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Abstract

There have been many significant advances in recent
years in the natural language community in applying neu-
ral network based language models to a variety of tasks.
This paper aims to expand the application of these effective
models to non-traditional applications, namely the model-
ing of ingredients in commercial food products. We in-
troduce a neural network model to accomplish three novel
tasks: 1) Generate a low-dimensional vector representation
for each ingredient, 2) predict the food category given the
ingredient list, and 3) determine if a set of ingredients form
a valid combination. Ingredient embeddings generated us-
ing the skip-gram model show high proximity between in-
gredients that have similar semantic meanings (e.g. baking
soda and sodium bicarbonate, apple and strawberry). From
1124 food categories, the neural network model is able to
correctly predict the category more than 53% of the time.
When the number of categories is reduced to 16, it is 81%
accurate. In addition, the model is able to correctly pre-
dict the validity of a set of ingredients with an accuracy of
over 90%. Finally, we leverage a hierarchical database to
map previously unseen ingredients to their vector represen-
tations.

1. Introduction
1.1. Motivation

The rise of popularity of neural networks in recent years
is partly due to their ability to learn latent features in a
semi-supervised fashion, requiring minimal prior knowl-
edge about the data and drastically reducing the time spent
on feature selection. In natural language processing, using
neural networks to generate word embeddings have been
shown to perform significantly better than traditional N-
gram models [3]. We want to generalize this technique to
solve problems outside the field. The ultimate goal is to im-
prove food safety by being able to more accurately predict
which food categories are likely to contain certain (possibly

illegal) ingredients that may not be present in the training
set. In addition, we want to be able to predict what are
likely substitutions for a given ingredient. This is useful
not only for recipe-making, but also when determining the
range of substances that an adulterant can replace. By nar-
rowing the range of food products that a substance can adul-
ter, food regulators can focus their inspection efforts on a
much lower subset of products, leading to higher efficiency
and effectiveness.

To the best of our knowledge, there has be no prior work
done in this area using machine learning techniques such as
neural networks. Prior work involved generating ingredi-
ent substitutions and alternate combinations of ingredients
using online recipes [5]. However, the set of ingredients
available in recipes is much smaller than the set of ingre-
dients used in commercial food products. Neural networks
are uniquely equiped to handle large datasets, and it will
be of interest to see if they can be applied in this particular
setting.

1.2. Problem formulation

We have a set of N ingredients S; = {z1,%2,...,ZN}
and F food products S; = {p1,p2,...,pr}. Each product
Jj contains a subset of the ingredients: p; = {z;1,2;2,...}
and belongs to a particular category c;. For example, we
have a product named Hunt’s Tomato Paste which consists
of 3 ingredients: tomatoes, salt, and seasoning. It is catego-
rized as ”Canned Tomatoes - Tomato Paste.

Given a set of ingredients, one goal is to be able to pre-
dict the most likely category of this ’product”. Continu-
ing the previous example, an input of “’tomatoes, salt, and
seasoning” should tell us that ”Canned Tomatoes - Tomato
Paste” would be a very likely category, whereas "Milk Ad-
ditives - Powdered Milk” would not. A second goal is to be
able to predict whether a set of ingredients is a valid combi-
nation of ingredients. We will describe this in deeper detail
in the following sections.



1.3. Data

We will leverage two sources of data for this project:

1. Product-level information of the ingredients. Given a
product, we can determine its ingredient list. Given an
ingredient, we can determine all products that contain
it. This data comes from the FoodEssentials LabelAPI.
The majority of this paper focuses on this data set.

e We extracted over 140,000 unique products and
100,000 unique ingredients. Each product has an
average of 14.3 ingredients. 17,000 ingredients
occur in more than 3 products, and only 1500 in-
gredients are present in 100+ products.

e Each product is classified under 3 types of cat-
egories, in order of increasing specificity: aisle
(16 choices), shelf (128 choices), and food cat-
egory (1124 choices). For example, diet Pepsi
falls under the food category ”Soda - Diet Cola”,
the shelf ”Soda”, and the aisle ”Drinks”.

e The ingredients for a product are listed in de-
scending order of predominance by weight.

e Salt, water, and sugar are the three most popular
ingredients, occuring in 51%, 37%, and 35% of
all products, respectively. There are 13 ingredi-
ents that appear in more than 10% of all products.

2. Property-level information of the ingredients. We
can represent each ingredient by the relationship hi-
erarchy it forms. For example, the the hiearchy
for monosodium glutamate (MSG) is as follows:
monosodium glutamate — glutamic acid — amino
acid — carboxylic acid — organic compound. We will
transform this into a vector representation to describe
each ingredient. This data comes from the UMLS
Metathesaurus. We use the data in Section[3to evalu-
ate previously unseen ingredients.

e We use this source to generate a property-level
hierarchy for the ingredients we gathered from
Source 1. This gives us information on what a
particular ingredient represents, and allows us to
characterize unknown ingredients. There are 2.5
million entries in this database (and 10+ million
relationships), but not all of them are relevant to
ingredients that are used in food.

1.4. Preprocessing

We apply some preprocessing on the ingredient list to
convert it from a string to a list of individual ingredients.
To the best of our ability, we remove non-ingredients (e.g.
"contains 2% or less of”), parenthesis (subingredients of an
ingredient), funny punctuations, capitalizations, and other

irregularities. Nevertheless, we cannot catch all instances
(e.g. ’salt’ vs ’slat’ vs ’less than 0.1% of salt’). We also
convert all the ingredients to lower-case, singular form. Fi-
nally, we ignore extremely rare ingredients by limiting the
total number of ingredients we are analyzing to the N most
frequently-occuring ingredients. For this study, we used
N =120, 1000, and 5000. While there is no technical lim-
itations to using a larger N, we chose N = 5000 as our up-
per limit for two reasons: 1) a larger N takes longer to train
and 2) most ingredients after the top 5000 occur in less than
10 products (0.007%), which leads to an imbalanced data
problem that we will describe in Section [2.1.2]

1.5. Model

For all tasks that we investigate, we use a multilayer per-
ceptron (MLP) with a single hidden layer. We use a tanh
activation function at the hidden layer. The model is imple-
mented in Python on top of the Theano library. The code has
been optimized to handle all the necessary computations in
a reasonable amount of time (<1 hour per epoch). At each
step, we calculate the gradient and perform stochastic gra-
dient descent (SGD) on a batch. Data is split into a training
set, a validation set, and a testing set. All results presented
in this paper are generated from the validation or testing set.
We implemented our own grid search algorithm to choose
hyperparameters such as the number of hidden nodes, the
learning rate, number of epochs, and the regularization rate.
While these parameters are important parts of the process,
we will spare the details of their selection for a future (i.e.
longer) discussion.

1.6. Code, data, and updates

e The code is available at:
https://github.mit.edu/yygu/Gu-Neulngredient.

e The data is available at: http://bit.ly/adulteration_data.
To run the program, simply copy the data files to their
respective directories in the code.

e Weekly project updates are available on Piazza.

2. SKkip-ingredient model
2.1. Approach

The skip-gram model, introduced by Mikolov et al. [3]
for word2vec, learns to predict neighboring words given
the current word. We modify this model to predict the other
ingredients in the same product given a particular ingredi-
ent. We call this the skip-ingredient model. The input is a
particular ingredient ¢, and the output is a probability dis-
tribution over all ingredients that 7 is likely to exist in the
same product with (hereby referred to as the context). The
advantage of this model is that the output size does not need
to be fixed: we can generate an individual distribution of



the likelihood for every ingredient in the output. If a prod-
uct contains k ingredients, then we can produce k potential
training points from that product.

We derive the cost function for the skip-ingredient model
that is consistent with the derivation for the skip-gram
model presented by Rong [4]. For each training point, we
denote ' as the the embedding representing the input in-
gredient, w = {w",w°} as the hidden and output layer
weights, z° = {2¢,29,...} as the one-hot output vectors
representing the context ingredients, 27 as the value of the
output layer for ingredient j, O as the number of context
ingredients, A as the L, regularization constant. The final
form is produced below:

Js(x,w) = Lg(z,w) + A (Z(:H)2 + ZwQ) , (D
where

Ly(z,w) = —logp(z7,29,...|z") )

=— Y 2+0. logzexp(z;’) 3)
J

jEcontext(x?)

At each iteration, we take the gradient of the cost func-
tion and update the weights (and also the input vector z°) as
follows:

w=w—nVJs(z,w), 4

where 7 is the learning rate.

When doing batch training, we add up the cost function
for each sample in the batch and return the mean cost. Note
that we convert the input from an /N-dimensional one-hot
vector to an embedding of a lower dimension (z* € R%),
with the precise value depending on the total number of in-
gredients being evaluated (typically d € [10,100]). The em-
beddings are initialized randomly (between -1 and 1). After
training, the inputs x* will be the vector representation for
each ingredient.

2.1.1 Input sampling

Rather than take every ingredient in the product to gener-
ate the context (which can be both computationally inten-
sive and ineffective), we simply take the top k ingredients
in that product (from the ingredient list). Recall that the
ingredients are sorted in order of decreasing weight. We
find that the top k ingredients significantly outperform ran-
dom £ ingredients, probably due to the fact that the ingredi-
ents in the beginning are much more indicative of the type
of product. Using all ingredients also does not perform as
well, again most likely due to the fact that ingredients not
in the top k ingredients generates more noise than addi-
tional information about the product. Lastly, it turns out
that randomly sampling m ingredients to be the input for

each product (rather than rotate every ingredient) speeds up
training time while not signficantly reducing performance.
k changes based on the number of ingredients V.

2.1.2 Selective dropout

One issue with the data is the imbalanced distribution of the
ingredients. Using the input sampling method from above,
popular ingredients such as salt and sugar will have signif-
icantly more training points than ingredients that appear in
very few products. For example, using N = 5000 ingre-
dients, the most popular 100 ingredients occur more often
than the remaining 4900 ingredients combined. Therefore,
during training, the model will tend to overfit the embed-
dings for the popular ingredients and underfit the embed-
dings for the remaining ingredients. Therefore, we devel-
oped a method called selective dropout to account for this
imbalance. We resample the data at each iteration according
to the distribution of the ingredients and drop selected train-
ing points. The basic idea is that we drop data points more
frequently for more popular ingredients in order to create a
more balanced distribution. The algorithm is described in
Algorithm [I] We use the parameter min_count as an ex-
pected upper bound to the number of times an ingredient
can occur at each iteration.

Algorithm 1 Selective dropout
1: min_count < 500
S+ {371,.%'2, R 7-'17N}
for 7 in S; do
p; + min(1, min_count/count(i))
end for
for each iteration do
T = {all training points}
T =0
fort € T do
10: 1 <— input ingredient of ¢
11 if p; > random(0, 1) then
12: T + T U{t}
13: end if
14: end for
15: train_model(T")
16: end for

R A A A o

2.1.3 Scoring

Without annotated data, the only way for us to determine
how “good” a set of embeddings are is to apply the k-
nearest neighbors algorithm on the embeddings and manu-
ally inspect the results. This can become very tedious when
determining an optimal set of parameters. Therefore, we
annotated the top 100 ingredients (by frequency) with in-
gredients that are related to one another (called neighbors).



[ N=1000 | N=5000 | | [

[ N=120
% found in top 3 69% (17%) | 41% (2%) | 44% (.4%)
Avg best rank 6 (15) 37 (125) 117 (626)
Avg rank of neigh 20 (60) 133 (500) | 422 (2500)
Avg rank of cat 35 287 1341

Table 1. Applying the scoring metric for training using different
number of ingredients (V). The numbers in parenthesis show
the score if the neighbors are radomly chosen. Note that a low
score/rank does not necessarily imply a bad embedding: if there
are 5000 ingredients, there may be better neighbors for some of
the ingredients that can replace the original neighbors at the top
of the nearest neighbors list. In addition, an embedding that op-
timizes for just the top 100 ingredients will appear better than an
embedding that optimizes for all 5000 ingredients. Therefore, it is
still important to occasionally check the embeddings to make sure
they are reasonable.

For example, ’soybean oil’ is related to ingredients such as
canola oil, soybean, and vegetable oil. Closer matches pro-
duce a higher score (e.g. ascorbic acid is closer to vitamin C
than vitamin B). We can then compare the nearest neighbors
of any embedding (ranked by their cosine dinstances) with
the annotated neighbors to produce a score. In addition, we
manually labeled the top 1000 ingredients with their cate-
gory (e.g. ’apple’ is a fruit, ‘'red 40’ is an artificial color).
Using our annotations, here are the four scoring metrics that
we look at for parameter selection and evaluation:

1. Frequency that at least one of the annotated ingredients
occurs in the top 3 nearest neighbors.

2. Average best (lowest) rank of annotated neighbors.
3. Average rank of all annotated neighbors.

4. Average rank of ingredients in the same category (e.g.
all vegetables).

2.2. Results

We trained the embeddings using N = 120, 1000, 5000
ingredients. The results are shown in Table[T]and the param-
eters used are shown in Table @ After training the model,
we fed the ingredients back into the model and looked at
the output. The outputs overwhelmingly favor the popular
ingredients such as ’salt’, water’, and ’sugar’. This makes
sense because those are the ingredients that most commonly
appear in the context. There are a few exceptions, such as
"cocoa butter’ with *milk chocolate’. We now turn our at-
tention to the learned embeddings.

2.2.1 Embeddings

To analyze the embeddings, we took the nearest neighbors
(by cosine distance) for each ingredient. A sample is shown
in Table [[0] Two ingredients that frequently occur in the

N=120 N=1000 | N=5000
n 0.005-0.1 | 0.005-0.1 | 0.005-0.1
A 0.0005 0.0005 0.0005
m 10 20 30
d 10 20 30
n_epochs 8 25 25
batch_size 200 100 200
max_output_len 4 10 12
min_count None 100 500

Table 2. The model parameters used for different values of /N. The
parameters are chosen from a simple grid search.

| skip-ing | word2vec | random
% found in top 3 69% 56% 17%
Avg best rank 6 10 15
Avg rank of neigh 20 36 60

Table 3. Score metric for N = 120 on three type of embeddings:
those generated by the skip-ingredient model, those obtained from
word2vec, and random embeddings.

same products do not necessarily share similar embeddings:
a linear regression with the actual co-occurance probability
shows no significant correlations. From inspection, it ap-
pears that near neighbors refer to the same semantic con-
cept, which is exactly what we want. Ingredients have sim-
ilar embeddings if they have similar context.

Next, we map the embeddings to a 2-dimesional space
using t-distributed stochastic neighbor embedding (t-SNE).
The top 1000 ingredients are color-coded by their categories
and plotted in Figure [I] Note that we left out ingredients
that we are not able to properly categorize, as well as in-
gredients/chemicals considered as “additives”, since we feel
that the category is too broad (and difficult to label into sub-
categories). A clear pattern emerges: the model was able
to cluster ingredients based on their categories under no su-
pervision.

2.2.2 Comparison with word2vec

As a baseline, we compare the embeddings we gener-
ated using the skip-ingredient model with those from
word2vec. We took all the ingredients that can be found
in the set of pre-trained words and looked at their nearest
neighbors. The results on the scoring metric is shown in
in Table [3] The t-SNE plot for word2vec is also shown
in Figure I} We can conclude that the embeddings gener-
ated by our model outperforms the pre-trained word2vec
embeddings in terms of being able to cluster relevant ingre-
dients.



or t-SNE plot ‘ Ingredient H Predicted cat | Actual cat
: EEE non-labeled - — —
ot h1gh'fructose corn syrup addmve add¥t¥ve
. B vegetables modified food starch additive additive
204 . o B meat/fish . . . . . .
e ) . vitamin b2 vitamin vitamin
oLt Wty e 3 = grain . . .
. '“,;“ o e = dairy enriched wheat flour grain grain
10+ *® i;:_. " Hl vitamin
r P87 AP S SN m flavorjcolor blue 1 ﬂavor/cplor ﬂavc?r/color
sy and 0 e e _‘-’? 3 additive nutmeg seasoning fruit/nuts
O vy AR A A g g o sessoning locust bean gum dairy additive
g %e % R | . .
W - s TN 3 other culture dairy dairy
dobo b e _f,."."-' R turkey meat/fish meat/fish
iy IR o 0 dried cranberry fruit/nuts fruit/nuts
. s, ® had : B L] . . . ..
ol * phytonadione vitamin additive
Table 4. Predicting category of unlabeled ingredients based on the
=T o 0 10 2 30 nearest neighbors of the embeddings. Note that nutmeg can either
t-SNE plot ‘ be classified as a seasoning or as a fruit/nut. In addition, phytona-
I ron-labeled dione (vitamin k) was wrong labeled as an additive, and correctly
W fruitnuts categorized by the model
10 EE vegetables [ g y .
I meat/fish
B grain
== dairy the t-SNE visualization. For an unlabeled ingredient, we
5+ i i . . . .
- ;:j;}zolor look at the k-nearest annotated ingredients and assign it the
© |3 additive most frequent category. Using k = 8, we are able to obtain
ol } | seasoning an accuracy of 70% on a test set of 100 ingredients. See
3 other Table [] for an example of the predictions. If we take into
‘ account the category frequencies during labeling, we can
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o7 ' 3. Predicting categories

Figure 1. A t-distributed Stochastic Neighbor Embedding (t-SNE)
plot of the skip-ingredient embeddings (top) and the word2vec
embeddings (bottom). Note that the skip-ingredient embeddings
have distinct clusters that belong to certain ingredient categories
(e.g. vegetables and fruits). The multi-colored cluster in the top
right corner is especially interesting: it turns out that every ingre-
dient in that cluster is organic.

2.2.3 Substitutions

We can use this model to perform a simple form of substi-
tution, by replacing an ingredient with the nearest neighbor
(e.g. replace 'milk’ with ’skim milk’). Given a set of can-
didate substitution ingredients, we can also determine the
ingredient that is closest to the target ingredient. While this
may not work in all cases, it is a good start for determining
substitutions.

2.2.4 Categorization of ingredients

Another task we can perform using these embeddings is to
determine the category of an ingredient. For this task, we
use the same list of 1000 ingredients that we annotated for

3.1. Approach

Given a list of ingredients in a product, we want to pre-
dict its category. This can either be the aisle (16 choices),
the shelf (128 choices), or the food category (1124 choices).
We represent the input as a N-dimesional vector where in-
dex ¢ is a one if ingredient ¢ occurs in the input product, and
zero otherwise. The output is a C'-dimensional vector that
denotes the probability distribution of the category, where
C is the number of categories (e.g. 128 for shelf). This
is a classification problem whose objective function can be
defined below (as derived by Bishop [1]). The notation is
similar to that used in Section[2l We introduce an indicator
function y¢ that is 1 when x° = c and 0 otherwise.

Ji(z,w) = Li(z,w) + A (Z(wh)2 + Z(wO)Z) , (5

where
c
Li(w,w) = > [—yelog(20) — (1 —ye) log(1—22)] (6)
c=1
We modify the neural network from the previous section
to incorporate this new cost function. In addition, we apply
a softmax in the output layer to generate a valid probability
distribution for 2°.



3.2. Results
3.2.1 Mixture model

We first attempt to predict the categories using a baseline
probabilistic model. In language topic modeling, we have a
simple mixture model that predicts the most likely topic z
in a document of text:
N
argmax H p(w;|2). @)
2 =1
We can apply the same formula to our problem by replac-
ing the words w; with the ingredients z;, and replacing the
topic z with the food category c. IV will be the number of
ingredients in the product. After converting the problem to
log probability, we obtain:

N
argmax Z log p(z;c). (8)
¢ =1
This equation does very well on the training set, but does
not generalize to unseen data. This is because of two prob-
lematic scenarios: 1) we encounter an ingredient not seen
in training and 2) a seen ingredient has not occured in cat-
egory c previously. We solve the former issue by assigning
all unseen ingredients a uniform prior distribution over the
categories. The latter issue is dealt with by using additive
smoothing, where each ingredient ¢ is assigned the follow-
ing probability:
count(c,i) + «
p(zile) = count(i) + a- C’ ©)
where count(c, ¢) refers to the number of times ingredient
i occurs in a product with category ¢, count(i) is the to-
tal number of times ingredient ¢ occurs, and C' is the total
number of categories.

Additive smoothing with a small « performs signifi-
cantly better, as Figure [2 shows. Looking at the figure, we
choose the optimal smoothing factor to be « = le — 9.
Using this model for N = 1000, we are able to obtain an
accuracy of 67.2%, 58.4%, and 43.0% for aisle, shelf, and
food category, respectively.

3.2.2 Maximum entropy model

Next, we use the maximum entropy model (implemented
as logistic regression in scikit-learn) to tackle this problem.
For N = 1000, we obtain accuracies of 76.4%, 67.7%, and
45.5% for aisle, shelf, and food category, respectively (See
Table[9).

3.2.3 Neural network model

Lastly, we present the results of our neural network model.
Again, using N = 1000, we get accuracies of 77.8%,

0.75

0.70

0.65

accuracy
o
o
o

o
n
o

0.50

— Aisle
0431 shelf
— Food Category
0.40 : : : . : . : :
-10 -9 -8 -7 —6 -5 -4 -3 -2 -1
log alpha

Figure 2. The effect of « on the accuracy of category predictions.
All probabilities are the accuracies in predicting the aisle (e.g. us-
ing shelf to predict the aisle). The x-axis is in log scale. Note that

the value for z = —10 actually represents no smoothing (o = 0).

’ model H aisle \ shelf \ food_category ‘
mixture model 0.672 | 0.584 0.430
max entropy model 0.764 | 0.677 0.455
neural network 0.778 | 0.699 0.503
neural network (5k ings) || 0.810 | 0.735 0.536

Table 5. Comparison of the various models used to predict the
category given a set of ingredients. The first three models use
N = 1000 ingredients, while the last model uses N = 5000 in-
gredients. Adding more ingredients to the neural network model
improves performance.

| aisle | shelf | food_category

aisle 0.810 -
shelf 0.830 | 0.735
food_category || 0.816 | 0.720

0.536

Table 6. We can also use subcategories (rows) to predict their par-
ent categories (columns). However, this adds little additional pre-
dictive power, if any.

69.9%, and 50.3%. These results outperform both the max-
imum entropy model and the mixture model.

In addition, we can use the predictions for shelf to predict
the aisle, and the predictions for food_category to predict the
aisle and shelf (since all subcategories belong to the same
super-category). The results is shown in Table [6]

3.2.4 Generated embeddings

The embeddings generated by the categories are not as rel-
evant as the embeddings generated by the skip-ingredient
model, so we will not discuss it further here.



embedding type [ d [ accuracy
random 20 0.270
skip-ing 20 0.283
random 300 0.442
word2vec 300 0.373
random 1000 0.436
one-hot 1000 0.699

Table 7. In addition to the one-hot vector format (last row), we
tried different other embeddings to represent the input ingredients
used for predicting categories. The input dimension d is most cor-
related with prediction accuracy. However, given the same dimen-
sion d, using the skip-ingredient embeddings result in a higher
accuracy than a random embedding, while the word2vec em-
beddings perform worse.

3.2.5 Using embeddings as input

Instead of using a length NV one-hot vector to represent each
ingredient, we want to try using the embeddings we gen-
erated from the skip-ingredient model. The result is pre-
sented in Table|/| The skip-ingredient embeddings perform
slightly better than a randomized embedding for each in-
gredient. The embedding vector length is highly correlated
with its performance, which makes sense: higher dimen-
sions means more degrees of freedom for the model. It is
interesting to note that random embedding performs better
than the word2vec embeddings. A possible extension is
to use the skip-ingredient model to generate embeddings of
length 1000, and comparing that with the one-hot represen-
tation.

3.2.6 Predicting categories given a single ingredient

If we feed a single ingredient into this model, what cat-
egory would the model predict this ingredient to fall in?
We expected the model to output either the category with
the most occurances (max(count(c;))) or the category with
the highest percentage of occurances (max(%tc(m)). But
most of the time, this turned out to be not the case. For
many cases, the model has learned what that singular ingre-
dient represents: (milk — ’cream’, yeast — ’baking addi-
tives & extracts’, canola oil — ’vegetable & cooking oils’,
spices — “herb & spices’). As a comparison, the categories
with the most occurances (and also highest percentage of
occurances) for yeast are “bread & buns’ and ’pizza’.

4. Predicting valid combinations

4.1. Approach

To predict whether a list of ingredients form a valid com-
bination, we use the same setup as Section [3.1} The output
is 1 if the combination of ingredients is valid (i.e. can exist

in a food product), and O if it is invalid. Since this is a clas-
sifier with two classes, we can use the same loss function as
Equation [6]

We restrict the input to contain exactly the first k ingre-
dients from the ingredient list. This is done to eliminate
the need for normalization in the input space. In addition,
since the ingredients are listed in order decreasing amount,
we believe the first few ingredients possess the majority of
the information about the product. In practice, we found
that k = 5 works well. Increasing k leads to a higher ac-
curacy, but less data (as there are fewer products with that
many ingredients). For future work, we plan on removing
this constraint.

4.2. Negative sampling

We now introduce our own version of negative sampling.
Simply choosing k ingredients at random to create invalid
combinations is insufficient: the simple maximum entropy
model can generate an accuracy of 93%. This is because of
the inbalanced data problem: the valid combinations con-
tains ingredients that occur more frequently. Hence, “popu-
lar” ingredients are assigned a positive weights by the max-
imum entropy model. On the other hand, rare ingredients
usually occur with invalid combinations, and are assigned
negative weights. This accounts for the high accuracy in
the maximum entropy model, but leads to little prediction
power. Any combination of popular ingredients will result
in a ’valid” output by the model.

Therefore, we must generate invalid results differently.
In addition to completely random combinations, we also
generate invalid ingredients using the same frequency dis-
tribution as the valid ingredients. Therefore, if ’salt’ ap-
pears in 10% of the valid combinations, it will also appear
in roughly 10% of the invalid combinations. This forces
our model to learn non-singular relationships in order to de-
termine whether or not a combination is valid, since sim-
ply looking at an ingredient’s popularity will not enable the
model to differentiate between valid and invalid. We found
that a 1:1 ratio of valid to invalid samples work well, with
95% of the invalid samples generated using this weighted
methodology (the other 5% being random combinations of
ingredients). Note that there is a trade-off in setting these
parameters. For example, increasing the valid to invalid
samples ratio will improve the valid accuracies at the ex-
pense of invalid accuracies. We chose the parameters such
that the model outputs similar accuracies across all three
datasets (valid, invalid, invalid weighted).

4.3. Results

The results are presented in Table[] Similar to the pre-
vious section, we compare our neural network model with
the maximum entropy model.



Model [ N ] V [ T [Iweighted
Max entropy 120 | 0.575 | 0.989 0.508
Max entropy 1000 | 0.612 | 0.976 0.441
Max entropy 5000 | 0.003 | 0.984 0.993
Neural network 120 | 0942 | 0914 0.844
Neural network || 1000 | 0.861 | 0.968 0.950
Neural network || 5000 | 0.877 | 0.956 0.936

Table 8. Comparison of the maximum entropy and neural network
models on predicting valid/invalid combinations. The accuracy
is broken down on three datasets: the valid (V) set, the invalid
(I) set, and the weighted invalid (I weighted) set. Note that while
maximum entropy can easily reject the invalid set, is unable to dis-
tinguish between the valid and weighted invalid sets. The neural
network model performs well on all three datasets. Adding more
ingredients does not seem hurt the accuracy.

4.3.1 Maximum entropy model

After negative sampling is applied, the maximum entropy
model performs similar to or worse than random for either
the valid or the weighted invalid combinations. This does
not change when we adjust the various parameters. We con-
clude that this model is unable to incorporate higher order
relationships between the ingredients.

4.3.2 Neural network model

The neural network model performs significantly better
across all datasets. Even though the ingredients are drawn
from the same probability distribution, the model is able to
differentiate between the valid and weighted invalid datasets
relatively well. The exact mechanism behind the predic-
tions has yet to be analyzed.

4.3.3 Generated embeddings

The ingredient embeddings generated by the neural net-
work, represented as the weights from the input to the hid-
den layer (w"), are quite reasonable, as shown by their
nearest neighbors in Table[T1] Using our scoring function,
the embeddings perform almost as well as those generated
by the skip-ingredient model. The t-SNE visualization is
shown in Figure[3] The fact that the model is able to cluster
similar ingredients is quite interesting, since at no point dur-
ing training did we isolate a particular ingredient (contrary
to the skip-ingredient model).

4.3.4 Using embeddings as input

We try using the embeddings we generated from this model
as input, in a similar manner as Section [3.2.5] The result
is presented in Table[9] and mirrors the result from Section

3.2.3
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Figure 3. t-SNE visualization of the embeddings trained using the
valid/invalid model. While the clusters are not as tight as those in
the skip-ingredient model, they are still easily distinguishable.

| embeddingtype | d | V | T [Iweighted |
random 20 0.640 | 0.609 0.654
skip-ing 20 0.720 | 0.821 0.842
random 300 | 0.836 | 0.857 0.808
word2vec 300 | 0.845 | 0.851 0.759
random 1000 | 0.848 | 0.794 0.850
one-hot 1000 | 0.861 | 0.968 0.950

Table 9. In addition to the one-hot vector format (last row), we
tried different other embeddings to represent the input ingredients
for the valid/invalid model. The input dimension d is correlated
with prediction accuracy. However, given the same dimension
d, using the skip-ingredient embeddings result in a higher accu-
racy than a random embedding, while a similar improvement is
not present for the word2vec embeddings.

4.3.5 Substitutions

We can take valid combinations of k ingredients and sub-
stitute & € (1,2,...,k) ingredients. As k’ increases to
k (more substitutions), the model shifts from outputting
overwhelmingly valid to overwhelmingly invalid. When we
substitute invalid combinations, the model continues to out-
put overwhelmingly invalid. This result makes sense intu-
itively. We cannot currently check the precise accuracy of
these substitutions due to the lack of annotated data. This
area will be further explored in future work.

4.3.6 Additions/removals

In addition to substitutions, we tried adding and remov-
ing ingredients from the k-ingredient combinations for k =
5. When adding ingredients, we add random ingredients.
When removing ingredients, we randomly remove ingredi-
ents currently in the combination. The percentage of inputs
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Figure 4. Starting with 5 ingredients, we add and remove up to
5 ingredients and plot the percentage of combinations the neu-
ral network model labeled as ’valid’. The graph makes intuitive
sense: for valid combinations, adding additional ingredients will
decrease probability of being marked ’valid’, while the opposite
is true for invalid combinations. As we remove ingredients, the
model quickly labels all combinations as *invalid’, most likely due
to the fact that the inputs are not normalized, and hence using a
subset of ingredients as the input will never trigger the threshold.

predicted as valid is shown in Figure[d] Note that the model
outputs all 1-ingredient and 2-ingredient combinations as
’invalid’, which could be correct or incorrect depending on
the definition of a valid combination. But as with substitu-
tions, it is difficult to determine the validity of the results
without annotated data. However, we can certainly improve
the model in future work by incorporating training data con-
sisting of different lengths.

5. Predicting unseen ingredients

There will be cases where we are given an ingredient that
has not been seen in the training data. This is especially rel-
evant in the cases of adulterants, which are (obviously) not
present on the ingredients list. Using the UMLS database
described in Section [I.3] we can look up the properties of
ingredients not seen during training.

5.1. Mapping unseen ingredients to embeddings

We learn a mapping between the property-level repre-
sentation and the ingredient embeddings. That idea is that
we look for ingredients in the training data that have similar
properties as the unseen ingredients. As shown by Herbe-
lot and Vecchi [2], one way we can learn the mapping is to
apply a partial least squares (PLS) regression. We decided
to use a k-nearest neighbor approach, as this approach per-
forms similarly to PLS in the dataset used by Herbelot and
Vecchi.

Now that we have a mapping, we can map any unknown
ingredient to an embedding by first generating a property-
level hierarchy representation and then applying the map-
ping. We generated the property-based representations for
1000 ingredients using this data. We then took 1000 unseen
ingredients and found the nearest neighbors in the seen in-
gredients based on the cosine similarities of the property-
level representations. The results are shown in Table

6. Conclusion

We are able to demonstrate the effectiveness of neu-
ral networks when applied to the non-traditional setting of
modeling ingredients in food products. The model was
able to successfully generate useful embeddings, predict the
food category of a list of ingredients, and determine if a
combination of ingredients is valid. As far as we are aware,
this is the first study of its kind on learning vector represen-
tations for food ingredients and applying them for various
prediction tasks. This will help us in future work in charac-
terizing illegal substances and predicting which food prod-
ucts they are likely to occur in. In addition, these results can
have various implications in other fields whose datasets can
be translated in a similar manner to fit these models (e.g.
generating list of chemicals in a valid reaction).
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Ingredient H Neighbor 1 Neighbor 2 Neighbor 3
cream cultured skim milk skim milk sour cream
modified corn starch autolyzed yeast modified cornstarch monosodium glutamate
garlic powder spice onion powder dehydrated onion
sodium phosphate smoke flavor smoke flavoring sodium diacetate
vegetable oil canola oil cottonseed
iron niacin thiamine ferrous sulfate
baking soda sodium bicarbonate monocalcium phosphate ammonium bicarbonate
preservative polysorbate 60 preservatives sodium propionate
beef pork mechanically separated chicken sodium nitrite
yellow 6 yellow 5 red 3 yellow 5 lake
Table 10. Selection of ingredients and their nearest neighbors based on the cosine distances of the embeddings trained using the skip-

ingredient model. The model is able to cluster the broader semantic meaning of each ingredient (e.g. beef is a meat, yellow 6 is a color).

’ Ingredient H Neighbor 1 ‘ Neighbor 2 ‘ Neighbor 3
cream skim milk milk milkfat
modified corn starch food starch-modified modified food starch confectioners glaze
garlic powder spices garlic pepper
sodium phosphate beef broth part skim mozzarella cheese pork
vegetable oil corn oil brown rice canola oil
iron ferrous sulfate vitamin b1 riboflavin
baking soda tapioca flour organic dried cane syrup granola
preservative citric acid potassium phosphate sucralose
beef mechanically separated chicken pork mechnically separated turkey
yellow 6 pistachio red #40 ester gum

Table 11. Selection of ingredients and their nearest neighbors based on the cosine distances of the embeddings generated by the valid/invalid
model. Note that even though we never trained each ingredient individually, the model was able to cluster the broader semantic meaning

of each ingredient. Its performance seems to be on par with the embeddings generated by the skip-ingredient model.

Ingredient H

Neighbor 1

‘ Neighbor 2 ‘

Neighbor 3

vanilla flavor
raisin paste

dill

cheese sauce
green

bleached flour
sausage

cane syrup
organic almond
light tuna

organic vanilla extract
organic tomato paste
herb
sauce
red
enriched bleached flour
pepperoni
organic dried cane syrup
almond
fish

vanilla
tomato paste

organic basil mustard
worcestershire sauce tomato sauce
artificial color color
corn flour partially defatted peanut flour
ham bacon
dried cane syrup glucose-fructose syrup
tree nut hazelnut
anchovy sardines

organic vanilla
potato flake

Table 12. Given previously unseen ingredients, we can use the UMLS database to find the nearest neighbors in the seen ingredients. We

can then use this new representation to make various predictions (such as the ones presented in this paper).
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