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Cardiac Resynchronization Therapy (CRT)

MGH Dataset

Guidelines:

Patient with cardiomyopathy on GDMT for >3 mo or on GDMT and >40 d after MI, or
with implantation of pacing or defibrillation device for special indications
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CRT guidelines are weak predictors of
clinical success for unknown reasons
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*Clinical performance has artificially high Recall and F1 scores because our dataset only contains patients
that were prescribed CRT, meaning there were no negative clinical predictions

NLP techniques improve
prediction precision by ~9%

Findings

Conclusions & Future Work

back pain

symptom that is often an early warning
sign of heart attack

father died

indicative of an inherited genetic condition
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expression of sentiment
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when included in notes, indicates that
drug did not work for the patient

best bigram
predictors

his visit

gender Is a strong predictor

Highest scoring bigrams point out interesting
predictors, expected symptoms and new findings

Conclusions

NLP on clinical notes improves precision by ~9%

Initial results suggest unsophisticated techniques
perform as well as state-of-the-art

Our algorithms highlight interesting predictors,
expected symptoms and new findings

Future Work

Perform exhaustive search over hyperparameter
and feature spaces to improve performance

Verity clinical findings suggested by our results




