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Abstract—Knowing the steps and input reagents needed
to synthesize a chemical is essential for industrial and
research purposes. However, chemical reactions (and their
papers) can be difficult to search. Furthermore, chemists
cannot easily predict the reactivity of two chemicals if the
database lacks the exact reaction. We pose this problem
as a natural-language processing task on chemical names.
First, we auto-encoded embeddings based on chemical
names, relating similar words closer in the feature space.
Then, we trained a recurrent neural network to predict
whether two chemicals will react using a database with
known chemical reactions (chemnet). We compared our
model to a naive Bayes classifier, a maximum entropy /
logistic regression classifier, and an SVM classifier trained
on true reactions from the chemnet database interspersed
with negative examples. Our model has many possible
extensions, including the construction of novel synthesis
pathways.

I. INTRODUCTION
A. Motivation

Problems in chemistry are very complex — they con-
sist of intricate chemical processes involving numerous
molecules with various properties that can only be ex-
plored with many experiments. Chemometrics, which
links statistical methods and chemical problems, has
been a valuable tool in navigating chemical data and
solving complex chemical problems. For example, partial
least squares and multiple linear regression have been
used in some chemical studies [1]. With their recent
resurgence in other fields, artificial neural networks have
seen increasing popularity in chemistry. Artificial neural
networks can model the nonlinear empirical relationships
commonly found in chemistry. However, even though
many important problems in chemistry have been ad-
dressed, it remains an area where there is great room for
improvement.

B. Previous Work

In 1990, [2] used neural networks to predict “the
products of electrophilic aromatic substitution.” The
applications of neural networks in chemistry declined

through the late 1990s, perhaps due to the lack of hard-
ware resources capable of extensive training and the lack
of data; the paper trains and tests on only 45 reactions.
[3] in 1991 expressed “mixed feelings” about neural
networks, concerning themselves with structural details
like activation functions and biases. Both of these works
predated the conception of long short-term memories
(LSTMs), which greatly relieved the vanishing gradient
problem. This enables us to build large neural networks
that can extract something meaningful from the training
data, even if important information is found at different
places in the sentence.

In [4], neural grammar networks predicted chemical
reactivity based on the SMILES and InChi descriptors
of molecules. In [5], neural networks were used on
2D chemical fingerprints to predict “biological activ-
ities of structurally diverse chemical ligands.” These
fingerprints, which are bit vectors between 166 and
1024 bits in size, can be automatically generated or
assembled from features identified by hand. However,
constructing features by hand at the atom level, as done
by [6l], may fail to reveal properties conferred by the
molecular macrostructure. Furthermore, no method yet
has predicted general chemical reactivity, much less with
the application of natural language processing (NLP)
techniques, with neural networks.

C. Contribution

We propose a novel mechanism for predicting the re-
activity of organic compounds. Rather than painstakingly
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Fig. 1.  An organic reaction found in the chemnet database. The
reaction depicted here comes from a 1949 paper in which 2-amino-
4,5-dimethylphenol and phosgene react to form 5,6-dimethyl-3h-
benzooxazol-2-one [[16].



collect chemical properties and hand-made features or
construct grammars, we use a simpler approach: treat
chemical names as sentences, and apply NLP techniques.
We generate embeddings of chemical names in a high-
dimensional space (akin to word2vec [7]) and use a
recurrent neural network that employs these embeddings
to determine whether two chemicals react.

II. METHODOLOGY
A. Problem Formulation

We form our chemical reaction binary classification
problem as a language model with an exact mapping
between letters to chemical elements, words to compo-
nents of chemical names, phrases to chemical names, and
reactions to sentences. The validity of chemical reaction
is the same as whether two chemicals can react or not.

B. Data Preparation and Preprocessing

We obtained a network of organic chemicals and
their reactions from a database called chemnet. Our
subset of this network contains over 8,000,000 chemicals
and 1,000,000 reactions with varying numbers of input
reagents and output products. We limited the scope of
our project to binary reactions: those with exactly two
inputs and one output.

To generate training and test data, we selected 50,000
reactions from the database and collected all the elements
used in these reactions. From this list of chemicals,
we generated random pairs of reagents to form 50,000
false reactions after ensuring that the randomly selected
chemicals did not participate in a known reaction in the
database.

C. Embeddings

Before performing any training, we tokenized the
chemical names, which can be as complex as ”seq-trans-
3-ethoxycarbonyl-2-isopropyl-2-methyl-oxiran”. We split
tokens based on the presence of not only whitespace but
also hyphens. We also parsed parentheses and square
brackets, which denote structural information about the
chemical [8]].

We treat chemical names as a language problem. They
have very similar hierarchical structure. Building from
the bottom up, chemical elements correspond to letters,
chemical names to words, and chemical reactions to full
sentences. Thus, we can build a model for chemical
reactions using techniques from NLP.

The first step in building a language model is to find
an effective way to represent words. The representation

of a word, the basic unit of language, and essential
for understanding more complex sentences, is critical in
NLP. The vocabulary from a set of documents are, in
general, very large. In many rule-based NP models, each
word is represented as a one-hot vector (a bag-of-words
(BOW) model). In this model, the relationship between
different words and information about their ordering in
the sentence are absent. Recently, probabilistic models,
in which a word is predicted from its context, have
shown great success in achieving a more meaningful rep-
resentation and improves performance on various NLP
problems. In this case, a word is represented as a low-
dimensional real-valued dense vector. Each dimension of
these representations captures latent information about a
combination of syntactic and semantic word properties.
Thus, we want to represent chemical names in a similar
fashion.

However, just as there are arbitrarily numerous valid
sentences with any number of words, there are arbitrar-
ily many combinations of organic chemicals with any
number of chemicals [9]]. Thus, it is hard to tell whether
two selected chemicals will react. This sparsity problem
is analogous to the sparsity afflicting NLP’s bigram and
trigram models.

D. Recurrent Neural Networks

Recurrent neural networks (RNN) take in input se-
quentially with no assumption on the . Since an RNN
reads data sequentially, the context of the chemical
elements will be retained. Traditional machine learning,
based on bags of words, suffers from the loss of word
ordering in a sentence. As a result, running a traditional
NLP algorithm on a chemical name would lose the
information about chemical structure.

1) RNN Structure: For our project, we developed two
RNN architectures. The first one takes word embeddings
generated from an auto-encoder from previous step as
a fixed word vector. The other takes one hot vectors
as input, with three layers including: one embedding
layer, one LSTM layer and one output layer. We trained
combinations of chemicals on the whether these two
chemicals will react. The following graphs show the
structure of the two RNNGs.

As stated before, RNNs can take in information se-
quentially and handle long-term dependencies. However,
conventional RNNs suffer from the vanishing gradient
problem, especially over long sequences of input. Fortu-
nately, the use of Long Short-Term Memories (LSTMs)
can help.



E. Implementation

The baseline models (naive Bayes, logistic regression,
and SVM) were created with scikit-learn [10]], a machine
learning toolkit for Python. The recurrent neural network
models were built with Keras [11]], a neural network
library built on Theano [12] [[13].

In the first model, depicted in Figure [3| we created
an auto-encoder to derive 100-dimensional dense vector
representations of chemical words. Words are passed
(as indices into a vocabulary) through an embedding
layer, an LSTM layer, and an output layer to a soft-
max distribution over the possible vocabulary (roughly
23,000 words in size). We trained the auto-encoder for
100 iterations on 100,000 chemical names derived from
the same database (although not necessarily with the
chemical names used in the 100,000 chemical reactions
mentioned earlier). Then, we used these auto-encoded
embeddings in a second RNN to perform the binary
classification.

In the second model, depicted in Figure [5] we em-
bedded both chemicals directly and passed them through
separate LSTM layers. We used a “Siamese” neural net-
work architecture [14], which ties the embedding layer
and LSTM layer weights together, to ensure consistent
embeddings. Then, we concatenated the output of these
two LSTMs and fed them through a third LSTM before
performing the binary classification.

Most training was performed on a GeForce TITAN X
GPU, with use generously provided by the NLP group
in CSAIL. Performance on the training set, when we
allowed the model to adjust its own embeddings, leveled
off at about 91%. The development set accuracy leveled
off at about 85%. As shown in Figure [ performance
on the model with fixed embeddings fared no better than
the naive Bayes classifier.

III. EVALUATION

Our results are summarized in Figure

A. Understanding the Embeddings

Tokenization of the chemical names exposed similar-
ities between chemical name structure and human lan-
guages. Despite conforming to a nomenclature specified
by IUPAC, tokens of chemical names (in the reactions
named in the training set) follow Zipf’s Law: the word
“acid” appears over 30,000 times, while the next most
common word, “ester”, appears 15,000 times. This un-
canny adherence to Zipf’s Law affirms our belief that

techniques applicable to natural language processing can
also be used for analyzing chemical names.

However, there are a few differences. In natural lan-
guage, the most frequent words tend to be meaningless
prepositions or determiners such as “the,” “of,” “and,”
and “a.” In this “chemical” language, words reflect core
structure, such as “acid,” “ester,” “ethyl” or common
functional groups such as “chloride” and “bromide.” This
gives us two important pieces of information. First, it is
easier to model a chemical problem than a conventional
language problem, since most information is carried by
common chemical subgroups. Second, the language of
chemical names better reflects a hierarchical structure
because it starts with a core structure which is then
modified by functional groups. To draw comparisons to
computer vision, the core structure of a chemical is like
edges with different orientations in a image (which carry
the most abstract information), while functional groups
are like segments in a image (which carry more concrete
information).

B. Regression over Chemical Fingerprints

We use chemical fingerprints to evaluate the perfor-
mance of the information from our word embeddings.
Chemical fingerprints are human-generated bit vectors
that encode various chemical substructures. These fin-
gerprints are implemented by several different databases,
mainly for the purpose of neighboring and similarity
searching. For example, a PubChem CACTVS chemi-
cal fingerprint is “an ordered list of binary (1/0) bits.
Each bit represents a Boolean determination of, or test
for, the presence of, for example, an element count, a
type of ring system, atom pairing, atom environment
(nearest neighbors), etc., in a chemical structure” [15].
[6] demonstrated the usefulness of chemical fingerprints
in drug discovery. We performed regression on chem-
ical fingerprints from PubChem to see how well our
automatically-learned embeddings could correspond to
chemical features. Figure [9] shows the accuracy of using
word embeddings to predict fingerprist. It has overall
accuracy of 0.91 over 900 dimensions and we found
it has lower performance from dimension 320 to 720,
which correspond to an atom’s nearest neighbors. These
features only naively detect atom pairs and we believe
these are not good features and it is reasonable that word
embeddings would not perform well. The average accu-
racy from dimension 320 to 720 is 0.87 while the average
over all other dimensions is 0.96. This evidences that
the word embeddings can effectively represent chemical
structure properties.



/

“carbon dioxide” —— [ 0 3 4]

L

embedding layer
([V] units)

index vector

chemical name (batch_size indices)

Fig. 2. Architecture of the neural network auto-encoder.

One minor problem in using fingerprints is that fin-
gerprints can be implemented differently by databases.
Many portions of fingerprints overlap with each other,
and the large number of fingerprints (usually around
1000) makes searching and computation inefficient.

C. Clustering Chemical Names

To qualitatively assess the performance of our model,
we clustered a few chemical names and examined their
molecular structure. We hypothesize that chemicals with
similar properties will occur close to each other in
the vector space. For example, in Figure [I0] several
substructures have a 5- or 6-carbon ring, and a nitrogen-
hydrogen (an “N-H” bond).

D. Baseline Model Performance

Our baseline models include a naive Bayes, logistic
regression, and support vector machine (SVM) classi-
fiers. The features use the chemical names as bags of
words.

1) Naive Bayes: The naive Bayes classifier is based
on the assumption that all words, in this case, portions
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Fig. 4.  Architecture of the neural network that trains its own
embeddings.

of a chemical name, occur independently from each
other. However, this is not always true: the hydroxide
ion (OH") occurs frequently in practice, so the presence
of an oxygen atom would increase the probability of the
appearance of a neighboring hydrogen atom.

However, given the nice performance of naive Bayes

ST || . —— Decoder (the same as the RNN with pre-trained word embed-
. Binary ! Binary
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Fig. 3. The lower RNN uses the embeddings generated by the auto-
encoder. The detailed architecture of the auto-encoder is shown in

Figure 2]

Fig. 5. This RNN trains the embeddings against the supervisory
signal of whether two chemicals react. The detailed architecture is
shown in Figure []
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Model Training Test

Random Guess 0.500 0.500
Naive Bayes 0.635 0.628
Maximum Entropy 0.635 0.601
Support Vector Machine 0.500 0.498
RNN with Fixed Embeddings 0.636  0.608
RNN with Trained Embeddings 0912 0.851

Fig. 7. Binary classification scores. Values identify accuracy in
determining whether a reaction will occur.
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Performance of Regression Over Feature Vectors
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Fig. 10. Words from a cluster in the 100-dimensional space, reduced
to two dimensions with PCA, and plotted.

dings), we can hypothesize that the classifier knows
something about the chemicals that react and those that
do not. It could be possibly predicating its classification
on the presence of a particular sequence of chemical
tokens.

2) Logistic Regression: Logistic regression performs
as well as naive Bayes with slightly higher performance
on the training set, but lower performance on the devel-
opment set.

3) Support Vector Machine: We implemented SVM
with linear and RBF kernels. However, it suffers both
from overfitting and high computational cost. With poor
performance on the test set, we think SVM may not serve
well as a machine learning technique in the domain of



chemistry.

E. RNN Model Performance

The accuracy of RNN increases sharply in the first
8 epochs and continues to increase slowly after the
tenth epoch. We stopped at epoch 100, but we expect
performance to increase with more training data and
more training epochs.

FE Parameter Tuning

We tuned learning rates, dropout rates, and the dimen-
sion of the word embeddings. We tuned our parameters
on a smaller set of 10,000 samples with 10 epochs, to
reduce testing time. As expected, the accuracy is much
lower than what we get using 100,000 observations with
more epochs.

1) Learning Rate: We tuned the learning rate to the
values [0.001, 0.01, 0.1, 1] in Figure @ We found that
accuracy on the test set is highest with the learning rate
of 0.1. The loss dropped sharply at the second epoch.
The losses for the four epochs do not vary much.

2) Dropout Rate: Dropout rate serves to regularize
parameters and effectively reduces overfitting. We test
dropout rates from 0.5 to 0.9 in Figure [I2] We found that
the higher the dropout rates, the better the performance,
meaning that low dropout rates cause overfitting, a com-
mon but serious problem in complex RNN architectures.
For the loss in each epoch, we found that the higher the
dropout rate, the quicker it drops after the first epoch.

3) Word Embedding Dimensions: We tune the size of
word embeddings in Figure [I3] The accuracy on training
set does not vary too much from the test set. However,
the performance of test set decreases when we increase
the number of word embedding dimensions. The best
accuracy is achieved when the size of embedding is 50.
The accuracy for 100, 200, 400 and 600 dimensions are
similar.

4) Hidden Layer Dimensions: The accuracy, as de-
picted in Figure [T14] reaches the highest value when
the hidden layer has 100 hidden nodes. The accuracy
decreases after we have more hidden nodes, indicating
an overfit. By looking at the losses, we can see that the
loss is relatively stable.

IV. CONCLUSION

Predicting chemical reactivity appears to be well-
posed as a natural language processing problem, which
can not only be validated by the performance of our
models but also by our domain’s adherence to Zipf’s
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Law. Our exploration proved the possibility of learning
new domain knowledge in a specific area, like chemistry,
by treating it as a natural language problem.

Some conclusions from the observations of the results
include:

e From word embedding we can see that similar
chemicals are close in the vector space learned
from the chemical names.

e  Supervised training of word embeddings generate
meaningful word vectors by improving 77.2%
over the traditional machine learning methods.

e An RNN with pre-trained embeddings from
chemical names performs as well as a naive
Bayes classifier. The surprisingly good perfor-
mance of naive Bayes may indicate that some
reactions may be predictable by the presence of
combinations of elements.



Tuning drop out rate with 10 epochs

Tuning word embedding dimensions with 10 epochs
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vector dimensions.

A. Future Work ) o .
output up to a time step only contains information

of elements before that time step. Bidirectional
RNN are two separate RNNs stacked on top of
each other: one receives input in the forward di-
rection and the other receives input in the reverse
direction. The output is computed based on the
hidden state of both RNNs. We want to explore
bidirectional LSTMs, which show improved per-
formance for tasks like speech recognition.

Due of limited time and access to data, we failed to
implement lots of our ideas to improve our model:

e Training over bag of words: The core part of a
modeling problem is the model itself and repre-
sentation of the data. We are very confident with
the effectiveness of the LSTM structure because
of its improved performance over baseline mod-
els. However, it would interesting to measure the
performance and speed benefits by moving from °
a one-hot vector to a dense vector representation.

Data visualization: It is important to understand
what is going on in the neural network by
visualizing the data and the model. An auto-
decoder can change a dense vector to a one-hot
vector in the vocabulary. By decoding our dense
vectors, we can understand the meaning of the
LSTM outputs. This may also let us compare
the output of the LSTM and the final product
in real reaction. However, fine-tuning such a
mechanism is problematic because it requires far
more training than the binary classification used
in this project.

e Hyperparameter tuning: We explored the hyper-
parameters of our models such as the dropout
rate, word embedding dimensions, learning rate,
and the number of hidden units. However we
only compared the performance over the first
several epochs, which may not predict the long-
term effects of model training.

e Architecture selection: One shortcoming of the
RNN is its sequential processing of data. The
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In the future, we can see more chemical problems
being explored as an “unknown” language with deep
learning and artificial neural networks. One we un-
derstand chemical reactivity, we can predict chemical
outputs. With the outputs of chemical reactions, we can
assemble plausible sequences of chemical combinations
to develop novel synthesis pathways for all sorts of
chemicals. Learning new ways to synthesize chemicals
can revolutionize not only the field chemistry, but also
medicine and commerce.
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