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Problem Statement

o Goal: to consistently understand and answer technical 

multiple-choice questions as accurately as possible.

o Proposed approach: train neural module networks 

(NMNs) that specialize in a different reasoning tasks. 

Influenced by recent developments in computer vision.

o Dataset:  collection of 8th grade science exam questions + answers

 2500 multiple-choice questions, 4 answer choices each

o Corpus / Knowledge base:  Middle school-level science textbooks 

spanning different sub-fields 

 Physics, Chemistry, Biology, Earth Science, etc.
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o Implementation based on document 

frequency-inverse corpus frequency (TF-IDF)

o Searches for only the most RELEVANT

 Concatenate question with each answer choice

 Tokenize and stem

 Query corpus and assign relevancy scores

 Pick highest one

Vector Space Model (VSM)



VSM Example
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INVERT

“all of the following 
EXCEPT… ”

“which of these is 
least likely…”

DEFINE

“Which of these…”

“What is …”

“Give an example…”

ATTEND

“Which describes…”

“Which is a…”

EXPLAIN

“… because …”

“why/how does…”

“”which best 
explains…”

Sample Modules & Triggers

ATTEND:  Answer  x Query  → [(Document, Relevancy)]

DEFINE:  Document  x Query  → [(Attention, Relevancy)]

INVERT:  Document x Relevancy  → Relevancy  

EXPLAIN:  Attention x Query  → [(Document, Attention)]

COMBINE:  Attention x Attention → Attention 

CLASSIFY:  Document x Attention  → [(Answer, Relevancy)]



Module Composability

Q: What is the term given to the rising plume of 
mantle that is located below the Hawaii Islands?

A. convergent B. hot spot

C. divergent D. subduction

Q: Which statement best 
describes natural variations in 
the amount of ozone found in 
the stratosphere of Earth's 
atmosphere?

(“hawaii islands” 
“convergent”,
“hot spot”,
“divergent”,
“subduction”)

TARGET
DOC

MAX
relevancy

ATTEND[where]

(“rising”, “plume”, 
“mantle”)

DEFINE[term]

Attention

Attention

CLASSIFYLABEL
(A, B, C, D)

CLASSIFY[describe](
EXPLAIN(“variation”,

ATTEND(“ozone”,
ATTEND(“stratosphere”, …)

)
)

)      LABEL (A, B, C, D)
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Conclusions & Limitations

o Pure ML approaches based on aggregation of weak 

classifiers are unlikely to succeed

o Relevancy searches perform substantially better than 

chance. But: fall short on higher-level reasoning tasks

o Constructing specialized knowledge base considerably 

improves performance relative to popular search engines

o NMNs improve upon predictive power of relevancy 

searches, but still hard to optimize for complex questions 

requiring multi-layer composability 


