
Turning Experimental Procedures into Machine-Readable Recipes

William Spitzer, Menghsuan Sam Pan, Iveel Tsogsuren
(Dated: December 14, 2015)

Large scale manufacturing has been made more efficient with automation and machine procedures
centuries ago. Scientific researches, however, still require scientists or technicians to perform the
experiments due to the inherent variability and complexity. Battery research, in particular, includes
large amount of hand-on experiments. In order to help automate the research, we attempt to
create step-by-step machine readable procedures from experimental procedure sections of journal
publications using common techniques in natural language processing. To achieve this goal, we
built a pipeline process that contained several steps. First, it would take in a list of raw sentences
from the experimental procedure text and label them using our custom tags to denote whether or
not words were (A)ctions, (I)ngredients, (E)quipment, (PR)oducts, (P)roperties, (R)eferences, or
(N)one. It would then group together words based on these labels, and separate out steps such that
each step contains exactly one Action. Each step is ordered using a shift based dependency parser
to connect the tagged groups with each other. Finally, it orders all of the steps based on keywords
in the procedure so that each step follows chronologically from the previous step. The result is
outputted as a list of dictionaries that represent each step, with details regarding what is needed to
perform each step. In order to evaluate the performance of our model, we have built a small data
set as our training data and development data.

MIT Github Repo: https://github.mit.edu/spitzerw/nlp

I. INTRODUCTION

The late 18th century to early 19th century marks
the beginning of automation with Industrial Revolution.
Since then, the ongoing advancement in technology re-
places hand productions with machine manufacturing
lines. Now a day, almost all the commercial products,
to certain extents, are manufactured or assembled by
machine production lines. In contrast, however, most
of the scientific research and experiments are still done
hands-on largely due to the complexity and variability
these experiments can be. Therefore, the ability to con-
vert complex human written procedures (for human) into
machine readable recipes (instructions) represents one of
the key barrier to fully automated research activities. Re-
cent developments in natural language processing (NLP)
researches have solved or touched upon some of the sim-
ilar sub-problems in converting the instructions. For in-
stance, identifying different contents in a experimental
procedure is very similar to part of speech tagging while
sorting the ingredients associated with a given action
echos dependency parsing problems.

To reduce the overall scope of this project as well
as constrain the variability, this project will only deal
with electrochemistry, more specifically, battery, proce-
dures. We choose this field of study because a mem-
ber of our group is extensively involved with the field.
However, the model we built are meant to be generaliz-
able to process experimental procedures in any field of
study. The experimental procedures were taken from re-
lated published scientific journal such as Nano Letters,
ACS Applied Materials & Interfaces, Journal of Electro-
chemical Society, and etc. These procedures were then
processed into our training/development data by tag-
ging with our customized experimental labels and shift-
based dependency parser shifts. Then we built our NLP

FIG. 1. Pipeline Process. The raw text input is tagged,
grouped, then ordered via dependency parsers by step level
and recipe level.

model using variants of well-known NLP techniques such
as max-entropy classifier, shift-based dependency parser,
rule based grouping algorithm, and so on. We also used
widely recognized evaluation functions to determine the
effectiveness of our model.

II. DESIGN

II.1. Overall Model

Our overall goal is to take in the raw form of an experi-
mental procedure as text and create a step by step recipe
that can be performed by a machine. We defined a step
as a single Action performed using some number of Ingre-
dients, Equipments, Products, and References. Each of
these can be modified by some number of Properties. We
approached the problem of generating these recipes by
separating the task into several tasks. The first task in-
volves tagging individual words with a set of experimen-
tal labels (A, I, E, PR, E, R, N): (A)ctions, (I)ngredients,
(E)quipment, (PR)oducts, (P)roperties, (R)eferences, or
(N)one. Following this task, we group up words from the



2

FIG. 2. Structure of a step with the Action as the root.
Each action contains some number of Ingredients, Equip-
ments, References, Products, and Properties. Each Ingredi-
ent/Equipment/Reference/Product can also be modified by
additional Properties.

FIG. 3. Structure of a step in dictionary format.

same step together with similar labels into single entities
using a rule-based system. During the grouping process,
we also extract keywords that are used later to aid in
determining the order of the steps such as ”first”, ”sec-
ond”, ”before”, ”after”, ”then” etc. Once we have the la-
beled entities, we want to find the relationships between
different entities in each step. We applied a transition
based dependency parser on these entities to determine
the relationships between them. We use this information
to build a tree structure that describes the steps in the
experiment.

Finally, the steps in the experimental procedure are
ordered chronologically via a second dependency parser.
The output of our process is a list of dictionary struc-
tures, each corresponding to a recipe step. We provide
an example of a dictionary that describes a recipe step:

The structure of our dictionary is as follows: The ac-
tion is at the top. It contains a list of tuples of the form
(action string, dict of modifiers). The dict of modifiers
contain each possible modifier as shown in the recipe dia-
gram below. Each modifier is again a list of tuples of the
form (modifier string, dict of property modifiers). The
dict of property modifiers is a list of properties that mod-
ify the modifier.

II.2. Experimental Label Tagging and Move
Training Set

(A, I, E, PR, E, R, N). These tags are (A)ctions,
(I)ngredients, (E)quipment, (PR)oducts, (P)roperties,
(R)eferences, or (N)one. Tag selection is made to be gen-
eralizable to any experimental procedures; therefore, the

FIG. 4. Structure of our Maximum Entropy Tagging Classi-
fier.

categories are mostly common laboratory supplies and
step-to-step links. Actions represent the executions that
the machine needs to undergo to perform the experiment.
In our model, the steps are organized by one action per
step. Products are the resulting materials or data of a
step. The ingredients, equipment, and references label
the physical components associated with an action. The
first two are straightforward, and references links the in-
put of a step to the product of earlier step(s). Notice
that when the step are written sequentially, the prod-
uct and reference are sometimes implied, not explicitly
written. This made the task of identification much more
difficult. Lastly, the properties are effectively any other
relevant information such as the amount of chemical to
use, the environment conditions, time required to per-
form the step, and etc. With these tags chosen, we then
annotated 15 electrochemistry experimental procedures
taken from published journal articles.

For the shift based dependency parser (step-level and
recipe-level), the correct moves are also annotated as the
training samples. In the step-level moves, we noticed a lot
of similar sequences of move as journal articles sentences
often follow a set of predefined sentence structures. In the
recipe-level moves, majority of the steps are in sequen-
tial order since chronological ordering is a very reasonable
way to present a procedure. These repeating characteris-
tics of the procedures help the performance of the model
even with small number of training data, especially the
recipe-level dependency parser.

II.3. Max Entropy Tagging Classifier

II.3.1. Description

We built a maximum entropy tagging classifier that
could tag each input word with an experimental label
(EL) tag as discussed in the previous section. We took
the basic structure of Honnibal’s algorithm [1] and mod-
ified it to use additional features and our labels.

The inputs to our classifer were lists of tokenized words
from the raw text of the experiment, organized by sen-
tence. Each alphabetical word was converted to lower-
case and each numerical word was converted to a ”!NUM”
token. In addition, we acquired the NLTK [2] Parts of



3

Speech tag from the NLTK database for each word. Us-
ing the tokenized words and POS tags, we generated a
wide list of features in order to best classify each word.
We used the unigram, bigram, and trigram features for
words, POS tags, and EL tags. We also utilized combi-
nations of words and POS tags, and words and EL tags
to capture those relationships as well. Once we have gen-
erated our features during training, we store them in a
dictionary for use in evalution. The dictionary values
for each feature is a list of weights corresponding to how
likely a label is given that feature. Given a list of fea-
tures, we can calculate an overall score for each label.
Our classifier then chooses the label with the best score
given the input features in order to classify each word.

II.3.2. Training

Our training samples consist of experimental procedu-
ral texts that were hand annotated with our Experimen-
tal Labels. We break down the text into individual words
and their labels and use those as inputs for our training.
We train our classifier by creating an input feature vector
for each word, allowing the classifier to perform a guess
for the correct label, then updating the weights for that
feature by providing the true label. Each feature that is
not yet stored in our dictionary is initialized with a 1 for
the correct label, and negative values for the rest, such
that the sum of the weights for all labels is 0. If a feature
is stored, the classifier compares the guess label with the
true label. Given a positive, the weights are kept the
same. Given a negative, the weight of the true label is
increased by 1 and the other labels are decreased such
that the overall sum of the weights for all label is still 0.

We perform training using all the documents in our
training set over several iterations (usually around 10).
For each iteration, the order of the documents is shuffled
to prevent possible overfitting.

II.3.3. Prediction

Once we’ve trained our experimental label tagger, we
use it for predictions. We generate the list of feature vec-
tors for each word and apply it to our feature dictionary.
If a feature exists in the dictionary, its weights are used.
However, if a feature is not found, it is ignored. The fi-
nal prediction is generated by summing together all the
weights across all features and choosing the label with
the best weight value. Our output is then lists of tagged
words, where each list represents a sentence. Each word
would be represented by (Raw Text, EL tag, POS tag).
A sample list would look as follows:

FIG. 5. Output of the EL tagging classifier.

FIG. 6. Output of the grouping system.

II.4. Grouper and Step Sorter

We built a rule based grouping system that takes the
words labeled with EL tags from the tagger and groups
individual words together with similar labels, separates
out steps from sentences, and extracts ordering keywords
from each sentence list. The grouping system follows sev-
eral main rules to combine words and create steps. Since
each step should contain exactly one action, each sen-
tence is broken so that each action in the sentence be-
comes its own step. The rules are as follows. First, any
word that is tagged as N is ignored in grouping. Second,
any uninterrupted set of words are combined together to
form a phrase with the same EL tag. Third, if words with
the same tag are separated by another word tagged with
N, those words would also be combined. This way, we can
include phrases that are separated by commas, preposi-
tions (e.g. then, next), linking words (e.g. and, or) etc.
We include a (+) symbol between words combined in this
way to show that they were separated initially. Fourth, if
in a sentence, the grouper encounters a word with the Ac-
tion tag when it has already finished tagging a previous
phrase as an Action, the grouper would end construction
of the current step and create a new step with the new
Action tagged word as the first element. The end result
of grouped steps would look as follows:

During the grouping of each step, we also extracted
keywords that would provide information in ordering the
steps. These keywords include the words ’first’, ’sec-
ond’, ’third’, ’fourth’, ’fifth’, ’next’, ’then’, ’after’, ’be-
fore’, ’last’, ’lastly’, and ’finally’. The keywords in each
step are stored with the step for use in the recipe level
ordering.

The output of the grouping system is two lists, where
each list now represents a step in the recipe. The first is a
list of phrases, each with an EL tag. The second is a list
of ordering keywords, corresponding to the steps in the
first list. Both lists will be used in dependency parsers
in the following tasks in the pipeline process.



4

FIG. 7. Demonstration of transition based dependency parser
adding arcs via moves. [3]

II.5. Step-Level Dependency Parser

II.5.1. Description

We implemented a transition based dependency parser
to discover the relationships within each step between
the phrases of different labels. We based the structure
of our dependency parser again using Honnibal’s algo-
rithm outline.[1] Our dependency parser moves through
the sentence one word at a time and adds arcs between
the phrases. Each move is either a SHIFT, LEFT-ARC,
or RIGHT-ARC. Each step finishes in O(2n) time for n
phrases in that step. An example of the transition based
dependency parser is shown:

The dependency parser operates using features of the
stack and buffer to determine the best move to make
at any time. We build similar feature vectors as in our
Tagging classifier described earlier. These features uti-
lize the unigram, bigram, and trigram models on the
phrases in the stack for both the raw text and the EL
tags. We again use the weighting mechanism to deter-
mine the best move given the set of feature vectors. The
features are stored within a dictionary and updated dur-
ing training. Each feature has a list of 3 weights cor-
responding to the three possible moves (SHIFT, LEFT-
ARC, RIGHT-ARC). The final move is determined by
summing together all the weights from the features to
find the move with the best weight.

As the dependency parser moves through the stack and
buffer, it generates a list of positions. These positions
correspond to the root of the arc; the arc begins pointing
to the phrase at that index in the list originated from
the position value stored at that list. An example of this
output corresponding to the phrases in a step is shown

II.5.2. Training

Our training samples consisted of hand annotated
moves on the groups generated if there was perfect label-
ing (e.g. matched our hand-annotated labels). For each
step, we would use our dependency parser to formulate a

FIG. 8. Output of the step-level dependency parser. List of
positions representing the arcs

guess move and compare that move with the true move
that we built. If the moves matched, we would not up-
date the weights for the features that led to that move.
However, if the moves did not match, we would update
the weights by incrementing the correct move by 1 and
decrementing the other two by −1

2 so that sum of all the
weights of any feature still remains 0. Any feature that
was not already in the dictionary of features would be
initialized with a weight of 1 in the correct move and a
weight of −1

2 in the other two moves.

II.5.3. Prediction

For the prediction phase, the dependency parser would
take in a list of labeled groups and generate a set of best
scoring moves based on the feature vectors of the list of
groups. The parser would then move through the list
and generate a list of positions that represented the arc
dependencies in that step. The final output would be a
list of list of positions that represented a recipe of steps.

II.6. Recipe-Level Dependency Parser

II.6.1. Description

The goal of this task is to order the steps in the recipe
chronologically such that a machine could perform the
recipe simply by going through the steps one at a time.
The original experimental text may have variations in the
order of the step (e.g. describe a final product first, then
discuss how to generate it). We utilized the dependency
parser structure that we implemented for the step-level
in order to perform recipe-level dependency parsing. As
such, we modified the inputs to the dependency parser,
but did not change the implementation.

These inputs are a list of order keywords generated by
the grouping system that contain information about the
order of the sentence. In addition, we include tags that
indicate whether or not the each step contains References
that match Products from the previous step. The order
keyword and matching elements provide information that
allows the parser to decide whether or not a step comes
before or after another step.



5

II.6.2. Training

Our training samples are hand annotated moves that
denote the correct ordering of the steps in a recipe. We
generated these based off of the correct list of steps of
a recipe. Our dependency parser would take in these
moves and train our feature dictionary weight, where the
features are described in the previous dependency parser
description.

II.6.3. Prediction

Once trained, our dependency parser again generates
a list of positions for each list of input steps that describe
the ordering of the steps in terms of arcs. We construct
the order using the arcs by ordering based on how the
steps depend on the other steps.

II.7. Recipe Generation

Once we have the outputs from both the Step-level
and Recipe level dependency parsers, we can generate
the entire recipe. The order of the steps is given by the
list of positions from the Recipe-level dependency parser.
We begin with first step in the list of positions, then move
to the step that corresponds with the end of that arc. If
multiple steps all originated from the same step index,
we add those in order based on appearance in the list.

To generate the recipe steps from the list of posi-
tions for each step, we perform three iterations. We
first identify the location of the Action tagged group.
By definition, a step contains exactly one action, so
it must appear somewhere in the list. This forms
the base of our step. We denote this by setting it
as the first element of a tuple for the value of a dic-
tionary containing only the key ’A’. The second ele-
ment in that tuple will be a dictionary that describe
the groups that are connected to the action (Ingre-
dient/Equipment/Reference/Product/Property groups).
From there, we find all the groups that have arcs con-
nected to the action group and add them to the dictio-
nary with keys corresponding to their label. Each group
forms the first element of the tuple that describes that
dictionary value. The second element is again a dictio-
nary of Properties that describe those groups (Refer to
figure 2 and 3 for visuals). Once we have generated this
dictionary, we append it to the recipe list in the order
prescribed by the Recipe level parser output.

Our final result is a list of dictionary representing the
steps of the recipe in chronological order.

III. RESULT AND EVALUATION

As our model is a pipeline process of three steps, we
score each of these steps independently and combine their

Evaluation EL Tagger Step Level
Dependency
Parser

Recipe Level
Dependency
Parser

Independently 0.5962 0.8441 0.8807

Pipeline 0.5962 0.5032 0.4432

FIG. 9. Model evaluation

FIG. 10. Learning curve of EL tagger

results for evaluating our model. For our data set, we an-
notated 6271 words, covering various 15 electrochemistry
procedures and total 442 procedure steps. In each exper-
iment, we shuffled the data set and used 80% of them for
model training, another 10% for parameter tuning and
feature selection, and the final 10% for testing.

For evaluating our pipelined model, we employed sim-
ple metric system, estimating what percentage of data
correctly labeled or ordered. Specifically, for annotating
experimental label tag, we estimated what percentage of
words was correctly labeled and for dependency parsers,
we found what percentage of dependency relations was
correct. We averaged over 10 shuffled runs of our data
corpus and found the scores in FIG.9. When we eval-
uated each pipeline process separately, step and recipe
level dependency parsers performed very well, scoring re-
spectively 0.8441 and 0.8807. However, EL tagger per-
formed poorly, scoring 0.4744. When our model takes
in a raw experimental procedure and produces its final
output, machine-readable steps, the overall score of the
model results 0.2333.

As we had small data set, we examined how size of our
data corpus affects EL tagging, which became bottleneck
of the model. For each size of data corpus, we found
average precision, recall and F1 score. As we see in FIG
10, there are a lot of fluctuations; but as size of the corpus
increases, scores become more stable and increase.



6

IV. DISCUSSION AND FUTURE WORK

Overall, our model has a score of 0.2333 which, in
short, is not usable in practice. However, we are satisfied
with the result since the project provides some insight to
how experimental procedures are structured. The sen-
tence structure and sequencing are fairly straightforward,
and the model performs quite well even with simple shift-
based dependency parsers. Component identification, In
contrast, is much harder due to various reasons such as
reference versus ingredient tagging, and implied prod-
uct/reference links. Moreover, in experimental procedure
sections of journal articles, explanations of actions are
often included, but not relevant to machine readable in-
structions. These explanations often contain component-
like word but should actually be tagged as N(one).

There are a number of natural language process tech-
niques that can potentially help the performance of our
model. More specifically, a lot of interesting methods
have been developed to improve the tagging problem,
and it happens to be the weakest part of our model.
For instance, using the begin/end tags discussed in class
might have better tokenizing power than the currently
used post-tagging grouper. One drawback of this tag-
ging method in this project is the size of the training
data, and more tags will result in even less training sam-
ples for each individual tags. At the same time, some
sort of post-tagging process cannot be avoid as the text

needs to be truncated, chopped into separated steps, and
extract the sequential key words.

Another possible technique is using a list of commonly
used chemicals and equipment in batteries experiments
to help the maximum entropy tagger. This part of work
is avoid simply because we wanted to focus on making
more training samples rather than divert our focus to
other labor intensive manual processing of raw text. An-
notating 15 experimental procedures already takes more
than 60 hours since each simple has gone through initial
tagging, moves annotation, and 2 rounds of modification.

In terms of improving the sequencing of steps, we had
the idea of linking the products and references of var-
ious steps. This can directly result in some of the se-
quences; however, this will require even more annotation
of the training sample. As a result, the sequencing is
done purely using the dependency parser which cannot
capture some of the more complex out of order proce-
dures.

V. CONTRIBUTION

William: Model development: Max entropy tagger,
Grouper, Step-level dependency parser. Evaluation.

Sam: Training data collection. Tagging annotation.
Moves annotation. Evaluation.

Iveel: Model development: Viterbi tagger (not in-
cluded due to low performance). Recipe-level depency
parser. Evaluation.

[1] Honnibal, Matthew. Parsing English in 500 lines of
Python. https://spacy.io/blog/parsing-english-in-python

[2] Natural Language Toolkit. http://www.nltk.org/
[3] 6.864 Lecture Notes 11. https://learning-

modules.mit.edu/service/materials/groups/105785/files/4a9be378-
36a0-4dda-9e54-a29e4d8ba5b6/link

https://spacy.io/blog/parsing-english-in-python
http://www.nltk.org/
https://learning-modules.mit.edu/service/materials/groups/105785/files/4a9be378-36a0-4dda-9e54-a29e4d8ba5b6/link
https://learning-modules.mit.edu/service/materials/groups/105785/files/4a9be378-36a0-4dda-9e54-a29e4d8ba5b6/link
https://learning-modules.mit.edu/service/materials/groups/105785/files/4a9be378-36a0-4dda-9e54-a29e4d8ba5b6/link

	Turning Experimental Procedures into Machine-Readable Recipes
	Abstract
	Introduction
	Design
	Overall Model
	Experimental Label Tagging and Move Training Set
	Max Entropy Tagging Classifier
	Description
	Training
	Prediction

	Grouper and Step Sorter
	Step-Level Dependency Parser
	Description
	Training
	Prediction

	Recipe-Level Dependency Parser
	Description
	Training
	Prediction

	Recipe Generation

	Result and Evaluation
	Discussion and Future Work
	Contribution
	References


