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Introduction 

 

Coreference is an extremely important 

problem of Natural Language Processing 

involving disambiguating the subject of 

some kind of indeterminate reference (such 

as a pronoun). For example, determining 

who ‘he’ is in the sentence “Mary lent Joe a 

book that he hadn’t read” is a problem of 

coreference. Note that this coreference 

problem is relatively easy to solve – we 

know that ‘Mary’ is a female name, and we 

know that ‘he’ must resolve to a male 

person. However, harder coreference 

problems often cannot be solved using these 

syntactic rules. For example, in this 

sentence: 

Ex: Despite its small size, the ant 

managed to drag the leaf. 

The coreference in this sentence cannot 

be resolved without knowledge of the world 

(what is ‘size’, what is ‘small’) and inductive 

ability (‘despite’ indicates that we are 

somewhat surprised about the contents of 

the sentence – thus it makes more sense 

that ‘the ant’ is being described as small). 

Humans perform extraordinarily well on 

these kinds of coreference problems, but 

current natural language systems are far 

behind. 

                                                           
1 Available from 
http://www.hlt.utdallas.edu/~vince/data/emnlp12/ 

In this paper, we outline an approach to 

solving difficult coreference problems using 

the semantic information contained in word 

vector embeddings. We show that word 

vector information alone is enough to 

resolve a significant number of coreference 

problems, and compare a word-vector-only 

approach against several state-of-the-art 

coreference resolution systems. 

 

Dataset  

 

The Winograd dataset1, gathered by 

Rahman and Ng (2012), consists of 1886 

sentences with instances of pronoun 

resolution that cannot be solved with 

syntactical rules. A single data point comes 

in the following four-line format: 

The bee landed on the flower 

because it had pollen. 

it 

The bee,the flower 

the flower 

The first line consists of the sentence. 

The second line states the pronoun to be 

resolved. The third line lists the two 

candidate entities that the pronoun might 

refer to, and the fourth line lists the correct 

candidate entity. 



Each of the data points has exactly two 

candidate entities, which are both listed. 

Thus a natural baseline method would be to 

randomly select between the two candidate 

entities, which gives an accuracy of 50%.  

 

 

Word Vectors 

 

Word vectors are a frequently-used tool 

in natural language processing, where 

words are represented as high-dimensional 

vectors based on co-occurrence. Word 

vectors also have some well-known and 

interesting properties – for example, 

analogous pairs of words (man/woman 

versus king/queen) have similar word 

vector differences. 

The main tool we use in this paper is 

word vector cosine similarity. This is 

roughly a measure of semantic relatedness, 

such that words that are in some way 

related to each other have a higher 

similarity. 

Throughout the entirety of our project, 

we used a pretrained, 300-dimension word 

vector model based on a Google News 

corpus2. We utilized the Python gensim 

package3 with this model. 

 

Intuition 

 

Let us consider the following sentence 

from the Winograd dataset: 

 

                                                           
2 Available at https://code.google.com/p/word2vec/ 

Ex: The pen is mightier than the sword 

because it can only stab things. 

 

Here we have a coreference problem 

where ‘it’ refers to one of the two candidate 

entities ‘the pen’ or ‘the sword’. One of the 

clues that helps a human solve this problem 

is the fact that swords are more associated 

with ‘stabbing things’ than pens are. We can 

replicate this kind of connection using word 

vector similarity! Consider if we pulled out 

the keywords ‘pen’ and ‘sword’, along with 

the keywords ‘stab’ and ‘things’. Then, we 

compare the ‘relatedness’ of the keyword 

‘pen’ to the keywords ‘stab’ and ‘things’, 

getting some kind of overall relatedness 

score. Next, we do the same thing between 

the keyword ‘sword’ and the keywords ‘stab’ 

and ‘things’ for a second score. Intuitively, 

the relatedness score of the ‘sword’ would be 

higher, and on that basis we could decide 

that ‘it’ referred to ‘the sword’. We will use 

this method (more explanation of exactly 

how keywords are determined and 

relatedness is computed will appear later 

on). 

However, this method cannot apply to 

all sentences: 

 

Ex: George scored against Thomas in 

the shootout, so he won the game. 

 

Here, the two candidate entities ‘George’ 

and ‘Thomas’ have little to no semantic 

information tied to them. In order to solve 

this problem, we need to look at the 

relationship between the entities – namely, 

the fact that George ‘scored against’ 

3 Available at 
https://radimrehurek.com/gensim/index.html 



Thomas. Scoring has a relationship with 

winning, and so if George is the one who 

scores, it makes sense that George is the one 

who wins. Hence, we will take the word 

‘scored’ and consider it a keyword of 

‘George’. This allows us to represent (albeit 

crudely) relationships between entities 

using our keyword-centric approach. 

 

Implementation 

 

Our system takes in as input a datapoint 

formatted like the Winograd dataset – four 

lines consisting of sentence, pronoun, 

candidate entities, correct entity. First off, 

we part-of-speech tag the words and detect 

named entities (done through the NLTK 

toolkit4). 

We now create one set of keywords for 

each candidate entity. For each candidate 

entity, we extract keywords from the text of 

the entity (i.e. ‘the sword’) only if the 

candidate entity was not recognized as a 

named entity (such as ‘George’ or ‘Thomas’). 

Assuming the candidate entity is not a 

name, then we take all words from the 

candidate entity that are either a noun, an 

adjective, or a verb, unless the word is in a 

predefined list of words to ignore. The list of 

words to ignore consists of tenses of ‘t0 be’ 

along with several other common words 

that provide no meaningful information. 

Next, we consider the described 

relationship between the two candidate 

entities defined by the chunk of the sentence 

between the two candidate entities. We 

extract the keywords from this chunk just as 

before. All keywords are added to the 

keyword set of the candidate entity that 

                                                           
4 Available at http://www.nltk.org/ 

comes first in the sentence, as X VERB Y 

usually means that VERB can be attributed 

to X. However, if the VERB follows either a 

negation (not) or a word that indicates 

passivity (was), then it is added to the 

keyword set of the second candidate entity. 

Finally, we look through the sentence to 

locate the pronoun to be resolved, and take 

out the clause or phrase that the pronoun 

belongs to. For example, in “The pen is 

mightier than the sword because it can only 

stab things.”, this clause would be ‘can only 

stab things’. We perform the same keyword-

extracting operation as before on this clause 

to produce a set of ‘pronoun keywords’. 

We now have three sets of keywords – 

one for candidate entity 1, one for candidate 

entity 2, and one for the pronoun. We 

calculate the average similarity between the 

candidate entity 1 keywords and the 

pronoun keywords by taking the average 

word vector similarity of all pairs (word1, 

word2) where word1 is from the candidate 

entity 1 keywords and word2 is from the 

pronoun keywords. This gives us a similarity 

number between 0 and 1. Similarly, we 

calculate the average similarity between the 

candidate entity 2 keywords and the 

pronoun keywords. Our system chooses the 

candidate entity whose similarity to the 

pronoun keywords is the highest, and 

returns that as the answer to the 

coreference. 

 

Results 

 

We tested the system on the Winograd 

test set. The word-vector-only system 

improved significantly over the baseline. 



 

 

 

Table 1: Performance results of the system discussed in this paper as compared to several 

other coreference systems. 

 

 

However, it is still far below the 

performance of the best coreference systems 

for Winograd-style problems. Of course, this 

is partially due to the huge difference in 

complexity between the word vector system 

described in this paper and the other 

systems. Both the Rahman and Ng and 

KnowComb systems are comprised of an 

ensemble of various statistical and other 

methods, whereas our system only uses one 

relatively simple method. 

 

Conclusion 

 

We outlined a method to solve difficult 

coreference problems using word vectors, 

and showed its performance against several 

state-of-the-art coreference systems. 

Ultimately, word vectors are useful for 

resolving coreference, but they alone are not 

enough. The semantic information provided 

by word vectors is not enough on its own. 

While word vectors are good for measuring 

word associations and similarities, we often 

need to do more than that to resolve 

coreferences. For example, consider the 

sentence: 

                                                           
5 See Chang et al., 2013 
6 See Rahman and Ng, 2012 
7 See Peng et al., 2015  

Ex: “Bob helped Joe because he wanted 

to help.”  

 

It is very hard to see how word vector 

similarities would be able to resolve this 

sentence. For this sentence, we need a 

method that recognizes that ‘wanting to 

help’ is a good reason to help someone, 

which is a very different kind of information 

than what word vectors provide. Indeed, a 

predicate-based schema like that of Peng et 

al. (2015) seems more appropriate for this 

kind of problem. 

Nonetheless, our results show that word 

vectors can contribute significantly towards 

resolving coreference. We hope to see 

coreference systems adopting word vectors 

as one powerful part of an ensemble of 

methods. 

 

 

 

 

 

IlliCons5 Word Vectors Rahman and Ng6 KnowComb7 

53.26 58.28 73.05 76.41 



References 

 

K. Chang, R. Samdani, and D. Roth. 2013. A  constrained latent variable model for coreference  

resolution. In Proceedings of the 2013 Conference on Empirical Methods in Natural 

Language Processing, pages 601–612. Association for Computational  Linguistics. 

A. Rahman and V. Ng. 2012. Resolving complex cases of definite pronouns: the Winograd 

schema challenge. In Proceedings of the 2012 Joint Conference on Empirical Methods in 

Natural Language Processing and Computational Natural Language Learning, pages 777–

789. Association for Computational Linguistics. 

H. Peng, D. Khashabi, and D. Roth. 2015. Solving Hard Coreference Problems. In Proceedings of 

the 2015 Conference of the North American Chapter of the Association for Computational 

Linguistics – Human Language Technologies, pages 809-819. 

http://cogcomp.cs.illinois.edu/papers/PengKhRo15.pdf 


