
Identifying and Combining Ingredients from Natural Instructions

Allen Park
apark93@mit.edu

Abstract

We extract a set of simple actions from a
list of natural instructions in an unsuper-
vised fashion. To do that, we solve four
sub-problems: classifying a set of instruc-
tions as a recipe or not, classifying a step
as an ingredient list or not, classifying a
word as an ingredient or not, and extract-
ing actions from natural instructions with
labeled ingredients. To solve these prob-
lems, we use an unsupervised EM-like al-
gorithm to train an ingredient value for ev-
ery word. This ingredient value indicates
how likely the word is to be an ingredi-
ent. For each problem, we were able to
demonstrate an improvement upon base-
lines and comparable performance with a
supervised alternative.

https://github.mit.edu/apark93/6864Project

1 Introduction

To truly reach artificial intelligence, a lot of work
is required from the field of natural language pro-
cessing. One important step to a helpful artificial
intelligence is the ability to produce results from a
list of instructions. Normally for a computer, this
list of instructions is given in code. However, code
is a difficult way to give instructions that requires
training. Code itself is slowly becoming more nat-
urally readable, but the ultimate goal is to give
instructions for any task in natural language and
have artificial intelligence interpret those instruc-
tions.

Action Object Modifier
cut onions into small pieces
put oil into the pot
take pot from the stove

Table 1: Examples of parsed actions.

A few examples of actions that can be parsed
from natural language are given in table 1. In or-
der to be most useful, we tackle the problem of
parsing actions from completely unannotated in-
structions. Specifically, this means that we parse
instructions into actions from how the instructions
were presented to other humans to interpret. These
instructions should be written by humans for other
humans to interpret and act upon.

In addition to parsing actions from unannotated
instructions, we train our models with unannotated
data. In other words, we approach this problem
with an unsupervised approach, attempting to find
a solution that does not require us to annotate large
amounts of data.

In section 2, we give you an overview of our
general approach with the data we use and the sub-
problems we focus on. In section 3, we present
the core of our unsupervised approach in assign-
ing ingredient values to words. In sections 4, 5,
6, and 7, we present our results in the different
sub-problems we tackle. Finally, in section 8, we
reflect on our progress and conclude.

1.1 Definitions

Throughout this paper, we will use several terms
that we would like to define explicitly here.

First, an instruction set is a list of instructions.
These instructions are in natural language and
were written for a human by another human.

This instruction set is made up of a series of
steps. Steps are a subdivision of the instruction set
into vaguely related components. The writer of the
instruction set decides how to split the instruction
set into steps.

Each step can contain any number of actions.
Note that a step can possibly have 0 actions, if the
writer of the instruction set decided to use a step
for background information or other information.
These actions are easily read by a computer. Ex-
amples are given in table 1.



In an instruction set, ingredients are used. In-
gredients are any component that are used in
the instructions. In table 1, the ingredients are
’onions’, ’pieces’, ’oil’, ’pot’, and ’stove’.

1.2 Previous Work

There is a large host of research on deriving a set
of actions from a set of text instructions, some of
which are listed below. Three highly relevant pa-
pers are Mise en Place: Unsupervised Interpreta-
tion of Instructional Recipes (Kiddon et al., 2015),
Reinforcement Learning for Mapping Instructions
to Actions (Branavan et al., 2009), and Learning
High-Level Planning from Text (Branavan et al.,
2012).

(Kiddon et al., 2015) attempted to map instruc-
tional recipes to action graphs using an unsuper-
vised approach. They were able to achieve a F1
score of 66.8, with a precision of 68.7 and a re-
call of 65.0. (Branavan et al., 2009) trained a
model for action selection based on textual com-
mands with minimum or no training. With a par-
tially supervised model, they were able to achieve
an action-level accuracy of 72.3%. (Branavan et
al., 2012) used relations derived from text to im-
prove on a non-relationship-aware model, achiev-
ing a plan percentage accuracy of 80%.

The other papers below learn other aspects
of the learning instruction problem. These
other aspects include learning states and actions
(Narasimhan et al., 2015), a dependency tree data
structure for representing recipes and correspond-
ing parser (Jermsurawong and Habash, 2015), a
simple model for parsing (Babes-Vroman et al.,
2012), and an environment model for filling in
missing data (Branavan et al., 2010).

2 Approach Overview

Overall, we present a viable unsupervised ap-
proach to parsing actions from instructions. In this
section, we first present the data sets that we used.
Then, we talk about our approach to the problem
and how we manage the different technical chal-
lenges.

2.1 Data

We used two kinds of data sets in this work. First,
we needed instruction sets to parse into actions.
Second, for this to be unsupervised learning, we
needed lists of ingredients that could be used in
recipes. We detail here where we obtained these

data sources and the limitations from both of those
data sets.

2.1.1 Instruction Sets
First, we obtained instruction sets from a
website. This website can be found at
www.instructables.com (Instructables, ). On this
website, users can submit their own do-it-yourself
(DIY) plans for other users to browse. We sim-
ply scraped the website for the text of the DIY
plans, which were separated into several steps by
the users who wrote the plans. In total, we scraped
7005 instruction sets.

Since these DIY plans were written by casual
users for other casual users, the quality of these
plans varied widely. Although some plans were
very professional and clearly written, other plans
were not well written. There are typos, unclear in-
structions, non sequiturs, general statements, and
even plans written in other languages. Further-
more, there are identifiable actions that do not
have to do with the instruction set, e.g. ”Please up-
vote my instructable!” which were fairly common.
Because of these conditions, we consider these in-
structions significantly harder to parse than simple
recipes commonly found in previous research.

2.1.2 Ingredient Lists
Second, we downloaded ingredient lists from two
sources. The first source was from ESHA (ESHA,
), a food labeling company. This source produced
8207 ingredients. The second source was from
the Food Standards Agency in the UK (FSA, ).
This source produced 3424 ingredients. Examples
of these ingredients include ”Ground Flaxseed”,
”Whole Eggs Raw-Lrg”, and ”Seasoned Salt No
MSG UNI-LA”.

After combining the list of ingredients, sepa-
rating by word, and removing duplicates, we ob-
tained a list of 2152 words. From now on, we refer
to these words as ingredients.

However, this preliminary list of ingredients in-
cluded words that weren’t necessarily ingredients,
like ”Ground”, and words that weren’t words at
all, like ”Lrg”. We address this problem by com-
pleting an unsupervised training on natural text.
The details are in section 3.

2.2 Sub-Problems

In order to make this problem approachable, we
split the problem into a few different manageable
sub-problems. We train and test each of these sub-



Figure 1: A diagram showing the flow between
the different sub-problems. The sub-problems are
shown as the links between states.

problems separately, and, as such, we present re-
sults for each sub-problem in their own section be-
low. In this section, we will talk briefly about each
sub-problem. Figure 1 shows the different sub-
problems all together.

1. The first sub-problem is to classify instruc-
tion sets as food recipes or not. Since our
data is based on food ingredients, we expect
it to work only on recipes. However, many
instruction sets that we have are not related
to food. We will need to filter those out.

2. The second sub-problem is to classify steps
as containing lists of ingredients or not. Pars-
ing actions from steps will not work well on
steps with lists of ingredients, since those
lists will not have any sentence structure.
Therefore, we will want to avoid those lists.

3. The third sub-problem is to classify words as
ingredients or not. If we can classify words as
ingredients, then parsing actions from steps
will be significantly easier.

4. The fourth and final sub-problem is to parse
actions from instructions given the ingredi-
ents in the instructions. Since we are given
the ingredients to focus on, this will be a
fairly simple problem of parsing the depen-
dency tree.

The third and fourth sub-problems are arguably
the more important of the four. The first and sec-
ond are only for filtering for better results, but the
latter two get the actual actions. Therefore, we
focused on improving the last two sub-problems
more.

To solve each of these problems, we first at-
tempt to find a value for each word that reflects

whether that word is an ingredient or not. This
process is described in section 3.

3 Unsupervised Training of Ingredient
Values

From straightforward analysis detailed in section
2.1.2, we have a preliminary list of ingredients.
However, this preliminary list of ingredients in-
cludes words that are not always used as ingre-
dients, like ”Ground” from ”Ground Salt” and
”Light” from ”Light Whipped Cream”.

In order to both refine the list of ingredients and
to assign a numerical value to each ingredient, we
do some unsupervised training to produce ingredi-
ent values. Ingredient values measure how likely
a word is to be an ingredient or not. For example,
”Cheesecakes” will have a high ingredient value
while ”Inductive” will have a low ingredient value.

For this problem, we used both the ingredient
lists and the instruction sets. The ingredient lists
were used as a initial estimate of whether a word
was an ingredient or not. The instruction sets were
used as examples of natural text.

3.1 Algorithm
The basic intuition behind the unsupervised train-
ing is that ingredients tend to co-occur only with
other ingredients while non-ingredients also occur
with non-ingredients as well as sometimes ingre-
dients. We take advantage of this fact with an algo-
rithm similar to an EM algorithm. The algorithm
is listed below.

1. Initialize each word with an ingredient value
of 0.5 if the word is in the ingredient list or 0
otherwise.

2. For each step, compute an average ingredient
value over all words in the step. Call this the
step value.

3. For each word, compute the average step
value across all steps that the word appears
in.

4. Update the ingredient values for each word
with exponential smoothing.

5. Iterate.

Since ingredient values for ingredients would be
higher than ingredient values for non-ingredients,
this would mean that ingredient values for ingredi-
ents would decrease slower than ingredient values



for non-ingredients. That therefore makes ingre-
dient values for ingredients even more higher than
ingredient values for non-ingredients. The itera-
tion emphasizes this difference.

In our experiments, we used a smoothing fac-
tor of 0.2 with 10 iterations. Since 0.810 ≈ 0.1,
that meant that our initial guess could only con-
tribute to 0.1 of the final ingredient value. We also
found that only accepting nouns and ignoring stop
words as ingredients in our initialization improved
our results.

3.2 Bigram Attempt

We also attempted this algorithm with bigrams in-
stead of unigrams. This did not work very well
due to data sparsity. The algorithm overfitted on
the data we had since there were not enough bi-
grams in our data set to train with. We suspect
that bigrams will not work well unless we have an
extremely large dataset.

3.3 Qualitative Results

This algorithm worked well to separate ingredi-
ents from non-ingredients. We will detail in the
next few sections how the ingredient values work
quantitatively. For qualitative evaluation, we list
some examples.

The words with the largest ingredient value are
exotic food words, like ”tahini”, ”bulgur”, ”lassi”,
”edam”, ”bratwurst” and ”goulash”. This makes
sense, since these words would be used exclu-
sively with other ingredients. Furthermore, these
words would also be used with other exotic in-
gredients, meaning that the average would be kept
high.

At the bottom of the list are non-English words
and mispelled words. Some of the instructables
are not written in English. Since our initial ingre-
dient lists were all in English, these non-English
words would naturally not be identified as ingredi-
ents. The mispelled words similarly have no rea-
son to commonly be found with ingredients.

Right above these last results are words that are
commonly used in non-recipe instructions. Some
of these words include ”shoebox”, ”legalese”,
”patents”, ”lugnuts”, and ”cardboard”.

4 Binary Classification of Instruction
Sets as Recipes

In this sub-problem, we will classify instructions
sets as either recipes or not recipes. Recipes would

have to do with food, while not recipes would not.
Since our ingredient list only deals with food, our
parsing will only work well with recipes.

4.1 Baselines

We implemented three baselines. These baselines
only use the starting ingredient list.

The first baseline looks at the number of words
in the title that are in the starting ingredient list.
The second baseline looks at the fraction of words
in the title that are in the starting ingredient list.
The third baseline looks at the fraction of words in
the instruction text that are in the starting ingredi-
ent list.

We also tried each of these baselines with the
trained ingredient values rather than a switch on
being in the starting ingredient list, but those base-
lines with the trained ingredient values actually
did worse than just with the starting ingredient list.

We also attempted to implement a supervised
neural network, but it did not work very well. The
solution that it found was to classify all instruction
sets as recipes. Since the unsupervised training of
ingredient values worked extremely well, we did
not think it was important to have a supervised
baseline.

4.2 Algorithm

The algorithm to classify recipes is actually very
simple. It uses the ingredient values that we found
in the unsupervised training. We list it below.

1. For each step in the instruction set, find the
average ingredient value of all words in the
step. Call this the step value.

2. If the step value is greater than a cutoff, clas-
sify it as a recipe. Otherwise, the instruction
set is not a recipe.

In practice, we found that a cutoff of 0.061
works best. We also attempted this with ingredient
bigrams, which works best with a cutoff of 0.064.

4.3 Results

We evaluated our baselines and algorithm on a set
of 6830 instruction sets. Of these, 1276 were an-
notated as being recipes and 5554 were annotated
as being not recipes.

We show the results in table 2. As shown, the
ingredient values with unigrams get a stunning F1



6830
Instructables

Food words
in titles
>= 2

Food fraction
in titles
>= 0.34

Food fraction
in steps
>= 0.1

Ingredient unigram
values

>= 0.061

Ingredient bigram
values

>= 0.064
Accuracy 0.8730 0.8347 0.9685 0.9836 0.9602
Precision 0.6528 0.9497 0.8958 0.9482 0.8580
Recall 0.6800 0.1187 0.9402 0.9646 0.9427
F1 0.6661 0.2110 0.9175 0.9563 0.8984

Table 2: Results of classifying instruction sets as recipes or not.

score of 0.95. This is a very high F1 with an un-
supervised approach that improves upon all of the
baselines.

We also attempted to use bigram ingredient val-
ues. They did not work as well as the unigram
ingredient values. We think that this is because
we do not have enough data. We would probably
need massive amounts of data for any bigram to
work well.

5 Binary Classification of Steps as
Ingredient Lists

In this sub-problem, we classify steps within in-
struction sets as containing ingredient lists or not
containing ingredient lists. Our parsing depends
on dependency parsing, which does not work well
on lists. Therefore, we would like to avoid at-
tempting to parse on steps that do contain ingre-
dient lists.

This sub-problem is slightly challenging be-
cause of the nature of our data. On instructa-
bles.com, users often but do not always include
a list of ingredients. Even when they do, they
may embed that list of ingredients in with other
description of the task. In addition, the list of in-
gredients may not come as an actual list but as a
general description in text of what is needed. The
large variety of ingredient lists makes this a chal-
lenging and not well-defined problem.

5.1 Baselines
We implemented four baselines and a supervised
neural network. The baselines do not use any of
the unsupervised training that we implemented.

The first baseline just looks for the presence of
a list tag, as used in the html. The second, third,
and fourth baselines look at the fractions of nouns,
verbs, and numbers respectively in the step text.

The supervised neural network is the supervised
alternative to the unsupervised approach that we
use here. The neural network is a multi-layer per-
ceptron. As features, we use the presence of a

list tag and the fractions and counts of all parts of
speech tags. This is a total of 73 features.

5.2 Algorithm
Again, the algorithm is rather simple. We use the
ingredient values that we obtained from the unsu-
pervised training.

1. For each word in the step, compute the tanh
of the ingredient value of the word.

2. Compute the average over all words of the
tanh of the ingredient values.

3. If the average is greater than a cutoff, then the
step is an ingredient list. Otherwise, it is not.

We found that a good cutoff is 0.5. In this case,
we found that using a tanh activation for the in-
gredient values worked better than just the ingre-
dient values. This makes sense because it prevents
high ingredient values from raising the average too
much.

5.3 Results
We evaluated our baselines and algorithm on a set
of 429 steps. Of these, 49 steps were ingredient
lists and 380 steps were not ingredient lists. Since
this sub-problem was not critical to the success
of our overall problem, we chose not to annotate
more steps.

We show in table 3 the results of our baselines
and algorithm. With our unsupervised method, we
were able to improve upon all of the attempted
baselines. Although we were not able to get as
close to the supervised method F1 score as we
would have liked, the simplicity and speed of our
simple unsupervised classifier definitely wins over
that of the supervised method.

6 Binary Classification of Words as
Ingredients

In this sub-problem, we classify words as ingredi-
ents or not ingredients. This sub-problem is criti-



429 steps

List tag
presence
Baseline

Num. fraction
<= 0.05
Baseline

Noun fraction
<= 0.36
Baseline

Verb fraction
>= 0.11
Baseline

Multi-layer
perceptron
Supervised

Simple classifier
>= 0.5

Unsupervised
Accuracy 0.8997 0.8671 0.8787 0.8414 0.9457 0.8764
Precision 0.6363 0.4230 0.4666 0.3855 0.64133 0.4655
Recall 0.2857 0.4489 0.4285 0.6530 0.6154 0.5510
F1 0.3943 0.4356 0.4468 0.4848 0.6281 0.5046

Table 3: Results of classifying steps as ingredient lists or not.

cal for the overall problem to work, since our next
sub-problem, parsing from instruction sets with la-
beled ingredients, does not work if the ingredients
are not labeled.

6.1 Baselines
We implemented two baselines and a supervised
neural network. The two baselines do not use the
ingredient values from our unsupervised training
and only use properties of the inherent word and
the starting ingredient list.

The first baseline sees if the word in question
is in the starting ingredient list. The second base-
line sees if the word in question is in the starting
ingredient list and is a noun.

Again, the supervised neural network is the su-
pervised alternative to the unsupervised approach
that we use here. The neural network is a multi-
layer perceptron. As features, we use word vec-
tors for the trigram centered around the word, the
ingredient value of the word, the average ingredi-
ent value of the step, the average ingredient value
of the instruction set, features of the word like if
it’s alphabetical, if it has punctuation, if it’s low-
ercase, etc., and a one-hot vector for the part of
speech tag. This is a total of 213 features.

6.2 Algorithm
Again, the algorithm is extremely simple. We use
the ingredient values from the unsupervised train-
ing.

1. Test if the ingredient value of the word is
greater than a cutoff.

2. If it is, then the word is an ingredient. Other-
wise, it is not.

We found that a good cutoff is 0.097.
In addition to this simple classifer, we also at-

tempted to train a neural network. We used the
results of the simple classifier in order to train a
neural network. Because the simple classifier is

unsupervised, the neural network is in fact unsu-
pervised as well. The neural network we used is
exactly the same as the supervised neural network
we implemented as a baseline. The only difference
is that the training dataset comes from the simple
classifier results rather than annotated data.

6.3 Results
We evaluated the baselines and our algorithm on
a set of 1112 words. Of these words, 233 words
were labeled as ingredients and 879 words were
labeled as not ingredients.

We show the results in table 4. As shown, both
our simple classifier and our unsupervised neural
network outperform our baselines.

Interestingly, training a neural network on the
simple classifier actually increases the F1 score.
This implies that the ”mistakes” that the neural
network makes in classifying against the simple
classifier results are actually correcting the mis-
takes that the simple classifier makes.

As expected, neither unsupervised approach
could reach the F1 score of the supervised ap-
proach. However, the unsupervised neural net-
work had a very close F1 score of 0.75 compared
to the F1 score of 0.77 of the supervised neural
network. Considering that the supervised network
required much more human annotation and the un-
supervised neural network did not, this is a signif-
icant accomplishment.

7 Parsing Actions from Instruction Sets
with Labeled Ingredients

Our last sub-problem is to finally parse actions
from instructions. In this sub-problem, we assume
that ingredients are already labeled as such, and
so our task is simply to parse actions from the sen-
tences that involve the ingredients.

7.1 Algorithm
Since we already have ingredients that we should
focus on, we just need to extract some information



1112 words
Food word
Baseline

Food noun
Baseline

Multi-layer
perceptron
Supervised

Simple classifier
>= 0.97

Unsupervised

Multi-layer
perceptron

Unsupervised
Accuracy 0.7913 0.8812 0.9004 0.8862 0.8810
Precision 0.5 0.7451 0.7254 0.7313 0.6623
Recall 0.7543 0.6681 0.8222 0.7101 0.8879
F1 0.6013 0.7045 0.7708 0.7205 0.7587

Table 4: Results from classifying words as ingredients or not.

from the dependency parsing.

1. First, we obtain the dependency parsing and
construct a tree.

2. Sort each step with a topological sort. The
roots of the sentences should come first, and
the leaves of the tree should be last.

3. Loop through the words in each step in topo-
logical order. If the word has already been
processed or the word has not been annotated
as an ingredient, skip it. The word is then an
unprocessed ingredient.

4. Loop from the root to the ingredient in focus,
looking at each dependency along the way.
This will allow us to find the largest sentence
fragment that uses the ingredient.

5. Complete the parsing corresponding to the
dependency type:

(a) Direct object: The action is at the head
of the current dependency.

(b) Preposition: The action is at the closest
verb that is a head of the current depen-
dency.

(c) Nominal subject: The action is at the
head of the current dependency.

(d) Nominal passive subject: The action is
at the closest passive auxiliary that is a
head of the current dependency.

(e) Indirect object: The action is at the clos-
est direct object that is a head of the cur-
rent dependency.

6. The action is the pair of the verb and the set of
all ingredients that are in the corresponding
subtree.

7. Mark all ingredients involved in the action as
processed and proceed to the next word in
topological order.

This algorithm only requires simple process-
ing of the dependency parsing. The casework in
this algorithm is incomplete, since this is a well-
researched problem. However, this shows a basic
version of the algorithm that can process the most
common elements.

7.2 Results
We first show an example of the results. We pro-
cess the step shown below.

First cut your onions into small
pieces, then cut your garlic
cloves into very fine cubes. Put
some oil in your pot and roast
the onions and garlic until
golden-brown. Take the pot from
the stove.

Verb Text Labeled Ingredients
cut your onions onions
cut into small pieces pieces
cut your garlic cloves garlic, cloves
cut into very fine cubes cubes
Put some oil oil
Put in your pot pot
roast the onions and garlic onions, garlic
Take the pot pot
Take from the stove stove

Table 5: Actions resulting from the above step.

In addition to these results, we can also parse
general statements. For example, the sentence
”Here is the point where you can add what-
ever other ingredient you might like.” is correctly
parsed as commentary.

Because we only parse sentences that contain
ingredients, we have a much smaller chance of
false positives. For example, the sentence ”Please
like my instructable!” is correctly ignored.

However, our system is sensitive to dependency
parsing errors. For example, in the sentence ”Pour



with tomato sauce and serve fresh.”, the word
”pour” is incorrectly parsed as a noun. Therefore,
the sentence incorrectly has ”serve” as the root of
the sentence, meaning that the sentence will be in-
correctly parsed.

In addition, the dependency parsing is sensi-
tive to mispellings and punctuation errors. Both
”Tak[e] some salt off” and ”Leave the pot, chop
the vegetables” will be incorrectly parsed.

Finally, the system is incapable of disambiguat-
ing pronouns and references. Since all of these er-
rors (handling dependency parsing errors, detect-
ing mispellings and punctuation errors, and dis-
ambiguation) are both all out of the scope of this
project and would increase errors substantially, we
chose not to evaluate our system quantitatively.
However, we can see from the qualitative results
that the parsing does work well in the right con-
text.

8 Conclusion

We were able to have significant progress with
a unsupervised method versus a supervised base-
line. We first completed unsupervised training
of ingredient values with an EM-like algorithm.
These ingredient values helped us with classify-
ing instruction sets as recipes, classifying steps as
ingredient lists, and classifying words as ingredi-
ents. Finally, we produced a basic parser that ex-
tracted actions from a dependency parsing of the
instructions.

There are three natural next steps to this work.
First, the whole system should be evaluated to-
gether. We did not do this in this work since
that would require a massive amount of annota-
tion. Many more instruction sets would have to be
fully annotated, and there can be up to 300 words
in a single instruction set.

Second, we should look at training an ingredient
vector, similar to the ingredient values. Somewhat
surprisingly, only a single value was required to
represent if a word was an ingredient or not. We
only trained one value and got appreciable results.
Training multiple values in a vector could possibly
obtain much more.

Third, we would want to extend this work to
non-food instruction sets. We started with lists of
food ingredients, but if we can start with lists of
hardware components, for example, then we can
see if the same methodology would work well.

Our unsupervised approaches to all of these

problems were able to approach a perfect perfor-
mance or the supervised alternative, which should
be able to do strictly better.

My code can be found at (Park, ).

References
Monica Babes-Vroman, James MacGlashan, Ruoyuan

Gao, Kevin Winner, Richard Adjogah, Marie des-
Jardins, Michael Littman, and Smaranda Muresan.
2012. Learning to interpret natural language instruc-
tions. In Proceedings of the Second Workshop on
Semantic Interpretation in an Actionable Context,
pages 1–6, Montr{’eal, June. Association for Com-
putational Linguistics.

S.R.K. Branavan, Harr Chen, Luke Zettlemoyer, and
Regina Barzilay. 2009. Reinforcement learning for
mapping instructions to actions. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP,
pages 82–90, Suntec, Singapore, August. Associa-
tion for Computational Linguistics.

S.R.K. Branavan, Luke Zettlemoyer, and Regina Barzi-
lay. 2010. Reading between the lines: Learning to
map high-level instructions to commands. In Pro-
ceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1268–
1277, Uppsala, Sweden, July. Association for Com-
putational Linguistics.

S. R. K. Branavan, Nate Kushman, Tao Lei, and Regina
Barzilay. 2012. Learning high-level planning from
text. In Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics:
Long Papers - Volume 1, ACL ’12, pages 126–135,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

ESHA. Esha databases. http://www.esha.com/
solutions/additional-databases/.

FSA. Fsa dataset. http://tna.
europarchive.org/20110116113217/
http://www.food.gov.uk/science/
dietarysurveys/dietsurveys/.

Instructables. Instructables. www.
instructables.com.

Jermsak Jermsurawong and Nizar Habash. 2015. Pre-
dicting the structure of cooking recipes. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 781–786,
Lisbon, Portugal, September. Association for Com-
putational Linguistics.

Chloé Kiddon, Ganesa Thandavam Ponnuraj, Luke
Zettlemoyer, and Yejin Choi. 2015. Mise en place:
Unsupervised interpretation of instructional recipes.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages



982–992, Lisbon, Portugal, September. Association
for Computational Linguistics.

Karthik Narasimhan, Tejas Kulkarni, and Regina
Barzilay. 2015. Language understanding for text-
based games using deep reinforcement learning. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1–
11, Lisbon, Portugal, September. Association for
Computational Linguistics.

Allen Park. My code. https://github.mit.
edu/apark93/6864Project.


