
Regex-RNN: Generating Regular Expressions
from Natural Language Prompts

Nicholas Locascio, Eduardo de Leon

Problem Setup

Dataset of 824 Regular Expression + Natural Language Pairs

Natural Language:
lines with the word 'Triple'

followed by words that start with
'X'

Regex:
.*\bTriple\b.*\bX[A-Za-z]*\b.*

Approach:
 From the natural language description, predict the

corresponding regex 1 character at a time.

Build character generation model for:
P(next_regex_char | prompt, regex_so_far)

Example:
P(“Z” | “lines with the word triple followed by words that start with ‘x’”, “.

\bTriple\b.\bX[A-”)

Regex-RNN Model Architecture

Learning Regex Char-Vectors with Word2Vec

Analogies Learned

E - e + u = U
(capitalization)
2 - 1 + 3 = 4

(number order)
4 - 1 + 3 = 6

(number magnitudes)

Generating Complete Regexes: RNN + Viterbi Beam Search

- Our RNN model predicts next character probabilities.

- Need to find best complete path: ‘START’->‘[’->’A’->’-’->’Z’->’]’->’’END”

- Path Probability = Π(P(char | prompt , so_far))
= Σ log(sum(P(char | prompt, so_far)))

- Can take greedy path (BAD Results). Can take optimal path (NP Runtime).

- We use BFS beam search to compute a good solution in reasonable time.
(Used K=80, keeping track of top 80 paths).

- Since we are considering variable-length sequences, we have to normalize
our path probability by the path length to get average log probability per
character. Otherwise, short sequences would always be preferred.

Example Predictions

Natural
Language
Prompt

Prediction Answer Key Point

lines that contain
only three words

(([^A-Za-z])*\b[A-
Za-z]+\b([^A-Za-
z])*){3}

(([^A-Za-z])*\b
[A-Za-z]+\b([^A-
Za-z])*){3}

Can work on
long strings.

lines using 'lugg'
before 'age'

.*lugg.*age.* .*lugg.*age.* Can do
“entity”
replacement.

lines that contain a
'?' or an '!'

.*(?|!).* (.*?.*)|(.*!.*) Can generate
shorter DFA
equivalent
answers.

Example Mistakes

Natural Language
Prompt

Prediction Answer Key Point

lines that have no
letters

~(.*[AEIOUaeiou].
*)

 ~(.*[A-Za-z].*) Can get lost
in thought w/

common
sequences

lines where there are
three characters

between instances of
"ABC" and "WEX"

.*ABC.*.{2}.*WEX.
*|.*WEX.*.{3}.
ABC.

.*ABC.*.{3}.
WEX.|.
WEX..{3}.
ABC.

Can mix-up
numbers.

lines having words with
'ro'.

.*((\b[A-Za-z]+\b)&
(.*ro)).*

.*\b[A-Za-z]*ro
[A-Za-z]*\b.*

Ambiguous
Prompt! X

X

X

Results

Semantic
Unification
(Kushman

, 2013)

UBL
Model

(Kwiatkow
ski, 2010)

Regex-RNN
Top Result

Regex-RNN
Top 5

Results*

DFA Equal 65.5% 36.5% 56.6% 66.5%

Example
Equal

x x 60.6% 70.0%

DFA equal means a regex was only correct if its FSM was
exactly equivalent to the answer regex.
Example equal means a regex was only counted correct if
it matched all 10 positive and negative examples perfectly.

“Using Semantic Unification to Generate Regular Expressions
 from Natural Language”, Nate Kushman.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwater, and
Mark Steedman. 2010. Inducing probabilistic ccg grammars from

logical form with higher-order unification. In Proceedings of
EMNLP.

References

Future Work

- Use larger dataset. Neural nets are data-hungry
models and 824 examples is extremely small.

- Use Sequence-To-Sequence RNN.
- Keep shared representations for some words and

characters.
- Use Attention-based NN. Our problem is extremely

sensitive to context, so attention-based models
would help

- Use EM algorithm to compute word-alignments.
- Pre-Process regexes for best DFA alignment.

