
6.806 Project Report Daniel Ziegler and Jerry Wu

Usage of Recurrent Neural Networks in
Transition-based Dependency Parsing

Daniel Ziegler and Jerry Wu

1 Abstract

Transition-based parsing has the advantage of being very fast because it makes local decisions instead of
trying to find a global optimum. Danqi and Manning1 created a fast and accurate transition-based parser
using a neural network for the oracle, which decides which of the several possible actions take at each
timestep. However, transition-based parsing, including this neural parser, tends to make myopic decisions
precisely because it makes said decisions locally. In this paper, we attempt to address this using Gated
Recurrent Units (GRUs) to give the oracle more global information for decision making.2

2 Introduction

A key task in natural language processing is to parse sentences into dependency trees, where each word has
an “arc” that points to its “parent”, the word which it modifies or is otherwise subordinate to, and which
also contains a label describing the relationship between the words. Often, this is done with transition-based
parsers, which are state machines that proceed through input sentences, holding a stack of partially processed
words and a buffer of to-be-processed words, as well as remembering the arcs already drawn, greedily taking
actions like advancing to the next word or connecting two words with an arc, based on the decisions made by
an “oracle”. Transition-based parsers are consequently significantly faster at parsing sentences than other
parsers (such as search-based parsers which don’t use a greedy optimization) while achieving comparable, if
slightly lower, accuracy. However, they are limited because the oracle for choosing the appropriate transition
is myopic, focusing only on nearby elements of the sentence and words directly related to them.

Chen and Manning created a transition-based dependency parser using a neural-based oracle3, which offered
noticeable performance improvements and was very fast, but still was very myopic. We set out to reproduce
their paper, and hoped to then improve on it by using a recurrent neural network to enable it to take
advantage of information that is farther away in the sentence.

3 Transition oracle: Neural network

The primary motivation uf using a neural-based oracle is that more conventional oracles, such as logistic
classifiers or SVMs, rely on a carefully chosen but large and sparse set of features. Using a neural network
oracle allows the usage of embeddings, and the neural network will further compute a dense feature repre-
sentation (the hidden layer) from the embeddings of selected words. This requires significantly less human
effort, resolves some issues with incompleteness of the selected features, and greatly speeds up parsing speed
because with conventional oracles, most of the parsing time is actually spent computing the features.

The possible actions are shift (move head of buffer to top of processing stack), left-arc (draw an arc from
the top of the stack (parent) to the second word on the stack (child), and remove the second word from the
stack), and right-arc (the opposite). For each of the arcing actions, there are 40 possibilities– the number of
arc labels in the system, though a few of them are dummy arc labels used to represent nonexistent arcs for
feature input purposes. This gives a total of 81 possible actions.

1Danqi Chen and Christopher D Manning. 2014. A Fast and Accurate Dependency Parser using Neural Networks. Pro-
ceedings of EMNLP 2014.

2Project code: https://github.mit.edu/werryju/6867-proj
3http://cs.stanford.edu/~danqi/papers/emnlp2014.pdf

1

https://github.mit.edu/werryju/6867-proj
http://cs.stanford.edu/~danqi/papers/emnlp2014.pdf


6.806 Project Report Daniel Ziegler and Jerry Wu

3.1 Embeddings

Based on a previous paper, Chen and Manning selected 18 words to pass to the oracle out of the top few
words on the stack and the queue, and out of the descendants of the top few words on the stack. The neural
network was passed each of these words, as well as their part-of-speech tags (as generated by the Stanford
Tagger program) and the arc labels between these words. In all cases, 50-dimensional embeddings were
passed to the oracle. We found this rather confusing, because there are actually fewer than 50 different POS
tags and arc labels (and consequently the embeddings would increase the dimensionality over the one-hot
vector representation), so we instead decided to use 10-dimensional embeddings for most of our testing.

3.2 Architecture

The neural network used had a hidden layer of 200 units followed by a softmax output layer. For the hidden
layer, Chen and Manning used a cubic activation function (i.e. z = a3) instead of the conventional hyperbolic
tangent, finding this to be a significant improvement. The theory behind this is that the expression includes
the product of up to 3 terms in the input, allowing the neuron output to depend on conjunctions of multiple
features in the input.

3.3 Regularization

Chen and Manning additionally used Frobenius-norm regularization with a coefficient of 10−8, and also used
dropout with a dropout rate of 0.5. It wasn’t entirely clear from the paper, but we think they only used
dropout on the hidden layer units; dropout on the input units would not have interacted well with the cubic
activation function, especially since it explicitly was designed to exploit cross-terms between different inputs.

4 RNN: Gated recurrent unit

To address the myopicity of the transition-based parser, we decided to augment the information passed to
the oracle with information about the sentence as a whole. This information would be an encoding of the
sentence using a recurrent neural network; in particular, we decided to use the Gated Recurrent Unit (GRU)
architecture, a simpler version of the Long-Short-Term-Memory (LSTM) architecture, a modification of the
usual RNN designed explicitly to allow the RNN to retain information in the hidden layer over extended
periods of time.

4.1 GRU Architecture

A GRU is first initialized with a hidden state of all zeroes. The hidden state is concatenated with the input
vector to provide an input for two gates: the update gate and the reset gate. In both cases, the concatenated
input is multiplied by a weight matrix with a bias added, then fed through a sigmoid (logistic function). The
incoming hidden state is then multiplied componentwise by the reset gate output, then concatenated with
the input vector to form a combined input, which is multiplied by a weight vector with a bias added, then
fed through a hyperbolic tangent activation function. This is then multiplied componentwise by the update
gate and added to the componentwise product of the previous hidden state and 1 minus the update gate to
form the new input. The output of the cell is simply the hidden state.

So, where h(i) denotes the ith hidden state, with h(0) = ~0, x(i) is the ith input, one-indexed, W denoting
weight matrices (subscript indicates which one), b denoting biases, ⊗ denoting componentwise multiplication,
	 denoting broadcasted componentwise subtraction:

r(i) = σ(Wrhh
(i−1) +Wrxx

(i) + br)

2



6.806 Project Report Daniel Ziegler and Jerry Wu

u(i) = σ(Wuhh
(i−1) +Wuxx

(i) + bu)

z(i) = tanh(Wzh(h(i−1) ⊗ r(i)) +Wzxx
(i) + bz)

h(i) = u(i) ⊗ z(i) + (1 	 u(i)) ⊗ h(i−1)

4.2 Encoder-decoder Architecture

The architecture for the encoder is based on LSTM networks for neural machine translation.4 The encoder is
a GRU cell which inputs the sentence one word at a time, repeatedly updating its hidden state. The decoder
is a separate GRU and is initialized with hidden state equal to the last hidden state of the encoder, and
then is called repeatedly, outputting the POS tag of each word in the sentence as a one-hot vector, though
each time the decoder outputs the POS tag of a word, it first inputs the outputted POS tag of the previous
word, represented as a one-hot vector. (For the first word, it inputs a vector of all zeroes.)

Once the encoder-decoder is trained, the encoder can be used to encode a sentence simply by running it over
the words in the sentence. This produces a vector at each word in the sentence (the hidden state at that
word) which can be fed to the transition-based parser oracle.

We used GRUs of hidden state width 200 for this. We decided to run the encoder over the sentence backwards,
instead of forwards. This is because the transition-based parser’s features contain information about what
has already been parsed, and as a consequence the oracle already has a significant amount of information
about the beginning of the sentence but little about the end. By running the encoder over the sentence
backwards, the generated encoding about each word will encode information about the sentence after that
point. (An alternative would be to run two encoders over the sentence, one forwards and one backwards,
but we elected not to in order to avoid increasing the size of the feature set too much.)

The encoder additionally made use of 50-dimensional embeddings of the input words, but these embeddings
are independent of the embeddings used by the parser.

4.2.1 Usage

The encoder is used to augment the features of the transition-based parser by first preprocessing the sentence,
generating an encoding at each word of the sentence; the encoding of the word at the top of the stack is
passed to the oracle in addition to all the previous features. This increases the dimensionality of the input
to the oracle by 200, from 1200 to 1400.

4.2.2 Training

The encoder-decoder is trained end-to-end. We first process an entire sentence, which produces a sequence
of probabilities for POS tags. The decoder, instead of inputting its previous prediction, instead inputs the
true previous word. The total cross-entropy loss is then computed on the entire sentence, and the weights
are updated using backpropogation through time.

Once the encoder is trained, the parser is trained on top of that, holding the encoder fixed. Theoretically,
we could simply initialize the encoder in this fashion but continue to tweak it via backpropogation while
training the parser, but this is more complex and we didn’t have time to do this. Instead, we simply added
the appropriate features to the parser-state snapshots fed to the oracle for training; see below for more details
on how the oracle was trained.

4http://arxiv.org/pdf/1406.1078v3.pdf

3

http://arxiv.org/pdf/1406.1078v3.pdf


6.806 Project Report Daniel Ziegler and Jerry Wu

5 Implementation

5.1 TensorFlow

We created an implementation of Chen and Manning’s paper from scratch in Python. Because it seemed
like an interesting tool to try, we based the implementation on TensorFlow, Google’s newly released machine
learning framework. TensorFlow models computations as graphs of operations, and then decides how to
schedule the computations, potentially distributing them across CPU cores or GPUs. Most of the time,
using TensorFlow in Python feels fairly similar to using numpy: you can call various functions to perform
mathematical operations, matrix manipulations, and so forth. Instead of actually executing the computations
right away, however, TensorFlow simply constructs the graph representation behind the scenes and waits for
you to run feed it input data to run on. This has some convenient advantages: For instance, TensorFlow
can examine the graph and automatically differentiate it — it’s no longer necessary to manually compute
gradients for gradient descent! Also, it’s very simple to save and restore (partial) results of computations;
TensorFlow has infrastructure to do so nearly automatically. On the flip side, TensorFlow’s lazy nature
means it’s more difficult to explore interactively. It’s not possible to simply write a few operations and see
e.g. what the resulting matrix dimensions are, as it would be in Python. Instead, much of the time, it’s
necessary to create new tensors for each value of interest, including for the shapes of other tensors, and then
call an evaluation method to evaluate the whole graph up until the desired tensor.

5.2 Dataset: English Penn Treebank

Chen and Manning tested their parser on the English Penn Treebank (PTB) as well as on the Chinese
Penn Treebank. For our purposes, we decided to focus only on the English Penn Treebank dataset. It
took some back-and-forth until we were able to have full access to the data, but once we did, we could
use the same dataset that Chen and Manning used as well. Among other things, the PTB contains 43,948
English sentences with corresponding constituency trees, which we converted to dependency trees using the
old Stanford Dependencies format (since this was used by Chen and Manning’s paper) using a tool available
as part of the Stanford Parser. These are the dependency trees that we tried to predict. For scoring, we
decided to use LAS primarily, though we also evaluated to judge the percentage of trees which were entirely
correct, including labels.

The input trees were parsed without punctuation; in particular, we simply recreated the input sentences based
on the dependency trees, which did not include punctuation. This is because the raw text files contained
several errors, and matching up the sentences to the trees proved difficult, so after some initial efforts were
made, we decided to simply reconstruct the sentences.

Similar to Chen and Manning, we used sets 2 through 21 for training and 22 as the development set, and 23
as the test set, although we did little model selection, instead mostly relying on the hyperparameters set by
Chen and Manning.

5.3 POS tagger

One of the most important inputs to the neural network is the part-of-speech (POS) annotations on the
words. The words in the PTB dataset come labeled with parts-of-speech already, but apparently, the labels
are not as accurate as they could be. Thus, we followed Chen and Manning once again, making an additional
pass over the input data using the state-of-the art Stanford POS Tagger5. We were able to access it from
Python by installing Python’s NLTK natural language processing package6, which has a module for calling
into a downloaded Stanford POS Tagger Java JAR.

5http://nlp.stanford.edu/software/tagger.shtml
6http://www.nltk.org/

4

http://nlp.stanford.edu/software/tagger.shtml
http://www.nltk.org/


6.806 Project Report Daniel Ziegler and Jerry Wu

The POS tagger was used for preprocessing as a part of building the datasets used for training and testing.
The sentences passed to the POS tagger were in the format of lists of words, without punctuation.

Except insofar as we used TensorFlow’s libraries/tutorials and the tools available from Stanford NLP (the
converter and the tagger), all our work was from scratch in Python. (For example, we implemented our own
GRU unit instead of using TensoFlow’s; most notably, however, we did not implement our own versions of
the optimization algorithms we used.)

5.4 Shortest stack oracle

Since the neural network predicts parsing actions, not dependency trees themselves, it also must be trained
on parsing actions. To generate parsing actions from our data, we implemented what’s called a “shortest
stack oracle”, which figures out the sequence of transitions to create a particular tree with minimal use of
the stack. Then, each transition becomes a training point for the neural network: The input is (a subset
of) the state of the parser, and the output is the transition that was taken. This setup means that overall
prediction accuracy falls off drastically: Incorrectly predicting an action means that most of the following
arcs will probably be incorrect. If any arcs for a sentence are incorrect, the dependency tree for that sentence
will be incorrect.

6 Results

6.1 Experimentation

Initially, our performance was poor as far as we were able to train the feed-forward neural net oracle (without
augmentation by GRU encoding). In particular, despite training for very long, we were only able to achieve
a LAS of about 72%. We tried a number of variations to fix our lackluster performance, despite none of
them being mentioned by the paper. We were ultimately able to improve significantly on our initial results,
to the extent where we came close to reproducing the paper, but we include details on our other attempts
because we feel they still contain useful information.

6.1.1 Varying regularization constant

When we initially implemented the feed-forward neural network, we did so without dropout, and thus, we
increased the regularization constant λ from 10−8 to 10−4. Later on, we suspected that this may have been
too extreme and caused us to seriously underfit, so we reduced it again. However, this did not result in the
drastic improvement we had hoped for, a couple percent at most.

6.1.2 Dropout or not

We eventually implemented dropout, which proved to be quite simple using TensorFlow; however, our
performance actually decreased using dropout. At the very least, it did not perform as well after a fixed
number of training examples; we did not have the computation time to determine whether it would converge
to an ultimately better result.

6.1.3 50 dimensions, not 10

We were somewhat puzzled by Chen and Manning’s choice to use 50-dimensional word vectors for the
POS tags and arc labels – there aren’t even 50 different types of either of them, so those vectors are even
bigger than one-hot vectors would be. As they explain, it still makes sense to use word vectors in order to
exploit semantic similarities between the tags and arc labels. However, we decided to reduce the number of

5



6.806 Project Report Daniel Ziegler and Jerry Wu

dimensions for these to 10. When we got bad results, we wondered whether this change might have caused
problems, so we attempted a training run where we put all the dimensions back to 50. Unsurprisingly, it
trained much slower and did not do significantly better.

6.1.4 Different activation functions

Though Chen and Manning had explicitly claimed the cube activation function was better than tanh for this
problem, we decided to see for ourselves; indeed, the performance was significantly worse.

We then tried the composition of hyperbolic tangent and cube; this would allow us to keep the benefits of
having cross-terms between the different inputs while also restricting the output to [−1, 1]. Unfortunately,
this did at best comparably to hyperbolic tangent. It’s possible this is because the composition of tanh and
x3 is flat both close to 0 and far from 0, making it easy to get stuck during training.

6.1.5 Manual investigation of output

We inspected the output of our predictor to determine why it was doing so badly. First, we checked accuracy
rates for the actions on the training set and a test set; we were achieving in the vicinity of 90% accuracy
on the actions for both sets, but since arcs are not independent, that meant we achieved a noticeably lower
accuracy on the arcs themselves, and much lower accuracy (about 10%) on the entire trees. This seemed
reasonable, though part of the reason we suspected underfitting and reduced the regularization from 1e− 4
to 1e−8 was because 90% was still significantly lower than we expected on the training set, and the training
and test sets had approximately the same accuracy.

We then printed out a sample of the predicted actions, the true actions, and the predicted probabiities for
both. The main result we noticed was that the majority of incorrect actions were predicted as “shift” instead
of one of the 80 total possible arc-drawing actions. Furthermore, the predicted probability of the shift actions
were above 50%, so it wasn’t simply a case of similar arc labels splitting the probability, but regardless the
oracle was significantly overpredicting the shift action, almost certainly because shift is the most common
action. Furthermore, by getting the class of action wrong, the oracle would severely hurt its chances to get
arcs correct later on parsing the same sentence, because the produced result must always be a tree.

6.1.6 New loss function

To combat this, we decided to make the loss function encourage the oracle to focus on selecting the correct
type of action first, then choosing the correct type of arc. Our new loss function is:

λcross entropy(ŷ, y) + (1 − λ)cross entropy(acts(ŷ), acts(y))

where λ is a scalar parameter, ŷ is the prediction, y is the true value, and acts(p) inputs an action probability
vector (dimension 81) and returns the corresponding action class probability vector (dimension 3).

Unfortunately, this didn’t work either.

6.1.7 Other Analysis

We also took one of our trained models and examined the various parameters. We found that the weights
for words, POS tags, and labels were all about the same, but the embeddings for the words were about
an order of magnitude smaller than the embeddings for POS tags and labels– so their importance probably
corresponds to that as well. This seemed reasonable, however, because indeed the majority of the syntactical
information on a word should be based on its part of speech, and we didn’t know if this was actually usable
information.

6



6.806 Project Report Daniel Ziegler and Jerry Wu

We also checked the quality of our POS embeddings by computing the pairwise dot product between different
POS tags; nominally, we should have used cosine similarity (which would just be the normalized version)
but the embeddings were approximately the same magnitude so this was unimportant. Indeed, similar POS
tags had similar embeddings (for example, the different variants on noun), so that part of our code probably
worked, and we did not find a way to improve our result through this investigation.

6.1.8 Adam optimizer

We initially used mini-batched Adagrad, as they noted in the paper; however, we decided to switch to
the Adam optimizer since it was purported to be better. Our first attempt did not work, but subsequent
attempts achieved useful results.

6.2 Testing the Encoding-Augmented Parser

We came close to reproducing the results in the paper, though we were not entirely successful. Our prelimi-
nary tests, where we only trained our parsers for 4 epochs (for a total of approximately 6.8 million training
examples), achieved a LAS of approximately 0.84 on the dev set.

This, we decided, was sufficient to test against. Our final tests ran each parser for 10 epochs, for 17190
mini-batches of 1000 examples each; we didn’t have time to instead run until some convergence condition
or another. In all cases, we used a hidden layer with 200 nodes using the cubic activation function, a
regularization constant of 1e − 8, 50-dimensional embeddings for words, and 10-dimensional embeddings
for POS tags and arc labels. Optimization was performed using the Adam optimization algorithm with
ε = 1e− 6 for numerical stability. The stepsize followed (0.03 · 200)/(200 + n0.61), where n is the number of
epochs which have elapsed, as an integer. The loss function used was the cross-entropy loss function.

Based on our earlier experimentation training to 4 epochs, we originally decided not to use dropout for
testing, but noticed that the loss function had significantly decreased over the course of training but the
validation error had not, so we suspected overfitting and consequently additionally ran tests using dropout.

6.3 Data

Note that all data provided are a single sample; we did not have time to train for multiple iterations and
take the average result.

Results from our initial experimention is given in Figures 1 and 2. These are trained only on sections 2
through 5 of the Treebank for faster runtime (due to memory limitations, we would not be able to perform
as much precomputation on the entire training set), run for 10 epochs.

Next, the results from preliminary testing after we started using mini-batched Adam are in Figures 3 and 4.
All training here and in the next section is performed on sections 2 through 21 of the English Penn Treebank,
drawn in batches of 1000 without replacement.

The results from our final round of testing are in Figures 5 and 6. Despite the relatively high performance of
tanh in the previous round of training, we elected to proceed with cubic activation functions simply because
the original paper did as well.

7 Analysis

First, we would like to note that it’s evident from the training error graphs that the networks have not
completely converged, and this probably one reason our LAS scores did not match up to those given by
Chen and Manning, but we did not have time to train the oracles to convergence. This is especially evident

7



6.806 Project Report Daniel Ziegler and Jerry Wu

Figure 1: Loss during training, which was conducted with mini-batched AdaGrad. The reported loss is on the
batch being trained on, before the gradient step. default is our main implementation with 10-dimensional
embeddings for POS tags and arc lables, with a cubic activation function, no dropout, and cross-entropy
loss. dropout is with dropout on the hidden layer only; dropping out both layers is worse. exper uses the
experimental activation function (composition of tanh and cube). largedim uses 50-dimensional embeddings
everywhere. encod is with the third implementation of the encoder; the loss before about the 2400th iteration
is very high due to bad training parameters and has been omitted for readability; in fact we’re surprised
it managed to recover. adjloss is with the modified loss function. Not shown is hireg with a large
regularization constant, since that just has a very high loss due to said regularization constant.

name train test arc tree
default 0.808705536 0.801493526 0.532384188 0.014705882
dropout 0.670354143 0.668070011 0.27447015 0.001176471
exper 0.676487048 0.674778456 0.291727336 0
laredim 0.857649894 0.849073793 0.619721728 0.044705882
tanh 0.687494382 0.684316594 0.296796635 0
hireg 0.817964339 0.807332358 0.548401014 0.027647059
adjloss 0.822015247 0.813612898 0.572992504 0.024705882

Figure 2: Names correspond to those in Fig. 1. train is the accuracy on the actions in the training set; dev
is the accuracy on the actions in the development set; LAS is the accuracy on the predicted arcs when used
to parse the development set; tree is the accuracy on the whole tree when used to parse the development
set.

8



6.806 Project Report Daniel Ziegler and Jerry Wu

Figure 3: Each datapoint represents the log-loss during training, averaged over 30 iterations for readability.
(Yes, the loss function is already the negative log-liklihood of the gold tags; we take the log here strictly for
readability reasons.) We did not use adjloss or largedim in this phase.

name default dropout exper tanh hireg encod
LAS 0.84331014 0.83845656 0.841341746 0.847462654 0.744377932 0.843795502
tree 0.23705882 0.242352941 0.243529412 0.270588235 0.106470588 0.268823529

Figure 4: These are the results from evaluating on the dev set.

Figure 5: Here, we stopped using most of our more experimental parser setups. encoddrop is the parser
with GRU encoding augmentation, but also with dropout.

9



6.806 Project Report Daniel Ziegler and Jerry Wu

name LAS (dev) tree(dev) LAS (test) tree (test) wor tag arc encod
default 0.8423394 0.2582352 0.848171 0.26365894 2.2 1.6 1 –
dropout 0.8503208 0.2670588 0.852024 0.273178808 2.3 1.8 1 –
encod 0.8428517 0.2511764 0.847941 0.26365894 2.6 1.9 1 2.2
encoddrop 0.8522083 0.2694117 0.852867 0.274834437 2.1 1.6 1 1

Figure 6: wor, tag, arc, and encode denote the relative importance of each section of the feature space. To
compute these, we took a sample of 50 training points (snapshots of the parser state with the appropriate
action), parsed each input into the 1200-length or 1400-length vector with embeddings of the input words,
tags, etc., and multiplied each section by the appropriate section of the input weight matrix. This produces
four vectors, which when added together produce the activations of the hidden layer. We then took the RMS
values of the components.

from the fact that training error seems to drop significantly at the beginning of each epoch, which is perhaps
indicative that the embeddings are still improving.

Likewise, the encoder was not optimized very highly both in terms of hyperparameters and in terms of
training length; just enough to be able to decode with some accuracy (approximately 75%) the POS tags
of the output words. I notice, incidentally, that the input to the encoder does not include the POS tags,
since we wanted to include information about the words and thought that inputting the POS tags would
just cause the word input to be disregarded, though in retrospect this may have caused the encoding to not
have been quite as good as they could have been; we didn’t have too much time to experiment with this.

Ultimately, the results are inconclusive. I note that indeed it seems that there is overfitting after training for
about 10 epochs, so use of dropout is beneficial. In this case, the neural parser augmented by the encoding
seems to do marginally better than the original neural parser, though it’s possible this is simply due to luck,
so from this it’s unclear that the inclusion of the encodings is helpful.

On the other hand, when analyzing the importance of the various factors to the input of the hidden layer, it’s
clear that though the oracle prefers to make use of the word and POS embeddings, it in no way disregards
the information given by the encoding, so it seems unlikely said encodings are entirely unhelpful; but since
the inclusion of the encodings does serve to increase the dimensionality of the feature space, it’s unclear that
including this extra feature is more of a benefit than including, say, information about additional words in
the context. It seems further exploration is needed, ideally with more computational power. For example,
it’s also unclear what the relevance performance would be in the limit where the oracles have converged.

We never tested the speed of the parser with GRU-encoder augmentation. Realistically, the expected usage
is you first preprocess the entire sentence using the encoder, then feed appropriate values to the oracle, but
we didn’t have time to set up testing this way, especially because the person running the training and tests
had limited RAM; this is also the main reason training took so long, because we did not have the memory to
store precomputation for the entire corpus, and due to some inefficiencies we were recomputing the encoding
for the entire sentence, once for each snapshot instead of once for each tree. Theoretically, though, expect
the parser to be at most a couple times slower with GRU-encoder augmentation, since the runtime of the
encoder for each input should be comparable to the runtime of the neural oracle for each action.

8 Division of Labor

As planned, since Jerry used this project for both 6.806 and 6.867, he took over more of the work than
Daniel. He wrote the GRU, shortest-stack oracle, and an initial TensorFlow feed-forward NN, as well as
some miscellaneous tasks. Daniel wrote the Stanford POS tagger integration and finished up the feed-forward
NN, integrating the POS tagger and word vectors and building the actual training data using the shortest-
stack oracle. During the optimization (or rather, salvage) process, both of us spent a lot of time thinking
through the code and trying out various alternatives.

10



6.806 Project Report Daniel Ziegler and Jerry Wu

9 Works Cited

Danqi Chen and Christopher Manning. 2014. A Fast and Accurate Dependency Parser using Neural Net-
works. In EMNLP 2014. http://cs.stanford.edu/ danqi/papers/emnlp2014.pdf

Cho et al. 2014. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation. In CoRR 2014. http://arxiv.org/pdf/1406.1078v3.pdf

Stanford Natural Language Processing Group. 2015. Stanford Log-linear Part-Of-Speech Taggers.
http://nlp.stanford.edu/software/tagger.shtml

Joakim Nivre. 2003. An efficient algorithm for projective dependency parsing. In Proceedings of the Eighth
International Workshop on Parsing Technologies (IWPT), pages 149160, Nancy, France.

NLTK Project. 2015. Natural Language Toolkit - NLTK 3.0 documentation. http://www.nltk.org/

11


	Abstract
	Introduction
	Transition oracle: Neural network
	Embeddings
	Architecture
	Regularization

	RNN: Gated recurrent unit
	GRU Architecture
	Encoder-decoder Architecture
	Usage
	Training


	Implementation
	TensorFlow
	Dataset: English Penn Treebank
	POS tagger
	Shortest stack oracle

	Results
	Experimentation
	Varying regularization constant
	Dropout or not
	50 dimensions, not 10
	Different activation functions
	Manual investigation of output
	New loss function
	Other Analysis
	Adam optimizer

	Testing the Encoding-Augmented Parser
	Data

	Analysis
	Division of Labor
	Works Cited

