

The Raychev-Vechev-Yahav Model
Given a program with some designated areas removed,

how well can a natural language model predict the
removed code?

● First explored in their paper “Code Completion with
Statistical Language Models.”

● Each variable v, along with an execution of the
program, yields a sequence of events of form (func, S),
where func is invoked in the execution, and S is the set
of places where v appears as a parameter of func.

● We can thus turn any program into a set of sentences
with words corresponding to events.

Example

frame = screen.getFrame();
frame.resize(screen);
…
val = frame.getContents();
this.setHeader(0, val);
…
printf(“%s”, frame.name);
…
int x = val.toInt();
frame.setID(x,x);
…
x = x * 9;
Uint y = factorial(x);
Exit(0);

becomes

frame
(getFrame, (-1))
(resize, (0))
(getContents, (0))
(setID, (0))

val
(getContents, (-1))
(setHeader, (2))
(toInt, (0))

screen
(getFrame, (0))
(resize, (1))

x
(toInt, (-1))
(setID, (1, 2))
(factorial, (1))

y
(factorial, (-1))

Limitations

● The Raychev-Vechev-Yahav Model has major difficulties
with loops.
– Loops that can run for an arbitrary number of iterations will yield

infinitely many sentences.

– Even when bounded, this inflates the frequency of n-grams in
loops.

● The results aren't reported as the likelihood of the correct
completion.
– Instead, the actual code's placement in a list of top suggestions is

given.

– It's not immediately clear what parts of the model are effective.

Modifications

● To address the loop issues, we proposed generating the
sentences by walking along the program's parse tree.
– levels: statements at a certain variable scope form sentences

– cfs: an acyclic version of the CFG is used

● To better illuminate the likelihood of code, we generalized
from the original trigram model.
– The call model, which generates the function call to test, was

modified to use a MEMM.

– We also reported results for unigram and bigram.

Implementation

● The original paper restricted its attention to
Android's Java API.

● Our corpus was thus taken from GitHub projects in
this area.

● We had to make our own program analysis tool.
– We used the PLYJ Java parser to get raw parse trees,

and then performed significant modification to yield a
simplified representation.

● We also included a random baseline prediction.

Performance

● We usually didn't get the right completion…
– We had difficulty with static fields—without detailed type analysis,

we had to treat them like constants, and couldn't dynamically place
them.

– The model was weighted towards short sentences—with the
exception of fields, many variables only generate one or two events.
 As a result, the model assigned greater likelihood to completions
that only used constants.

– As in the previous model, we couldn't handle expressions in function
calls.

● However, we did find out the most important elements of the
model.

Numbers

call model

3 1.3801695908 1.4446105766 1.471347531

call model

3 1.3502175602 1.3991302954
2 1.3801695908 1.4446105766 1.471347531 2 1.3675182533 1.3854038403
1 1.3794449235 1.4479395829 1.4694658828 1 1.3671579219 1.3908003662

MEMM 1.2973448348 1.3617000792 1.3816577024 MEMM 1.2811909286 1.3039491778

levels, max
1 2 3

levels, random baseline
1 2

var model var model

call model

3 1.2526546072 1.2952245955 1.310383277

call model

3 1.2376532236 1.2616989967
2 1.2526546072 1.2930782423 1.3067884675 2 1.2263363548 1.2873724219
1 1.252504953 1.2877275064 1.2984496871 1 1.2234551087 1.2464570138

MEMM N/A N/A N/A MEMM N/A N/A

CFS, max
1 2 2

CFS, random baseline
1 2

var model var model

Conclusions

● The limited information available from raw code severely
limited predictive abilities.
– We could include additional information about the Android API,

although the results would then not generalize.

– A more powerful program analysis tool would help.

● The MEMM showed great promise.
– It performed on par with the other models. However, it had a

minimal number of features.

– It also wasn't yet considering previous words during tag
computation.

● We hope to continue this work!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

