The Raychev-Vechev-Yahav Model

Given a program with some designated areas removed,
how well can a natural language model predict the
removed code?

e First explored In their paper “Code Completion with
Statistical Language Models.”

« Each variable v, along with an execution of the
program, yields a sequence of events of form (func, S),
where func iIs invoked In the execution, and S iIs the set
of places where v appears as a parameter of func.

* \We can thus turn any program into a set of sentences
with words corresponding to events.



Example




Limitations

« The Raychev-Vechev-Yahav Model has major difficulties
with loops.

- Loops that can run for an arbitrary number of iterations will yield
Infinitely many sentences.

- Even when bounded, this inflates the frequency of n-grams In
loops.

 The results aren't reported as the likelihood of the correct
completion.

- Instead, the actual code's placement in a list of top suggestions is
given.

- It's not immediately clear what parts of the model are effective.



Modifications

 To address the loop Issues, we proposed generating the
sentences by walking along the program's parse tree.

- levels: statements at a certain variable scope form sentences
- cfs: an acyclic version of the CFG is used

* To better illuminate the likelihood of code, we generalized
from the original trigram model.

- The call model, which generates the function call to test, was
modified to use a MEMM.

- We also reported results for unigram and bigram.



Implementation

The original paper restricted Its attention to
Android's Java API.

Our corpus was thus taken from GitHub projects In
this area.

We had to make our own program analysis tool.

- We used the PLYJ Java parser to get raw parse trees,
and then performed significant modification to yield a
simplified representation.

We also included a random baseline prediction.



Performance

* We usually didn't get the right completion...

- We had difficulty with static fields—without detailed type analysis,
we had to treat them like constants, and couldn't dynamically place
them.

- The model was weighted towards short sentences—with the
exception of fields, many variables only generate one or two events.
As a result, the model assigned greater likelihood to completions
that only used constants.

- As in the previous model, we couldn't handle expressions in function
calls.

« However, we did find out the most important elements of the
model.



3

2

call model 1
MEMM

levels, max

3

2

call model 1
MEMM

CFS, max

Numbers

1.3801695908 1.4446105766 1.471347531
1.3801695908 1.4446105766 1.471347531
1.3794449235 1.4479395829 1.4694658828
1.2973448348 1.3617000792 1.3816577024
1 2 3
var model

1.2526546072 1.2952245955 1.310383277
1.2526546072 1.2930782423 1.3067884675
1.252504953 1.2877275064 1.2984496871
N/A N/A N/A
1 2 2
var model

3

2

1
MEMM

call model

levels, random baseline

3

2

1
MEMM

call model

CFS, random baseline

1.3502175602 1.3991302954
1.3675182533 1.3854038403
1.3671579219 1.3908003662
1.2811909286 1.3039491778
1 2
var model

1.2376532236 1.2616989967
1.2263363548 1.2873724219
1.2234551087 1.2464570138

N/A N/A
1 2
var model



Conclusions

« The Ilimited information available from raw code severely
limited predictive abilities.

- We could include additional information about the Android API,
although the results would then not generalize.

- A more powerful program analysis tool would help.

e The MEMM showed great promise.

- It performed on par with the other models. However, it had a
minimal number of features.

- It also wasn't yet considering previous words during tag
computation.

* We hope to continue this work!



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

