Determining APl Usage Policies from Method

Introduction: API constraints

e APl methods have constraints (e.g., number of arguments, posi-

tive values)
e Documentation conveys constraints in natural language

/*>/<
Adds the specified component to the layout , using the
specified constraint object. For border layouts , the

constraint must be one of the following constants:
NORTH, SOUTH, EAST, WEST, or CENTER.

*/

public void addLayoutComponent(Component comp,
Object constraints) {

¥

* % % % %

e Learn these constraints

Approach: static analysis as ground truth

e Run a static analysis to get properties about method usages
e Call those results typical (assume usages correct)
e earn to predict the results from documentation

e Predict analysis result for unseen usages from documentation

Application: constantness of arguments

Should a parameter be a statically known value (constant), or can
it be a dynamic, runtime value (non-constant)? (note: has nothing to

do with C++ const arguments)

e Not a typical constraint

e Interesting restriction: makes sense in some cases (e.g., permis-
sions for open())

e Ground truth static analysis 1s extremely reliable

Documentation

Tej Chajed, Jimmy Koppel
6.864 Fall 2015

Learning samples

For each usage, get:
e documentation for called method
e whether each argument Is called with a constant

Aggregate for each (method, arg) pair the fraction of uses that
had a constant argument

Convert fraction of constant usages to a classification problem:

fraction constant class
O never constant
0-0.1 probably non-constant
0.1-0.9 maybe constant
0.9-1.0 constant

Data: Java from the MUSE corpus

e Extracted 36,435 documented APl methods with arguments

e [otal of 11M usages

e Produced 8,700 training examples (after aggregating within each
documented method), which we split:
train dev eval

70% 15% 15%

Neural Network model

Learn word embeddings along with LS TM model to capture context
In documentation text.

never const

Results

Trained on ~ 6000 examples.
classifier dev eval

Baseline (prior distribution) 57% 61%
always predicts “never constant”
Maximum entropy with
bag-of-words model
Neural Net

62% 67%

61% 61%



