
Towards Automatically Answering Video Game F.A.Q.’s

Michael Coulombe

December 13, 2015

Abstract

A large portion of video game discussion online is initiated by players who are stuck and ask a forum
for guidance. While this is effective for most players, the time taken waiting for a response is usually
enough to force the player to stop playing, and as multiple players ask similar questions over time, it can
be a waste of time for the experienced users to repeat their answer and to shift through the ”polluted”
forum to find more advanced discussions.

An alternate solution is to read a text walkthrough of the game, but searching the documents requires
long linear scans or using ”Ctrl-F” to locate exact word matches. NLP techniques can be used to marry
the two solutions by taking in natural language questions and using the walkthroughs as a knowledge
corpus to provide proposed answers to users and reduce forum pollution.

In exploring this problem, I used a dataset of 8.4 million word-units worth of walkthroughs and
question-answer pairs collected from http://www.gamefaqs.com/ from eight games of varying genre and
data amounts. I compare to a basic, baseline ”Ctrl-F” algorithm which takes question Q and weighs
substring responses R by estimating

∑
w∈R∩Q P (w ∈ A | w ∈ Q). I improved upon the baseline with a

”Segment-F” algorithm which first segments the walkthroughs (which are mostly implicitly-structured
ASCII text) using a variant of a convolutional neural network trained by a semi-manual supervision
method inspired by Prorogued Programming [ABS12].

The algorithms were evaluated by creating a fake walkthrough by concatenating the known answers
and testing how often the question’s true answer was chosen. ”Ctrl-F” is surprisingly effective given
its simplicity, achieving 22.61% average correct, but it was beat by ”Segment-F” with 25.93% correct
and extreme improvement on 3 games. These results demonstrate the promise of using automation to
expediate the help process and reduce unnecessary forum posts.

1

http://www.gamefaqs.com/

1 Introduction

1.1 Background

Video games, while often fun and challenging, can frustrate a player who is stuck and does not know

how to progress through a certain point in the game. To help them, game developers publish official

strategy guides and experienced players write text walkthroughs hosted online, both of which aim to

provide sufficient detail of the mechanics, strategy, and steps of the game to allow a player to solve their

problem. Another common way players get help is to ask questions on community forums to get answers

directly from the experienced players. Both of these methods of assistance are effective, but both have

a unique set of issues.

When a player looks to a walkthrough for help, they are faced with the task of searching a long,

not-explicitly-structured document for the section corresponding to their current game-state, so they can

learn the next steps to take. This search is generally done by using the browser’s (or the website’s) exact

string search function, which I will denote as the ”Control-F” method. This method is only effective if

the user knows what keyword to search for which will most likely identify their game-state, and if the

author has written the walkthrough to be clear and easy to navigate.

When a player looks to a forum for help, the player may have an easier time because they may query

experienced users using natural language questions rather than keywords. However, while they wait

for a response, they may have to stop playing for an indeterminate amount of time, which can vary a

lot depend on how big the community is. From the other perspective, a flood of new users asking the

same questions over and over can bother the experienced users and dilute the forum of more in-depth

conversation.

Given that walkthroughs are an pre-existing, mostly-complete knowledge base of the game in question,

a natural, natural language processing solution arises: to use walkthroughs as a corpus to automatically

answer these questions. This allows for users to easily ask questions and quickly get answers while also

relieving the experienced users.

1.2 Problem Statement

The corpus I used was extracted from www.gamefaqs.com. The CBSi Terms of Use governing the site state

that one may ”access and view the Content for personal, non-commercial purposes,” so I believe using

the public content to train this system for a class project is an acceptable use, although publishing it as

a paper may require written permission. To test on a variety of genres and data amounts, I investigated

the following games:

2

www.gamefaqs.com

Game # Walkthroughs # Questions

The Elder Scrolls V: Skyrim 24 395

Fallout: New Vegas 24 152

Minecraft 6 401

Fallout 3 37 355

Grand Theft Auto V 14 90

World of Warcraft 30 488

Super Smash Bros Melee 91 256

The Legend of Zelda: Skyward Sword 17 473

Total (MB of text in memory) 243 (35.974 MB) 2610 (2.619 MB)

For a given game, walkthroughs were taken from the ”FAQs” tab and training question-answers

pairs were extracted from the ”Answers” tabs. Some questions have multiple posted answers. Given

walkthroughs W1, ...,Wk and Q&A pairs (Q1,A1), ... , (Qn,An), the goal is to produce a function which

takes a question Qi and returns the substring of some Wj which best ”contains” some Ai,j ∈ Ai in

some reasonable sense. The goal is to maximize how well the response location corresponds to the given

answer, in order to answer unseen questions.

2 Ctrl-F Baseline

Inspired by the common, manual walkthrough-search method, Ctrl-F attempts to be a very basic but

flexible keyword search algorithm. This algorithm only trains on the question-answer pairs for the games,

and learns just the following parameter via a maximum likelihood estimate:

θw = P (w ∈ A∗ | w ∈ Q) ≈

∑
Q,A

[w ∈ Q ∧ ∃A ∈ A : w ∈ A]∑
Q,A

[w ∈ Q]
(1)

Given a word w in a question, θw tries to capture the likelihood that it is also a word in the correct

answer to the question, thus the word should be considered a good search keyword. To find a response

to a question using the walkthroughs, the following algorithm is used:

1. Determine Q = the set of words in the question.

2. For each walkthrough W :

3. For every contiguous range R of range len words in W :

4. Calculate score(R) =
∑

w∈R∩Q
θw

5. Return top 5 scoring R

3

range len is a hyperparameter which determines the length of the response in words (as defined by

Python’s unicode.split method). If a response is too short then it cannot contain much information

in itself and will miss long-distance co-occurrences, but if it is too long then the imprecise nature of

this model may skew towards common words rather than keywords. I started with range len = 20 as a

reasonable but arbitrary length, but other values were explored as well.

3 Segment-F Algorithm

3.1 Segmentation

One issue with the Ctrl-F baseline is the existence of range len as a hyperparameter. To solve this

problem, consider that a text walkthrough is not simply a list of words but a implicitly-structured

document with headers, paragraphs, tables, and lists. Because all of the structure is encoded with

human-readable but non-standard ASCII art, the problem can be simplified into that of segmenting

the lines (typically up to 80 characters) of the walkthrough into semantically-related groups which are

inferred by their character patterns.

The segmentation is performed used a discrete variant of a convolutional neural network. Given a

window of four contiguous lines, the kernel takes a pair of adjacent columns, classifies each character as

{letter, digit, punctuation, whitespace, other}, then returns a learned weight for the observed arrange-

ment. The average weight of every kernel operation is lastly clamped into [0,1] then compared to 1
2

to

determine whether or not there should be a separator between the top two and bottom two lines of the

window.

One obvious missing factor in the machine-learning of a segmentation algorithm is the lack of ground

truth annotations to train on. In place of annotations, an existing classifier was used: myself. This

was inspired by Prorogued Programming [ABS12], a programming language paradigm in which unim-

plemented functions may be marked as ”prorogue” to indicate that a call will query the user to supply

the return value. To make the process practical, training consisted of uniformly random initialization

then sampling only 30 windows per walkthrough per game (one pass) and only querying myself for the

ground truth if the CNN prediction was in [0.1, 0.9], otherwise the prediction was assumed correct.

In the end, just a small percentage of possible user queries were made and qualitative analysis of

the CNN segmentation shows that it does a great job given the fact that each walkthrough is (mostly)

written by a different author with a different style and given little possibility of over-fitting.

4

3.2 Model

After segmentation, the Segment-F also extends the modeling of the texts beyond θw 1 . θpw is used to

identify words which do not appear in many answers except the correct answer.

θpw = |{i = j | w ∈ Qi ∧ ∃Aj,` ∈ Aj : w ∈ Aj,`}| (2)

Given a segment S of walkthrough Wi, θ
S
w intends to capture the distribution of words within Wi by

using a unigram model of Wi as a whole and unigram models of each segment.

θSw = P (S|w) = P (w|S)× P (S)÷ P (w)

≈ |{w = wj |wj ∈ S}|
|S| × |S||Wi|

÷ |{w = wj |wj ∈W}|
|Wi|

(3)

=
|{w = wj |wj ∈ S}|
|{w = wj |wj ∈W}|

To reduce the influence of extremely frequent words, a Tf-Idf 1 transformation was applied to θpw create

θ̂pw and applied to the unigram models to create θ̂Sw. Additionally, segments, questions, and answers are

divided into words using nltk.sent tokenize and nltk.word tokenize. The final question-answering

algorithm of Segment-F combines all of these parameters as such:

1. Determine Q = the set of words in the question.

2. For each segmented walkthrough W :

3. For every segment S of W :

4. Calculate score(R) =
∑

w∈Q
θ̂Sw + θ̂pw + [w ∈ S]× θw

5. Return top 5 scoring S

4 Evaluation

As with segmentation, evaluating the two models by finding answers in walkthroughs suffers from the lack

of ground-truth, but, unlike segmentation, it would be a conflict of interest to judge answers dynamically

with user queries. Instead, the evaluation proceeds by splitting the Q&A data into a training set and eval

set, training on the former, and creating a fake walkthrough document by concatenating the answers in

the latter. Each algorithm is judged by the percentage of questions from the eval set that are responded

to by answers which positionally overlap one of the actual answers by at least one word. For Segment-F,

answers are in their own segments, so it will never return a partial answer.

1Term-Frequency times Inverse Document-Frequency, via: sklearn.feature extraction.text.TfidfTransformer

5

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
0

0.1

0.2

0.3

0.4

Skyrim
Fallout New Vegas
Minecraft
Fallout 3
Super Smash Bros Melee
World of Warcraft
Grand Theft Auto V
Zelda Skyward Sword
* Overall Average *

Figure 1: Ctrl-F evaluation results varying range len in [1,50]. 5 trials with a 80%-20% training-eval split.

Grand Theft Auto V

Fallout New Vegas

Super Smash Bros Melee

Minecraft
Skyrim

World of Warcraft

Fallout 3
Zelda Skyward Sword

* Average *

0

0.2

0.4

0.6

0.8

1
Segment-F
Ctrl-F (range_len=47)
Walkthroughs / 100
QA / 1000

Figure 2: Segment-F evaluation results, compared to best Ctrl-F results and data set sizes. Error bars on
Segment-F show the precision, the change if there was one more correct or incorrect answer on average. 5
trials with a 80%-20% training-eval split.

6

Figure 1 shows the results of the Ctrl-F baseline. The first clear pattern is the difference in accuracy

depending on the game: GTAV, New Vegas, and Melee are consistently and similarly above the average

(∼30%) while the other five are consistently and similarly below the average (∼20%). Interestingly, the

higher-accuracy games also happen to be the three games with the fewest number of Q&A pairs, and

the overall lowest-performing game, Skyward Sword, has the second-largest number of questions.

The next clear pattern is that the accuracy rapidly reaches over 20% at just range len = 4, then slowly

converges to around 25% up to range len = 50. This seems to support the greater importance of small

sets of keywords in a row to signal the answer to a questions as opposed to longer-range co-occurrences.

Figure 2 shows the significant improvement of Segment-F in comparison to Ctrl-F. 2 With an average

accuracy of 70.62%, the new model improves by 43.85% over the best observed Ctrl-F average of 26.77%

when range len = 47. By training the model only partially, I found that the primary improvement in

accuracy comes from θ̂Sw rather than θ̂pw, which is strong evidence that grouping words into semantically-

related segments is a powerful tool for understanding the walkthrough and answering questions beyond

simple keyword search.

It is notable that while the accuracy of Ctrl-F was somewhat negatively correlated with the number of

Q&A pairs in the data, the additional parameters of Segment-F allows it to be more uniformly accurate

across different games, having a standard deviation of 4.47% rather than 6.18% for optimal Ctrl-F (other

values of range len may differ). It is important to note that the precision of the average is dependent

on the number of Q&A pairs per game, and that both models appear to do better when there are fewer

questions, so those differences between games may be explainable by the low precision rather than by

the nature of the games themselves.

5 Conclusion

The evaluation experiment’s results demonstrate the benefit of intelligently segmenting the walkthroughs

in order to apply more sophisticated models, to eliminate hyperparameters, and to respond to questions

with full coherent answers. The performance of the Segment-F algorithm shows that it is practical to

augment a video game walkthrough and forum host with a question-answer system to reduce the volume

of unnecessary traffic to the forums and to allow players to easily get answers to most of their basic game

questions using existing resources.

Code repository: https://github.mit.edu/mcoulomb/6.864-nlp-project

2These new numbers are different than the slides due to a bug in computing θSw in the initial testing which severely reduced
the accuracy of the model. Slides have been marked to mention this.

7

https://github.mit.edu/mcoulomb/6.864-nlp-project

References

[ABS12] Mehrdad Afshari, Earl T. Barr, and Zhendong Su. Liberating the programmer with prorogued pro-

gramming. In Proceedings of the ACM International Symposium on New Ideas, New Paradigms, and

Reflections on Programming and Software, Onward! 2012, pages 11–26, New York, NY, USA, 2012.

ACM.

8

	Introduction
	Background
	Problem Statement

	Ctrl-F Baseline
	Segment-F Algorithm
	Segmentation
	Model

	Evaluation
	Conclusion

