Regex-RNN: Generating Regular Expressions from
Natural Language with Recurrent Neural Nets

Nicholas Locascio Eduardo De Leén
MIT MIT
njl@mit.edu edeleon4@mit.edu
Abstract

This work presents a neural architecture for learning how to translate natural
language into regular expressions. We use a dataset of 824 natural language
and regular expression pairs [1] and train a deep recurrent neural net to gener-
ate regular expressions from natural language prompts. This model is trained
end-to-end with little to no feature engineering. We evaluate our model by
comparing our generated regular expressions to our answers using DFA equiv-
alence [2] and achieve 56.6% accuracy on our dataset. Code hosted here:
https://github.mit.edu/njl/regex-rnn

1 Introduction

Regular Expressions are an incredibly powerful tool with a variety of useful applications. Unfor-
tunately, they are often brittle, can be hard to learn, and are most certainly hard to write. It would
be beneficial then, if humans were able to specify their needs in natural language and an automated
system could generate the corresponding regular expression. This project aims to learn a system
capable of such a task.

1.1 Motivation

Regular Expressions have many applications in searching, parsing, and matching text. However, the
syntactical representation of Regular Expressions is rather obtuse, being neither particularly readable
nor robust. Most Regular Expressions, in software engineering practice, have to be thoroughly
commented to be properly read and understood. These natural language descriptions are much
easier for humans to read, write, and understand. Our works’s goal is to accurately generate a
Regular Expression from the descriptive comment that would normally be paired with the Regular
Expression.

1.2 Related Work

This work is inspired by the paper Using Semantic Unification to Generate Regular Expressions from
Natural Language by Kushman et al [1]. Kushman gathered a dataset of 8§24 natural language and
corresponding regex pairs, and trained a log-linear language model to generate regular expressions
from natural language.

Kushman’s work focused a lot on techniques for lexical splitting, semantic unification, alignment,
and a host of other regex-specific feature engineering. This yielded state-of-the-art results, but we
want to achieve comparable results without all of the problem-specific engineering that went into
performing semantic unification on regexes. Our system aims to be both general and performant and
for this reason, we chose to use deep neural nets.

https://github.mit.edu/njl/regex-rnn

2 Methods

2.1 Approach

We modeled the problem of predicting regular expressions as a character generation problem. Our
model is concerned with predicting the next character in the regex sequence. This means that our
model predicts one character at a time, conditioned on the natural language prompt and the preceding
regex fragment. To this end, our model must predict the following probability distribution:

P(char;|prompt, current), for char; € C (D

where

e char; = regex character to consider generating.
e prompt = natural language prompt.
e current = regex characters generated so far.

e (' = the set of potential regex characters to predict.

An example of this would be P(char;|lines containing dog’, *.*d’), for char; € C = {"0":-1.5,
77719, .}

2.2 Data Preparation

We split our 824 regex and prompt pairs into 75% train, 25% test sets. We add a special START and
END word to every sentence, and add a special START and END char for every regex string. We
then represent regular expression characters and natural language words as one-hot vectors.

Since we are modeling the probability of predicting the next character given a natural language
prompt and a regular expression fragment, we must construct our training examples in such a way.

We take each regex example and bootstrap it into many examples by making a training example
from each character. So an example consists of an input of the natural language prompt and a regex
fragment, with an output of the next regex character that succeeds the fragment. This bootstrapping
process is shown in Figure 4.

After this bootstrapping process we had 11,355 training examples and 4,004 test examples. By first
splitting the regex/prompt pairs, we ensure that our natural language prompts in our test set are
never seen before in the training set. This would not be true if we split our dataset randomly after
our bootstrapping process.

2.3 Model Architecture

Our Model architecture consists of two parallel RNN pipelines feeding into a ANN pipeline. The
first RNN pipeline processes regular expressions. The first layer is an embedding layer that maps
each of the one-hot encoding of the natural language words input into a list of 50-dimensional word-
vectors. These word-vectors get processed by a 2-layer deep LSTM to output at 256 dimensional
natural language sentence thought vector. The other RNN pipeline, similarly, uses the same archi-
tecture of an embedding layer and 2 stacked LSTM’s. The weights of these pipelines are not shared
and learned independently.

Each of these RNN pipelines produce sentence and regex thought vectors, respectively. We then
concatenate these thought vectors and feed them into 2 stacked fully connected layers. We then feed
our final fully connected layer into a softmax layer which computes the log-likelihood probabilities
across all possible generated characters.

2.4 Learned Embeddings for Regex Chars

We ran word2vec on our regular expressions dataset to learn embeddings for our characters. Our
word vectors are 50 dimensional, and were able to capture some semantics of the characters. For
example, the following word-vector analogies were learned: capitalization, number order, number
magnitude. We also visualized these word vectors using t-SNE in Figure 2.

Figure 1: Architecture of Regex-RNN

raw text lines that contain
words ending in ‘'n'
one-hot word [l0,1,0.],[1,00..]...]
encodings

|

|

Ab[A-Z

|

[0, 1,0.],[1,00..]...]

raw regex

one-hot char
encodings

char vectors

‘regexp’ vector

['a’-1.05, '-'-1.25,
=058,]

probability

distribution for next
regex character

Figure 2: Learned Embeddings for Regex Chars

T-SNE Visualization of Regex Char Embeddings

® Numbers
® Operations
® Lowercase Vowels
400 ® Upp Vowels
4 @® Other
o]
- "y 4
2
L e > .
< 5 3: J1 J o3
0 h “pf bé 7LA
Celsoo 5)
Z & J
«] O
-200 -\ E J
& S
400 ~ P
600
-600 —-400 -200 o 200 400 600 800

2.5 Training

We trained our model for 35 epochs using a single AWS GPU. Training took 6 hours, and due to
our small dataset, performance converged quickly. In figure 3, we plot the test accuracy and other
metrics as a function of epoch number. We were able to achieve 88% accuracy on a per-character
level basis.

Figure 3: Training Metrics

»s Character-Level Model Metrics per Training Epoch

Test Accuracy

Train Accuracy
20 Test Loss

Train Loss

05

00

3 Beam Search

Our RNN model predicts next character probabilities. However, we’d like to produce full regular
expressions in response to the natural language prompt. In order to do this, we must predict the first
character of the regex, feed that into our model and then predict the second character, feed those in
to the model and so forth until we generate a STOP character. This process creates a path of choices
that produces a full regular expression. We compute the probability of this path with:

P(path) = H (P(char|prompt, so_far)) (2)
char€Path
logP(path) = Z log(P(char|prompt, so_far)) (3)
charePath

We’d like to consider all paths and choose the one of highest probability, however this graph explo-
ration explodes to be exponential so the problem becomes intractable. On the other hand, we can
take the greedy path of highest probability for each step to achieve very fast computation, however,
this in practice yields very poor results.

We compromise these two by using a Beam search to explore the space, keeping track of the top
80 path hypothesis per step of the BFS. Each time we consider generating a character at a longer
length, we prune our hypotheses down to 80 before continuing the search. This allows us to compute
a near-optimal answer in a reasonable amount of time.

3.1 Path Length Normalization

Since we are considering variable-length sequences, we have to normalize our path probability by
the path length to get average log probability per character. This normalization essentially computes
the average probability of generating each character.

> log(P(char|prompt, so_far))

logP(path) _ char€&path

[path| @

Without this normalization, our algorithm would invariably prefer shorter strings. Consider the
example of "all lines ending in the letter *f*”. The correct regexp for such an example would be ’.*f’.
When generating this regex, we consider many solutions of varying lengths. If we are comparing

between the solution ”.” vs ”.*f”. Without length normalization, we incorrectly compute . as the
answer.

logP(.) = —1.50 (5)
logP(. # f) = (—1.50) + (—0.9) + (—0.6) = —3.0 ©)
logP(.* f) < logP(.) @)

However, with length normalization, we get the proper prediction of *.*f’:

logP(.) = —1.50 8)
logP(.+ f) = (—1.50) + (;%9) + (—0.6) _ 10 ©)
logP(.* f) > logP(.) (10)

We see that with length-normalization, logP(.*f) > logP(.) and we correctly determine that the
answer is *.*f’. This normalization allows us to deal with paths of varying lengths, however it is not
without its faults which are discussed in 4.2.

4 Discussion

4.1 Evaluation of Results

Our model’s accuracy for DFA equivalence is 56.6%. A full detailing of percentages is shown in Fig-
ure 4. Our results are 8.9% below the state of the art (Kushman). However, this accuracy is without
the crucial pre-processing step that Kushman performs, modifying the training regular expressions
such that they factorize in a way that facilitates a direct mapping to the natural language descrip-
tion. Without the pre-processing step, the previous state-of-the art accuracy was at 36.5%. Although
lower than the state of the art, our results are promising due to the lack of feature engineering and
the surprising success of neural architectures despite a very small data set.

In the Comparison Chart (Figure 4), we compare results for two metrics. DFA equal means a regex
was only correct if its FSM was exactly equivalent to the answer regex. Example equal means a
regex was only counted correct if it matched all 10 positive and negative examples perfectly.

Figure 4: Comparison of Results

Semantic UBL Regex-RNN | Regex-RNN

Unification ~ Model Top Result Top 5

(Kushman | (Kwiatkow Results*
,2013) | ski, 2010)

DFA Equal 65.5% 36.5% 56.6% 66.5%
Example X X 60.6% 70.0%
Equal

4.2 Analysis of Successes and Mistakes

Many of our model’s successes and mistakes fall into some broad categories. Common mistakes
detailed in Figure 5.

Class A mistakes are a result of issues with our Beam-Search path-normalization technique. In the
given example, the model generates * (. * [A” perfectly. Consider two possible next predictions, *-*,
and "E’. The correct prediction of —’ has a higher probability than the prediction of ’ E’. However,

Figure 5: Examples of mistakes

Natural Language Prediction Answer Key Point
Prompt
lines that have no ~(*[AEIOUaeiou]. | ~(.*[A-Za-z].*) = Can get lost
letters *) in thought w/ X
common
sequences

lines where there are .*ABC.*.{2}.*WEX. .*ABC.*.{3}.*W Can mix-up
three characters *|*WEX.*{3}.*AB | EX.*[.*WEX.*.{ numbers.

between instances of | C.* 3}.*ABC.* X
"ABC" and "WEX"

lines having words with | .*((\b[A-Za-z]+\b)& .*\b[A-Za-z]'ro = Ambiguous
ro'. (.*ro)).* [A-Za-z]*\b.* Prompt!

once the model predicts AFE, it can be pretty certain that it is now is generating vowels, so the
probability of generating an I is very high, then a E,O,U,a,e,i,0o,u. These multiple high probability
predictions drown out the initial low probability prediction of E, so the probability of the incorrect
regex is higher than the probability of the correct regex.

Class B mistakes are a result of our embedding space placing numbers char vectors close together.
Unfortunately it makes it sometimes hard to distinguish which number is correct.

Class C mistakes are a result of differing interpretations of an ambiguous prompt. Our model inter-
prets the object of the *with’ to be ’lines’ whereas the original regex writer interpreted the object of
the *with’ to be words’. Because of this, we generate a different regex than the golden answer.

4.3 Effect of Training Size on Accuracy

As noted, our model is extremely data-hungry. We ran our model on 75% 25% split and achieved
56.6% accuracy. We also ran our model with the opposite 75%/ 25% test/train split and achieved
11.2%. This stark difference shows that our model improves dramatically with additional data. We
will run additional tests with different splits to see the curve, but this initial results suggest more
data leads to a much better accuracy.

5 Applications

Currently our model generates regex metacharacters -~ and & , representing NOT and AND op-
erations, respectively. These operators are not supported in most modern regex representations.
Although this limits current usage of our model, a post-processor can be made to translate outputted
regular expressions into a compatible representation.

With our model, a system can be made to aid developers in writing regexes. Current practices
for debugging a regex involve online editors. Developers give as input a regex and example text
and receive as output classifications of the regex on the example text. Our system could instead
have the user input a description of the regex along with positive and negative examples. Our
model can generate the top 5 results of highest average log likelihood that also properly classify
the examples. Although our initial prediction may not be the correct, it can serve as a base for the
desired regex. Developers can then modify the regex until they find the correct one. This process
can save developers time and improve accuracy when writing regexes.

6 Further Research

1) Use larger dataset. Neural nets are data-hungry models and 824 examples is extremely small.

2) Pre-Process regexes for best DFA alignment.

3) Use Sequence-To-Sequence RNN. We’re currently throwing away all representation of why we
generated the previous character.

4) Learn shared representations for some words and characters.

5) Use Attention-based NN. Our problem is extremely sensitive to context, so attention-based
models would help.

6) Use EM algorithm to compute word-alignments.

Acknowledgments

We would like to thank Regina Barzilay for supporting this work. Further thanks to Nate Kushman
for his help and consultation for DFA equivalence techniques. Thanks to Karthik Narasimhan for
helpful discussions and suggestions.

References

[1] N. Kushman, R. Barzilay. “Using Semantic Unification to Generate Regular Expressions from Natural
Language”. North American Chapter of the Association for Computational Linguistics (NAACL) 2013.

[2] Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and Mark Steedman. 2010. Inducing probabilistic
ccg grammars from logical form with higher-order unification. In Proceedings of EMNLP. [3] J.E. Hopcroft,
R. Motwani, and J.D. Ullman. 1979. Introduction to automata theory, languages, and computation, volume 2.
Addison-wesley Reading, MA.

	Introduction
	Motivation
	Related Work

	Methods
	Approach
	Data Preparation
	Model Architecture
	Learned Embeddings for Regex Chars
	Training

	Beam Search
	Path Length Normalization

	Discussion
	Evaluation of Results
	Analysis of Successes and Mistakes
	Effect of Training Size on Accuracy

	Applications
	Further Research

