Learning Dense Vector Representations
for Named Entity Relations

Abdi-Hakin Dirie, Emily Kellison-Linn, Jason Tong

{abdihd, ekl,

Abstract—Previous work with word vectors has shown that they exhibit
some semantic regularities. We present a method for using the word
vectors of two named entities to generate a vector that represents the
relationship between the two, such that pairs of entities that exhibit
the same relation have similar relation vectors. We use an autoencoder
model to generate a relation vector from the word vector representations
of the two entities. We show that this representation outperforms two
naive relation representations, including simple vector subtraction, and
achieves high classification accuracy on the task of determining whether
two entity pairs are instances of the same relation.

I. BACKGROUND

Results from (Mikolov et al.) showed that simple neural network
models can learn dense vector representations for words, and that
these vectors exhibit surprising syntactic and semantic regularities
captured in the form of simple vector addition. However, we find
that simply subtracting vectors to capture the essence of the relation
is poor for modeling that relation, as shown in Figure 1. We see
for cosine distances that some of these difference vectors are nearly
orthogonal (i.e. cosine distance is 1), suggesting that the ability to
solve word analogies granted by the word vectors is due more to the
fact that the words are sparsely distributed, not because a relation can
be characterized by a general magnitude and direction. The problem
is only made worse when considering relations that are symmetric,
not roughly one-to-one, or both. This raises the question: Can a
representation be learned for relations between words? This is the
motivating question of this paper.

II. OVERVIEW OF DATA

The data for all of our experiments is taken from Wikidata', a free
online RDF database. Wikidata represents information as a graph
where nodes represent objects called resources. Almost anything
can be a resource (people, places, professions, philosophical -isms,
literals, etc.). The edges are directed connections between resources,
going from one resource (the subject) to another (the object). In
the case of Wikidata, edges represent relations. One example would
be developer(’Python’, Guido van Rossum’), where 'Python’ is the
subject resource, 'Guido van Rossum’ is the object resource, and
developer is the name of this edge (or relation). Thus it can be

"https://www.wikidata.org/wiki/Wikidata:Main_Page

l H Euclidean | Cosine
((US—Wash.DC),(China—Beijing)) 1.098 0.697
((US—Wash.DC),(Somalia—Mogadishu)) 1.201 0.870
((US—Wash.DC),(France—Paris)) 1.161 0.702
((China—Beijing),(Somalia—Mogadishu)) 0.797 0.829
((China—Beijing),(France—Paris)) 0.786 0.591
((Somalia—Mogadishu),(France— Paris)) 0.913 0.812

Fig. 1: Distance between the difference vectors for two pairs of

entities related by the same relation: State— Capital. Both Euclidean
distance and cosine distance are considered as distances metrics.

jktong}@mit.edu

interpreted as Guido van Rossum is Python’s developer. We will refer
to such examples as an instance of a relation, so the previous example
would be an instance of the developer relation. We extract instances
from Wikidata for 114 relations.

As a component of our system, we use pre-trained dense entity
vector representations for entities provided by Google’s word2vec?
system. The vectors correspond to entities existing in Freebase®. The
vectors have been trained on news articles from Google News. There
are over one million vectors of dimension 1000 each.

III. CANDIDATE REPRESENTATIONS

We investigate if there exist dense representations for instances
such that relation vectors corresponding to instances of the same
relation are spatially close. We have two baseline representations:
concatenation and subtraction. The goal of such representations is
shown in Figure 2. We also introduce a simple method for learning
an autoencoded representation.

A. Baseline Representations

1) Concatenation: Given an instance, we simply concatenate the
entity vectors of the subject and object of the instance.

reonear (subj, obj) = [vector(subj); vector(obj)]

2) Subtraction: Our second representation is simply the difference
of the entity vectors in the instance.

rsustract(subj, 0bj) = vector(obj) — vector(subj)

2https://code.google.com/p/word2vec/
3http://www.freebase.com/

Relation Space

Entity Space

Fig. 2: Visualization of high-level goal of system. We want to map
instances of relations into a new space such that instances of the same
relation are close in the relation space.

('‘Barack Obama’, 'Michelle Obama’)
(‘Bill Gates', '‘Melinda Gates')

Fig. 3: Schematic of 1-layer autoencoder model. The model takes
one instance as input and another instance of the same relation as
the desired output.

B. Autoencoded Representations

Our third representation is produced by an autoencoder neural
network. Figure 3 shows the schematic of our autoencoder. The
autoencoder computes the following for some instance (subji1, obji1):

. . . \T
N = T'concat (Subj1, 0bj1)
h = Wencode - i1 + bencode (1)
7= Wdecode -h + bdecode

Note that there are no non-linear transformations (i.e. the activa-
tions are linear). The error for a prediction 7 and a desired output
T = Tconcat (Subjz, 0bj2) is defined as

err(f,r) =||f — 5'7"||2 2)

The parameter S is a positive scalar that scales the desired output.
We use this to emphasize the differences among relations so as to
encourage the hidden representations of our relations to distance
themselves from each other.

The total error to minimize for our NV training examples is

N
1 L
E= N ;:1 err(?, r™) 3)
which is just mean squared error. In this paper, S = 100 and

N = 28,956.

The autoencoder can be interpreted as doing the following: Given
an instance, encode it to a lower dimensional space which can be
thought of as a relation space. On the decoding step, attempt to
generate an instance of that relation.

Once the autoencoder training is complete, we can generate a
relation representation for any instance by providing that instance
as input, and taking the hidden layer output h as our representation.

C. Dimensionality Reduction with PCA

As described above, each representation differs significantly in
terms of dimensionality. The concatenation, subtraction, and au-
toencoded representations have dimensions 2000, 1000, and 100,
respectively. We wanted to discern whether the primary contributor
to the autoencoded representation’s performance gains was its low
dimensionality or the specific transformations applied by the autoen-
coder. In order to remove this potential confounding factor, we use

Principal Component Analysis (PCA) to reduce each representation
to vectors of dimension 100.

IV. EXPERIMENTAL SETTING

A. Task

We evaluate all three representations against each other by mea-
suring how each performs on a given task. Given two instances, we
predict if they are instances of the same relation. This is a binary
classification problem. We concatenate the representations of the two
instances and refer to this as a data point with label +1 or -1. A +1
label indicates that the two instances are of the same relation, while
-1 indicates that they are instances of different relations. We expect
the autoencoded representation to outperform our two baselines.

B. Evaluation Metrics

We run experiments using three algorithms for each of our repre-
sentations. Each algorithm uses the same data set for training, and
is evaluated on the same test set. The train set has 7,428 data points
and the test set has 392 data points. Roughly half of the train set
are positive data points. Among the positive data points, we have
a roughly uniform distribution across the 114 relations we retrieved
from Wikidata. The test set also has the same distribution among
positive and negative data points, as well as across relations.

Because the task is a binary classification problem, we report the
percentage correct on the test set.

C. Algorithms

1) Support Vector Machine: We use a support vector machine with
a radial basis function kernel. The best hyperparameters C' and ~y are
chosen for each experiment by conducting a grid search using 10%
of the training data as a cross-validation set. Figure 4 lists the chosen
hyperparameters for each experiment. These are the hyperparameters
used to achieve the results in Figures 5 and 6.

| H Autoencoder [Concatenation [Subtraction ‘

Without PCA (10, 1) (10, 0.1) (10, 0.1)
With PCA 10, 1) (10°,107%) (1000, 1)

Fig. 4: Hyperparameters chosen from cross-validation. First element
of each tuple is the SVM slack parameter C' and the second element
is the inverse bandwidth parameter .

2) Neural Networks: We use a neural network with one hidden
layer. Each node in the hidden layer uses sigmoidal activation. The
output consists of a single node with sigmoidal activation. If the
output of the sigmoid is above 0.5, we predict that the two instances
are of the same relation (label = +1). Otherwise, we predict them as
being from two different relations (label = -1).

We perform cross-validation on the number of hidden units, using
5% of the train data as a validation set. The two options for
the number of hidden units are either 100, or the dimension of
the representation of one instance. For example, the representation
produced by subtraction is a 1000-dimensional representation, so the
number of hidden units is 1000 (note that the actual input to the neural
network is twice this size because we are passing in the representation
of two instances). We report whichever produced the better accuracy
for a given representation.

3) k-Nearest Neighbours: Finally, we introduce k-Nearest Neigh-
bours classification as a third metric. We extract the set of unique
instances and their respective labels from the training set. Then for
each pair of instances that constitutes a data point in the test set,
we use k-NN to classify the two instances individually. The desired
behaviour is for the labels assigned by k-NN to be the same for a
pair with instances of the same relation, and for the assigned labels
to be different for a pair with instances of different relations. This
would suggest that the model treats instances of the same relation the
same way, which would confirm a successful choice of representation
given our objective.

Cross-validation was performed on k, the number of neighbours
to survey before assigning a label, using 10% of the training data.
We considered k € {1,2,5,10,15,30,45,60} and found & = 1 to
perform best for all the representations.

While k-Nearest Neighbours classification is generally used as
a multi-class classification algorithm, we adapt it for a binary
classification task to provide more comparable results to the first
two metrics. This decision has the added benefit to providing some
allowance for less common relations. If we gauged performance on
the accuracy of classification, a mis-classification would necessarily
be considered a mistake. However, the adapted binary classification
task would consider it a success if two instances of the same relation
were assigned the same label even if both were mis-classified. The
empirical observation that there were almost no false positives dispels
the concern that this might reward a representation that frequently
fails to differentiate instances of distinct relations. Furthermore, using
k-NN as a multi-class classification model provides greater insight
into the actual spatial relationship between the vectors for different
representations.

V. SUMMARY OF RESULTS

The results for all of the experiments are in the tables below.
Figure 5 shows the results for the original representations, whereas
Figure 6 shows the results once the representations have undergone
dimensionality reduction through PCA.

| “ Autoencoder [Concatenation [Subtraction

k-NN 82.1% 83.9% 77.8%
SVM 84.9 % 69.9% 59.1%
NN 79.3% 51.0% 50.5%

Fig. 5: Accuracies for each candidate relation vector representation
and for each evaluation method. Best accuracy for each model is

bold.

|

“ Autoencoder [Concatenation [Subtraction ‘

k-NN 82.1% 83.2% 81.4%
SVM 84.9 % 49.5% 71.9%
NN 64.8% 50.5% 50.5%

Fig. 6: Accuracies for each candidate relation vector representation
after reducing their dimensions to 100 with PCA. Best accuracy for
each model is bold.

VI. DIscUSSION
A. Comparing Performance on Evaluation Tasks

Our highest overall classification accuracy was achieved using the
autoencoded representation, with 84.9% accuracy achieved by the
SVM. The autoencoded representation performed significantly better
than the other two representations when using the SVM and neural

network, both with and without PCA. Using k-NN, concatenation
performed slightly better than the autoencoded representation, while
both concatenation and autoencoded significantly outperformed sub-
traction.

One unexpected result is that concatenation, classified using k-
NN, performed better than the autoencoded representation. This is
most likely due to the fact that k-NN works directly with Euclidean
distances in the vector space. If two concatenation representations
are nearby in the representation space, that means that the individual
word vectors are similar. Therefore, k-NN is mainly testing similarity
of the individual word vectors, rather than the similarity of the
relations. The fact that concatenation performed poorly with the other
classifiers shows that it is not a robust relation representation.

B. Comparing Candidate Representations

The table below shows the same small experiments performed in
Section I, but using autoencoding instead of subtraction to produce
the relation representation. We see that the autoencoder made the
euclidean distances larger, but led to a substantial decrease for the
cosine distances. The greater euclidean distances are an artifact of
our neural network architecture, which does not cap the magnitude
of any of the dimensions, whereas the magnitude of every pre-trained
entity vectors is bounded by 1. Furthermore, the scaling factor S
used during the autoencoder training pushes the autoencoder to learn
weights that going beyond this bound. Finally, the dimensions of
the two representations are vastly different. Therefore, comparing
euclidean distances between the two vector spaces is not meaningful.

l H Euclidean ‘ Cosine

((US—Wash.DC),(China—Beijing)) 3.493 0.172
((US—Wash.DC),(Somalia—Mogadishu)) 4.000 0.256
((US—Wash.DC),(France—Paris)) 3.158 0.124
((China—Beijing),(Somalia—Mogadishu)) 3.227 0.151
((China—Beijing),(France—Paris)) 2.797 0.096
((Somalia—Mogadishu),(France—Paris)) 3415 0.146

Fig. 7: Distance between the autoencoded vectors for two pairs of
entities related by the same relation: State— Capital. Both Euclidean
distance and cosine distance are considered as distances metrics.

C. The Relationship between Similar Relations

An additional property that we hoped to see in our representation
of relations is for instances of semantically similar relations to be
spatially close. We investigate this by running PCA over the different
representations to reduce them to three principal components. We
then plot two similar relations with a dissimilar one. We expect a good
representation to cluster the similar relations together and minimize
overlap with the third. The results for comparing the relations member
of sports team, brother, and sister are shown in Figure 8.

The autoencoded representation is by far the best at producing
two separable clusters, with the concatenated representation seeming
to perform nearly just as well, with a slightly narrower margin by
visual inspection. Notice in Figure 8, however, that the scales of the
plots for the autoencoded representation are different from those of
the concatenation representation. To further highlight just how well
the autoencoded representation actually does relative to the baseline
representations, we put all the plots on the same scale. These plots
are shown in Figure 9.

VII. CONCLUSION & FUTURE WORK

These results demonstrate that it is possible to produce vector
representations for instances of relations in such a way that the

representations of two instances of the same relation are more
similar than the representations of two instances of different relations.
Moreover, we were able to demonstrate that the autoencoder is a
viable method for generating such representations.

One obvious direction to perform further explorations is to inves-
tigate a larger array of autoencoder architectures to see if we can
produce relation representations that perform even better. However,
even with the current representations, we can improve performance
on existing NLP challenges.

For example, we are now capable of determining if two pairs
of entities are related in the same way to a reasonable degree of
accuracy, which means that it is possible for us to answer questions
where we are interested in learning about the presence of particular
relations in a text. Given a set of known entities, we can scan a
text for named entities, produce vector representations of the pairs of
entities, and see if a classifier can match them with a known class of
relations.

Finally, this relation discovery mechanism can improve relation
extraction models and automatically produce candidate relations for
expanding knowledge graphs based on known relations as new texts
are ingested.

VIII. ACKNOWLEDGEMENTS

Thank you to Professor Regina Barzilay and TA Karthik
Narasimhan for providing valuable advice and resources throughout
the development of this project.

REFERENCES

[1] T. Mikolov, et al., “Linguistic Regularities in Continuous Space Word
Representations”. In Proceedings of NAACL HLT, 2013.

[2] T. Mikolov et al., “Distributed Representations of Words and Phrases and
their Compositionality,” in Advances in neural information processing
systems, 2013.

autoencode+pca - member of sports team(P54) vs. brother(P7) vs. sister(P9) autoencode+pca - member of sports team(P54) vs. brother(P7) vs. sister(P9)
e o P54 e e P54
e o P7 e o P7
e e P9 o e o P9 .~

concatenate+pca - member of sports team(P54) vs. brother(P7) vs. sister(P9) concatenate+pca - member of sports team(P54) vs. brother(P7) vs. sister(P9)
e o P54 e o P54
e o P7 e o P7
e o P9 e o P9

subtract+pca - member of sports team(P54) vs. brother(P7) vs. sister(P9) subtract+pca - member of sports team(P54) vs. brother(P7) vs. sister(P9)
e o P54 e o P54
e o P7 e o P7
e o P9 e o P9

Fig. 8: Three-dimensional graphs on subsets. Axis scaled to show Fig. 9: Three-dimensional graphs on subsets. Axis scaled to highlight
clusters clearly. effects of representations.

