
1

Flow graph construction from unsupervised cooking
recipes data

Oleg Grinchuk (grinchuk@mit.edu),
Aizhan Ibraimova (aijan@mit.edu),
Elena Shirokova (elenashi@mit.edu)

I. ABSTRACT

Thousands of cooking recipes can be found on the web in
a form of unstructured text. In this project we use this large
unsupervised corpus of data to build a model that transforms
recipe-for-human into a sequence of strict instructions (states),
which can be executed by a robot. That defines what actions
should be performed in what order, on which objects and with
the help of which subject, taking into account the quantity
of used ingredients. We use semantic role labeling for initial
approximation to the states and then improve the baseline
by using knowledge from dictionaries and by cleaning the
predictions in a smart way. We also train a probabilistic model
to build a statistical prediction and compare it with the SRL
approach. Code is located at [8].

II. INTRODUCTION

There are lots of cooking recipes available online. They are
written by humans for humans, and here comes a drawback
- they cannot be recognized by automatic systems. . Hence,
converting unstructured recipe text to a sequence of instruc-
tions can be useful in many applications. However, there is
relatively little effort to design algorithms that can transform
text to instructions. One of the approaches proposed by [1]
is to create a special instructional language which is easy
to interpret and where each sentence is splitted to the set
of commands and then the multilabel classification applied.
Another technique in [3] is based on dependency tree parser
which converts recipe to tree structure. The main method in [2]
is based on Hidden Markov Models. In addition, there are some
machine learning approaches like Named Entity Recognition,
mentioned in [4],[5]. In [6] the problem is solved by namely
predicting the ordering of events based only on the identity of
the words comprising their predicates and arguments.

In this paper we propose our approach to the problem of flow
graph construction for cooking recipes. We use new language
for robots in a form of sequence of states and we build those
states by applying natural language processing techniques to
the ininial raw recipe data. We introduce evaluation metric and
show that our approach increases the performance compared
to the baseline.

III. MODEL

We state the main goal ss to build a model, which
transforms a human-written recipe into a sequence of clearly
defined steps. As an input, system takes the list of directions

Fig. 1. The example of the raw recipe, taken from allrecipes.com

and list of ingredients in form of just strings. The output is
presented as a sequence of states. Define recipe state S as
following:
State=(ACTION,#A, OBJECT, #O, TARGET, #T),
where

• ACTION - a command from predefined set of
commands, which robot can execute. If ACTION
requires timing, #A displays the time in minutes,
otherwise # A = 0 (undefined).

• OBJECT is some ingredient or utensil, which can be
potentially used by ACTION.

• TARGET also comes from ingredients/utensils, but
normally it represents the target of the ACTION.

I.e ACTION is applied to #T units of TARGET using #O
units of OBJECT during #A mins. Intuitively, question Where
is connected to TARGET and question What - to OBJECT.
State parts are taken from dictionaries: OBJECT/TARGET
from {ingredients}, {utensils}; ACTION from {all-possible-
actions}. So, the total number of states is large, but finite.

2

Let’s consider some examples:
Example 1:
Input:
Rub olive oil onto the outside of each sweet potato and sprinkle
sea salt over each.
Output:
1. RUB, olive oil, sweet potato(4) ⇒
2. SPRINKLE, sea salt(1 teaspoon), sweet potato(4)
P.S.Here we get number 4 from ingredients list
Example 2:
Input:
Preheat oven to 400 degrees F
Output:
PREHEAT, oven(400 F), Ø

A. Challenges
This task poses unique challenges for semantic analysis.

Despite the fact that input texts are noisy, words can be written
with synonyms, slang, etc., there is another huge problem -
co-reference resolution. This means that object or target is
often omitted (e.g. ”Bake for 50 minutes”) and we need to
reconstruct the context from previous sentences. Missed object
is referred to some state before, but it is non-trivial task to
recognize the exact state.

Next, as the recipe flow processes, one can use hypernyms
to describe some combined ingredient (’Put lemon mixture on
top of prepared bird’). We need to recognize such cases too.

The last, but not least - recipes almost always are written
in imperative form. However, all pretrained NLP models use
declarative sentences. This means that such models will score
not really well on recipe data, so we need to either retrain the
models or to adapt them by applying some extra algorithms.
Since we have no labeled data to train our own model which
requires supervision, we’ll focus on the second approach.

B. Data
Our dataset consists of 70000 raw English recipes, which

were downloaded from the website http://allrecipes.com.
A recipe consists of the list of foods used as ingredients and

text describing the step-by-step instructions on how the dish
can be cooked. In this project, we focus on the text part (let’s
call it a body of the recipe) from which the work flow should
be constructed. In spite of this, we still use ingredients part for
getting the quantity of each object or target and for improving
the baseline algorithm.

A single recipe in the dataset is a file in json format with
following fields:
• ”recipe title”
• ”recipe id”
• ”review count”
• ”ingr”
• ”ingr id”
• ”cook time”
• ”directions”.

”recipe title” and ”recipe id” are unique for a single recipe,
”review count” shows the number of comments written by

another users (it can be one of the features of the popularity
of a recipe). ”ingr” is the list of ingredients used in the cooking
process for this recipe and ”ingr id” are unigue identification
numbers corresponding for each of the ingredients in ”ingr”
(i.e. it is the list of the same size as ”ingr”). ”cook time” is
the list of 3 elements corresponding to the preparation time,
the baking time and the whole time of the cooking the recipe.
”directions” are the list of elements, step-by-step instructions
from the text part of the recipe.

IV. PROPOSED APPROACH

A. Dictionaries
Since we can not always identify an action or an object

by a single word, we’ve built four different dictionaries of
words and word sequences which correspond to the actions,
ingredients, utensils and units of measurement in a cooking
world. All dictionaries’ elements are chosen based on the
ingredients and text parts of all recipes from the dataset. The
figure 2 shows the random recipe which was labelled according
to these dictionaries.

Fig. 2. The highlighted (labeled) recipe

B. Baseline
As a baseline, we applied a state-of-the art SRL system

(Das et al., 2014) to the corpus. Semantic role labeling tells
us the semantic structure of the sentence. If it was predicted
correctly, then we can map those structure to our state. For
instanse, ’location’ role most likely corresponds to the target,
verb in an infinitive form (”add”, ”stir”, etc.) corresponds to
the action.

C. Advanced method
The general text used to train the NLP modules has different

structure from the text of a recipe. Therefore, it is important to
perform the adaptation of usual NLP module. While using the
usual SRL method, we don’t take into account that we work

3

with recipes that usually have some structure. For instance,
it’s unlikely that a verb in the past tense appears in a body
of a recipe, there is also no modality problems. Recipes are
usually straightforward. Here we represent all events by the so-
called ”states” (action + object + target + the number of objects
+ the number of targets). But now we know that objects and
targets can be either the elements of the earlier built dictionary
”utensils” or the name of the ingredient which can be parsed
from the ingredients part of the recipe. One state has no more
than one object and one target, so we also split compound ones
and created more states with the same action. For instance, the
sentence ”Add flour and salt” should be related to the states:

• add, flour, body
• add, salt, body

Furthermore, to create correct states, we deal with alternatives
(example: ”Add 1 lemon or lime”). Here we can choose one
of the possible variants:

• add, lemon, body, 1, 0
• add, lime, body, 1, 0,

where ”1” corresponds to the number of objects and ”0”
corresponds to the number of targets (i.e. we mean by ”0” that
body is the subject taken from the previous step and we don’t
care how much should we take it - we need to take everything
created one step before). Considering all the unique features
that recipes have and modifying the SRL, we improved the
results (see Evaluation part).

Figures 3 and 4 demonstrate the example of the algorithm.
The first figure shows the hand-labeled random taken recipe
and the second figure shows the output of the advanced
algorithm for the same recipe.

Fig. 3. The hand-labeled recipe

Fig. 4. The robot-format output of the algorithm

D. Bayesian Inference
In addition to Semantic Role Labeing, we also implemented

a probabilistic model, based on bayesian approach. For the
sake of simplicity, we assume that both object and target are
action-dependent. These connections are shown in Figure 5.
Then the probabilistic model can be written as

P (sent) = P (action)P (object|action)P (verb|action)

Here we denote conditional probabilites from the bag-bigram
models. Fractional counts are calculated as all occurencies of
object/target and action in one recipe direction, so

P (object|action) =
count(object, action)

count(action)

This can be written for target as well.
Therefore, the likelihood of the whole recipe:

P (recipe) =

n∏
i=1

P (senti)

For the whole sentence we maximize likelihood. This means
that for the current sentence and for current action we choose
object and target with the highest probability. In this way we
can generate states for every direction from the recipe. The
example is shown in Figure 6.

Fig. 5. Graphical model

4

Fig. 6. The example of generated instruction using probabilistic model

Fig. 7. Examples of some frequent patterns

This approach works pretty well for simple recipes, but for
more complex ones it makes errors, especially in target field.
However, we didn’t apply any cleaning, dictionary learning or
postprocessing to this model, so it can still be improved.

V. EVALUATION

Since we deal with unsupervised data, evaluating a quality
of some prediction is not a trivial task. We hand-labeled
about 70 recipes, which allowed us to introduce a scoring
function. Define Ea as fraction of correctly predicted Actions
through recipe and E - fraction of correctly predicted States.
Calculating these metrics for each labeled recipe and then
taking mean, we obtained the following results:

Model Ea E
Baseline (SRL) 0.77 0.34

SRL+Dict 0.80 0.41
SRL+Dict+Cleaning 0.80 0.44

Actions were correctly recognized in majority of cases, the
problem is more with detecting objects and targets. Straight-
forward Semantic Role Labeling gives only 0.34 accuracy in
whole-state prediction. But after applying some common sence
concepts, string cleaning and knowledge from dictionaries, we
managed to get a 30 percentage relative increase in accuracy
- up to 0.44.

VI. CONCLUSION

Automatic flow graph construction from unsupervised raw
texts implies a lot of difficulties we need to handle with. How-
ever, we were able to obtain some pretty good results,evaluated
on a small subset of labeled data. We used semantic role
labeling to build a set of instructions from the sentence and
then improved this baseline score by applying different post-
processing functions. We also collected various dictionaries,

which helped us to improve results a bit more. We tried
to apply Bayesian inference model and it showed promising
results but slightly worse than the main model. However, it has
a huge possibility to be improved. Hence the task of building
recipe flow contains a lot of difficulties, we showed that some
of these problems can be solved separately.

REFERENCES

[1] Dan Tasse and Noah A. Smith, SOUR CREAM: Toward Semantic
Processing of Recipes, School of Computer Science Carnegie Mellon
University, 2008.

[2] Jon Malmaud, Earl J. Wagner, Nancy Chang, Kevin Murphy, Cooking
with Semantics.

[3] Jermsak Jermsurawong and Nizar Habash, Predicting the Structure of
Cooking Recipes, New York University Abu Dhabi.

[4] Shinsuke Mori, Hirokuni Maeta, Yoko Yamakata, Tetsuro Sasada, Flow
Graph Corpus from Recipe Texts, Kyoto University.

[5] Chloe Kiddon , Ganesa Thandavam Ponnuraj, Luke Zettlemoyer and
Yejin Choia, Mise en Place: Unsupervised Interpretation of Instructional
Recipes.

[6] Omri Abend, Shay B. Cohen and Mark Steedman, Lexical Event Order-
ing with an Edge-Factored Model.

[7] Luke S. Zettlemoyer and Michael Collins, Learning to Map Sentences
to Logical Form: Structured Classification with Probabilistic Categorial
Grammars, MIT CSAIL.

[8] https://github.com/oleggrinch/recipes

