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Cardiac Resynchronization Therapy (CRT) has become a standard therapy
for a subset of patients suffering from Heart Failure (HF). While CRT is suc-
cessful in the majority of cases, a significant minority of patients express a
neutral or negative response to the therapy without well-understood cause.
Since much of the relevant information in clinical data is in narrative text
form, current analyses are limited to small information-rich datasets where
researchers can read clinical notes on each patient or large information-poor
datasets where only structured information on each patient is analyzed. In this
paper, we use state-of-the-art natural language processing (NLP) techniques to
analyze a large dataset of CRT patients. We find that including the free-text
information through the use of NLP techniques both improved prediction ac-
curacy over current clinical performance by ∼9% and allowed our model to
discover latent clinical variables of the problem. We estimate that if the model
generalizes, a 9% reduction in CRT prescriptions could save the US Health-
care system as much as $926MM while simultaneously reducing any adverse
side-effects of CRT for many patients who are falsely prescribed the therapy.
We hope these results will motivate further research into previously unknown
predictors of successful CRT outcomes and demonstrate the benefits of using
NLP models in clinical settings.

Code used in this paper can be found here: https://github.mit.edu/jhaimson/6806 final proj
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Introduction

Cardiac Resynchronization Therapy and the Challenges of Evidence-Based
Medicine
Cardiac Resynchronization Therapy (CRT) has become an increasingly popular therapy for
a subset of patients with Heart Failure. While CRT is effective in the majority of cases, an
estimated one-third of patients express a neutral or negative response to the therapy without
well-understood cause (Chatterjee and Singh, 2015). Since the procedure is both expensive and
invasive, much effort is being placed into understanding the primary predictors of success.

The current clinical guidelines for CRT can be seen in the decision tree shown in Figure
1. The guidelines make a recommendation based on 7 concrete variables: NYHA class, LVEF,
QRS, LBBB, Sinus Rhythm, Ischemic Cardiomyopathy and the presence of comorbidities. The
guidelines also leave significant room for interpretation in their recommendations, with recom-
mendations as vague as “CRT might be reasonable,” (Tracy et al., 2012).

Figure 1: The current clinical guidelines for CRT. The guidelines are determined by color,
where green means “CRT is recommended,” yellow means “CRT is reasonable,” orange means
“CRT might be reasonable,” and red means “CRT is not recommended.” (Tracy et al., 2012)

One of the core challenges of understanding the effectiveness of a treatment in a clinical
setting is the inherent messiness of real-world clinical data. Although most healthcare systems
have adopted electronic medical records and systems such as ICD codes have been adopted
for epidemiological/billing purposes, these systems tend to be siloed from each other in non-
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interoperable formats and much of the clinically relevant data contained in a medical record
is locked in narrative text notes. This means that analyses of clinical medical data are usually
limited to either a) a cohort size small enough that researchers can manually read every note, or
b) the limited number of variables that are stored as structured data in a medical record.

An example of such an analysis for CRT can be seen in Friedman et al. (2014). In the study,
the authors analyze 32 variables (various demographics, lab values, comorbidities and medi-
cations) in a cohort of 328 patients who received CRT. While they successfully determine a
number of factors in the success of CRT, they are limited in the size of the cohort they can ana-
lyze because they had to extract these variables manually. Scaling the size of this cohort in order
to find trends that are only visible in larger populations quickly becomes an intractable problem,
and switching to analyzing structured data only will miss important pieces of information like
key lab values, symptom expression, family history, and social history.

Natural Language Processing (NLP) techniques can help overcome these challenges by en-
abling the computational analysis of narrative text notes in large patient cohorts.

Research Goals
The goals for this research were twofold:

1. Build a model which can predict the success of CRT using both free text and structured
information

2. Determine if such a model can find predictors of success that have previously been over-
looked

Methods

MGH Dataset
In this section we will describe our data set with respect to both its features and labels, and
evaluate how our sample may be biased and what this means for our research.

Description of Data

Our dataset consists of the complete medical histories of 907 patients who received CRT at
Massachusetts General Hospital (MGH). This includes both structured data for each patient (lab
values, diagnosis codes, etc) and unstructured notes from their doctors. Some of the information
that was especially useful and relevant is summarized in Table 1.

3



Data type Document Information Contained

Structured
Encounters Inpatient/Outpatient, Duration of stay

Diagnosis Codes ICD-9 Code
Labs Lab type, Value, High/Low indicator

Unstructured notes
Cardiology

reports

Relevant lab values (EF, QRS), Clinical
characters (LBBB, sinus rhythm),
Cardiologist notes

Longitudinal
Medical Record

(LMR)

Summary of lab values, Symptoms,
Family history, Social history

Table 1: Summary of the types and variety of information contained in the data set for each
patient.

Patients 907
% Responders 52.6%
Structured Documents 3100K
Note Documents 245K
Structured Fields 44M
Note Sentences 26M

Table 2: Summary of the size of our dataset with respect to the number of patients and informa-
tion contained in notes and structured documents.

Below are example note excerpts from two patients taken from notes in their LMR records.
These illustrate how these notes contain information about the patient history, symptoms, med-
ical characteristics, and the sentiment of their doctor.

“A very pleasant 68-year-old gentleman with a history of ischemic cardiomyopathy
presented with class III symptoms of heart failure, has had an upgrade of his device
to biventricular implantable cardioverter-defibrillators, currently in sinus rhythm.”

“This is a 54-year-old woman with end stage heart failure secondary to Chagas
disease. Her main symptoms are shortness of breath, chest discomfort, anxiety, and
existential distress.”

We find that we have over ten times as many structured documents as notes, or free-text doc-
uments. However, when looking at the number of structured entry fields and the number of
sentences to find a better comparison for units of information, we see that over one-third of the
information in a patient’s medical records is contained in notes. This is summarized in Table
2 and Figure 2. This heuristic along with the fact that the most clinically relevant information
for CRT is stored in notes indicate the importance of better utilizing this aspect of a patient’s
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medical history.

Definition of CRT Success

Prior research has defined the success of CRT measures by the magnitude of the change of
left ventricle ejection fraction (LVEF or EF) from before the procedure until a fixed time period
after the procedure, (Friedman et al., 2014). Upon recommendation from cardiologists at MGH,
we classify patients with a change in EF after 12 months ≥ 8% as responders and patients with
less than this as non-responders. However, EF values were not directly provided as structured
data in the data set, so we first had to extract them from the cardiology notes. To extract these
ejection fraction measurements, we defined a regular expression that would extract these values
from free text notes and label them with the date of the note they were extracted from. With
these dated values, we determined a patient’s classification using the value before the date and
the value measured closest to 12 months after the procedure. We have checked against manually
extracted values that this procedure works reliably, though small errors may remain in the label
extraction process which may add artificial noise to our data.

Biases of Our Cohort

The most important characteristic that all of our patients have in common is that they were
recommended by a clinician to receive CRT. This means that our data set contains only true
and false positives with respect to the prediction methods used by doctors. Another way to
say this is that if doctors already possessed perfect knowledge of their patients and the factors
that determine success of the procedure, then the data should contain nearly 100% responders.
Therefore, we interpret the fact that our data contains 52.6% responders as a current medical
prediction baseline for our machine learning models.

Baselines
In order to set a benchmark to compare our NLP results against, we created two baselines.
The first baseline is a hard-coded decision tree model that matches the decision tree shown in
Figure 1, which clinicians use today to decide whether or not CRT is appropriate for a given
patient. Of the four possible output categories of the decision tree, which range from CRT is
not recommended to CRT is recommended, we deem the red and orange categories as should
not have CRT and the yellow and green categories as should have CRT. Although this is a
generalization, it is the best we can do given the inherent vagueness of the outputs and the fact
that physicians often differ from one another in regards to what to do in the orange and yellow
categories.

It is worth noting that our hard-coded model is not exactly the same as the decision tree
shown in Figure 1, since we could not extract all input values, and since the validity of our
extractions is still being verified. However, we ensured the validity of a portion of them that had
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Figure 2: Above: plot of the frequency of structured and note documents for each relative date
with respect to the date of the CRT procedure for the patient. Below: The same plot except we
compare the fields in the structured data and the number of sentences in the notes. This second
plot better captures the relative information content of these different sources.
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corresponding annotations, and so it is believed that our decision tree model is quite accurate.
It is also worth noting that all values extracted are from before the procedure date. We remain
consistent with this throughout all of our tests so that we are sure to be predicting without any
post-procedure knowledge.

The second baseline is a structured-data-only baseline which is designed to model the fields
that current research focuses on. It uses a concatenation of the features we have engineered
from the Diagnoses, Encounters, and Labs fields of the patients. The specifics of each of these
feature vectors are discussed below.

Structured Data Models
Diagnoses

Over the course of a patient’s medical history, each diagnosis they receive is codified as a struc-
tured field which can be analyzed for epidemiological purposes. The format of this structured
field is defined by the World Health Organization in a format known as International Classifi-
cation of Diseases (ICD). While the US healthcare system has recently switched to the ICD-10
standard, the data in the MGH CRT dataset is from before that switch and is using the ICD-9
standard.

In creating a feature vector derived from these ICD-9 codes, we wanted to be able to cap-
ture a feature space that could adequately represent the space of possible comorbidities and past
medical experiences that a patient could have. In order to do this, we used the Clinical Classi-
fications Software (CCS) published by the Healthcare Cost and Utilization Project (HCUP) to
transform each individual ICD-9 code into a hierarchy of disease. For example, the ICD-9 code
for Endocardial fibroelastosis is 425.3, but using CCS we can convert this into the code 7.2.2,
where 7 represents “Disease of the Circulatory System,” 7.2 represents “Heart Disease,” and
7.2.2 represents “Cardiomyopathy, ”(Agency for Healthcare Research and Quality: Healthcare
Cost and Utilization Project, 2008).

Once we have this hierarchical code, we create a “one-hot” vector for each level in the
hierarchy, allowing us to simultaneously represent a disease like Endocardial fibroelastosis as
“Disease of the Circulatory System,” “Heart Disease,” “Cardiomyopathy,” and “Endocardial
fibroelastosis.”

Lastly, once we have such a vector for each diagnosis in a patient’s medical history, we sum
these vectors to get a diagnosis vector representing the entire patient’s diagnosis history.

Encounters

Every patient has a record for each encounter he or she has had with a hospital, which could be
anything from a quick checkup to spending days or weeks in the hospital. It was determined
that the most relevant fields recorded at each encounter are (a) Inpatient vs. Outpatient, which
is a boolean of whether the patient had to be checked in overnight, (b) Length of Stay, which
would be 0 if this was an Outpatient encounter, and (c) Number of Extra Diagnoses, which is
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a number of diagnoses recorded on that encounter beyond the primary diagnosis that was the
cause of the encounter.

Through testing, it was determined that looking at the last N pre-procedure encounters
was the optimum strategy, and the specific feature vector we ended up using looked at the last
5 encounters. The vector had three features per encounter, corresponding to the three main
data points mentioned above, as well as three extra features corresponding to averages of these
points, namely the inpatient ratio, average length of stay, and average number of extra diagnoses.

Labs

Every patient also has a history of lab records. It was determined that by far the most relevant
field is, unsurprisingly, the lab value. Since our data set is fairly small, we first decided that
instead of using the actual lab value we would instead use flags that indicated whether the lab
result was normal (N) or abnormally low (L) or high (H), thus reducing the range of possible
results. A handful of feature vectors were built to try and understand the labs and use them as
predictors. Specifically, they looked at features such as total counts for each lab, total L and H
counts for each lab, and the latest flag (N/L/H) for each lab.

The reasoning behind these features is that two patients who frequently receive the same
lab tests probably have similar diagnoses, since these tests are used to assess the severity of
diagnoses and progress of treatments. Looking also at L and H flags then helps capture relative
performance on these tests, and looking at the most recent tests reflects the fact that lab values
leading up to the procedure are most relevant.

As we developed our models further, we also attempted to use the lab values, both numerical
and categorical, as inputs rather than the flags.

Natural Language Models
Clinical Value Extraction (CVE)

Having made use of most of the structured data, we then turned to understanding the free text.
The first strategy was to use regular expressions to parse the notes and pick out values that
were already known to be important predictors, namely the same values that were inputs to the
clinical decision tree (NYHA Class, LVEF, QRS, LBBB, Sinus Rhythm). However, instead of
using a pre-defined decision tree, we instead used these values as inputs into different machine
learning models and let the machine determine the correct decision lines.

Bag of Words (BOW)

We then turned to bag-of-words techniques that assumed no previous knowledge of the problem
and instead looked at the free text as a whole. Since the number of notes for each patient was
so large, we attempted to reduce the number of notes we looked at in order to reduce both
complexity and noise. To achieve this, we only looked at the N notes leading up to the procedure
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for each patient. We also only looked at Cardiology Reports and Longitudinal Medical Records,
as these were deemed most important and information-rich. Together, these simplifications left
us with a smaller and denser dataset to work with.

The first technique we tried was tf-idf, knowing that it has the power to differentiate be-
tween important words in a document and words that just are quite common over the whole
corpus. Without satisfying results, we then turned to n-grams, trying unigram, bigram, and tri-
gram models. To help reduce the noise generated from highly infrequent words, which is quite
large according to Zipf’s law, we also set a threshold on the number of documents a word must
appear in to be acknowledged by the model. Through testing of the different approaches and
performing grid searches of the parameter space, we found that the bigram model performed
the best, specifically with a document frequency threshold of 5%. These basic models actu-
ally ended up performing quite well, and their results not only increased predictive accuracy
considerably, they also pointed to new latent predictive features in the free text clinician notes.

Paragraph Vectors

Paragraph vectors are a state-of-the-art technique for representing arbitrary length sequences
of words in a fixed dimensional space. They are particularly well-suited for our dataset be-
cause we have large amounts of text per patient, but a small amount of patients on which to
predict CRT success (small from a machine learning perspective). While other state-of-the-art
neural language models such as Long Short-Term Memory (LSTM) models or Gated Recur-
rent Unit (GRU) models also perform well at classifying arbitrary lengths of text, they require
large amounts of labeled samples for training. Paragraph vectors avoid this problem by training
feature representations in an unsupervised manner.

As shown in Figure 3, paragraph vector representations are created by training a neural
classifier to predict a given word in a sentence given n-dimensional feature representations
of the words in a context window around the given word (Mikolov et al., 2013) and an n-
dimensional paragraph vector which stays constant across all context windows in a paragraph.
A paragraph in this context refers to any arbitrary length sequence of words, ranging in size
from one sentence to an entire document. In training, all parameters are updated via stochastic
gradient descent to maximize the log-probability of a paragraph. In testing, the algorithm infers
the paragraph-vector by fixing the word-vector representations and again maximizing the log
probability of the paragraph, (Le and Mikolov, 2014).

In our usage of paragraph vectors, we used the concatenation of Distributed Memory Para-
graph Vectors (PV-DM) and Distributed Bag of Words Paragraph Vectors (PV-DBOW) gen-
erated for a given paragraph to achieve a feature representation equivalent to the highest per-
forming representations in Le and Mikolov (2014). We chose to treat each document as a
“paragraph,” obtaining a 600-dimensional feature vector for each document (300 dimensional
PV-DM concatenated with a 300 dimensional PV-DBOW). We trained two of these models
seperately, one for Cardiology notes and one for Longitudinal Medical Record (LMR) notes.
When using these models to represent free text information from a patient’s medical records, we
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concatenate the last k Cardiology and LMR notes before the procedure date into a 2 ∗ k ∗ 600-
dimensional feature vector.

Figure 3: Paragraph vector representations are created by training a neural classifier to predict a
given word in a sentence given n-dimensional feature representations of the words in a context
window around the given word (Mikolov et al., 2013) and an n-dimensional paragraph vector
which stays constant across all context windows in a paragraph, (Le and Mikolov, 2014).

Classifiers
When making predictions based on the feature vectors described above, we explored a num-
ber of standard classification techniques. Specifically, we tested Maximum Entropy, Support
Vector Machine, Adaboost and Decision Tree Classifiers. We did not test neural network based
methods as we did not have enough sample data for a neural network to efficiently converge.
From initial testing, there were minimal performance differences between the various classi-
fiers. Therefore, we chose to work with the Adaboost classifier for the interpretability of its
learned parameters.
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Results

NLP Models Improved Prediction Accuracy by ∼9%
Various combinations of the features and classifiers described above were run on our dataset of
907 CRT patients from MGH. The results of our models are reported in Table 3. All reported
results have a train:test split ratio of 2:1 with 5-fold cross-validation. For each of the models,
we performed a small gridsearch over their hyperparameters, and the best performing configu-
ration of the models are reported. It’s important to note that these configurations have not been
determined by an exhaustive search through the space of model hyperparameters, so there may
still be room for performance improvements.

Features Description Accuracy Precision Recall F1 Score
Clinical Performance .526 .526 1* .689*
Tracy et al. (2012) Decision Tree .538 .590 .300 .397
Structured Data Only (ICD9, Encounters, Labs) .546 .565 .543 .551
Clinical Value Extraction (CVE) .593 .626 .593 .608
CVE + Structured Data .578 .604 .601 .602
CVE + BOW Bigrams .612 .610 .705 .652
CVE + Structured Data + BOW Bigrams .583 .603 .621 .609
CVE + Structured Data + Paragraph Vectors .585 .600 .592 .594

Table 3: Optimal mean scores for each set of features input into an AdaBoost classifier, found
with a grid-search over the number of weak learners. Each configuration was run according
to a 2:1 train:test split and 5-fold cross-validation split. This corresponds to a 90% confidence
bound of ±.021 for all values. *Clinical performance has artificially high Recall and F1 scores
because our dataset only contains patients that were prescribed CRT, meaning there were no
negative clinical predictions.

NLP Models Highlight Relevant Clinical Predictors
When looking at the learned parameters for our best performing model, CVE + BOW, we find
that the highest weighted features contain interesting predictors, which include both expected
symptoms and new findings. The fact that symptoms were amongst the best predictors not
only validates our model, it also helps point out which symptoms are important to look at
as predictors. In the bigram model, the parameters included symptoms such as “ventricular
arrhythmia” and “back pain”. The trigram model was able to pick up on even more symptoms,
such as “elevated la pressure” and “anteroseptal myocardial infarction”, just to name a few.

Perhaps more interesting than the symptoms were the unexpected findings. For example,
highly predictive bigrams included phrases like “placed he” and “his visit” that explicitly refer-
enced gender and thereby showed gender to be a good predictor. Others tapped into concepts
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like family history, such as the bigram “father died”. And still others were more abstract, ex-
pressing forms of sentiment, such as the bigram “pleased to”. The trigrams even began to pick
up on more temporally sensitive phrases, such as “was well until” and “started on heparin”.
These results are exciting not only because they show the ability of the model to hone in on
complex and interesting features, but also because they show the model’s ability to highlight
new, previously overlooked predictors. Moving forward, we hope to share and discuss these
results with researchers and clinicians, validate features extracted by our models, and then in-
corporate them into newer, better models.

Discussion
Predicting the effectiveness of CRT for a given patient is still not a solved problem. In fact, given
the data in our corpus, it is far from solved, with only 52.6% of our patients having benefited
from the treatment. Since our data only contains true and false positives, we have had to reframe
the problem we are trying to solve. Namely, we want to reduce the number of false positives
and help physicians answer the question “Does this patient really need CRT?”. Since CRT is
so expensive, any reduction of false positives would lead to a lot of saved money and reduced
burden on the patients. Thus far, our models have reduced the false positive prediction rate in
our corpus from 48% to 39%. Assuming about 80,000 patients receive CRT a year and each one
costs around $130,000 USD, this 9% decrease in false positives could translate to $936 million
in savings per year. We hope to see our accuracy grow even higher in the near future as we
combine our results from the structured and unstructured data and more exhaustively explore
the space of hyperparameters.

Most clinicians today also only look at a small set of known predictors in evaluating a patient
for CRT. However, even through the use of a simple bigram bag-of-words model, we were able
to show that there are likely many more key predictors that can and should be looked at by
clinicians. As we continue to improve our models, we hope to cooperate with researchers to
validate the new predictors we have found and try to incorporate them into newer, more accurate
models.

Overall, we were able to use both basic and state of the art natural language processing
techniques to increase the predictive accuracy of our models and elucidate latent predictors
contained in the free text of clinician notes. We look forward to continuing to work on this
problem and hope to show that in the sometimes chaotic realm that is medical data, NLP has
the ability to make sense of data, deepen our understanding of a problem, and thereby help
patients receive the help they need.
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