
Dependency parsing with neural scoring and

randomized greedy inference

6.806/6.864 Final Project
Leon Lin and Tom Yan

December 14, 2015

Abstract

In this project we treat dependency parsing as structured predic-
tion, using 1) a simple feedforward network for scoring parse trees and
2) the randomized greedy inference algorithm of Zhang and Lei (2014)
for finding the parse tree with the highest score. We show that learning
the weights of the neural network in an end-to-end fashion with max-
margin training produces better results than training independently
of the inference algorithm. We also compare performance to various
other baselines.1

Neural networks have been widely used to score or evaluate parts of parse
trees in order to make local decisions (see for example Chen and Manning2

or Durrett and Klein3). They allow for richer scoring than, for example,
learned feature weights used in a log-linear model.

A rich, higher-order scoring function complicates inference, however. To
navigate this trade-off, we use the greedy algorithm of Zhang and Lei4 for
inference, which they show performs strongly on parsing despite being only
an approximate method. This hill-climbing algorithm, which treats parsing
and structured prediction, is fairly general and can be applied to a scoring
function with higher-order or global components. It has previously been used
successfully to optimize over a scoring function based on low-rank tensors.5

1Code at https://github.mit.edu/leonxlin/tom-leon
2Danqi Chen and Christopher D Manning. A Fast and Accurate Dependency Parser

using Neural Networks. Proceedings of EMNLP 2014.
3Greg Durrett and Dan Klein. Neural CRF Parsing. ACL 2015.
4Yuan Zhang, Tao Lei, Regina Barzilay and Tommi Jaakkola. Greed is Good if Ran-

domized: New Inference for Dependency Parsing. EMNLP 2014.
5Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and Tommi Jaakkola. Low-rank

tensors for scoring dependency structures. ACL 2014.

1



As far as we know the combination (suggested to us by Prof. Jaakkola)
of the neural scoring function for arcs and greedy inference algorithm to find
the highest-scoring tree is novel.

In this project we consider two ways to learn the weights of the neural
network for scoring. First, they can be trained to simply classify arcs either
good (1) or bad (0) based on which arcs are present in the training data.
The inference algorithm is not used until decoding.

The second training method is max-margin training, which has been
shown to work well in a number of NLP tasks.6 The neural network is
trained to separate the scores of correct parse trees and incorrect parse trees
based on the number of incorrect arcs. The training examples are chosen
using greedy inference.

1 Model

We decompose the score of a parse tree y for a sentence x, where y is
represented as a set of head-modifier integer index pairs, into the sum of the
scores of the arcs in the tree:

S(x, y) =
∑

(h,m)∈y

S(x, h,m).

A simple scoring function might be a linear combination of some extracted
features φ(x, h,m), say, S(x, h,m) = θ · φ(x, h,m).

In our set-up, S(x, h,m) is the output of a two-layer fully connected
neural network with φ(x, h,m) as input and a single scalar score as output.
To counteract sparsity problems and overfitting, we used a compressed ReLU
hidden layer of size 25 or 50, at most a quarter the size of the input layer.

If the set of possible parse trees for x is T (x), then the parsing problem
asks for

arg max
y∈T (x)

S(x, y).

We use greedy inference to find this best parse tree. Briefly: The algorithm
begins with a random parse tree and makes arc modifications that each
improve the score until a local maximum is attained. This process is repeated
some number of times with different random starting parse trees. The best
final tree among all of these iterations is returned.

6Jonathan K. Kummerfeld, Taylor Berg-Kirkpatrick, and Dan Klein. An Empirical
Analysis of Optimization for Max-Margin NLP. EMNLP 2015.

2



2 Training

With both training methods, we used stochastic gradient descent with early
stopping based on a held-out validation set.

Under the arc classification method, the neural network is trained to min-
imize the squared loss between its score and 1 or 0, depending on whether
the arc was present in the gold tree of the sentence. False arcs are obtained
using negative sampling. During training, the network is fed an equal num-
ber of correct and incorrect example arcs: one correct head and one incorrect
head for each possible modifier.

(Note that it doesn’t necessarily make sense to model S using logistic
regression, since it wouldn’t define a probability distribution over T (x).)

Under max-margin training, we want that given a sentence x with gold
parse tree ỹ, we have for any parse tree y ∈ T (x),

S(x, ỹ) ≥ S(x, y) + δ(y, ỹ),

where δ(y, ỹ) is the number of words with different heads in y and ỹ. For each
training sentence x, the neural network weights θ are updated as follows:

θ ← θ − η∇L(x, ŷ, ỹ)

where
L(x, y, ỹ) = max (0, S(x, y) + δ(y, ỹ)− S(x, ỹ))

can be treated as a function of θ and

ŷ = arg max
y∈T (x)

L(x, y, ỹ)

is the “worst violator” at each training step, found using greedy inference.

3 Results and discussion

We report results on a data set of 39279 training sentences, 1334 validation
(dev) sentences, and 2399 test sentences.7

We trained and tested models using the following bundles of features for
each arc:

7This data set was provided to us by Yuan Zhang and is the data set used for the
CoNLL 2012 shared task. It is our understanding that the data is derived from the Penn
Treebank and uses the standard division of Sections 2–20 for training, Section 24 for
validation, and Section 23 for test.

3



Unlexicalized, no context Arc length, parts of speech (one-hot8) of the
head and modifier (101 features)

Unlexicalized, 5-gram Above features, plus parts of speech of words within
2 positions of either the head or modifier (581 features)

Lexicalized Above features, plus 50-dimensional GLoVe word vectors9 for
the head and modifier each, plus 2 flags for an out-of-vocabulary head
or modifier (683 features)

Lexicalized, more embeddings Above features, plus GLoVe word vec-
tors for words within 2 positions of either the head or modifier (1091
features)

Higher-order Arc length; parts of speech and word vectors for the head,
modifier, the head word’s head, and the modifier’s next sibling to the
right; parts of speech of words immediately adjacent to either the head
or modifier (669 features)

First we verify that the simple two-layer feedforward network outper-
forms a linear model with S(x, h,m) = θ · φ(x, h,m) where φ(x, h,m) con-
tains arc length, the respective parts of speech of the head and modifier,
and the conjunction of the parts of speech (given that our data set has 50
parts of speech, this is 2601 features). These features can be compared to
the “Unlexicalized, no context” setting for a neural network. This linear
model fit with L1 regularization achieves a UAS less than 50%.

The results using the neural network trained with the arc classification
method and the max-margin approach are shown in Figure 1. We find that
in general the max-margin approach improves upon the arc classification
method. Furthermore, the max-margin approach attained its peak results
on the dev set usually after only 1 or 2 epochs (i.e., passes over the train-
ing set), whereas the arc classification method took anywhere between 10
and 20 epochs. (On the other hand, the max-margin approach was always
much slower in terms of runtime, requiring O(n2) invocations of the scoring
function, where n is the sentence length, per sentence per epoch.)

One explanation for the max-margin approach’s superior performance
might be that because it trains the scoring function on only parse trees

8We considered learning dense representations of parts of speech, but did not pursue
that route, since each part of speech is reasonably well represented in the training data to
begin with.

9Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global
Vectors for Word Representation. 2014.

4



Arc classification Max-margin training

Dev Test Dev Test

Unlexicalized, no context (A) 69.54 69.62 68.30 68.36
Unlexicalized, no context (B) 69.25 69.15 71.28 71.55

Unlexicalized, 5-gram 79.12 79.30 81.39 82.17
Lexicalized 81.60 82.08 84.14* 84.49*

Lexicalized, more embeddings 80.73 81.44
Higher-order

Figure 1: Unlabeled attachment scores for arc classification training and
max-margin training. For “Unlexicalized, no context (A)”, 20 restarts were
used in greedy inference; for (B), 300 restarts; for all other feature settings,
100 restarts. Some results are not reported because training took too long.
See the text for details. *These results were obtained by initializing the
network weights to those at the end of arc classification training but only
training with max-margin for one additional epoch, due to time constraints.

erroneously judged to be better than they are, the scoring function is able
to learn finer and subtler distinctions between good and bad arcs. For a
fairer match-up, the arc classification training method could be modified
to only train specifically on (true and false) arcs that are currently scored
badly.

Another hypothesis is that when the score function is trained along with
the inference algorithm that will be used for decoding, the score function
can adapt to the idiosyncrasies of the approximate inference algorithm and
perhaps learn ways to smooth out local maxima, for example, to make infer-
ence itself more likely to succeed. This could be tested more thoroughly by
varying the strength of the inference algorithm (e.g., by varying the number
of random restarts allowed) during both training and testing to see which
training method is more robust to such changes.

4 Implementation challenges

Unfortunately our implementation of the model became infeasibly slow to
train and test as more features were added, especially higher-order features.
For example, it took an hour for an unlexicalized higher-order model to parse
250 sentences with 10 restarts each. (Extrapolating, lexicalized max-margin
training on the full training set with a reasonable number of restarts and

5



epochs would take months.) Thus we did not get the opportunity to iterate
on our model to see whether higher-order features, hyperparameter changes,
and so on could have brought performance closer to the state of the art.

A profile of the program revealed that more than 96% of computing time
was devoted to evaluating the score function, which was carried out by the
Theano package (and invoked tens of millions of times per training epoch by
the randomized greedy inference algorithm). We could not expect to speed
up Theano itself, except perhaps by using GPUs, but instead considered
ways to cut down on the number of calls to the score function.

Here are some of the steps we took:

Hardware We stopped training the models on our own laptops and used
the rosetta CSAIL machines in Prof. Barzilay’s lab instead. Mostly
we used the two 40-core machines; using a GPU made performance
worse for reasons that are still unclear to us.

Partial scoring During hill-climbing, the inference algorithm only needs to
make comparisons between local candidate tree modifications; thus it
should only evaluate a carefully designed, lighter partial score function
rather than attempt to score entire trees that differ very little from
each other. This cut runtimes down significantly.

Caching/memoization With first-order features, there are a small num-
ber possible arc feature vectors in a sentence, so that the output of
the scoring function on each possible arc can be cached. During hill-
climbing, the inference algorithm often needs to score the same arc
again, for example following a random restart. This method cut run-
times down significantly for first-order parsing, but was not yet imple-
mented for higher-order features.

Parallelization We attempted to run greedy restarts in parallel processes,
but the overhead of starting processes killed any performance gain.
Running restarts in separate processes also hinders score function
caching. Instead, running greedy inference on different sentences in
parallel proved more effective. This is fine for testing, but during
training the score function changes with every update, so in order to
parallelize sentence processing, we had to use minibatch training.

Minibatch training Instead of updating the neural network weights after
processing each sentence, we only update (in proportion to the sum of
gradients) after every 30 sentences. This facilitates parallelization.

6



“Vectorization” A common piece of advice is to consolidate calls to vector
operations such as the score function, which operate efficiently over
large arrays. We did this for scoring sentences (scoring all arcs at
once), but could not find another place to apply this without getting
in the way of either caching or parallelization.

Pruning This is an approach we have not yet attempted.

5 Division of work

Tom implemented the neural network, wrote the first version of the high-
level code for the max-margin and arc classification training algorithms,
contributed to the code for extracting features from the corpus, obtained
and processed the GLoVe word embeddings, drafted this report, and picked
this project.

Leon implemented the random greedy inference algorithm, contributed
to and debugged the code for the training algorithms, spent a lot of time
trying to make things run faster, wrote unit tests, wrote code to extract
feature vectors from the corpus, ran the training and test jobs on the rosetta
computers, and wrote most of this report.

7


