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Abstract

Short text classification is an old problem
in natural language processing, and has vari-
ous applications from question answering sys-
tems to sentiment classification. Recent ap-
proaches based on artificial neural networks
have shown competitive results compared to
traditional approaches such as support vector
machine (SVM) and maximum entropy. How-
ever, many existing systems for short text clas-
sification do not incorporate the context of the
short texts. In this work, we present a system
based on recurrent neural networks, which se-
quentially classifies short texts based on the
context.

We evaluate our approach on the speech act
predicition task using the Dialog State Track-
ing Challenge 4 data set, which consists of 35
dialogs annotated with speech acts for each
utterance. We show that incorporating con-
textual information improves the performance
of classification over non-contextual models,
i.e., models that classify each sentence sepa-
rately without using the context. In addition,
we show that our approach yields higher per-
formances than models based on logistic re-
gression and SVM that also incorporate the
context.!

1 Introduction

Text classification is an important task in many ar-
eas of natural language processing, including senti-
ment analysis, question answering, and dialog man-
agement. For example, the goal of text classification

"https://github.mit.edu/jjylee/
textclassifier

may be categorizing texts based on sentiments, clas-
sifying questions according to semantic categories,
or classifying utterances in dialogues according to
speech acts.

There have been many different approaches to
tackle the problem of text classification, such as us-
ing Support Vector Machine (SVM) with rule-based
features (Silva et al., 2011), a combination of SVM
with naive Bayes (Wang and Manning, 2012), and
dependency tree with Conditional Random Fields
(Nakagawa et al., 2010). Following the devel-
opments in the field of artificial neural networks
(ANNs), more recent approaches include convolu-
tional neural networks (CNNs) (Kim, 2014), (Blun-
som et al., 2014), and recursive neural networks
(RNNs) (Socher et al., 2012). These ANN-based
approaches not only eradicate the need to handcraft
features, but also circumvent the data sparsity issues
by replacing n-grams by dense word embeddings,
and often outperform traditional approaches.

However, most text classification systems focus
on classifying texts that arise without any contexts.
This may be due to the fact that many existing data
sets inherently do not need any context for the clas-
sification task at hand. For example, in the question
corpus from Text REtrieval Conference (TREC), the
main goal is to classify each individual question ac-
cording to semantic categories; the questions are
provided without any context, since they already
contain all the information within themselves nec-
essary for the classification.

Nevertheless, in many other text classification
tasks, the contexts in which the texts appear may
be informative or even be required for classify-



ing the text. Examples of such systems include
sentiment, topic, or rhetorical status classification
of sentences in a document, and dialog act clas-
sification of utterances in a dialog. Compared
to its non-contextual counterpart abounding with
ANN-based approaches, previous works for contex-
tual text classification are mostly based on tradi-
tional approaches, such as Hidden Markov Models
(HMMs) (Reithinger and Klesen, 1997), (Stolcke et
al., 2000), decision trees (Verbree et al., 2006), max-
imum entropy (Ang et al., 2005), and naive Bayes
(Lendvai and Geertzen, 2007).

Inspired by the performance of ANN-based sys-
tems for non-contextual text classification, we pro-
pose a model based on recurrent neural networks
(RNNs5) for sequential short text classification. In
particular, our model employs an RNN-based ar-
chitecture on top of word vectors to generate sen-
tence representations, and classifies sentences based
on the representations of both the current and pre-
vious sentences. We evaluate our system on speech
act classification task for dialog state tracking chal-
lenge 4 (DSTC4) dataset. We show that our system
outperforms the baselines that use logistic regression
(LR) and SVM, and analyze the impact of using se-
quential versus non-contextual model, as well as of
changing various hyperparameters.

2 Model

The model architecture for non-contextual text clas-
sification is based on RNN, as shown in Figure 1.
The system first generates the vector representation
of a sentence via RNN that takes as input the em-
beddings of the words in the sentence. The vector
representation is then fed into a feed forward neu-
ral network with softmax activation function, whose
output units correspond to the probability of belong-
ing to each class. This model is elaborated in Section
2.1.

Our sequential text classification system shown in
Figure 2 is an extension of the non-contextual coun-
terpart, where the vector representation of each sen-
tence is generated from the same RNN-based archi-
tecture. The difference is that instead of using only
the vector representation of the sentence in consider-
ation, it incorporates the context by utilizing the vec-
tor representations of both the target sentence and

the previous sentence. The sequential model is dis-
cussed in Section 2.2.
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Figure 1: Non-contextual model using RNNs

2.1 Sentence representation using RNN

Let x; € R% be the one-hot vector of ¢-th word in a
sentence of length T'. In the word embedding layer,
the corresponding word vector w; € R can be ob-
tained as wy = W,x;, where W, € R"™*? is the
word vector matrix containing word vectors at each
row. Word vector matrix W can be initialized ran-
domly or with the pretrained word vectors.

Given the sequence of word vectors
(w1, wa,...,wr), the sequence of hidden state
vectors (hy, hy, ... hy), is computed by the RNN
layer. Specifically, the variants of RNN called the
Long Short Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) or the Gated Recurrent Unit
(GRU) (Cho et al., 2014) may be used. LSTM is
defined as follows:

iy = o(Wiywy + Uihy_1 + by)

f; = U(wat + Ufht,1 + bf)

¢; = tanh(Wowy + Uchy—1 + b,)

ci=fOc1+iiO¢

oy = o(Wowy + Ughy—1 + by)

h; = o; ® tanh(c;)
where W;, Wy, W, W, € R™™ U;,Uy,U,,U, €
R"™*™ are weight matrices and b;, by, b., b, € R"
are bias vectors used in the input gate, forget gate,

cell state, and output gate calculations, respectively.
©® denotes the element-wise multiplication.



GRU is a simplified version of LSTM, without
compromising the performances:

ry =o(W,w; +Uchi—1 +b,)
h; = tanh(Wj,w; + Up,(r; © hy_1 + by,)
z =o(W,w;+U.hy_1 +b,)
hy=(1—2)®h; | +2z Oh,

where W, W, W, € R**™_ U, ,U,, U, € R**"
are weight matrices and b,, by, b, € R" are bias
vectors used in the input gate, forget gate, cell state,
and output gate calculations, respectively. © denotes
the element-wise product of vectors.

The RNN could be monodirectional or bidirec-
tional. Monodirectional (forward) RNN generates
the hidden states by feeding the input sequence in
order from wq to wr. On the other hand, a bidi-
rectional RNN consists of a forward RNN and a
backward RNN, where the forvl;;lrd_ISNN ca_1§:u—
lates the forward hidden states (hy, ho,..., hp)
in the same way as the monodirectional RNN, and
the backward RNN calculates the backward hidden
states (E, 2,..., hp) by feeding the input se-
quence in the backward order, from wr to wjy.
The final hidden state is obtained by concatenat-
ing the f_o>rward and the backward hidden state, i.e.,
h, = (1, Ir,). Note that if bidirectional RNN is
used, the dimension of the resulting hidden states
will be twice compared to monodirectional RNN.

The sequence of hidden vectors (hy, ho, ... hy)
output from the RNN layer are combined into a sin-
gle vector h € R" in the pooling layer. The pooling
layer has four different mechanisms: last pooling,
mean pooling, max pooling, and content-based pool-
ing. Last pooling simply takes the last output, i.e.,
h = hyp, whearas mean pooling averages all out-
puts, i.e., h = % Zthl h;, and max pooling takes
the element-wise maximum of the outputs.

Content-based pooling is inspired by the
attention-based mechanism.2 In this case, the

>The attention-based mechanisms are commonly used in
sequence-to-sequence prediction tasks, such as translation or
speech recognition. Such mechanisms are useful to predict
which part of the input sequence should be considered to gen-
erate each part of the output sequence. Since output is not a
sequence in our classification setting, we only use the content
of the input sequence (instead of both the input and the output)
in order to calculate the coefficients for the convex combination.

vectors are combined by taking the convex com-
bination h = Zthl athe, where the coefficients
a¢,t =1,...,T are determined by

€t = Vgtanh(tht + bp),
o — ;xp(et) ’

> i1 exp(et)
where v, € R! and W, € R!™ are the weights and
b, € R! is the bias vector. In words, (a,...,ar)
can be obtained by first computing the scalar out-
put e; of feed forward neural network with 1 hidden
layer from each h;, and then taking the softmax of
(e1,...,er).

The single vector h output from the pooling layer
can be interpreted as the vector representation of the
input sentence. The architecture discussed above
including word2vec, RNN, and pooling layer are
called RNN-Sent2Vec (RNN-S2V), since it converts
each sentence (x1, ..., X7 ) into the vector represen-
tation h.

In order to classify the sentence using the vector
representation h output from RNN-S2V, a feedfor-
ward neural network with softmax activation func-
tion takes h as input and generates the output y =
(y1,.-.,yx) € R*, where k is the number of classes
for the classification task:

y = softmax(Wysh + byy) (1)

where Wy € R¥*" and by, € RF are the weight
and bias vectors. Then y; represents the probability
that the sentence belongs to i-th class.

?.
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Figure 2: Sequential text classification system



DSTC 4

Category Attribute
T: Can you recommend a hotel? QUESTION  RECOMMEND
G: Alright. RESPONSE POSITIVE
G: On Orchard Road there are a number of hotels. FOLLOW INFO

T: Okay.

FOLLOW  ACKNOWLEDGE

Table 1: Sample utterances annotated with dialog acts from the DSTC 4 data set

2.2 Context-based sequential classification

For the sequential classification system, the context
of each sentence is considered by using both the tar-
get sentence and the previous sentence, as the name
‘bigram’ context signifies.

Let x* =
(7t ,xiszl) be the sequences of one-hot
vector of words in the target sentence and the
previous sentence, respectively. RNN-S2V outputs
the vector representation h’ and h’~! corresponding
to the target sentence x’ and the previous sentence
x171 respectively.

The sentence representations are concatenated,
ie., h = (hi~! h?), and fed into a feedforward net-
work with softmax activation function, which gen-
erates the output y = (y1,...,yx) € R*, where & is
the number of classes for the classification task (See
equation (1)*). The output y; represents the proba-
bility that the sentence belongs to i-th class.

(xi,...,x%) and x"7! =

3 Data sets and Experimental Setup

3.1 Data set

We assess our model on the Dialog State Tracking
Challenge 4 (DSTC 4) data set, which consists of
35 transcribed Skype dialogs (31,034 utterances and
273,580 words) between a tourist who plans to visit
Singapore and a guide. Each utterance is labeled
with one or several dialog acts. A dialog act clas-
sifies an utterance based on a combination of prag-
matic, semantic, and syntactic criteria. Its accu-
rate detection is useful to a range of applications,
from speech recognition to automatic summariza-
tion (Stolcke et al., 2000).

In the DSTC 4 data set, each dialog act consists
of one category (out of 4) and one attribute (out

3The only difference with the noncontextual classification
system here is the dimension of the weights: W;; € R**2",

of 22). There are 4 x 22 = 88 different dialog
acts. The categories are QUESTION, RESPONSE,
INITIATIVE, FOLLOW and the attributes are AC-
KNOWLEDGE, CANCEL, CLOSING, COMMIT,
CONFIRM, ENOUGH, EXPLAIN, HOW-MUCH,
HOW-TO, INFO, NEGATIVE, OPENING, POSI-
TIVE, PREFERENCE, RECOMMEND, THANK,
WHAT, WHEN, WHERE, WHICH, WHO. Table 1
shows sample utterances and the corresponding di-
alog acts. The data set is described in more details
in (Kim et al., 2016; Kim et al., 2015a).

The dialog act classification was part of a pilot
task in DSTC 4, for which the official train/test set
split was provided. In our experiments, we follow
the official split, where the test set comprises 6 di-
alogs (5615 utterances). For the validation set, we
used the second half of the DSTC 4 main task’s test
set (5 dialogs, 4539 utterances)”.

3.2 Baselines

We compare our model against two baseline classi-
fiers that uses LR and SVM, which were the best
performing systems submitted to the DSTC 4 (Der-
noncourt et al., 2016) pilot task.> The features of
the baseline classifiers are the 5000 most common
unigrams, bigrams, trigrams. The classifiers can be
trained as a non-sequential model where the features
are based only on the current utterance, or a se-
quential model where features are computed for both
the target and the previous utterance in order to ac-
count for the context, in an analogous manner as the
non-sequential and the sequential RNN-based mod-
els discussed in Section 2.1 and 2.2, respectively.

*The main task of DSTC 4 had a different official train/test
data split (20/9 dialogs). These 29 dialogs were used as the
training data of the pilot task.

3The baselines systems were slightly modified to match the
experimental setup of our model.



Non-sequential Sequential
Min  Average Max Min  Average Max
Baseline LR - 0.5340 - - 0.5441 -
Baseline SVM - 0.5506 - - 0.5573 -
LSTM 0.6331 0.6376 0.6416 0.6436 0.6529  0.6587
GRU X X X 0.6442 0.6484 0.6514

Table 2: Results for the two baselines (LR and SVM) and the RNN models (LSTM and GRU). For the baseline models, non-

sequential case uses features on only the current utterance, while sequential case uses features on both the current and the previous

utterances. For RNN-based models, non-sequential refers to the model discussed in Section 2.1, sequential refers to the model in

Section 2.2. X corresponds to the values that could not be obtained due to time constraints.

Monodirectional Bidirectional
Min  Average Max Min  Average Max
Last 0.6436 0.6529 0.6587 0.6450 0.6505 0.6581
Mean 0.6416 0.6460 0.6508 0.6423 0.6454 0.6495
Max 0.6593 0.6621 0.6663 0.6579 0.6606 0.6634
Content-based 0.6450 0.6484 0.6516 0.6511 0.6519 0.6526

Table 3: Experiments on monodirectional vs bidirectional LSTMs and pooling methods (last, mean, max, and content-based)

Min  Average Max
LSTM output dimension 100 0.6555 0.6596 0.6661
LSTM output dimension 250 0.6506 0.6545 0.6585
LSTM output dimension 500 0.6436  0.6529  0.6587
Randomly initialized word embeddings 0.6456  0.6491  0.6518
Dropout regularization 0.6519 0.6575 0.6626

Table 4: Experiments on output dimensions of LSTM, random initialization of word embeddings, and dropout regularization

3.3 Training and model setup

The model is trained to minimize the negative log-
likelihood of predicting the correct dialog acts of the
utterances in the train set, using stochastic gradient
descent with the Adadelta update rule (Zeiler, 2012).
The i-th batch in a given epoch contains the ¢-th ut-
terance of each dialog of the training set: as a result,
the size of the batch varies during the epoch as di-
alogs have different utterances. For regularization,
early stopping is used on the validation set with pa-
tience 10.

Our basic setup for the architecture is as follows.
For the word embeddings layer, we use the publicly
available word2vec vectors that were trained on 100
billion words from Google News® (Mikolov et al.,
2013a; Mikolov et al., 2013b). For the RNN layer,

*https://code.google.com/p/word2vec/

mono-directional LSTM with output dimension of
500 is used, and for the pooling layer, last pooling is
used.

3.4 Experiments on hyperparameters

In addition to comparing with the baselines, we per-
form a series of experiments on different choices of
hyperparameters in order to demonstrate the effect
of changing various hyperparameters as follows.

o Word embeddings: random initialization vs

word2vec pretraining

® RNN layer:

— Architecture: LSTM vs GRU
— Output dimension: 100, 250, and 500

— Monodirectional vs Bidirectional



e Pooling: last, mean, max, and content-based
e Regularization: dropout vs no dropout

These hyperparameters are tested one by one, only
varying the hyperparameter being tested, while the
other hyperparameters remain the same as in the ba-
sic setup described in Section 3.3, unless noted oth-
erwise.

4 Results and Discussion

Each experiment involving RNN-based architecture
is run 5 times. We report the minimum, average and
maximum micro F1-scores across these five runs on
the DSTC 4 test set. The experiments on the baseline
classifiers are not repeated, since they are determin-
istic.

Table 2 compares the results for the two baselines
(LR and SVM) against the RNN models (LSTM
and GRU). The RNN-based architectures improve
the performance over the baseline classifiers by al-
most 10 percentage points. Sequential models show
improvements over non-sequential models. Finally,
LSTM is slightly better than GRU.

Table 3 shows the performance of monodirec-
tional and bidirectional LSTMs as well as various
pooling methods. To match the number of parame-
ters, monodirectional LSTMs use the output dimen-
sion of 500, while the bidirectional LSTMs use the
output dimension of 250. Among the pooling meth-
ods, max pooling outperforms the other methods. In
contrast, monodirectional and bidirectional models
have comparable performances.

Table 4 presents the results for experiments on
different output dimensions of LSTM, random ini-
tialization of word vector, and dropout regulariza-
tion. Smaller LSTM output dimension resulted
in slightly better performance, which indicate that
small sentence embeddings suffice for this classi-
fication task. Randomly initializing the word em-
beddings yields similar performance to pretraining
word embeddings with word2vec. Lastly, regulariz-
ing with dropout slightly improves the performance.

5 Conclusion and Future Work

This article has presented a novel approach to se-
quential short-text classification. Adding context in-
formation helps improve the quality of the predic-

tions, and ANN-models outperform traditional ap-
proaches. One of the main challenges with ANN
models resides in pinpointing the optimal hyperpa-
rameters, as some of them may significantly impact
the performance.

There is still much room for further investiga-
tion. Since unsupervised pre-training of word vec-
tors typically boost the performances of ANNs for
NLP tasks, experimenting with other dense word
embeddings such as GloVe (Pennington et al., 2014)
or Senna (Collobert, 2011; Collobert et al., 2011)
may further improve the performance. Using char-
acter or morphemes as input instead of word vectors
may also help, especially with smaller data sets. Pre-
vious works show that character-level inputs work
well for language modeling (Kim et al., 2015b) as
well as text classification (Zhang and LeCun, 2015).

Different architectures of the ANNs could be
experimented.  Convolutional Neural Networks
(CNNs) are the most obvious choice, as they are a
commonly used layer used along with LSTMs and
GRUs, and they have been reported to work well for
short-text classification (Kim, 2014). It could also
be interesting to propose some new variants of ex-
isting layers, as the framework we have developed
allows fast development iterations.

As the performances may vary depending on the
data sets, it would be valuable to compare models
across more data sets that could be used for sequen-
tial short-text classification annotated with either di-
alog acts such as the Switchboard Dialog Act Cor-
pus (Jurafsky et al., 1997), the ICSI MRDA cor-
pus (Shriberg et al., 2004) and the NPS Chat cor-
pus (Forsyth and Martell, 2007)), or other type of
sequences such as topics.
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