
Unsupervised Learning of Hierarchical Representations for Recipe Text
with Deep Belief Networks

Gregory Izatt*

Abstract— We explore the application of deep belief networks
(DBNs) as language models for the instruction text of cooking
recipes. We provide quantitative evidence that DBNs can
outperform simpler, non-hierarchical language models, as well
as qualitative evidence that they can succeed at learning rea-
sonable hierarchical representations. We also evaluate a method
for extracting and improving the hierarchical representations
learned by our model, which relies on achieving sparsity in the
hidden layers.1

I. INTRODUCTION

Cooking is a classic AI task with broad relevance across
the fields of natural language processing, knowledge repre-
sentation, and robotics. While the vocabulary of cooking is
more restricted that the broader vocabulary of speech, the
extraction of structure from the raw text of a recipe remains
a difficult challenge. The internet provides an incredibly large
number of recipes, but their natural language representation
can be difficult to unravel: coreferences to ingredients and
the products of actions abound, and critical steps are often
left implicit.

A fair amount of work has been done on the extraction of
consistently-formatted, unambiguated recipes from almost-
raw text, and almost all of them involve translating existing
recipes into graphical representations (see Figure 1). [4]
demonstrated that it is possible to assemble these graphs
given hand-crafted dictionaries of domain-specific nouns
and verbs and appropriate rules to connect them. (These
dictionaries can be constructed automatically, however: see,
e.g., [14].) This graphical representation translates ingredi-
ents and actions into nodes, with directed connections from
ingredients or actions into other actions. This representation
naturally enforces the implicit structure in a recipe that each
ingredient is used exactly once (and then is exhausted), and
that the product of each action is used exactly once as
either an input to another action, or the final product. It also
allows the true process of executing the recipe to be read
off relatively easily for execution on a robot (as in, e.g.,
[3]), and allows comparison to other recipes (by using, e.g.,
subgraph comparisons [16]). These graphical representations
have stuck around, seeing implementation in the International
Computer Cooking Contest [15], and even reformulation as
a POMDP [8].

However, these graph-construction techniques are con-
strained by design to represent recipes in a shallow way.

*Work performed under the structure of MIT Course 6-864: Advanced
Topics in Natural Language Processing, with direction and mentorship from
the course staff.

1Our code is available for those with MIT certificates at https://
github.mit.edu/gizatt/hierarchical-recipe.

Fig. 1. Cooking graph from [16], with example corresponding raw recipe
text from allrecipes.com.

This has significant benefits, including simplicity of for-
mulation and clarity of evaluation and application of the
resulting graph. However, constraining the graphical models
to be shallow removes the possiblity of exploiting deeper
structure inherent in recipes. Recipes tend to be constructed
out of sub-recipes, which constitute common cooking tasks:
for example, many baking recipes share the preparation of
a 〈flour〉+〈water〉+〈leavening agent〉+〈activator〉 dough. In-
deed, that these kinds of subrecipes appear as subgraphs was
critical to the success of [16]. Such subrecipe information
may prove invaluable in parsing more difficult recipes which
skip over vital details in the name of ”common sense.”
It would then be of significant benefit to explore more
hierarchical recipe representations.

Where many of these previous methods are supervised,
we focus instead on unsupervised methods for extracting
this structure. The state of the art of hierarchical language
and topic modeling provides a multitude of options for such
unsupervised representation learning, including hierarchical
LDA [2], deep belief networks (DBNs) [5], deep Boltzman
machines (DBMs) [11], and some mixtures of those models
(e.g. hLDA and DBM [12], [1]). DBNs have been applied
with moderate success to lists of ingredients standing alone
[10], and with great success to many other topics. We explore
the application of DBNs to uncover hierarchical topic models
for recipes.

https://github.mit.edu/gizatt/hierarchical-recipe
https://github.mit.edu/gizatt/hierarchical-recipe

II. DATASET

We crawled 49, 893 recipes from the internet using the
Scrapy Python toolbox [13] 2. For each recipe, the instruction
text (without the ingredient list) was parsed into an ordered
list of words, which was then prepended with < START >
and postpended with < END >. We will refer to each of
these parsed recipe instruction vectors as a ”sentence,”
even if they are actually composed of multiple recipe
steps or individual grammatical sentences. From these sen-
tences, containing a total of 5, 138, 260 words, we extracted
a unique vocabulary of |V | = 9, 400 words.

To speed development and alleviate technical limitations
with our DBN implementation (see Discussion and Future
Work), we also created a smaller dataset from the first 2784
recipes in the dataset, with a total of 315, 929 words and
a vocabulary size of |V | = 2784 words. We refer to the
complete dataset as corpus all, and this smaller dataset as
corpus small.

Each of these corpuses was further split into train,
validation, and test sets, as 93%, 2%, and 5% of their
corpus respectively.

III. FORMULATION

Our primary goal is to explore avenues for learning and
extracting hierarchical representations for the highly struc-
tured text of cooking recipe instructions. We tackle this by
applying a DBN as a language model for such a corpus,
with the hope that in learning a model for the language,
it will arrive on such a representation due to the particular
structure of DBNs. This method has shown success in the
past: for example, [6] demonstrated that DBNs arrive on
hierarchical representations for visual inputs very similar to
those identified in the visual area V2, and [7] extended this
work with additional convolutional structure to uncover a
hierarchy of features for face recognition [7].

DBNs are a subclass of probabilistic graphical models,
formed by stacking bipartite Markov random fields known as
Restricted Boltzmann Machines (RBMs). [5] demonstrated
that they can be trained by greedily training each RBM from
the bottom up to behave as an autoencoder using a gradient
approximation technique (contrastive divergence, CD). We
can use the DBN model to estimate P (w) for an input
sentence w. To do this, we consider the input to our DBN
model to be a bag-of-words: a binary vector of the size |V |,
where we set the ith input node to 1 if the ith word in
the vocabulary appears in w. We can use Gibbs steps to
sample from the DBN the probability of each visible node
being active given that initial condition, and then compute the
cross-entropy between that multivariate distribution and the
original bag-of-words computed from the sentence. During
training, we use 5 Gibbs steps for CD calculation. During
sentence prediction, we use 1 Gibbs step to calculate bag-
of-word probabilities.

2Code available at https://github.com/gizatt/scraping_
samples, though raw data is included in the main project repository.

The work of [6] suggests that the addition of a cost
penalty encouraging sparsity among the nodes of the hidden
layers of the DBN can encourage the network to arrive at
better hierarchical models – or, at the very least, make those
models easier to extract. This strategy makes sense, from the
observation that without such a penalty, it is likely that even
if there is some mapping of hidden node values to learned
hierarchical topics, a given topic is likely to be distributed
across nodes, and hence difficult to discover. We experiment
with the addition of a similar sparsity penalty: in between
every CD-gradient step, we used a gradient descent step to
descend a cost function that penalized deviation of the L 1

2 -
norm across the |h| hidden units of each RBM from p = |h|

10 :

min

∣∣∣∣∣∣p−
(∑

h∈h

|E[hl|vl]|
1
2

)2
∣∣∣∣∣∣

We consider the comparison of a single-layer DBN (i.e.
a single RBM) to a two-layer DBN (see Figure 2), each
with and without the L 1

2 penalty. We implement these
DBNs in Python, leveraging numpy, scipy, scikitlearn,
and Theano3.

IV. EVALUATION

Fig. 2. DBN architectures we compare. Left: A single-layer DBN,
consisting of a single RBM with |V | = 2784 visible nodes and 10 hidden
nodes. Right: A two-layer DBN, mapping a |V | = 2784-node input through
hidden layers of 100, and then 10, nodes.

As we are learning a language model, we can adopt
perplexity as a quantitative measure corresponding roughly to
the compressive ability of the model. If our language model
predicts the probability of a sentence w is PM (w), then we
define the per-word perplexity:

2−
1
N

∑
w∈Corpus log2 PM (w)

where N is the total number of words in the corpus.

V. BASELINES

To provide a reference on our quantitative measure, we
implement a few baselines to judge performance against:

3http://deeplearning.net/software/theano/

https://github.com/gizatt/scraping_samples
https://github.com/gizatt/scraping_samples
http://deeplearning.net/software/theano/

A. Uniform

If we consider all words in the vocabulary to be equally
likely, then we can assign Puniform(w ∈ V) = 1

|V | .
Then we expect Puniform(w) = Puniform(w1w2...wk) =

Πk
i=0Puniform(wi) = 1

|V |
k, with a per-word perplexity

equaling the vocabulary size.

B. Unigram

If we factor all sentence probabilities such that
words are considered to occur independently, then we
see that Punigram(w) = Punigram(w1w2...wk) =
Πk

i=0Punigram(wi) can be maximized over a corpus by
learning Punigram(w) for all w ∈ V as ratio of occurrences
of w in the corpus versus the occurrences of all words. This
is the classic unigram model. We include add-ε smoothing to
account for words missing in the training set but appearing
in validation or test. We chose ε = 1 by empirical evaluation
on the validation set.

C. Bigram

Similarly, if we factor sentence probabilities such
that words depend only on their predecessors, we
see that Pbigram(w) = Pbigram(w1w2...wk) =
Πk

i=0Pbigram(wi|wi−1) can be maximized over a corpus by
learning the bigram occurrences of wi−1, wi for all word
pairs in the corpus. This is the classic bigram model. We
include add-ε smoothing here as well. We chose ε = 0.005
by empirical evaluation on the validation set.

D. Recurrent Neural Network

Out of interest in experimenting with classes of recurrent
neural networks (RNNs) that have gained significant popu-
larity in recent years, we include an initial exploration of
RNNs applied to this language modeling task, leveraging
theanets4 to decrease developmental overhead. The RNN
architecture we explore uses a |V |-node one-hot input layer,
a 100-node tanh encoding layer, a 100-node LSTM layer,
and a |V |-node softmax output layer. It is trained to predict
the probability of the next word in a sentence given the
current word, after being exposed to each of the previous
words in the sentence in sequence. The RNN is trained by
backpropagation of cross-entropy prediction error.

E. Latent Dirichlet Allocation

We also provide a framework for applying Latent Dirichlet
Allocation (LDA) to this dataset, by leveraging scikitlearn.
Given a corpus, LDA determines a set of topics that explain
the co-occurrence of sets of words in the sentences of the
corpus. This topic modeling is conceptually similar to what
is performed by a single RBM, if the nodes of the RBM
(or perhaps combinations of them) represent topics; hence
we hoped that this baseline would offer a good basis for
comparison with our DBN. We use n = 10 topics.

4https://github.com/lmjohns3/theanets

VI. QUANTITATIVE EVALUATION

Model performances on the the small and all corpuses are
reported in Table 3. All results are computed on the held-out
test subset of the corresponding subset, which was novel to
the model.

Performance on the Uniform, Unigram, and Bigram base-
lines are unsurprising, and provide a sanity check concerning
what perplexity values we should expect from better models.

RNN performance was somewhat disappointing: while
the RNN should have been able to outperform the bigram
baseline (at the very least), we could not tune it to near that
level. While we had time to test a handful of variants on our
RNN architecture, that search did not improve the quality of
the model. Preliminary results from an unconverged model
trained on the all corpus also suggests that simply training
on more data will not improve the performance. We suspect
a hyperparameter problem, but did not have time to pursue
the issue due to focus on analyzing and improving the DBN
model.

LDA performance was also disappointing, though for a
different reason. LDA dramatically overfit on the smaller
corpus, and still fairly strongly overfit on the larger corpus.
This overfitting, and generally weak performance (barely bet-
ter than unigram!) implies the need for better regularization
or smoothing; however, those were knobs we did not have
time to tune due to focus on analyzing and improving DBN
model.

In contrast, DBN performance is exceptionally good –
so good that wish to present these quantitative results only
cautiously and tentatively, out of fear of mistakes in our
implementation. Taking our results at face value, the RBM,
with or without sparsity, was the best performing model by a
wide margin, with the two-layer DBN following behind. The
sparsity did not appear to have a significant impact on the
ultimately quantitative performance, though we would need
to train many more DBMs to be sure. We hypothesize this
may be due to the relatively small architectures, and hence
relatively simple search spaces. That the RBM outperforms
the deeper model is counter to our hypothesis: we expected
extra depth to prove useful to the model. We think, in
this case, the opposite occurred: the extra layer added a
significant number of parameters to the model beyond what
our small dataset could support, resulting in overfitting and
a worse overall model.

There are several explanations for the performance dis-
parity between the baselines and the DBNs. The first is
that we did not have adequate time to tune the nontrivial
baselines (LDA and RNN) to a sufficient degree to match
the performance of the DBN. The second is that we are, to a
degree, comparing apples to oranges: the DBN is calculating
sentence probabilities based on a bag-of-words model, while
other baselines are relying on the temporal ordering of words
to calculate probability. We contend that the same probability
– the probability of a sentence being a member of the
language of recipes – is being calculated in both cases, but
the means that the model uses to calculate the probability

https://github.com/lmjohns3/theanets

(and hence the complexity of the model being learned)
is more complicated in the case of the worse-performing
baselines.

These low perplexities certainly indicate the remarkable
structure inherent in recipe texts. That recipe texts are so
highly structured is not entirely surprising; but that such
a small RBM is able to capture that structure is certainly
impressive.

Model Perplexity
small all

Uniform 3722 9400
Unigram 334.96 346.93
Bigram 54.12 36.02
RNN 161.04 —-
LDA 1799.33 387.06

LDA, on train 293.29 275.69
RBM10 4.79 —-

RBM10, Sparse 4.75 —-
DBN100,10 7.40 —-

DBN100,10, Sparse 7.37 —-

Fig. 3. Perplexities across both corpuses, and all language models, where
available. Perplexity performance is not available on the all corpus due to
time and memory constraints on the RNN, RBM, and DBN models. Save on
the second LDA statistic, all performances are estimated over the withheld
test set; the second LDA statistic reports LDA perplexity estimated over the
training set. DBN performances are the average of three separately trained
models, initialized with different random seeds; the performances of the
individual models are listed in the README of the code respository.

VII. QUALITATIVE INVESTIGATION OF THE
MODEL

If we hypothesize that the way the DBN is storing the
input bag-of-words among its hidden nodes is by discovering
a number of topics, which are present when a given hidden
node (or combination thereof) is active, then we ought to
be able to unveil those topics by performing the reverse
operation. That is, we can turn on a set of hidden nodes
and propagate activation downward to see which words most
strongly correlate with those nodes. (It makes more sense
that this technique should work when the sparsity penalty
is applied; however, we’ll see that it seems to work even
without enforcing such additional structure.) To generate
each bag-of-words shown here, we set a single hidden node
in the target layer to 1; propagate activations downwards
according to the learned weights of the model; and select
the top words indicated by the mean values of the nodes of
the visible layer. Words are displayed in decreasing order of
likelihood.

A. RBN10, Top Layer

Activating single hidden nodes of RBM10 reveals that
individual nodes correspond strongly to distinct bags-of-
words with thematic similarity. In a representative run of
both sparse and nonsparse RBM10, there were no common
words other than the < START > and < STOP >
symbols shared among any of the discovered bags-of-words.

Further, all of the bags-of-words had at least one common
theme (though it appeared that they may have had multiple
common themes each).5 One such bag-of-words from the
best performing sparse DBN10 included a distinct dessert
flair:

NODE 0: and bake sugar beat confectioners vanilla mixer
cake electric f cookies degrees wire speed extract fluffy stiff
dough rack beating pie crust after oven peaks or cookie whites
chocolate eggs soda cool batter each whipped filling cream
condensed top press mixing sift ingredients sweetened cup inch
pans 325 racks c addition ice bottom light flour sheets onto
9 ungreased cocoa greased frosting shortening creamed egg
spread 1 cinnamon gradually glass manufacturer of at frost
almond parchment freeze graham chips will white form round
icing floured butter cakes topping shell chill milk make time
cooling edges pecans metal combine ...

B. DBN100,10, Top Layer

Activating single hidden nodes of the top layer of
DBN100,10 revealed qualitatively similar behavior, though
the topics tended to be less well-defined. 6 In both sparse and
nonsparse DBN, many more words were shared between the
each of the high-level nodes. After removing those shared
words, the remaining nodes had, perhaps half of the time,
discernable theme. For example, the best-performing non-
sparse DBN100,10 had a distinct ”cake” high-level neuron:

NODE 5: and until in beat smooth medium vanilla flour sugar
milk frosting about cake electric mixture all egg bowl add cream
out cocoa into over confectioners vegetable before butter water
creamy icing combined food 5 well grease powder is yogurt
extract mixer ingredients softened soda cook pans skillet each
pan whites fill bananas eggs beating with between stirring speed
high margarine place clean batter chilled after top use or at
gradually separate reached then of blend banana round coconut
frost 3 light constantly sift ...

However, many other nodes corresponded to bags of
generic common recipe words. For example:

NODE 7: and in degrees medium into over until skillet of c 5
top about f place with bowl serve mixture cream egg baking
heat each cook at an on side milk smooth ground ice garlic
350 sauce per sheet wrap preheat 3 preheated form or hot pour
high bake pepper 30 eggs out slice should plastic dip before
once sides center spoon water down pan all is half 4 powder
your food more low onion constantly oven dish then black well
toasted set oil ...

C. DBN100,10, Middle Layer

Of great interest to us in our pursuit for hierarchical
representation is whether this method, applied to the middle
layer of hidden nodes, reveals that the network has discov-
ered substructure of recipe topics.7 We find that, in both
the sparse and nonsparse DBN100,10, the intermediate nodes
correspond to a mixture of mostly similar bags of vaguely
related recipe words:

NODE 68: all 2 of food using inch after 1 on not paper onto
into is at knife up from or bottom add seal if inches press
that sugar each they air around necessary it surface process
mixture filling water large lid for spatula least rack make the
an you moist with top tops store cool out together bubbles 4
move about filled tight lower have are within towel jars by pour
lids will so apart may screw place down rolling until fill thin

5All 10 bags-of-words with minor commentary available in the project
repo at dbn/small_10_l12_sparse_0001.dbn.samples for the
sparse RBM, and dbn/small_10_nonsparse_0002.dbn.samples
for the nonsparse RBM.

6All 10 bags-of-words with minor commentary available in the project
repo at dbn/small_100_10_l12_sparse_0002.dbn.samples
for the sparse DBN, and dbn/small_100_10_nonsparse_0002.
dbn.samples for the nonsparse DBN.

7Intermediate node bags-of-words available in the same files as listed for
the top-level bags of words for each DBN.

carefully leave rims use halfway salt remove as enough flour
off several area mix sterilize bowl ...

However, we found a handful of much more specific
nodes corresponding to sensible cooking substructures. For
example, the best-performing sparse DBN100,10 produces a
distinctive node corresponding to the act of testing whether
a baked good is done with a toothpick, with the top 6 most
likely words corresponding to that action:

NODE 40: out inserted clean comes toothpick center bowl
using knife of cake large time into fluted banana confectioners
r until alternating or preheated all cupcakes creamy cupcake ...

A very similar node is present in the nonsparse DBN,
perhaps indicating the stability of this behavior:

NODE 35: inserted toothpick comes clean frosting cake out
boil s saucepan two center simmer pans batter bring after icing
manufacturer tube beating addition an cocoa ...

Another intriguing substructure relates to the presence of
rice krispies in a handful of recipes in the corpus:

NODE 15: and firm crust manufacturer maker s boil cracker
krispies graham c buttered kellogg salted using freeze con-
densed ice decorate cream marshmallows best cereal instruc-
tions shortening sweetened a ...

VIII. DISCUSSION AND FUTURE WORK

That the RBM and DBN beat the baselines confirm that
recipe instructions have extremely significant inherent struc-
ture on a scale beyond what our relatively simple and local
baselines could take advantage of. Further, our qualitative
investigation of the RBM and DBN suggests the models are
truly relying on sensible and significant topic-based structure
within the corpus. The RBM appears to perform similarity
to a good topic model: it forms a basis of topics to span the
space of recipes, with each topic corresponding some number
of words that tend to co-occur. The DBN – the deeper model
– shows hints of uncovering the kind of hierarchical topical
structure we hoped for, in representing more specific recipe
subparts and substructures with its intermediate nodes.

However, significant work remains to be done concerning
many aspects of this work. Perhaps the clearest future work
entail investigating the lackluster performance of our base-
lines. While the failure of the RNN can perhaps be chalked
up to an improper architecture, implementation mistake, or
hyperparameter choice, the extremely poor performance of
the LDA is very surprising, considering the simplicity of the
corresponding code, and merits investigation.

Additionally, it contradicts our hypothesis that the DBN
is outperformed by the shallower RBM, particularly consid-
ering the very small number of hidden nodes available to
the RBM. We suspect this is due to the additional difficulty
in training the larger DBN, along with a mismatch between
the size of our corpus, and the complexity of our models.
The DBN model is sufficiently high-dimensional that using
a dataset as small as we have is risky, and is likely to have
caused significant overfitting.8

8The reason we were restricted to using less than 10% of our available
corpus for training is simple but resolvable: our original Theano imple-
mentation of DBN was not created with loading in different sections of a
massive corpus during training, instead opting to load the entire corpus
simultaneously to GPU memory. By the time it was clear that corpus
size was limiting our performance, it was too late to make significant
architectural modifications to the codebase.

In formulating DBNs as considering the likelihood of
bags-of-words as opposed to ordered lists of words, we
discarded temporal information that is critical in the formu-
lation of implementable cooking graphs. While this signifi-
cant compromise was necessary to keep our work within a
reasonable scope, there is a way forward: application of the
convolutional DBN structure advocated in [7] could allow us
to recover temporal structure without blowing up the input
dimension size of the network.

Finally, on a more fundamental level, our method of
extracting the learned structure from DBNs is not general
or automatic enough to be extensible to larger DBNs, or
to allow extraction of directly practical recipe structures
like the cooking graphs of [4]. While it was our hope
that adding a sparsity penalty might lead to a significant
additional structuring to the representation used by the DBN
(in terms of forcing it to use only a small number of nodes
to encode a given recipe), the penalty we applied did not
have measureable impact on either quantiative or qualitative
results.

In conclusion, we have demonstrated hints that DBNs can
recover hierarchical structure from recipe instructions in an
unsupervised manner. However, the development of means
for improving, extracting, and applying that structure remains
an open problem.

ACKNOWLEDGMENTS

My thanks to Regina Barzilay and Tommi Jaakkola for
their direction early in the project. Particular thanks to
Karthik for his specific advice on improving both my RNN
and DBN implementations. My thanks to you three, as well
as Franck and Tianheng, for a great term!

REFERENCES

[1] Yoshua Bengio, Aaron Courville, Pascal Vincent, Representation
Learning: A Review and New Perspectives (2013), IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(8), pp. 1798-1828.

[2] David M. Blei, Thomas L. Griffiths, Michael I. Jordan, Joshua
B. Tenenbaum Hierarchical Topic Models and the Nested Chinese
Restaurant Process (2012), Neural Information Processing Systems 16.

[3] Mario Bollini, Stefanie Tellex, Tyler Thompson, Nicholas Roy, Daniela
Rus, Interpreting and Executing Recipes with a Cooking Robot (2013),
Proceedings of ISER.

[4] Reiko Hamada, Ichiro Ide, Shuichi Sakai, Hidehiko Tanaka, Structural
Analysis of Cooking Preparation Steps in Japanese (2000), Proceed-
ings of the Fifth International Workshop on Information Retrieval with
Asian Languages, pp. 156-164.

[5] Geoffrey Hinton, Simon Osindero, Yee-Whye Teh, A fast learning
algorithm for deep belief nets (2006), Neural Computation, 18, pp.
1527-1554.

[6] Honglak Lee, Chaitanya Ekanadham, Andrew Y. Ng, Sparse deep
belief net model for visual area V2 (2007), Proceedings of the 29th
Conference on Neural Information Processing Systems.

[7] Honglak Lee, Roger Grosse, Rajesh Ranganath, Andrew Y. Ng,
Convolutional Deep Belief Networks for Scalabe Unsupervised Learn-
ing of Hierarchical Representations (2009), Proceedings of the 26th
International Conference on Machine Learning.

[8] Jon Malmaud, Earl J. Wagner, Nancy Chang, Kevin Murphy, Cooking
with Semantics (2014), Proceedings of the ACL 2014 Workshop on
Semantic Parsing, pp. 33-38.

[9] Tomas Mikolov, Kai Chen, Greg S. Corrado, Jeffrey Dean, Efficient
estimation of word representations in vector space (2013), Interna-
tional Conference on Learning Representations.

[10] Vladimir Nedovic, Learning recipe ingredient space using generative
probabilistic models (2013), Proceedings of the Cooking with Com-
puters Workshop, 1, pp 13-18.

[11] Ruslan Salakhutdinov, Geoffrey Hinton, Deep Boltzman Machines
(2009), Proceedings of the 12th International Conference on Artificial
Intelligence and Statistics, 12.

[12] Ruslan Salakhutdinov, Joshua B. Tenenbaum, Antonio Torralba,
Learning with Hierarchical-Deep Models (2013), IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35.

[13] http://scrapy.org/
[14] Shunsuke Mori, Tetsuro Sasada, Yoko Yamakata, Koichiro Yoshino,

A Machine Learning Approach to Recipe text Processing (2012),
Proceedsing of Cooking with Computers Workshop.

[15] Kristin Walter, Mirjam Minor, Ralph Bergmann, Workflow Extraction
from Cooking Recipes (2011), Proceedings of the ICCBR 2011
Workshops, pp. 207-216.

[16] Liping Wang, Qing Li, Na Li, Guozhu Dong, Yu Yang, Substructure
Similarity Measurement in Chinese Recipes (2008), WWW 2008,
ACM, pp. 979-988.

	Introduction
	DATASET
	FORMULATION
	EVALUATION
	BASELINES
	Uniform
	Unigram
	Bigram
	Recurrent Neural Network
	Latent Dirichlet Allocation

	QUANTITATIVE EVALUATION
	QUALITATIVE INVESTIGATION OF THE MODEL
	RBN10, Top Layer
	DBN100, 10, Top Layer
	DBN100, 10, Middle Layer

	DISCUSSION AND FUTURE WORK
	References

