Reimplementing Neural Tensor Networks for
Knowledge Base Completion in the TensorFlow
framework

Dustin Doss, Alex LeNail, Clare Liu
December 2015

Abstract

Reasoning with Neural Tensor Networks for Knowledge Base Completion
has become something of a seminal paper in the short span of two years, cited
by nearly every knowledge base completion (KBC) paper since its publication
in 2013. It was one of the first major successful forays into the field of Deep
Learning in approaching knowledge base completion, and was unique for using
deep learning "end to end”.

TensorFlow is a tensor-oriented numerical computation library recently re-
leased by Google. It represents algorithms as directed acyclic graphs (DAGs),
nodes as operations and edges as schemas for tensors. It has a robust python
API and bindings to GPUs.

We reimplemented Socher’s algorithm in the TensorFlow framework with
an elegant implementation in a modern language, achieving accuracy results
significantly better than random guessing. Our code is freely available on
MIT’s Github. !

1 Introduction

We were initially intrigued by a Kaggle competition called the Allen AI Science
Challenge (posed by the Allen Institute in Seattle), the goal of which is to answer
8th grade multiple-choice science questions with minimal training data, but access
to knowledge bases (3). Two months after the competition commenced, (with an
obvious baseline of 25 percent) top scores hardly exceeded 50 percent. We initially
thought we might attempt to submit an entry to the challenge, but have since backed
off to what we think is likely the key missing component in others’ approaches:
complete knowledge bases. We suspect that given a complete knowledge base, a
knowledge base augmented by some inference algorithm to complete missing edges,
we might be able to supersede the 50 percent threshold.

A knowledge base is a representation of factual knowledge, traditionally in a
graph-like structure. In a knowledge base, entities are represented as nodes and

Thttps://github.mit.edu/clareliu/6.806_knowledge_base_completion

relations as edges. There are a discrete number of relation types, usually a quite
small set of them. Knowledge bases characteristically suffer from incompleteness, in
the form of missing edges. If A is related to B, and B is related to C, oftentimes A is
related to C, but knowledge bases often don’t have these relations explicitly listed,
because they’re simply common sense, and can easily be inferred by a human. This
is the "common sense” often missing in Artificially Intelligent systems, especially
question answering systems, which rely on knowledge bases heavily.

There are a variety of open knowledge bases available today, including but not
limited to YAGO, Wordnet, and Freebase. These are often developed by hand.
Freebase, for example, was put together by contractors working for Google, seeking
to improve search results with richer understandings of entities in search queries.

Humans overlook facts we consider ”obvious,” for example the knowledge base
may specify that ”MIT” is "located in” ”Cambridge” and ” Cambridge” is "located
in” ”Massachusetts” but may neglect to draw another ”located in” edge from ” MIT”
to "Massachusetts”. This is the very simplest kind of missing edge we might en-
counter in a knowledge base, and we’d like to develop a method to predict the likely
truth of new facts with more complicated structure, in effect, reasoning over known
facts and inferring new ones.

One approach to knowledge base completion involves traversing edges of the
knowledge graph and composing their scoring functions to predict new edges (4).
However, we believe that more interesting relationships between entities can be
inferred using a neural network model. Socher et al’s paper Reasoning with Neu-
ral Tensor Networks for Knowledge Base Completion presents an interesting deep
learning approach to knowledge base completion. We reimplemented the algorithm
described in Socher’s paper using TensorFlow, an open-source machine learning li-
brary that represents algorithms as graphs and includes powerful features such as
auto-differentiation, which can be used to simplify the backpropagation step in deep
learning.

2 Background

This section summarizes Socher’s neural tensor network model for knowledge base
completion, which we reimplemented using TensorFlow.

2.1 Overview

Entities are represented as nodes in a knowledge graph while relations are repre-
sented as labeled, directed edges. Therefore, a specific relationship can be defined
as the triple (e1, R,ey), where e; and ey are the two entities and R is the rela-
tion between them. Socher’s model learns vector representations for entities in a
knowledge base to predict entity-relationship triplets using a neural tensor network
(NTN).

Unlike previous knowledge base completion approaches, where an entity is rep-
resented as a single vector, Socher’s method represents an entity as the average of
its word vectors. This allows for the sharing of statistical strength between enti-
ties containing common words (6). For example, even though "tiger” and ”Bengal

2

tiger” are different entities in a knowledge base, there are many similarities be-
tween a generic tiger and a Bengal tiger, so they should share many of the same
relationships. Figure 1 shows a visual depiction of Socher’s method.

Knowledge Base Word Vector Space Reasoning about Relations
l tail
e TS 2 o
cat tail "1 - 3 ‘

dog leg leg

e &dg;g i Neural
Relation: type of — — Tensor
¢ %ger

R
tiger cat Newwork

/
leg limb
een . y " el
) ,--/ In%@ &
Relation: instance of T C@

L
b
N,
W
]
=]
®

(Bengal rtiger, has part, tail)

Bengal tigar [HERr o fonrn e

Does a Bengal tiger have a tail?

Figure 1: This diagram shows how words in a knowledge base are mapped to
vectors and averaged to construct entity vectors. Entity relation triples are passed
to a neural tensor network, which calculates the confidence that the two entities are
in a relationship

2.2 Neural Tensor Network Model

Socher’s Neural Tensor Network (defined below) uses a bilinear tensor layer to relate
the two entity vectors across multiple dimensions. The function g represents the
confidence that the entities e; and eq are in the relationship R. (6).

€2

. (&
gler, B, ez) = ubf (W EHey + Vi () T bp) 1)

f represents the tanh nonlinearity function applied elementwise. v and B are vectors
in R*, e; and ey are d-dimensional embeddings of entities, and W is a R?*¥*¥ tensor.
efWE :k}62, the bilinear tensor product, computes a vector h in R¥, where k is
the depth of the tensor (number of slices). Each entry in h is equal to efWE]eg, a
product which results in a scalar. (6).
V is a matrix in R**2? and the product of V and (2) adds a linear neural-

network layer to the neural tensor network’s output. A visualization of this model
is shown in Figure 2.

Neural Tensor Layer
Linear Slices of Standard Bias
Layer Tensor Layer Layer
/ﬁ_ __________ \I \
|@0® [e00 i A
' 388 @ | , [Goooeo 6
| R S| +8
|@8® [o00 0 : i
| 000 O =
000 @ |
S J
T T \a/[1:2 €1
U f(e w[]e2+ve +b)
2

Figure 2: A visualization of the parameters of Socher’s Neural Tensor Network
Model with k = 2 slices.

2.3 Objective Function

To evaluate the model, triples are corrupted by swapping random entities between
them. For example, the triples (Pablo Picasso, nationality, Spain) and (Barack
Obama, nationality, United States) can be corrupted by swapping ”Spain” and
”United States”, resulting in the incorrect triples (Pablo Picasso, nationality, United
States) and (Barack Obama, nationality, Spain). Socher’s model optimizes the NTN
parameters 2 = (u, W, V,b, E') by minimizing the following objective function (6):

J(Q) = B8 maz(0, 1 — g(TY) + 9(T)) + A3 (2)

N is the number of true training triples, C' is the number of corrupt false ex-
amples generated for each true triple, and A is a regularization parameter which
modulates the L2 norm penalty for the size of the parameters.

g(T™) represents the confidence for the correct triplet and g(Tc(i)) represents the
confidence for the corrupted triplet. Intuitively, this objective function maximizes
the margin between the confidence in the true triple and the false triple.

2.4 Training Function

Socher’s model is trained by taking derivatives with respect to the NTN’s parame-
ters, like in backpropagation for traditional neural networks. Equation 3 represents
the derivative for the jth slice of the tensor layer and Equation 4 represents the jth
element of the hidden tensor layer (6).

ag(ela R7 62)

oWl = ujf/(zj)eleg (3)

Z]' = €{W[j]€2 + V; (Z;) -+ bj (4)

Socher’s model uses the L-BFGS algorithm for parameter estimation and op-
timization. When the model is trained, a confidence threshold Ty is set for each
relation type. If g(ey, R, es) exceeds Tg, then e; and ey are predicted as being in
the relation R. Otherwise, the e; and e, are predicted as not being in the relation
R. The accuracy of the model is then determined by calculating the percentage of
triples that are classified correctly (6).

3 Datasets

Socher evaluated his neural tensor network model on two knowledge bases: Wordnet
and Freebase. Wordnet is a knowledge base for the English language which groups
words into sets of synonyms and contains relations between these sets. Wordnet
contains 38,696 entities and 11 relations (5). Freebase is a collaborative knowledge
base which connects entities as a graph. Freebase contains 75,043 entities and 13
relations (2). We used pretrained word vectors from word2vec rather than using
random initialization and we evaluated our implementation on the Wordnet dataset
(see Section 6).

4 Implementation

We reimplemented Socher’s Neural Tensor Network using TensorFlow, a numerical
computing library similar to Theano and Torch, but slightly different: Although it
is optimized for neural networks and has plenty of additional helper functions for
computations in that domain, it was not only built for Machine Learning. Secondly,
it has visual debugging tools (called TensorBoard) built in to visualize learning and
diagnose potential bottlenecks. (1).

4.1 Data Flow

TensorFlow programs can be divided into three stages: initialization, graph build-
ing, and evaluation. In the initialization stage, we need to provide placeholders to
define the shapes of the inputs to our model. (1)

The graph building stage is further divided into three steps that form a training
loop: inference, loss, and training. The inference step first builds the graph as far
as needed to return a tensor containing output predictions. Next, the loss step adds
the loss operations to the graph. The training step adds the operations needed to
minimize loss to the graph. (1)

Finally, an evaluation graph is generated in order to evaluate the accuracy of the
model’s predictions. Figure 3 depicts the data flow through a typical TensorFlow
program. (1)

Ve Y
{ \

Initialization Placeholder

\ |
- _/

l

AT \. r ™

Building Graph Inference —" Loss —»‘ Training ‘
L J L J L S
G

Evaluation Bl
© 4

Figure 3: This figure shows the four stages of a TensorFlow program: Inference,
loss, training, and evaluation

4.2 Hyperparameters

To better compare our model to Socher’s model, we used the same hyperparameters
as Socher. We set k = 2 (number of slices), C' = 10 (corrupted triples per correct
triple), the dimensionality of the hidden layer to 100, and the number of training
iterations to 500 (6). We also used the AdaGrad optimizer in the training function
because TensorFlow does not yet provide support for the L-BFGS optimizer.

4.3 Implementation Details

Following the paradigm of TensorFlow laid out above, we implemented Socher’s
Neural Tensor Network across five files:

e In params.py, we defined both the model hyperparameters (listed above) as
well as input/output file parameters.

o In ntn_input.py, we defined a set of functions to load and preprocess the entity
and relation data; training, test, and development sets; and preinitialized word
embeddings.

e In ntn.py, the bulk of the model was defined. We used four functions corre-
sponding to the three data stages shown in figure 3, each defining the relevant
portion of the graph. Inference took in true/corrupted example triples and
outputted a list of corresponding probabilities; loss calculated the loss func-
tion as defined in Socher 2013; training ran the AdaGrad optimizer on the
batch to minimize loss. Evaluation, running on a separate pipeline, took in
the results of inference and compared them to known data labels (true or false
edges).

e Finally, ntn_train.py and nitn_eval.py defined the data pipelines and built their
respective graphs to train and evaluate the model respectively.

Below, we shall discuss some of the challenges and limitations inherit in Tensor-
Flow and how they affected our implementation of Socher’s algorithm.

4.4 Challenges

TensorFlow, being a relatively new machine learning framework, is predictably lack-
ing in accurate and comprehensive documentation. In addition, the mental shift
to TensorFlow’s ”build-evaluate” model, as opposed to a more familiar functional
model, required significant work.

These general difficulties aside, there were a few specific problems faced within
the framework which affected our implementation. As discussed above, TensorFlow
currently has no implementation of the L-BFGS optimizer. We instead used the
AdaGrad optimizer with a learning rate of 0.01; however, this was reported as being
suboptimal compared to L-BFGS.

More troublesome, however, was an undocumented limitation in one of the key
TensorFlow operations utilized in our implementation. tf.DynamicPartition was
used in our initial implementation to split the given examples in inference based
on their relation type. However, this function is currently incompatible with Ten-
sorFlow’s automatic differentiation. This led us to preprocess and split each batch
before performing the inference. It is unclear how this affected the accuracy found
in our implementation.

5 Baselines

Socher’s neural tensor network model achieved a 86.2 percent accuracy using the
Wordnet dataset and a 90.0 percent accuracy on the Freebase dataset. Socher’s
paper also compared their NTN model’s results to many other models for knowledge
base completion, such as the Distance Model, Single Layer Model, and Bilinear
Model (6). Results are reported below.

Model Wordnet | Freebase

Random Guessing 50.0 50.0

Distance Model 68.3 61.0

Single Layer Model 76.0 85.3

Bilinear Model 84.1 87.7

Socher’s NTN Model 86.2 90.0
6 Results

The following table shows our model’s precision after completing n iterations on
the Wordnet dataset, where n varies from 0 to 500.

Iterations | Wordnet Accuracy
0 50.260
70 68.911
100 69.513
500 68.152

After 500 iterations, our model achieved a final accuracy of 68.15 percent on the
Wordnet dataset, with an optimal test accuracy of 69.513 after iteration 100. Our

7

model significantly outperforms a baseline of random guessing and achieves a similar
accuracy as the distance model. However, our model underperforms compared to
other neural network models, including Socher’s neural tensor network model.

Our implementation had several deviations from Socher’s model, which may
explain some of the inconsistencies in our results. For example, our implementation
did not calculate thresholds for each relation and instead used a threshold value of
0.0 for all relations when determining final predictions.

The NTN model is trained to maximize the true scores and minimize corrupted
scores for each relation. However, this does not specify any information about
the cutoff, or threshold, that is generated to optimally seperate true and false
examples. Therefore, a more successful implementation might use a development
set to pick these cutoffs deterministically and for each relation, to further improve
the algorithm’s ability to label any given example.

In addition, as previously mentioned, our implementation used the AdaGrad
optimizer instead of the L-BFGS optimizer. Socher also experimented with the
AdaGrad optimizer, but ”found that it performed slightly worse” (6).

Finally, our model achieved a higher accuracy for 100 iterations than for 500 it-
erations, which suggests that TensorFlow may be overfitting our model’s paramters.
Therefore, additional tuning of our model’s hyperparameters may be necessary to
achieve optimal accuracy results.

7 Conclusions and Future Work

This project was in part an exploration and evaluation of TensorFlow and in part
an evaluation of Neural Tensor Networks for Knowledge Base Completion. As a
result, we have conclusions about each of these components.

TensorFlow is surprisingly immature as an open-source project. Even though it
was released by Google, embarrassingly simple errors abound in the documentation,
and painfully missing functions which are cornerstones of comparable frameworks
are unadressed. TensorFlow seems to have been developed to effortlessly support
classic CNN architectures and programs, but our relatively arcane Neural Tensor
Network model had to jump through a great many hoops to exist inside the Ten-
sorFlow paradigm.

Robust Multi-GPU support is still missing in TensorFlow (though it’s being
worked on at Google right now). It may be the case that Google prematurely
released the library or simply that they did not design it for our particular use
case. Worth noting is that none of us have much experience with numpy/scipy,
Torch, or Theano, which means we may have overlooked some much easier way
of accomplishing our goals which was not obvious to us. When we first set out to
built a Neural Tensor Network in TensorFlow, it wasn’t clear to us how to define the
Bilinear Tensor Product. It turns out the canonical way of defining most operations
is by reshaping the data such that the original operation becomes a matrix multiply,
or several, interspersed with reshapes. This provides evidence for our naiveté which
might extend into other parts of our implementation.

This project also provided us an opportunity to peer into the domain of Knowl-

edge Base Completion and new approaches to that problem. Socher and Chen’s
Neural Tensor Network approach seems quite insightful and performs quite well. We
weren’t able to reach feature parity with them (they do a fair bit of pre-processing
and post-processing, as well as using a different optimizer) which substantially
harmed our performance.

Since their work, a number of other approaches that built off of Socher and
Chen’s work have improved slightly on their performances, but no breakthrough
has been accomplished since. We wonder what might result from adjoining the
tensors (each indexed by R) into one larger tensor in order to share statistical
strength across relation types. We also wonder whether there might be a better
way to model relations, which can often mean different things in different contexts,
rather than rigid on/off settings. Which brought us to the idea that knowledge
bases might be a sub-optimal way of modeling knowledge. Many systems deployed
across a variety of domains use knowledge bases quite successfully, but knowledge
bases represent a set of factual truths in a very strict manner, which inevitably
leads to their incompleteness — many truths are subtle and complex, perhaps even
most of them.

We also wonder whether there might be a way to constructively use RNNs to
build entity representations. Socher et al. abandon the idea because of the fact
that entities with names like Giuseppe Bandolino don’t have much information in
their ordering, meaning that performing anything more than averaging the word
vectors is overkill. But many entities could benefit from an RNN-based entity
construction, such as ”Bank of America” which is not simply the average of America
and Bank. It stands to reason there may be a way to productively use RNNs for
entity representation.

We look forward to seeing the maturing of TensorFlow, which is undoubtedly
promising, and advances in the field of Knowledge Base Completion, which we think
has much potential for growth.

References

[1] Abadi, M., Agarwal, A., Barham, P., et al. (2015). TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems.

2] Freebase. (n.d.). Freebase Documentation. Retrieved December 10, 2015, from
http://wiki.freebase.com/wiki/Main_Page

[3] Kaggle. (2015). The Allen Al Science Challenge. Retrieved December 10, 2015,
from https://www.kaggle.com/c/the-allen-ai-science-challenge/

[4] Guu, K., Miller, J., & Liang, P. (2015). Traversing Knowledge Graphs in Vector
Space. EMNLP.

[5] Princeton University. (2010). About Wordnet. Retrieved December 10, 2015,
from http://wordnet.princeton.edu

[6] Socher, R., Chen, D., Manning, C., & Ng, A. (2013). Reasoning With Neural
Tensor Networks for Knowledge Base Completion. Advances in Neural Informa-
tion Processing Systems (NIPS).

10

