Corpus-based Question Answering with
Neural Module Networks

Runpeng Liu
Massachusetts Institute of Technology
77 Massachusetts Avenue, Cambridge, MA
rliu42@mit.edu

Liang Zhou
Massachusetts Institute of Technology
77 Massachusetts Avenue, Cambridge, MA

zhoul@mit .edu

December 13, 2015

Abstract

One critical but challenging problem in natural language processing is to consistently understand and
correctly answer general questions about text. In this paper, we tackle a subset of these questions— stan-
dardized multiple-choice science exam questions— using neural module networks. NMNs have recently be
applied successfully in machine vision for simple visual Q&A tasks. Here, we extend some of the original
modules (i.e. measure, combine, attend) to be able to process text corpora as well as images. We define
and formulate our own application-specific modules that are finely tuned to the corpus of scienftic knowl-
edge being analyzed, and to the particular task of answering multiple-choice questions correctly. To further
improve accuracy, we also attempt tocompose trained NMNs with feature detection methods.

1 Introduction

Question-answering is fundamentally compositional
in nature — to determine a plausible answer to a natu-
ral language question, it is necessary to semantically
parse the query statement, formulate a logical repre-
sentation of the parsed nodes on which NLP compu-
tations may be made, and then compose these repre-
sentations together in a way that accurately models
the intent of the original question.

For instance, in the question “How many people
are on the bus?”, the phrase “how many” indicates
that we need to attend to quantity, “people” alerts
us that this attention must be focused on people (and
not plants, backpacks, books, etc.), “bus” signifies
the object we are considering, and “on” describes
how we are considering that object. To formulate
a proper understanding of the question (and in turn,
give a plausible answer), it is necessary not only to

parse and categorize each of the semantic parts, but
also model how they connect and compose with one
another.

This paper describes an application and relatively
new approach to question-answering using neural
module networks (NMNs). NMNs offer flexibil-
ity above other machine learning Q&A techniques
— the natural language computation of answering a
question is divided among multiple independent, yet
composable modules, instead of within a single large
system.

To implement these modules, we reference a re-
cent paper in machine vision [1l], which imple-
ments several basic modules, such as attend,
classify, and combine. In this project, we
adapt these modules for use in corpus-based ques-
tion answering.



2 Dataset

The dataset is composed of roughly 2500 8th-grade
standardized multiple-choice science exam ques-
tions provided by the Allen AI Institute. We used
this dataset for several reasons:

1. The question statements are reasonably stan-
dardized in proper, technical English.

2. The complexity/difficulty of the questions
ranges quite uniformly between recalling sim-
ple definitions to multi-level high-order reason-
ing tasks.

3. Each question has one distinct, unambiguous
correct answer. This answer can usually be
deduced from a relevant chapter in knowledge
base of science textbooks that we constructed
and reference.

The neural modules we implement in this project
take several distinct steps to find the most relevant
answer to the question, and to some extent, our
model is optimized for our dataset. Since there
wasn’t training necessary, all the available data was
used as testing data. To test the module implementa-
tion, we inspected several dozen manually to ensure
the correctness of the code.

3 Knowledge base

In addition, we constructed a knowledge base con-
sisting of 6 middle-school level science textbooks in
the following sub-fields: Physics, Chemistry, Biol-
ogy, Earth Science, Life Science, and Physical Sci-
ence, also linked by the Kaggle challenge. These
textbooks were then indexed by chapter, so that rel-
evancy searches would return a single chapter of the
desired textbook as the target document on which
queries would be made.

PREDICTION

MODULE
S

combine define

PARSER
QUERY
attend

explain NMNs

PARSER classify

XXX

ANSWER CHOICES

What is the main source of
energy for the water cycle?

QUESTION
STATEMENT

Figure 2: The blueprint design for a neural module
network. The parsed question and answer choices
are passed through a series of independent, but
Jjointly-trained modules that are composed to predict
the answer.

4 Neural Module Networks

Neural module networks themselves are fairly sim-
ple to explain. Instead of passing some preprocessed
question through a large neural network, we use the
information from preprocessing to find the relevant
modules to apply to this particular question. For in-
stance, “What is the age of the Earth?” might de-
cide to use something like define ("Earth"),
but there is no need for the explain module at all.
This allows for significantly more flexibility in the
implementation as well as the application of these
modules to question-answering.

In the preprocessing step, the question is passed
through a semantic parser. In our particular imple-
mentation, we use the Python nltk [3] package
along with the Stanford parser to break up the ques-
tion. These sentence parts are then respectively an-
alyzed to identify various dependencies, which can
then be passed into our modules. In our implementa-



What is the main source of
energy for the water cycle?

tokenization
+ stemming

[main, source,
T S | concatenation

?TT

Relevancy scores

[fossil,
fuel]

[cloud]

CORPORA INDEX

0.198

Figure 3: A sample implementation of the Lucene
baseline VSM. Questions and answers are only com-
pared via relevancy in the textbook corpus, and the
resulting probability distribution directly gives our
chosen answer.

tion, our modules are rather general but, again, also
optimized for our model.

At the heart of all our modules is the relevancy
module, which tests for how relevant a particular an-
swer choice is. In order to actually combine our
modules together, we pass the results of two modules
into such a relevancy module, which finds a proba-
bility distribution and passes it up the module depen-
dency tree.

5 Baselines

In order to establish some baselines for our results,
we considered a few toy ML approaches as well as a
more sophisticated VSM (Vector Space Model) pure
relevancy approach. The main differences between
these approaches and our neural network modules is
the complexity to which the model understands the
question — only the NMN actually breaks the ques-

tion down into its component parts and attempts to
choose an answer based on both the structure of the
question and the answer choices given.

The first baseline we implemented used an aggre-
gate boosting procedure to train weights for different
models. These models were chosen to perform only
slightly better than chance and then aggregated in a
committee-style fashion to generate a final predic-
tion. We chose intuitive features for each classifier
used in the boosting procedure, such as string simi-
larity of each of the answer choices to the question,
word2vec distances, Levenshstein and Sorensen
distances, etc. Due to the small size of the dataset,
this pure ML approach is not likely to work well, as
it forgoes true comprehension of the question. In-
deed, this pure ML baseline performed only slightly
better than chance, at 28.6%.

Our more interesting baseline made use of the
Lucene search engine library [4] made available by
Apache in order to search our corpus of 8th-grade
science textbooks for the most relevant informa-
tion. The so-called “Vector Space Model” (VSM)
is an implementation based on what is called the
term frequency-inverse document frequency (tf-idf),
although for this particular implementation, it was
more of a document frequency-inverse corpus fre-
quency.

The VSM searches only for the most relevant
answer. First, it concatenates the question with
each answer choice separately. The result is then
tokenized and stemmed, and thus cleaned before
the Lucene algorithm queries the corpus given the
cleaned result. This query then returns a relevancy
score, which is compared with the relevancy scores
from the other answer choices. The answer choice
with the highest relevancy score is then picked to be
the proposed answer. An example of how it works is
shown in Figure 2.

We see that relevancy searches perform substan-
tially better than simple feature detection, but rele-



Baseline # correct | % correct

Longest answer 602 25.6
Aggregate Boosting 727 28.6
Google Search hits 719 31.6
Vector Space Model (VSM) 832 354

Table 1: Baseline Comparison

vancy only brings us so far: no matter how much we
train our VSM, it will fall short on higher-level rea-
soning tasks, simply because it doesn’t take what the
question is asking, or its context, into consideration.
In order to understand the question itself, we need to
break it down into its component parts, analyze each,
and compose them together effectively.

6 Module Implementation

Compared to our baseline implementations, the neu-
ral module network actually builds upon and is im-
plemented rather similarly to the VSM. The rele-
vancy module is the key module used in our NMN,
as we restrict ourselves to the corpus of science text-
books.

Our goal is to identify a set of modules that can
be composed into the necessary configurations for
the tasks that we’d like to use the NMN for. In this
project, we identify mainly several simple, distinct
modules that can break a rather simple query down
into its components parts for use and analysis.

Here are some of the modules that we used [1]]:

1. attend.

Answer X Query — [(Document, Relevancy)]
Every query uses the attend module in or-
der to find the relevant section of text to evalu-
ate. It finds the “attention” that a particular an-
swer choice should have by taking in the answer
choices with respect to the query and returning
the relevant area of description or definition.

2. define.

Document x Query — [(Attention, Relevancy)]
Similarly to the attend module, the define
module evaluates the relevancy of the input, but
does so in the context of the document (corpus)
instead of with the query. It defines and con-
strains a distribution within the text at the rele-
vant area of attention.

. explain.

Attention X Query — [(Document, Attention)]
It combines attend and define modules in
response to trigger phrases such as “because”,
“describe”, and “how does” by comparing what
is being “explained” with the relevant area of
the corpus. These distributions are then com-
bined into a single probability distribution that
is the output of the explain module.

. 1nvert.

Document x Relevancy — Relevancy

This module inverts the distribution over the an-
swer choices. For instance, if the query contains
“Choose all EXCEPT ______ ”, then the module
will reverse its probability predictions within its
sub-modules (as part of the parsed query).

. combine.

Attention x Attention — Attention

It acts as a placeholder to combine different
modules in a compound context by averag-
ing the likelihood distribution across its inputs.
combine modules at the present are a bit over-
generalized, however, and don’t consider what
the actual link is between phrases.

. classify.

Document x Attention — [(Answer, Rele-
vancy)]

This module categorizes the final probability
distribution as one of the labeled answers, de-



Q: What is the term given to the rising plume of
mantle that is located below the Hawaii Islands?

(“hawaii islands”
“convergent”,
“hot spot”,
“divergent”,
“subduction”)

ATTEND[where]

(“rising”, “plume”,
“mantle”)

[: Attention

DEFINE[term]

CLASSIFY

Q: Which statement best
describes natural variations in
the amount of ozone found in
the stratosphere of Earth's
atmosphere?

CLASSIFY[describe](
EXPLAIN(“variation”,

)

) —> LABEL (A, B, C, D)

ATTEND(“ozone”,
ATTEND(“stratosphere”, ..)
)

Figure 4: An example of composition of modules in answering a question. The question is broken down into
a series of modules that then work together to classify the answer to match one of the four given answer

choices (labels).

pending on the probability distribution it is
given. With the same implementation it can
also evaluate sub-module likelihoods not corre-
sponding to the answer choices.

To compose our modules, we use the results of the
parsing to pass phrases recursively into lower mod-
ules, which (mostly attends and defines) then
pass their results back up via probability distribu-
tions on relevant areas of the text and on the answer
choices. For instance, the word is is a clear indi-
cator of the define module and is usually clearly
separated in the query parsing step. Finally, once
the results from all the modules have been received
at the root, the classify module computes a final
probability distribution, from which the prediction is
obtained.

7 Results

We found that neural module networks performed
substantially better than any of the baselines, but not
as well as we had hoped — the accuracy was still
under 50%, meaning most questions (generally the
more complex ones) were answered incorrectly. We
have included only the testing data results, as there
were no parameters involved — simply algorithmic
implementation.

Model # correct | % correct
Aggregate Boosting 727 28.6
Google Search hits 719 31.6
VSM 832 354
NMN 1065 42.6

Table 2: NMN Accuracy



Pure machine learning approaches based simply
on feature detection or aggregation of weak classi-
fiers are unlikely to succeed — there are too many
factors, and the underlying reasoning of the ques-
tion cannot be model with a representation so naive.
Instead, we learned that referencing a specialized
knowledge base with relevancy searches, as well as
decomposing the query, can help significantly in pre-
dicting the correct answer.

From Table 3, we observe that NMNs do indeed
perform better than the Lucene VSM baseline on the
same dataset. However, from seeing which questions
were answered correctly and which weren’t, we also
note that NMNs were better at answering the same
types of questions that the Lucene VSM usually got
correct anyways — this makes sense, because sim-
ple questions are more likely to have answers sim-
ilar to the results of a relevancy search. NMNs do
much better on these because they actually manage
to break the question down, but perform only slightly
better on more complex queries.

Lucene VSM | NMN
Correct 0.929 | 0.952
1st best 1.0 1.00
2nd best 0.879 | 0.892
3rd best 0.836 | 0.744
4th best 0.753 | 0.641

Table 3: Normalized Relevancy Scores

8 Limitations and Future Work

From the data that we’ve gathered, we can say that
NMNs improve quite significantly upon VSMs and
basic relevancy searches. They take the basic rele-
vancy modules and compose them with higher-order
modules to improve predictive power, especially on
straightforward questions with easy-to-see module

Q: Asexual organisms differ from sexual organisms in that asexual organisms.

A: have no genetic code
B: do not undergo reproduction
C: produce a new organism from a single parent

D: reproduce using cells from two parents

PROCESS QUESTION NEW QUESTION

PREDICTION

A B € D

0.200 0.224 0.351 0.225

Computation time: 1.204 sec

Figure 5: An example of a relatively simple
definition-based question that our model predicts
correctly with high confidence.

structures.

Nonetheless, in their current form NMNs can only
analyze relatively simple sentences with clear mod-
ule breakdowns. It is still rather difficult to optimize
for complex questions that require multi-layer com-
posability, or for example data that are natural for
humans to reason about but difficult for computers
to interpret. For instance, questions that ask for ex-
amples of a specific application, or compound ques-
tions referencing earlier parts of the problem, are still
very difficult for our model to predict. The probabil-
ity distribution over the answers shows this by being
relatively even across all the answer choices.

On the other hand, having a specialized knowl-
edge base compiled specifically for this standardized
dataset was especially helpful — it performed con-
siderably better relative to popular search engines,
likely due to the lack of external noise and irrele-
vant information found in online sources. This is
an aspect that obviously can’t be applied to general
question-answering, but in terms of standardizing
what knowledge would be tested and what wouldn’t,



Q: A team of scientists working on a new cancer treatment must make and record

detailed observations of the cells during mitosis. The BEST way to record these
findings is with a(n)

A: scientific map
B: scale model
C: scientific drawing

D: labeled diagram

PROCESS QUESTION NEW QUESTION

PREDICTION

A B @ D

0.281 0.231 0.263 0.225

Computation time: 1.217 sec

Figure 6: An example of a longer query that is more
difficult for our model to parse. Note that this re-
quires more complex reasoning to answer correctly.
The probability distribution over the answer choices
is more even because the model is uncertain about
them.

limiting the scope improved performance quite sig-
nificantly.

Future work includes (most pressingly) extend-
ing these modules to become more adaptive to more
complex queries, as well as providing the option, in-
stead of just answering questions, to allow users to
specify which modules to use and when for each
question. Furthermore, the given modules are rela-
tively simple, and it is easy to imagine more complex
modules that work better in particular situations, or
replacements that generalize better.

9 Acknowledgements

We would especially like to thank Professor Regina
Barzilay and Karthik Narasimhan for their consul-
tation during this project. Meeting with them was
very helpful in developing a preliminary framework

for our proposed approach. We’d also like to thank
the instructors and other TAs of 6.864 for teaching
us the background knowledge necessary to complete
the project.

10 Codebase

There is a link to the codebase at https://
github.mit.edu/rliud42/6864-project.

References
[1] Andreas, Jacob, Rohrbach, Marcus, Darrell,
Trevor, and Klein, Dan. Deep Compositional

Question Answering with Neural Module Networks.
arXiv:1511.02799, 2015.

[2] L. Ma and Z. L. Andiyyer Hang Li. Learning to an-
swer questions from image using convolutional neu-
ral network. arXiv:1506.00333, 2015.

[3] M. Ren, R. Kiros, and R. Zemel. Image question an-
swering: A visual semantic embedding model and a
new dataset. NIPS, 2015.

[4] A. Biaecki, R. Muir, G. Ingersoll. Apache Lucene 4.
SIGIR 2012.

[5] E. Loper, S. Bird NLTK: The Natural Language
Toolkit arXiv:cs/0205028, 2002.


https://github.mit.edu/rliu42/6864-project
https://github.mit.edu/rliu42/6864-project

