
Python Code Completion as a
“N”LP Prediction Problem

Anthony Lu
6.864 Project

December 15, 2015

1 Introduction and Background

Many techniques in natural language processing rely on statistical methods because nat-
ural language is fuzzy and imprecise. In contrast, computer languages follow precise
known rules, so tools for working with computer languages are usually strictly rule-
based. However, even in the realm of computer languages, some analysis tasks may
benefit from statistical methods by being able to capture regularities in how computer
code is authored, such as in the usage of common APIs.

One such task that has received recent attention is code completion: given a program
with holes, synthesize a list of candidate completions for the holes. Raychev et al. (2014)
demonstrated success using an approach of reducing the code completion problem to a
sentence completion problem, where the “sentences” are sequences of method calls ex-
tracted by running a program analysis, on which N-gram and RNN language models can
be used to generate and rank completions. They demonstrate success using this approach
on Java programs using Android APIs.

In this project I look at the task of code completion for Python programs. Python
presents some challenges for precise and robust program analysis, such as that used in
Raychev et al.’s approach, due to its dynamic typing and other properties that make it
such that many facts about a program are only known at runtime. For these reasons, I fo-
cus on an approach that primarily uses purely syntactic features, with some experiments
incorporating heuristics intended to approximately capture some semantic information.

Figure 1 shows an example input program, which is a valid Python program contain-
ing holes represented as sequences of underscores. For this project, I focus on completing
attribute and method names, so I consider any attribute lookup where the attribute name
consists entirely of (three or more) underscores to be a code completion query, to be filled
in by a different attribute name.

1

import ast

def example_func(node):

result = {}

for field, value in ast.____(node):

result[field] = value

return result

Completions:

walk 0.0

iter_fields -0.76751687

assess -5.2171769

format -5.2171769

get -5.2171769

...

Figure 1: Left: An example input program with a hole for completion. Right: An example
list of candidate completions.

2 Program Representation

Since a parser for Python code is available, it is unnecessary to model the syntax of Python
in terms of a character-level representation of source files. Instead, programs are con-
verted to an abstract syntax tree representation, using Python’s ast module. The out-
put of ast.parse is a tree of nodes whose types represent different syntactic elements in
Python and whose fields include any associated data (e.g. identifier names or literal val-
ues) as well as child nodes. An example program with its corresponding AST structure is
shown in Figure 2.

As a way to explore the suitability of this representation and to provide a baseline
for the code completion task, ASTs can be used to train a PCFG language model, which
induces a probability distribution over the space of possible syntax trees for Python pro-
grams. In a PCFG, each production rule in the grammar is associated with a probability,
such that the probability of a syntax tree is the product of the probabilities of each rule
used in the tree. The rule probabilities are often estimated by counting the number of
occurrences of each rule in a training corpus:

P(A→ B|A) =
count(A→ B)

count(A)

For Python ASTs, a slightly modified version of this scheme can be used to account for
the slightly different structure of AST objects compared to syntax trees that are usually
considered. Each type of AST node belongs to a category (e.g. statements, expressions) of
node types that can appear in the same context. Furthermore, each node type has a prede-
fined set of fields of predefined types, which may either be nodes of a particular category
(or lists of nodes, or an optional node), or Python non-node objects (terminals). Exam-

> print ast.dump(ast.parse("for thing in things: self.process(thing)"))

Module(body=[For(target=Name(id=’thing’, ctx=Store()), iter=Name(id=’things’,

ctx=Load()), body=[Expr(value=Call(func=Attribute(value=Name(id=’self’, ctx=

Load()), attr=’process’, ctx=Load()), args=[Name(id=’thing’, ctx=Load())],

keywords=[], starargs=None, kwargs=None))], orelse=[])])

Figure 2: Python AST representation for a small code snippet.

2

stmt→ FunctionDef | ClassDef | Return | Delete | . . .
expr→ BoolOp | BinOp | UnaryOp | Lambda | . . .

. . .
FunctionDef→ {args : arguments,

body : list[stmt]
decorator list : list[expr]}

Figure 3: Sample Python grammar rules as obeyed by the AST. Top: Mapping from a node
category to the set of concrete node types belonging to that category. Bottom: Mapping
from each concrete node type to the categories of its fields. Together these rules define a
mutually-recursive CFG.

ples of these rules, which hold for all Python code, are shown in Figure 3. In accordance
with this structure, it is convenient to consider two kinds of production probabilities sep-
arately:

P(concrete type|category), distribution for each non-terminal node
P(value|concrete type, field), distribution over field values

Note that for fields whose values are themselves nodes (as opposed to terminal values),
the “field value” is actually just the type of the node, so the second distribution conveys
no information; for fields containing lists of nodes or optional nodes, it is the distribution
of the number of nodes in that field (e.g. the number of statements per function defini-
tion).

By itself, this simple AST-as-PCFG model is a very naive language model due to its
strong context-independence assumption. In particular, in the context of the task of pre-
dicting attribute names, it reduces to predicting the attribute names that appeared most
frequently overall in the training corpus, since P(·|concrete type = Attribute, field = attr)
is considered independent of all surrounding nodes in the AST where the attribute ap-
pears.

A simple improvement to the PCFG model is to add parent annotation or “vertical
Markovization”, where the production probabilities for a node can depend on not only
the node’s type but also the node’s parent’s type. This can be generalized to higher-order
Markovization by considering longer segments of ancestors of the node, or even infinite-
order by considering the entire path from the node to the root. To deal with data sparsity
as the Markov order increases, we can use Kneser-Ney smoothing to interpolate between
higher and lower order models.

3 Code Completion as Classification

While the PCFG framework with ancestor annotation can capture “vertical” context de-
pendencies, it does not take into account other types of contextual information that may

3

Figure 4: Cross-entropy of the PCFG language model on various test programs in the ESP
dataset. The x-axis compares the basic language model with no parent annotation with
parent annotation of various orders. The y-axis is the cross-entropy (log-likelihood) of
the language model, normalized so that the cross-entropy scores on each test program lie
within the same range.

be relevant to the code completion task.
Instead, the code completion problem can be viewed as a multi-class classification

problem, where the completion is regarded as a categorical variable and predicted using
features extracted from the surrounding AST.

As features, we use the types of the surrounding nodes, including the parent node (as
in the parent-annotated PCFG model) but also sibling and child nodes, as well as features
extracted from the fields of those nodes, including function arities, variable names, and
other attribute names.

However, these features still do not take into account the fact that methods are often
called on variables, and variables in a program carry semantic information according to
how they are used, beyond the variable name itself (indeed, the programmer can rename
all occurrences of the variable and have it still mean the same thing in the context of
the program). To capture this, we include variable co-occurrence features based on a
heuristic: for each variable in each source file, identify all uses of the same variable name
and extract features from the AST nodes surrounding each use, as an attempt to capture
how that variable is used.

Given these features, a maximum-entropy (logistic regression) model can be trained,
which assigns a probability distribution over the target variable according to the “maximum-
entropy” distribution given by

P(y|x) ∝ exp ∑
k

θkφk(x, y)

for parameters θk which are fit to the observed data. These probabilities can then be used
to rank candidate completions.

4

4 Experiments

Two experiments were run with different datasets: one on a smaller dataset consisting of
source code from just one open-source project (https://github.com/learning-unlimited/
ESP-Website), and one on a larger dataset consisting of all parseable source files in the 300
most-downloaded packages in PyPI (https://pypi.python.org).

The smaller experiment was intended to be an easier, more tractable problem, in that
the data size is smaller and there is less variability because the training and test data
come from the same project and use the same set of libraries and coding style. The larger
experiment was intended to be a more realistic assessment of the code completion task in
a more general setting.

For each experiment, test cases were generated by setting aside some of the source
files from the training set and introducing holes where attribute accesses or method calls
appeared in the program.

On the smaller dataset, the completion accuracy of the maximum-entropy classifier,
with and without variable co-occurrence features, was evaluated against results obtained
by using the PCFG language models’ probability assessments to rank completions, as
well as a baseline which uses the object’s variable name as the only feature (i.e. it pre-
dicts the most commonly-seen attribute accessed on each variable name, or nothing for
attributes accessed on non-variables). On the larger dataset, variable co-occurrence fea-
tures were not evaluated due to making little difference on the smaller experiment and
being more expensive to calculate. Additionally, due to the large cardinality of possi-
ble completions in the larger dataset, the output space was restricted to the 1000 most
commonly-appearing attribute names in the training set, so that only those names would
be considered as candidate completions.

5 Results

The results of these evaluations are summarized in Table 1. Performance on the smaller
experiment was quite good, ranking the correct answer first in a majority of cases. In
the larger experiment, about half of the generated test cases had correct answers that did
not appear in the top 1000 most common in the training set, and a sizeable fraction of
the correct names did not appear at all in the training set. However, for those where
the correct answer was present in the top 1000, it was often ranked highly among the
candidates.

The results indicate that an approach of code completion as classification may be ef-
fective in settings where the variability in code is relatively small, such as code within a
project or code that uses a common framework, but may have some difficulty scaling to a
more general setting where the number of distinct possible names is large and the correct
answer is not necessarily one of the most commonly seen values.

In this project, it was assumed that it would be difficult to perform program analysis
on Python, so a purely syntactic approach would be preferable. However, the experi-
ments suggest that incorporating more program analysis may be necessary in order to be
able to complete attribute names that did not appear often in training or to extract more

5

https://github.com/learning-unlimited/ESP-Website
https://github.com/learning-unlimited/ESP-Website
https://pypi.python.org

Model Base PCFG 1 PCFG 2 MaxEnt 1 MaxEnt 2
Experiment 1 (ESP, 240 test cases)
Correct completion in top result 43 25 63 137 130
Correct completion in top 3 61 45 103 169 172
Correct completion in top 10 91 80 155 196 189
Median rank of correct completion - 38 6 1 1
Experiment 2 (PyPI, 1151 test cases)
Correct completion in top result 214 28 92 317
Correct completion in top 3 301 76 165 395
Correct completion in top 10 402 114 311 431
Median rank of correct completion 455 1324 140 -

Table 1: Performance of the classifiers in terms of completion accuracy. Base is the base-
line model, which uses the object’s variable name as the only feature. PCFG 1 is the
basic PCFG model without ancestor annotation; PCFG 2 is the PCFG model with order-
3 vertival Markovization; MaxEnt 1 is the maximum-entropy classifier without variable
co-occurrence features; and MaxEnt 2 is the maximum-entropy classifier with variable co-
occurrence features. Variable co-occurrence features were omitted in experiment 2 after
having little effect in experiment 1.

useful information from the training data. Even though this analysis may be more diffi-
cult to do reliably than for stricter statically-typed languages, there do exist tools such as
PyLint and PyCharm that can extract properties about programs often enough to be use-
ful, and even a noisy analysis could yield a big improvement combined with statistical
techniques.

Other interesting directions to explore would be to use different techniques for classi-
fication, such as a neural network to automatically learn variable embeddings or program
embeddings that would capture the features of a program context that would be relevant
for completion, or to incorporate more context dependencies into a generative language
model that would be capable of synthesizing a larger class of program fragments as com-
pletions.

6

	Introduction and Background
	Program Representation
	Code Completion as Classification
	Experiments
	Results

