Learning Character Graphs from Literature

Sumit Gogia, Min Zhang, Tommy Zhang
December 14, 2015

Abstract

We present a method for extracting salient characters and recognizing salient char-
acter relationships from literature. As opposed to previous work which extracts social
networks by examining dialogue given characters, our trained system finds characters
and relationships directly from raw novel text. We take a novel supervised learning
approach where we retrieve labels from a simple, digestible online source (Sparknotes)
to train classifiers that identify characters as salient or pairs of characters as related.
Initial results show that even basic classification methods produce good performance
for salient character extraction, while relationship detection warrants significant im-
provementl.

1 Introduction

Literary scholars, when comparing different works of literature, frequently examine major
characters and their relationships. These examinations cover attributes such as number of
major characters, names of characters, and types of relationships in each novel to make
higher-level statements about novel form.

Unfortunately, at current, the approaches to such examination are typically manual and
require close reading, preventing comparison of the large existing bodies of literature. While
statements can and have been made for a small manageable subset, this notably results in
a heavily-studied canon and a largely-ignored general body of literature [15]. A conclusion
literary scholars have come to is this: we need efficient automated methods for extracting
higher-level representations from literature [14].

Recent years have seen work founded in this realization, both for character analysis as well
as other high-level analyses such as plot extraction. In character analysis, methods have
focused on social network extraction, as many literary theories involve the communication
between characters [3, 13, 17]. These methods take lists of characters in a novel and then
describe their relationships in a graph, with edges connecting characters indicating relation-
ships. They utilize dialogue as the basis for their analysis, extracting dialogue from raw text

LAll code for this project can be found at https://github.mit.edu/summit/chara-extractor

and attributing it to characters to compute edge weights and node sizes.

However, despite the success of these methods, they do not address many of the needs for
automated character examination, including automated extraction of many attributes noted
above. The goal in this paper is to supplement automated social network extraction with
automated methods for extracting two useful representations:

1. A list of major characters in a novel.

2. A list of pairs of major characters with a salient relationship in a novel.

Importantly, these representations are different from those found in social network extrac-
tion. Firstly, social network extractors have character lists as input instead of output - our
character extractor can feed output into social network extractors. Secondly, social network
relationships are found through dialogue only as opposed to the text entirety. A graphic
describing the representations found by social network extractors and our extractors is given
below for clarity.

@

Figure 1: Representations output by social network extractors (left) and our extractors (right). Note
that social network extractors take nodes as input and output weighted or labeled edges, while ours
outputs nodes and binary edges. Our extractors also utilize text entirety, as opposed to dialogue
alone.

Our approach to creating these extractors is to use binary classifiers that act on broad sets
of automatically-found character candidates and pairs of major characters, to detect salient
characters and relationships respectively. We develop a set of global novel-wide features,
such as candidate count and coocurrence, and a novel automated labeling method where we
read Sparknotes [1], an online reference with character lists and descriptions for literature,
and match their data to ours.

2 Related Work

2.1 Named Entity Recognition

Our first problem of character extraction is closely related to NER problems. The goal in
NER tasks is to label text token sequences as special entities with respect to the rest of
the text. Similarly, in character extraction the goal is to recognize identifiable unique ref-
erences to major characters, which we take to fall in the class of consecutive token sequences.

As such, we can look to previous work on NER problems to influence our design. A large
portion of NER systems attempt to label special entities in short, stand-alone documents
based on local features for token sequences, such as capitalization, prefixes and suffixes [16].
These types of word-level features are important in our case as well, but given the basic
hypothesis that the salience of characters is dependent on how they appear throughout the
book, we can imagine that they would not prove particularly effective.

On the other hand, NER systems which target longer types or sets of documents or attempt
to focus on salient entities also exist, and use additional features to significantly boost per-
formance. Previous work in this vein includes systems which target extraction of important
figures from news articles [19] and identification of proper nouns in Chinese text [6]. The
systems described utilize features such as candidate entity frequency and presence of other
entities in vicinity to help capture the comparative importance of desirable entities. Given
that in character extraction we aim to identify salient characters, these works significantly
influence our own.

2.2 Social Network Extraction

Previous character-based attribute extraction work has focused on social network extrac-
tion. Social network extraction consists of tasks similar to the relationship labeling task we
focus on, but which focus on a representation influenced only by dialogue in novels. The
tasks in social network extraction tend to be considerably more well-defined than those we
explore - in [8], the authors identify the amount of dialogue between characters to represent
the network, and in [2] the authors identify other determinstic features for dialogue such as
point-of-view in narration. While the language processing can be difficult to determine these
features, they are fairly clear to human annotators.

In contrast, in both our character extraction and relationship identification tasks, we identify
salient characters and relationships. This concept of salience is ambiguous even to many
literary scholars; it is often difficult to agree on which characters and relationships are im-
portant in novels due to novel complexity, and context which each reader brings with them.
We note that ideally, the tasks we wish to address would be satisfied by tools that adapt
to different users’ perspectives, possibly taking into account personal annotations. In this
work, we attempt to overcome this problem by using a source which has aggregated many
perspectives, Sparknotes [1], but it is worth noting that given the novel language isn’t enough

to fully define salience for humans, there is extra complexity in the language processing task.

Despite this difference, it is not to say that the approaches to social network extraction are
unrelated to our work. The features used in models for dialogue detection and dialogue
attribute detection, such as number of speakers, can potentially be useful in our tasks as
well. We make use of some, like cooccurrence features, but there are many that we have not
that could be tested in future work.

3 Methodology

Our approach is to treat both character extraction and relationship identification as binary
classification problems. We thus have two main stages for our system: a training stage and
an execution stage. In the training stage, we collect data, extract features, apply labels,
and then train classifiers; in the execution stage we run our extractors on raw test novels,
extracting unlabeled data with features and running the classifiers on it. Pipelines for both
of these stages are shown in the figure below. In the following sections, we discuss the com-
ponents of both pipelines in further detail.

Data

Automated labeling i Match labels to Salient Character Salient Character
from Sparknotes candidates Classification Classification

' : Extract character Feature
Sparknotes 4 candidates extraction
Extract character i Feature Salient Relation f t Sgll'em,?el?non
candidates : extraction Classification Raw Text Raw Text assircation

Raw Text i Raw Text

Figure 2: The training (left) and execution (right) pipelines for both our character extractor and
relationship identifier. Note that in relationship identification, the training data consists of pairs of
candidates labeled as characters given Sparknotes.

3.1 Disambiguation

While not described as a major component in the pipeline, disambiguation is a significant
problem at many stages of our work:

1. Feature extraction: Disambiguation is used to assign coreference features, letting can-
didates account for features of coreferences
2. Labeling: Disambiguation is necessary to match character names to candidate names

3. FEvaluation: Disambiguation resolves multiple instances of same-character output from
classifiers

For this reason we describe how we deal with it separately before going into the pipeline

blocks.

We use rule-based disambiguation to resolve multiple different mentions of the same char-
acter. The reasoning behind using a rule-based approach rather than a learning approach
is twofold: we felt that our candidate disambiguation tasks were simple enough that a rule-
based approach could account for variation well, and we did not have training data for our
candidate disambiguation tasks. The latter meant we would either need labeling time which
was unavailable, or to use a pre-existing model which was not fitted to our data.

The disambiguation rules can be split into three broad categories:

e Partial reference - resolves mentions of characters by partial mentions of their full name,
e.g. “Huck” referring to “Huck Finn”. This is accomplished by checking containment
or partial containment of a name within another.

e Nickname resolution - resolves mentions of characters by nickname, e.g. “Huck” as
“Huckleberry”. This is accomplished by a combination of fuzzy string matching, prefix
similarity, and partial containment.

e Title resolution - resolves mentions of characters named by title to their full name,
e.g. “Mr. Finn” to “Huckleberry Finn”. For this, we used a large name-gender
database extracted from Stanford’s CoreNLP library to decide which names various
gender dependent titles could map to, and then look for partial containment in the
remaining strings.

We view candidate names as nodes in a graph, and disambiguated a candidate name to
another as directed edges in the graph. To enforce transitivity of disambiguation (i.e. if A
maps to B and B maps to C', then A maps to C), we then insert additional edges from each
node to all reachable other nodes. This is implemented as a sequence of depth-first searches
from each node to determine connectivity and reachability.

3.2 Candidate Extraction

Our classifiers, rather than run on all token sequences in text, are both trained and executed
on broad sets of multi-token character candidates obtained from the raw text automati-
cally. As in certain multi-token NER systems [7], this strategy is employed because we
do not know a priori the number of tokens for characters and want to avoid training on
large numbers of clearly negative examples. In addition, it is also because the complexity of
our feature extraction depends on the number of candidates through co-occurrence counting.

The method for candidate extraction is very tied to our understanding of character names:
we assume that character names accord to the following rules:

1. A name is a noun phrases with at most one level of nesting and ending in a capitalized

noun. OR

2. A name is a noun phrase consisting of a determiner and a hyponyms “person” in

WordNet [12].

We extract all token sequences satisfying these rules as candidates. While many character
names are captured just by taking consecutive capitalized tokens, the rules are more flexible
to account for character names such as “the Count of Monte Cristo” and “the helmsman”,
characters in the eponymously-named book and Heart of Darkness respectively. In the first
we have parts of speech other than nouns, while in the second there is no capitalization,
just the recognition that the word refers to a person. There may be characters names which
break these rule, but we did not observe any.

This rule-based approach also faces potential issues in that unmeaningful token sequences
such as “the woman” in a book with many women may get passed and affect cooccurrence
features; however, we observe that cooccurrence with even these “non-characters” is often
important, and also include weighted cooccurrence features to help account for this issue.
Though we do not report numerical results, we observe that not including these candidates
does not affect end performance.

3.3 Feature Extraction

We extract four main types of features for both candidates and pairs: tag features, corefer-
ence features, frequency features, and coocurrence features. The first three are common for
NER systems, and are included due to the tasks’ similarity to NER noted previously. The
last feature type, also seen in Related Entity Finding tasks [5, 18], is to account for the idea
that characters are considered salient due to their relationships with other entities in the
novel, and that cooccurrence of characters in some section indicates interaction.

There are actually a large number of features included for each feature type, arising from a
number of normalization schemes we use to account for differences between novels. We do
not expect all of these to be particularly helpful, and instead count on our learning methods
ruling out noisy or uncorrelated features. The main subclasses of features for each feature
type are described below; we avoid detailing each particular feature for space, and because
those not described are very similar to at least one of the subclasses described.

3.3.1 Tag Features

What we call tag features refer to features dependent on capitalization of tokens in candi-
dates, and whether Stanford’s CoreNLP NER tagger [9] labeled tokens as named entities
or not. We noted that while current NER systems such as Stanford’s were not very good
at understanding when titles or modifiers were parts of names, they frequently recognized
given names of characters, like “Sally”. Since character names often include given names,
we decided to use the presence of NER tags for indicator features.

As we need to normalize the tag features we obtained over candidates, sequences of tokens,
we use presence of capitalization or NER “person” tag on last token, as well as fractions of

tokens with capitalization or “person” tags. The NER tagger is non-deterministic so we use
a fractional count of “person” tags over all instances of the candidate for NER tag features.
Tag features for pairs of candidates are just concatenations of the tag features for both
candidates.

3.3.2 Frequency Features

Frequency features are indications of how often a candidate appears in the given novel. We
include these since we expect salient characters and relationships to be tied to how often they
occur. The simplest feature of this type is the raw frequency of how many times a candidate
appears in the novel. However, we include many variations on this feature to account for
differences in book lengths and differences in general candidate reference frequency across
books. These include frequencies for candidates across different section types (sentence,
paragraph, and chapter), as well as normalization across the number of sections and total
number of section mentions for candidates. Explicitly, for section type s, we have:

count(candidate) = (# of sections candidate appears in)

- count,(candidate

count,(candidate) = (,)
of sections

. count,(candidate

count,(candidate) = ()

anndec count,(cand)

The count over the entire book we normalize by the number of characters (text) in the book,
and the total counts of all candidates. Again, for pairs of candidates we concatenate the
frequency features for both candidates.

3.3.3 Cooccurrence Features

Cooccurrence features describe the number of times candidates appear with each other can-
didates. While it seems clear that such features would be important for identifying salient
relationships, that it would be helpful for salient character extraction is less obvious. Our
reasoning is that characters in novels are often important precisely because they interact
with other characters.

The particular features of this type we compute are similar to our frequency features. We
identify which sections characters occur in to build occurrence matrices, and then compute
inner products of these occurrence matrices to obtain coocurrence matrices. The features
for candidates are given by sums of coocurrences with all other candidates.

coocg(candidate) = E coocg(candidate, ¢)
c’ec
To normalize across books, as well as try and account for importance of characters, we

also weight the cooccurrence matrices along 1 dimension by normalized overall and section
frequency features. We do not weight across the second dimension (the one not summed)

because we desire to get the importance of candidates a candidate cooccurs with, not ac-
counting for the importance of the original candidate itself.

For pairs of characters, we both concatenate the coocurrence features for each character, as
well as include the values from the original un-marginalized coocurrence matrices.

3.3.4 Coreference Features

Coreference features are to account for cases where characters are referred to by different
names within a book. For example, “Huckleberry Finn” may be addressed as “Huck”, “Huck
Finn”, or “Huckleberry”, but all are instances of the same character. As we are using dif-
ferent types of frequencies (including cooccurrence) to help account for importance, to help
with measuring a candidate’s true importance it should have features recognizing the fre-
quencies of coreferences.

We use our rule-based disambiguation to then compute these features. For each candidate
we find the candidates that are disambiguated to, and candidates that disambiguate to it
(the difference between “Tom Sawyer” — “Sawyer” and “Sawyer” — “Tom Sawyer”), then
sum the different frequency features for candidates from those two types of coreference.

3.4 Data Collection

The goal of the data collection phase is to compile a collection of raw texts and Sparknotes
character annotations for as many books as possible. To this end, data collection is divided
into multiple phases:

1. Gather a list of books with character descriptions available on Sparknotes

2. Crossreference the list with Project Gutenberg [10] to optain books with public, online
text

3. Extract candidates from the obtained raw texts

4. Label the candidates for each novel by using the Sparknotes character descriptions

For the first, we scrape the index on Sparknotes, then use the index to find links for each
book in Sparknotes and scrape their character lists, title and author. For the second, we
search for title and author in the Project Gutenberg index, downloading the raw texts for
matches. In practice, there are a number of inconsistencies between Gutenberg’s index and
Sparknotes’; such as differences in accents or spelling, as well as non-English same-title du-
plicates. We manually dealt with such entries, and then filtered out plays and poems by
crossreferencing with Wikipedia to get 102 novels.

Candidate extraction, the third step, is performed in the manner described in Section 3.1.
To label the candidates we use our rule-based disambiguation to find candidates correspond-
ing to the character names in the Sparknotes descriptions. Rather than attempt to match
characters uniquely as would be ideal, we label all possible matching candidates as charac-
ters. While this can introduce false positives, such as with family names being labeled as
characters, we found this significantly improved performance. The classifiers were less strict

about using particular character references, which were apparently not consistent in feature
space across different books in Sparknotes (some lists used short names, while some used
formal, without apparent reason). We attempt to mitigate false positives by performing a
disambiguation after output.

For relationship labeling, Sparknotes does not provide a list of relations, and we instead
infer it from character descriptions. The strategy is simple - we look for appearances of
a character name within other characters’ descriptions, and label them as related if they
appear. While character names can appear in different forms, we found that we could perform
disambiguation for this stage accurately by just choosing the first-appearing character in the
list which our rule-based disambiguation matched. We checked the performance of this
labeling strategy on a small set of 40 books we tagged manually from reading character lists
ourselves, and achieved roughly 95% precision and 80% recall. Though not accurate, and
suffering, as we note later, from not being descriptive of many relationships we personally
found important in novels we knew, we proceeded to use this data and see what results could
be obtained.

3.5 Classification

We employed two classification methods: SVM and random forests. These two methods
have been shown to have been shown to perform well for a variety of classification problems,
are particularly useful to avoid overfitting [4, 11], and were accessible through Python’s
scikit-learn. We expected that 100 novels was not enough to represent the novel space
very completely, making overfitting avoidance more important.

We also note that our datasets, both for characters and relationships, are imbalanced. As
the methods we use can be susceptible to dataset imbalance, we use the method of data
weighting for correction. As it was not clear what factor would be ideal to reweight the
positive examples, we treated it as a hyperparameter. For the character extractor, we found
that weights between 2 — 4 gave similar and best performance, while with the relationship
identifier 10 worked best.

Lastly, we emphasize that while the character extractor is trained on all candidates, since our
relationship identifier is meant to identify relationships between salient characters, we train
it only on pairs of characters which were labeled as positive data for character extraction.

4 Experiments

We tested our classifiers with both quantitative and qualitative metrics. The quantitative
metrics we used included precision and recall. Because our classifier is trained with positive
labels on all matching candidates found with our disambiguation, we expect that our clas-
sifiers will output multiple references to the same character. Thus, we include a “unique”
precision (UP) and recall (UR) as well, where output characters are first disambiguated, and

then matched to the pure Sparknotes characters.

The qualitative metrics included visual verification of characters found by the classifiers for
test novels. We avoid showing qualitative metrics for our relationship identifier due to the
clearly poor performance we observed - visually printing relationships found did not appear
to give us any information on the poor performance. For all our classifiers mentioned in this
section, we used a training data ratio of 0.7.

4.1 Character Extraction

For character extraction we implemented one simple baseline and two versions of our method.
The baseline was extraction of candidates by frequency: we took the top 20 1-gram candi-
dates, 10 2-gram candidates, and 5 3-gram candidates. While precision and recall will vary
between different types of novels, our choices for these numbers stemmed from the fact that
Sparknotes had an average of 15 candidates per novel, and that we had an average of 15 can-
didates after disambiguation with these numbers. Characters also, we found, are typically
referred to by shorter identifiers, leading to the decreasing numbers with respect to n-gram
length.

The two versions of our method are differentiated in feature sets: for Version 1 we only used
frequency features, while for Version 2 we used the entire feature set. We tested both of
these versions as we were interested in seeing if features besides frequency really were helpful
in the character extraction task. A table describing the results of all 3 methods is shown
below.

Method Precision | Recall | Unique Prec. | Unique Recall
Baseline 0.347 0.486 0.351 0.508
Version 1 (SVM, RBF) 0.642 0.544 0.638 0.572
Version 1 (RF) 0.619 0.441 0.615 0.497
Version 2 (SVM, RBF) 0.664 0.681 0.684 0.593
Version 2 (RF) 0.756 0.490 0.745 0.511

Table 1: Test precision and recall for our character extractor.

We notice first that both variations of our method significantly outperform the baseline, re-
gardless of the classification method used. This indicates that the classification approach is
useful, since the various features can be used for discrimination, and the high dimensionality
of the feature space makes rule-based approaches difficult. On the other hand, the difference
in performance between Version 1 and Version 2 only shows in non-unique precision and
recall, indicating that feature types besides frequency are not particularly helpful when in-
cluded. While slightly counterintuitive, it appears that candidate selection already provides
the information of tag features, coocurrence features are not much different than frequency
features, and that coreference features do not stop at least one of the true character refer-
ences passing the classifier.

10

The overall performance of our approach, while promising however, does not appear high
enough to warrant adoption for literary purposes, with precision and recall both roughly
65%. It seems that the features chosen are still not expressive enough for this task, or that
the derived features from our kernels are not expressive enough.

However, we recognize another source of error from looking at the characters output by our
character extractors. Here we show Crime and Punishment output for example:

True: Katerina Ivanovna, Sonechka, Lebezyatnikov, Zossimov, Alexander Zamyotov, Dmitri
Razumikhin, Lizaveta, Seymon Marmeladov, Ilya Petrovich, Luzhin, Arkady Svidri-
gailov, Polya, Mikolka, Nastenka, Alyona Ivanovna, Raskolnikov, Porfiry Petrovich,
Pulcheria

Predicted: Zossimov, Lizaveta, Raskolnikov, Svidrigailov, Nastasya, Razumikhin, Nikolay, Lebezi-
atnikov, Sonia, Dounia, Zametov, Luzhin, Amalia Ivanovna, Sonechka, Porfiry
Petrovich, Katerina Ivanovna, Pulcheria, Marfa Petrovna, Ilya Petrovich

The characters output by our classifier do appear to be considerably important to their
respective novels, it is just that Sparknotes does not label them in their character lists (or
has alternate spellings we miss). It is difficult to say if this is just because truly aggregating
sources shows these characters are not significant, or if the aggregation that Sparknotes has
is not properly representative, as some books have what we see as very obvious characters
left out of Sparknotes’ salient character list. This is the issue we noted in our data collection
when comparing the automatically collected data with manual tags.

4.2 Relationship Identification

For relationship identification we also attempted to implement one simple baseline and two
versions of our method. The baseline was analagous - instead we used pairs of charac-
ters whose coocurrence in paragraphs crossed a manually-tuned threshold (0.1, normalized
by number of paragraphs). Notably though, it does not limit the number of relationships
identified, unlike the character extractor. This accords with a phenomenon we saw on Spar-
knotes: no matter how many characters there are, roughly the same number are recognized
as salient for each book; relationships are not like this.

The two versions of our method are again differentiated in feature sets: for Version 1 we only
use pairs’ normalized coocurrence for paragraphs, while for Version 2 we use the concatenated
individual candidate features as well. Unfortunately, given the large number of training
samples (on the order of hundreds of thousands), we were not able to train the SVM, which
we saw to give better results in the character extraction. Results for our baseline and the
first feature set are shown in table below.

11

Method Precision | Recall
Baseline 0.303 0.198
Version 1 (RF) 0.144 0.392
Version 1 (SVM, RBF) 0.188 0.994

Table 2: Precision/Recall for the relationship identifier. Note that results for the models with all
features is unreported due to unfinished training.

Our recall is particularly high in cases because of the high bias towards positive examples.
We noted that if we reduced this high bias, recall and precision both moved to slightly above
the baseline. The trained result shown gave a much better F-score. We attempt to explain
our issues in the following paragraphs.

It would seem from the results that coocurrence is not a defining enough feature type to
identify salient relationships. Our baseline achieves very low precision and recall, and while
our trained classifiers perform better, they also have poor performance. We may need to
add entirely different feature types, or take significantly different approaches.

On the other hand, we also note that for the same data issues with the character extractor,
the relationship identifier has problems as well. In fact, when we compare our own personal
knowledge of novels with the relationships obtained from Sparknotes, it is frequent that
Sparknotes does not identify a large number of relationships which seem clearly salient in
just the character descriptions. For example, in the Lord of the Rings novels, relationships
between Frodo and nearly half of the Fellowship are unlisted, when they all spend the
entirety of the novel traveling together for a common purpose. Since we find that this issue
is significantly more egregious for relationships than characters, we expect that it is important
to explaining the poor classifier performance, and also the particular precision /recall trade-off
we see.

5 Conclusion

In this paper we have motivated the problems of salient character extraction and relationship
identification from raw novel text, and described a supervised classification-based approach
to solving them. The features we use are very similar in spirit to those in NER systems, and
our labeling is made feasible due to automated scraping from a source with simply-parseable
data. We find that the approach gives promising performance for character extraction, even
with possible issues in labeled data, capturing importance particularly with frequency fea-
tures; however, the performance for relationship identification is poor, indicating significant
issues with labeling via Sparknotes or lack of expressiveness in the features described. The
results indicate many directions for future work: improvement in labeling by aggregating dif-
ferent resources such as Wikipedia, better feature sets via design or by learning with neural
networks, and structured prediction are all directions we would like to explore.

12

References

1]
2]

[10]
[11]

[12]

Sparknotes. http://www.sparknotes.com/. Accessed: 2015-11-15.

A. Agarwal, A. Corvalan, J. Jensen, and O. Rambow. Social network analysis of alice
in wonderland. In Workshop on Computational Linguistics for Literature, pages 8896,
2012.

M. M. Bakhtin. Forms of time and of the chronotope in the novel: Notes toward a

historical poetics. Narrative dynamics: FEssays on time, plot, closure, and frames, pages
15-24, 1937.

L. Breiman. Random forests. Machine learning, 45(1):5-32, 2001.

M. Bron, K. Balog, and M. d. Rijke. Related entity finding based on co-occurrence.
Technical report, DTIC Document, 20009.

H.-H. Chen and J.-C. Lee. Identification and classification of proper nouns in chinese
texts. In Proceedings of the 16th conference on Computational linguistics-Volume 1,
pages 222-229. Association for Computational Linguistics, 1996.

J. F. Da Silva, Z. Kozareva, and J. G. P. Lopes. Cluster analysis and classification of
named entities. In LREC, 2004.

D. K. Elson, N. Dames, and K. R. McKeown. Extracting social networks from literary
fiction. In Proceedings of the 48th annual meeting of the association for computational
linguistics, pages 138-147. Association for Computational Linguistics, 2010.

J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local information into
information extraction systems by gibbs sampling. In Proceedings of the 43rd Annual
Meeting on Association for Computational Linguistics, pages 363-370. Association for
Computational Linguistics, 2005.

M. Hart. Project gutenberg. Project Gutenberg, 1971.

M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf. Support vector
machines. Intelligent Systems and their Applications, IEEE, 13(4):18-28, 1998.

G. A. Miller. Wordnet: a lexical database for english. Communications of the ACM, 38
(11):39-41, 1995.

F. Moretti. Atlas of the European novel, 1800-1900. Verso, 1999.
F. Moretti. Graphs, maps, trees: abstract models for a literary history. Verso, 2005.
F. Moretti. Distant reading. Verso Books, 2013.

D. Nadeau and S. Sekine. A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3-26, 2007.

13

[17] R. Williams. The country and the city, volume 423. Oxford University Press, 1975.

[18] Q. Yang, P. Jiang, C. Zhang, and Z. Niu. Experiments on related entity finding track
at trec 2009. Technical report, DTIC Document, 2009.

[19] L. Zhang, Y. Pan, and T. Zhang. Focused named entity recognition using machine
learning. In Proceedings of the 27th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 281-288. ACM, 2004.

14

