by a y-value of
n + 1. For example, in the sentence “I love chocolate”, z1., = [I, love, chocolate], and y1., = [2,4,2]. Inputs to all
models described below are word vectors. Our neural parser models the conditional log probability of the heads y
given the input sentence x as:

log p(y[x) = 3 log p(yilynii-1,%) @)

i=1

The output of the neural parser for each word z; is a distribution over the possible y;’s. We use various decoding
methods to generate predictions y; from these distributions. In all, the neural parser is a function f that maps
9i = f(§1.i—1,%1.n) - the parser labels the head of one word at a time, taking into account the decisions it made for
previous words.

In the sections below, we present various models that we’ve tried for solving this problem. We start with the
simplest model - the bidirectional LSTM - as our baseline to implement a first order parser and then a full parser. We
then experiment with the Indexer Model, which uses a different feedback mechanism to implement the full parser.
Both the baseline and the Indexer predict the heads y; via a softmax distribution over the length of longest sentence
in the corpus. However, the problem with predicting the index of the heads directly with this softmax is that that
would cause positional bias - for example, given phrases “the big dog” and “the dog”, the head of “the” (“dog”),
plays the same role in both sentences, yet the model would predict different indexes for the two sentences. To make
our model completely agnostic to sentence length, we began developing an attention-based model similar to that of
the neural translation models developed in class. We leave further development of this attention-based model for
future work.

3.2 Baseline Bidirectional LSTM
3.2.1 Model 1 - First-Order Parser

Our baseline model implements a first-order parser with one bidirectional LSTM that directly learns the mapping
from x to their respective heads y. The LSTM outputs are fed into a fully connected softmax layer, whose output
is a probability distribution over the head of the current word, y;. It models the conditional log probability of the
heads y as

logp(y[x) = Y _ log p(yi|x)
=1
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Figure 1: The first order parser and full parser models. Both models use a bidirectional LSTM to transform the
input word vectors x; into head indices y;. The Full parser also takes x,, ,, the previous word’s head word, as an
input for each new word. This gives the model information about previous decisions it has made.

The model is given in Figure 1a. The model can use all of x as context to make its prediction because the bidirectional
LSTM’s internal state vectors incorporate information going forward and backward along the sentence. Since our
baseline model is a first order parser, it does not use its previous decisions to inform its current decision. In other
words, y; is solely a function of x, and not of y.;_1.

3.2.2 Model 2 - Full Parser using Word Vector Feedback

It is straightforward to extend the baseline model’s modeling capacity by leveraging its past predictions as well
(Figure 1b). By feeding its prediction from the previous timestep y;—1 as input to the current timestep in addition
to x;, rather than outputting the distribution logp(y;|x) at each timestep, it outputs logp(y;|y1:j—1,%). With the
bidirectional Istm’s hidden state, by feeding only the prediction from the previous timestep in as input, the model
recursively has access to all of its predictions from word 1 to word 1.

3.3 Model 3 - Indexing Model

The indexing model represents a slightly different way to input the previously-decided head y;—; into a neural
model. Instead of feeding in the word at the head index, we feed in the LSTM activation at the head index. This
is implemented as follows: First, the word vectors x are fed through a bidirectional LSTM, to obtain activation
vectors h. Then, for each word in order, the activation of the previous word’s head, h(y;—1) is selected. h(y;—1) is
transformed by another LSTM, and then fed along with (%) into a fully connected layer, followed by a softmax over
possible head positions for y;. This network is shown in Figure 2.

This feedback scheme is designed to provide higher-level features to the network. In the baseline model, the
network has to learn to interpret the previous head words. In this model, we preprocess each head word, using the
same transformation that the network learned for preprocessing the sentence words. This will hopefully result in
head words that are easier for the network to use.
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Figure 2: The indexing parser model. The network’s decision on the previous word is fed back into the network, by
indexing into the LSTM activations. For example, if word 2’s head was word 5, the indexing layer will choose the
LSTM activation for word 5 when the network is trying to label word 3.

4 Training Details

For all our models, we map words to 256-dimensional word vectors (trained jointly with the LSTM), and use LSTM
memory and hidden states of dimension 512. We train on batches that contain sentences of all the same length, with
a randomized order of lengths within an epoch. We experimented with a curriculum learning strategy, in which the
batches were ordered by increasing sentence length and each batch was applied multiple times in succession, but this
did not appear to help with learning.

During decoding, we used beam search to deal with the dependency of y; on the previous y’s. Beam search was
performed as follows: A list of candidate head indices y;.;_1 are kept. For each candidate, the network is run in
feedforward mode to generate a probability distribution over y;. Out of all the values of y;.; generated by adding all
y; possibilities to each candidate, the beamwidth most probable are kept. The process is repeated until the entire
sentence has been parsed, and the most likely finished candidate is chosen as the overall parse. A beam width of 20
was used throughout.

We discovered a few small training improvements that each increased performance significantly. These are de-
scribed below.

4.1 Relative Indexing

Although our models aim to predict the absolute index y; of the head of the word x;, it is inefficient to train using the
absolute index directly. This is because the absolute index of a word’s head is dependent on context from far-away
words. Consider two sentences that include the same phrase, “my hat”. In the first sentence, “my hat” appears in
the beginning of the sentence, and in the second sentence, “my hat” appears in the end of the sentence. Although
“my” is the head of “hat” in both sentences, using absolute indexing would train the model to predict a low index
for the head of “hat” in the first sentence, and a high index for the head of “hat” in the second sentence. While it
is possible for an LSTM to learn this rule, it appears to be rather difficult.

To avoid this problem, we make a slight change to how we predict y;. Instead of predicting y; directly, we predict



’ Parser \ Bulgarian \ Turkish

Best reported in literature | 0.940 0.776

LSTM, first order (M1) | 0.802 0.708

LSTM with word vector feedback (M2) | 0.791 0.708
Indexing - one layer (M3) | 0.521 0.535

Indexing - two layers(M3) | 0.735 0.683

Figure 3: Parser accuracies on the Bulgarian and Turkish corpora in the CONLL-X dataset. All accuracies are
computed as unlabeled attachment scores. The two layer indexing model has a two-layer LSTM that generates h.

ygrel), the relative position of the head with respect to z;. For example, in the phrase “my hat”, the y("¢) of “my”
is always +1, because its head is one word to the right of it. We assign the ROOT label a value of 0. We found that
the baseline model is more accurate by 10 percentage points when trained uisng relative, as opposed to absolute, y
indexing.

4.2 Dealing with Out-of-Vocabulary Words

To create a word vector for each word, we first convert each word in the training set into a numerical label. During
testing, words not encountered in the training set are given the number 0, corresponding to OOV (out of vocabulary).
We found that this approach tended to overfit on the training data. The problem is, the network never sees the
OOV token during training, and therefore is never taught what to do with OOV tokens. During testing, it is unable
to handle new words, even when the word’s context alone is enough to inform a good parse.

Instead, we replace all infrequent words with the OOV tag during training. Words that occur fewer than 3 times
in the entire training set are represented by OOV, which allows the network to learn the meaning of this tag. In the
Bulgarian dataset, this resulted in the replacement 29k out of 190k words in the training set, and 1300 out of 5900
words in the test set. (This is a count of the total number of words in all the sentences, not a count of the number of
unique words in the dictionary.) Of the 1300 OOV words in the test set, 730 of them were not seen in the training
set at all; the remainder were seen either once or twice. This modification increased the accuracy of the baseline
parser by 4 percentage points, and the indexing parser by over 10 percentage points.

5 Evaluation

We evaluate our parsers on the CONLL-X dataset [8], a widely-used multilingual dataset for evaluating parsing
models. We focused on the Turkish and Bulgarian corpora in this dataset, because these two corpora have the lowest
and highest accuracies, respectively, in [4]. The results are shown in Figure 3.

We find that adding word vector feedback to the first order parser doesn’t seem to affect performance significantly.
On the other hand, adding indexing feedback to the first order parser deceases performance significantly, although
the effect can be somewhat ameliorated by adding a second layer to the LSTM. (We also experimented with a 2-layer
version of the baseline model, which had the same performance as the single-layer baseline model.)

We wish to diagnose why adding feedback to our baseline model does not improve performance. The most obvious
suspect is decoding. In a first order parser, decoding is trivial, because the probability of each y; is independent of
the others:

max p(y[x) = max | [ plyifx) = ] [ maxp(yilx)

However, in parsers with feedback, each y; depends on all previous y;’s, and no efficient exact algorithm exists
to find the best y. Beam search only approximates the optimal solution. To measure the degree to which this
approximation is affecting performance, we feed back the ground truth y;_; into the network at each word, instead
of the network’s prediction of y;_1. This gives us an upper bound on how well the network can parse, assuming a
perfect decoder algorithm. As shown in Figure 4, we find that the word vector feedback parser (model 2) is already
decoding optimally, while the indexing parser (model 3)is not.



Parser | Outputted y;_1 | Ground truth y; 1

LSTM, first order (M1) | 0.802 0.802

LSTM with word vector feedback (M2) | 0.791 0.808
Indexing - one layer (M3) | 0.521 0.653

Indexing - two layers (M3) | 0.735 0.776

Figure 4: Comparison of parser accuracies when the ground truth y;_; is fed back. The first data column (outputted
yi—1) shows accuracies when beam search is used to feed the model’s prediction at word ¢ — 1 back into the model
at word ¢. The second data column shows accuracies when the ground truth y;_; is used instead. The larger the
disparity between the two, the less efficient the beam search procedure is.
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Figure 5: A bar chart of average accuracy of words (y-axis), sorted by the distance between the word and its head.
Data from the word vector parser (M2) on Bulgarian. The width of each bar indicates the number of words in that
category in the Bulgarian test dataset. The total accuracy of the parser is therefore equal to the overall fraction of
blue in the plot. The parser learns to correctly classify the common (i.e. closest) head distances, but performs less
well on longer head distances.

The word vector feedback parser has the same performance as the first-order parser, and does not benefit from a
better decoding scheme. This suggests that the word vector feedback parser is not effectively integrating the previous
y;’s into its decision.

Finally, we analyze the error rate by type of y, in Figure 5. The further the head is from the current word, the
more likely it is for our parser to make an error. This is not surprising, given that distant heads are less common
in the training set. This reflects an inherent weakness of positional bias that all three of our models exhibit: they
have to learn separate rules for outputting each possible value of y, including large values, for which there is very
little training data. In the next section, we demonstrate preliminary results for a parser that is agnostic to sentence
length and therefore does not have this weakness.

6 Proposals for More Advanced Models

In this section, we describe two models that we implemented, but did not fully test due to time constraints. The
vector LSTM model uses a vector dot product to score how well word j fits as the head of word 4, for all 4 and j
in a sentence. The attention model is an application of sequence-to-sequence learning to the parsing problem. We
present preliminary results for the vector LSTM model.

6.1 Vector Scoring LSTM Model

Our analysis suggests that the performance of our parsers is hindered by a lack of training data on words with distant
heads. This training data is needed because our models output a probability distribution over the head distance, so
they must separately learn a rule for each head distance. To avoid this problem, we propose vector scoring models,
in which head probabilities are represented as a dot product of a word vector and a context vector. In general, we
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Figure 6: Vector dot product scoring model. Decoding happens in the vertically-oriented LSTM in this figure — after
the h’s are generated, computation happens from the top down.

express the probability that the word at index j is the head of the word at index 7 as:

exp(h; - context;)

i) = 3
p(l7) > exp(hjr - context;) ®)
where h; is a neural representation of word j (like the LSTM activations in the previous models), and context; is a

neural representation of the word ¢ and the decisions made for the heads of previous words.

By formulating the head decision this way, we avoid the problem of head distance entirely. We also avoid the
problem of learning absolute head position that was inherent to the absolute indexing scheme. Our decision at each
word is not a number, but another word. We use a dot product to compute the “fit” between each context vector,
representing the word to be parsed, and each h vector, representing the candidate head. This approach was inspired
by [9], which uses the same vector scoring idea to match image boxes to words in a sentence.

The vector scoring LSTM model is a simple extension of the feedback LSTM models, that uses a vector dot
product instead of a softmax layer to make the final y decision. The model is shown in Figure 6. In the figure, the
hj vectors are first generated from the input words. Then, for each word index 4 in the sentence, the h vector for
the previous word’s head — h,, , — is fed into a context LSTM. We take the dot product between the output of the
context LSTM and each h;, and interpret the resulting vector, which has the same length as the input sentence, as
a softmax probability distribution over the head of word 1.

There is one problem in training this model: there is no way for the model to set a word as the root, because the
root is not one of the words in the sentence. To fix this, we add an end token representing the root to each sentence.

We found that this model achieves an accuracy of 0.687 on the Bulgarian corpus, compare to 0.521 for the
indexing model with the same number of parameters. If a second layer is added to the initial LSTM, the accuracy
increases to 0.720, compared to 0.735 for the indexing model. Based on these limited experiments, it appears that
vector indexing allows our LSTM model to more efficiently use its parameters to model the training data. However,
we did not have time to optimize the model, or to experiment with other languages.

We can also investigate whether the vector scoring model improves performance on words with distant heads.
Figure 7 shows a small improvement for words with distant heads, when overall accuracy is normalized.
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Figure 7: A bar graph of word error rate for different categories of words. As in Figure 5, each bar represents all the
words of a certain distance from their heads, and the width represents the number of such words. The y-axis shows
the accuracy, as a proportion of the total accuracy on the entire dataset. (This allows us to compare the baseline and
vector parsers, which have different overall accuracies.) The baseline parser is shown in red, and the vector LSTM
model is shown in blue. Purple shows where they overlap. The vector LSTM model’s relative strength is on words
with more distant heads, as expected.

6.2 Attention Model

Both the baseline and indexing model predict the index of the head y; from a softmax distribution over the maximum
sentence length. However, as discussed before this approach causes unwanted positional bias. We then began
developing a new model that makes predictions independently of sentence length or index. We present below an
attention-based model (Figure 8) that chooses which index in the sentence to attend to when predicting the head
;. This attention model is composed from an encoder and decoder. The encoder maps the input sentence to a
hidden activation vector h. While the encoder is bidirectional, the decoder runs only in the forward direction. At
each timestep, the decoder predicts a head y; based on the i and its own evolving hidden activation g.

The model first encodes the input sentence x with a bidirectional LSTM, producing h, the hidden activation that
is the concatenation of the hidden activations from the forward and backward LSTMs.

When predicting head y;, the decoder first computes a summary vector f; over the length of the sentence. This
vector f; is the same length as the sentence. Each element f;; summarizes the input sentence at index j as a weighted
combination of the concatenation s;;(h;, gi—1,y;=1) of the hidden activation h;, the previous decoder activation g;_1,
and the previous prediction y;_1 as

fij (R gi1, 1) = Whsij(hy, gi1, 97 1)
With this summary vector f;, we can represent the probability p(y; = j) as
elii

Therefore, each o is the distribution p(y;|yi.j—1,x), analogous to the final softmax layer of the baseline model. The
key difference is that the softmax distribution constructed in this attention model is independent of the length of
the sentence.

Oéij =

The decoder activations are computed with an LSTM. At timestep ¢, this LSTM takes as input a weighted average
of ¢; = Z?Il ajjh; of all the h;’s, weighted by the probabilities a;;. These weights a;; are the attention mechanism
of this model: because ¢; is fed into the decoder LSTM as input, the decoder LSTM attends to a different parts of
the sentence with varying degree at timestep i. The output of this decoder LSTM at timestep 4 is g;, which gets
concatenated with h; 11 and y; to form s;41 at the next timestep.

With this construction, the attention model constructs its distribution over the length of the sentence, without
needing to know a priori what the length of the sentence is. It is therefore sentence length-agnostic and what we
believe the model that is most expressive in modeling the dependency parsing problem accurately. Currently our
results for the attention model lie around 20% per-arc accuracy, which indicates that further work needs to be done
on the implementation end.
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Figure 8: Attention model. The input sentence is encoded once into the hidden activation h, which will be used for
all decodings. The decoding LSTM steps word by word through the sentence, producing prediction y; at timestep .
To produce this prediction y;, the attention layer takes a softmax of a function over all h;’s, the previous decoder
LSTM output g;_1, and the previous prediction y;.
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Conclusions

In this project, we have shown that to LSTMs can solve the parsing problem, by mapping a sequence of words to
a sequence of head indices. We presented several different architectures for LSTM parsing. Though our parsers fall
short of state of the art performance, they show that LSTMs can learn the fundamental patterns required for parsing.

Our code is available at: https://github.mit.edu/mbchang/rnn-parsing
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