
6.864 Project: Determining API Usage Policies
from Method Documentation

Tej Chajed, James Koppel

December 14, 2015

Abstract

The public APIs of various software packages contain constraints on
what constitutes a valid use of each API method, often documented in
both explicit (e.g., “may not be null”) and subtle (e.g., “a duration in
miliseconds” implying a non-negative integer) manners. In this work, we
attempt to build a system that can learn constraints on method param-
eters from their documentation. Notably, our approach requires no an-
notated data, instead learning correct usage automatically by performing
static analysis on a corpus of API usages (that is, calls to API methods
in other ordinary code). We demonstrate our technique on the problem
of detecting when a parameter is expected to be constant. The extracted
policies can be used in automated checkers to detect bugs in programs
that use the API.

1 Introduction
We focus our study on APIs in programming languages. API methods have
various constraints on their correct usage. Some obvious examples include the
number of arguments, types of arguments (in languages with type systems), and
that a parameter must be positive. Many programming languages can formally
express and automatically enforce the first two, while only a handful can handle
the last.

Even for constraints that cannot be expressed directly within the language,
a class of technologies called static analysis can make use of the constraints
to provide valuable feedback. Some constraints are quite strict (such as an
argument not being null) while others are more suggestions (such as discarding
an error value being a likely source of bugs) or even stylistic (such as avoiding
the use of if (false) { } to disable code).

2 Related Work
Our work is an addition to the large body of work on inferring API properties,
surveyed in [7], but part of only a small body of work to use NLP in software-

1

engineering problems. Out of those, ours is the only approach to ecshew the
need for annotated data, and the only approach to combine static analysis with
NLP.

The Doc2Spec system of Zhong et al [12] is the main preexisting approach
to inferring API properties with NLP. They focus on inferring state-machine
properties, e.g., opening a file transitions it to the open state. They use named-
entity recognition to extract action/object pairs (e.g.: <open, file>), and then
fit these to a predetermined set of state machines.

There are several other systems which infer properties from method docu-
mentation, but these focus on the internals of a codebase rather than on public
APIs. Tan et al’s iComment system [8] is one of the more sophisticated uses
of NLP in software engineering, focused on detecting locking and resource rules
(e.g., lock must be acquired before method is called). They first use clustering
to identify locking-related comments. Then they train a decision tree on labeled
data to map a comment to one of a few rule templates, and find named entities
and variables to fill in the template. Its successor, aComment [9], applies this
approach to interrupt behavior. The aComment system also uses static analy-
sis to interrupt-related functions that the NLP component cannot, although the
static analysis component does not directly interact with the NLP component.

The TComment system [10] focuses on the problem of detecting whether a
method’s documentation says an argument may or may not be null, and com-
paring it to the method’s actual behavior, as determined by randomly generated
tests. They analyze comments entirely using heuristics, such as searching for
the word “not” near the word “null.”

Finally, there are two other works of note. DocRef [11] does named-entity
recognition to find out-of-date cross-references in documentation. The oldest
use of NLP for program analysis comes from [5], which uses whether a function
name contains a keyword as a feature for part of a larger machine-learning
system.

3 Learning Problem
To set up this information extraction problem as a learning task, we initially
thought to use reinforcement learning. The constraints that we wanted to learn
would come from pre-determined families (we called these “checkers”): our run-
ning example was the following method:

/**
* Adds the specified component to the layout , using the specified
* constraint object. For border layouts , the constraint must be
* one of the following constants: <code >NORTH </code >,
* <code >SOUTH </code >, <code >EAST </code >,
* <code >WEST </code >, or <code >CENTER </code >.
* <p>
* Most applications do not call this method directly. This method

2

* is called when a component is added to a container using the
* <code >Container.add </code > method with the same argument types.
* @param comp the component to be added.
* @param constraints an object that specifies how and where
* the component is added to the layout.
* @see java.awt.Container#add(java.awt.Component , java.lang.Object)
* @exception IllegalArgumentException if the constraint object is not
* a string , or if it not one of the five specified

* constants.
* @since JDK1.1
*/

public void addLayoutComponent(Component comp , Object constraints) {
}

Here there is a constraint that the constraints argument must be one of
the specified constants. We envisioned having a family of checkers for an ar-
gument being in a specified set and learning that this checker is applicable to
this method. The way we wanted to learn this mapping was through reinforce-
ment learning, with signal provided by usages where the checker passed. This
restricted us to constraints where we had checkers, but this was the intention
anyway, since checking the constraints automatically is the intended use case.

Believing this would be too hard to train up to interesting uses of language,
we went with a simpler learning problem. Instead of using the correct usages
as feedback, we decided to directly train a model to learn the analysis results.
What we were doing is actually a little subtler than this simple problem gives
away. We interpret the analysis results as the ground truth for the constraint
on the API. This interpretation make the assumption that usages are correct,
a reasonable assumption given enough usage examples. Our formulation is also
attractive because it requires no labelled data: in effect, static analysis extracts
the annotation for us, in terms of actual correct usage rather than just what
the documentation implies. This does create a burden for the learning: it
must identify when there is actually a constraint in the documentation, or, put
another way, “no constraint” always has to be an available output.

At this point our best motivating example of constraint and accompanying
static analysis was nullness checking: determining whether or not null was an
allowed value for a parameter. A usage can be checked by determining if the
object being passed might be null. Here we had another choice for ground truth:
analyzing whether the method itself could crash given null as a parameter.

We struggled to come up with a way to translate these facts into a learning
task that was reasonable. We ran into several difficulties. Ths first was that the
analysis results we had for null arguments were of low quality — the analysis
was too conservative and intra-procedural, so it tended to say anything could
be null. We also found documentation to be inconsistent with respect to null
annotations — some libraries (like the JDK) document where null is not allowed
and generally allow it, while in Google’s Guava library the default is that nothing
can be null. It seems like null is a real problem in Java, as reflected in its

3

handling. Finally, this problem is made less interesting by the availability and
use of an @Nullable annotation intended to mark an argument as being possibly
null (with good hygiene dictating that null is generally not allowed).

In the end we came up with a constraint that was easily checked by static
analysis: constantness, explained in the next section.

4 Static analysis properties
The constraint that came up with was whether or not an argument is expected
to be a constant. Argument values can either be constant (known at compile
time) or dynamically calculated, a property we call constantness. Values are
often dynamically calculated, at least in many usages, but constant arguments
do appear. For example, in Python the open() function takes a filename (which
is often dynamic) and a mode string, such as "r" for read or "w" for write,
which should typically be constant. This constantness property was attractive
because it can be particularly reliably analyzed. It also handled the issue of
determining whether or not there was a constraint since we expected to see a
class of arguments that could appear as either constant or non-constant (the
pathname to open() being one such example).

We obtained our ground truth static analysis results using the Soot Frame-
work [6]. We initially decided to focus on extracting three different proper-
ties: whether an argument is constant, whether an argument may be null, and
whether an argument must be positive. These all have the advantage that they
are binary properties (to make the ultimate learning problem easier) and can be
computed using off the shelf analyzers. While we implemented passes to collect
both nullness and constantness information, we ultimately ended up focusing
on constantness because it produced the most reliable data.

Our constantness analysis is based on Soot’s reaching definitions analysis.
A reaching definitions analysis traces back from each use of a variable to every
assignment that may have stored the value currently in that variable. At each
method invocation, our constantness analysis reports that an argument is con-
stant if (1) it is a literal or (2) it is a variable with exactly one reaching definition,
and that definition is constant (recursively checked). If a definition is a class
field, it reports constantness if that field is final, as will commonly be the case
if the library exports special constants (e.g., JDialogBox.OK_CANCEL_OPTION).
This last step requires that the class containing the field be on Soot’s class-
path; it returns UNKNOWN if not. While for each library whose documentation
is of interest we attempted to have some version on the classpath, ultimately
approximately 0.1% of uses within our corpus had unknown constantness; we
elected to discard these.

We also extracted nullness information from our corpus using Soot’s nullness
analyzer. However, we found the results from this analyzer were too imprecise
because it is intraprocedural, meaning it assumes all parameters to a method can
be null. As a result, while empirical studies have shown that the overwhelming
majority of references in Java cannot be null [4], our static analysis reported

4

the opposite. As future work, we plan to modify the nullness analyzer to be
interprodecural, a straightforward but computationally expensive change that
will hopefully giive results precise enough to use in machine learning.

As future work, we are still interested in computing whether method argu-
ments must be positive by using the interval analysis included as part of Soot’s
array bound analysis. We are also interested in specifically processing “one-of”
constraints as in the addLayoutComponent example, which can also be done using
our constantness analysis.

One interesting direction suggested at our poster presentation was apply-
ing our work to return values, for example checking whether users of a method
should assume that a return value can be null, or whether a method’s return
value is an error code that should not be ignored. Indeed, Soot has a “Nullnes-
sAssumptionAnalyzer” that we can use for nullness, while the latter could be
done using a live variables analysis.

5 Data
We collected our data from DARPA’s MUSE (Mining and Understanding Soft-
ware Enclaves) corpus [1], a large collection of software and software artifacts
intended for use in “big code” projects. From the MUSE corpus we selected
and downloaded about 200 projects to get samples of code usage. From the
same source we downloaded documentation and pre-compiled bytecode for a
few projects we considered libraries: these include the Java standard library,
Apache Log4J, and the Android SDK, as well as 5 other projects. The methods
in the libraries with documentation formed the APIs we trained and evaluated
on.

We chose to get data from the MUSE corpus hoping for the most conve-
nient packaging of code (with compiled JARs available that we could directly
run our analysis on) as well as documentation already extracted using Doxy-
gen, a widely-used documentation-generation tool. In retrospect problems we
encountered with MUSE probably outweighted the benefits of its curation. Fu-
ture work on the project could still benefit from the large scale of the corpus,
allowing us to try our approach with over an order of magnitude more APIs and
usages.

For our analysis, we had two main sources of data: static analysis results on
usages and documentation of API methods. The static analysis results were ob-
tained by running analyses written in the Soot Framework, as described above.
One unforeseen problem was that the bytecode for projects was not available
in a standard location in the project directory, even for projects where MUSE’s
crawler had managed to build the project itself. Meanwhile, we found that Soot
is extremely picky about the classpath and the relative directory of code it is
run on, and would often give errors instead of analyzing a project. We thus
simply configured the analyzer to run on any JAR it could find in the direc-
tory. We managed to generate analysis results for approximately half of the 200
downloaded projects. The documentation was obtained by parsing the output

5

fraction constant class
0 never constant

0–0.1 probably non-constant
0.1–0.9 maybe constant
0.9–1.0 constant

Table 1: Binning used for fraction of constant uses

of Doxygen from the MUSE corpus. The documentation was nominally in a
structured JSON format, but appeared to have been translated from Doxygen’s
XML output, making turning it into text a non-trivial task with some loss of
textual structure in the original comments.

We put these two pieces of raw information into a database (using sqlite3,
a lightweight, serverless database). Care had to be taken to make the fully-
qualified method names used in both sources exactly the same — some loss of
information in the documentation meant we had to identify methods by pack-
age, name, and number of arguments, though technically in Java due to method
overloading the types of all the arguments are required to fully disambiguate
methods. In practice such type-based overloading is rare so we were not con-
cerned. Then it was a simply matter to join the results by method and argument
index and then group by method to aggregate usages, which could be conve-
niently performed with the corresponding SQL operations.

Rather than directly use the fraction of constant usages and solve a regression
problem we decided to bin the fraction into a few classes and learn the classes.
The reasoning was that the exact fraction was not very meaningful or related to
the documentation, but the very low and very high ends of the spectrum were
meaningfully different. The distribution of our data showed most methods fell
at one end of the spectrum, with relatively few in the middle. We set our classes
according to the bins in Table 1.

Our data consisted of a total of about 36,000 API (method, argument) pairs.
These had a total of 11 million uses. We split the APIs into training, develop-
ment and evaluation sets in a 70%–15%–15% split (ultimately our models did
not have hyperparameters that needed tuning so the evaluation set was largely
unnecessary). The documentation in our training data amounted to 8859 words,
with 678 new unknown words in the development set and 658 unknown words
in the evaluation set.

6 NLP models
We initially framed the problem as a two-phase classification problem: First,
determining whether a comment encodes a constraint; second, determining what
that constraint is. However, we had difficulty determining how to get data
for the first problem. With the restriction to focusing on constantness, we
could collapse these into a single classification problem: determining whether
the documentation encodes a constantness constraint.

6

LSTM LSTM LSTM…

w1 w2 wn

s0 sf σ
never const

maybe const
prob non const

const

Figure 1: The neural architecture used to classify methods

We found that a majority of arguments (58% in the training corpus) were
never constant. As a baseline, we used a prior distribution model that always
returns “not constant.”

Our next approach was a bag-of-words model: we built feature vectors from
word counts, and then trained a logistic regression model. Words were tokenized
with NLTK [3]; unknown words during evaluation were simply discarded.

Finally, we trained an LSTM neural network to perform the classification.
The network first converts each token into a word vector embedding, initialized
randomly and trained with the network. We then feed these through a sequence
of LSTM nodes, and finally feed the final state into a softmax layer, which pro-
duces the final classification results. To handle variable-length documentation,
we pad sentences out to a multiple of 10 tokens by prepending a special PAD
token, and then run it through an LSTM net of that length. We discard exam-
ples with more than 100 tokens; this discards fewer than 5% of examples in the
training set. Figure 6 outlines this neural architecture. We implemented this
architecture using TensorFlow [2]. For the evaluation and dev sets, as in the
bag-of-words model we first discard any words not seen in the training corpus.
To classify methods with documentation longer than than 100 tokens, we revert
to the baseline model.

7 Evaluation results
Our basic accuracy numbers are presented below. These are when the fraction
of constant usages is binned according to Table 1 above.

classifier dev eval
baseline (prior distribution) 57% 61%
MaxEnt with Bag-of-words 62% 67%
Neural Net 61% 61%

Especially in response to feedback from the poster session we tried adjust-
ing the binning strategy. Reducing the number of bins by either combining
the (0, 0.1) and [0.1, 0.9) bins or combining the {0} and (0, 0.1] bins improved

7

�����
�����
�����
�����
�����
�����
�����
����

�����
�����
�����

�� ���� ���� ���� ���� ��

��
��
��
��

�
��

�
��
��
��
�

�������������������������

���������������
�����������������

Figure 2: Learning curve for the maxent, bag-of-words classifier. Multiple points
at the same fraction are repeated random samples, with ten trials in total for
each fraction.

performance very slightly. In particular, combining the middle bins into a sin-
gle (0, 0.9) bin improved the model’s accuracy to 64% without affecting the
baseline. Eliminating the API methods with in-between fractions (defined as ei-
ther (0.1, 0.9) or even more extremely as (0, 0.9)) improved performance greatly,
but affected the baseline just as much, to the point where the maxent model’s
performance was comparable to that of the baseline.

Further analysis of the learned model didn’t reveal any great insights into
its performance. The words with the highest positive and negative coefficients
aren’t particularly insightful and may even indicate some overfitting, such as
“Content-Disposition”, which clearly indicates an HTTP-related method. Ab-
stracting words such as these would help avoid the possibility of overfitting in
our domain-specific text.

The learning curve for the maxent classifier (Figure 2) was encouraging:
performance did indeed improve with more examples, and does not appear to
plateau. Thus we believe that more data may actually improve performance.

8 Division of Labor
Jimmy was responsible for:

• writing the nullness and constantness analyses in Soot,

• downloading projects from MUSE (and obtaining access),

• running Soot on projects,

• and developing the neural network model in TensorFlow.

8

Tej was responsible for:

• munging documentation from MUSE corpus,

• exploratory analysis,

• combining documentation and analysis data in sqlite3,

• developing the baseline and bag-of-words models,

• and creating the poster.

Overall contributions are close to equal.

References
[1] MUSE corpus. http://corpus.museprogram.org/, 2015.

[2] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. Software available from tensorflow.org.

[3] S. Bird, E. Klein, and E. Loper. Natural Language Processing with Python.
O’Reilly Media, 2009.

[4] P. Chalin and P. R. James. Non-null references by default in Java: Alle-
viating the nullity annotation burden. In ECOOP 2007–Object-Oriented
Programming, pages 227–247. Springer, 2007.

[5] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler. From uncertainty
to belief: Inferring the specification within. In Proceedings of the 7th sym-
posium on Operating Systems Design and Implementation, pages 161–176.
USENIX Association, 2006.

[6] P. Lam, E. Bodden, O. Lhoták, and L. Hendren. The Soot framework
for Java program analysis: a retrospective. In Cetus Users and Compiler
Infastructure Workshop (CETUS 2011), 2011.

[7] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford.
Automated API property inference techniques. IEEE Transactions on Soft-
ware Engineering, 39(5):613–637, 2013.

[8] L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /* iComment: Bugs or bad
comments? */. In ACM SIGOPS Operating Systems Review, volume 41,
pages 145–158. ACM, 2007.

9

http://corpus.museprogram.org/

[9] L. Tan, Y. Zhou, and Y. Padioleau. aComment: mining annotations from
comments and code to detect interrupt related concurrency bugs. In Pro-
ceedings of the 33rd international conference on software engineering, pages
11–20. ACM, 2011.

[10] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens. @tComment: Testing
Javadoc comments to detect comment-code inconsistencies. In Software
Testing, Verification and Validation (ICST), 2012 IEEE Fifth International
Conference on, pages 260–269. IEEE, 2012.

[11] H. Zhong and Z. Su. Detecting API documentation errors. In ACM SIG-
PLAN Notices, volume 48, pages 803–816. ACM, 2013.

[12] H. Zhong, L. Zhang, T. Xie, and H. Mei. Inferring resource specifications
from natural language API documentation. In Proceedings of the 2009
IEEE/ACM International Conference on Automated Software Engineering,
pages 307–318. IEEE Computer Society, 2009.

10

	Introduction
	Related Work
	Learning Problem
	Static analysis properties
	Data
	NLP models
	Evaluation results
	Division of Labor

