
Solving Hard Coreference Problems with Word Vectors

David Lu, 6.806

(Code available from https://github.mit.edu/uldivad9/David-Lu-6.806/tree/master/non-code)

Introduction

Coreference is an extremely important

problem of Natural Language Processing

involving disambiguating the subject of

some kind of indeterminate reference (such

as a pronoun). For example, determining

who ‘he’ is in the sentence “Mary lent Joe a

book that he hadn’t read” is a problem of

coreference. Note that this coreference

problem is relatively easy to solve – we

know that ‘Mary’ is a female name, and we

know that ‘he’ must resolve to a male

person. However, harder coreference

problems often cannot be solved using these

syntactic rules. For example, in this

sentence:

Ex: Despite its small size, the ant

managed to drag the leaf.

The coreference in this sentence cannot

be resolved without knowledge of the world

(what is ‘size’, what is ‘small’) and inductive

ability (‘despite’ indicates that we are

somewhat surprised about the contents of

the sentence – thus it makes more sense

that ‘the ant’ is being described as small).

Humans perform extraordinarily well on

these kinds of coreference problems, but

current natural language systems are far

behind.

1 Available from
http://www.hlt.utdallas.edu/~vince/data/emnlp12/

In this paper, we outline an approach to

solving difficult coreference problems using

the semantic information contained in word

vector embeddings. We show that word

vector information alone is enough to

resolve a significant number of coreference

problems, and compare a word-vector-only

approach against several state-of-the-art

coreference resolution systems.

Dataset

The Winograd dataset1, gathered by

Rahman and Ng (2012), consists of 1886

sentences with instances of pronoun

resolution that cannot be solved with

syntactical rules. A single data point comes

in the following four-line format:

The bee landed on the flower

because it had pollen.

it

The bee,the flower

the flower

The first line consists of the sentence.

The second line states the pronoun to be

resolved. The third line lists the two

candidate entities that the pronoun might

refer to, and the fourth line lists the correct

candidate entity.

Each of the data points has exactly two

candidate entities, which are both listed.

Thus a natural baseline method would be to

randomly select between the two candidate

entities, which gives an accuracy of 50%.

Word Vectors

Word vectors are a frequently-used tool

in natural language processing, where

words are represented as high-dimensional

vectors based on co-occurrence. Word

vectors also have some well-known and

interesting properties – for example,

analogous pairs of words (man/woman

versus king/queen) have similar word

vector differences.

The main tool we use in this paper is

word vector cosine similarity. This is

roughly a measure of semantic relatedness,

such that words that are in some way

related to each other have a higher

similarity.

Throughout the entirety of our project,

we used a pretrained, 300-dimension word

vector model based on a Google News

corpus2. We utilized the Python gensim

package3 with this model.

Intuition

Let us consider the following sentence

from the Winograd dataset:

2 Available at https://code.google.com/p/word2vec/

Ex: The pen is mightier than the sword

because it can only stab things.

Here we have a coreference problem

where ‘it’ refers to one of the two candidate

entities ‘the pen’ or ‘the sword’. One of the

clues that helps a human solve this problem

is the fact that swords are more associated

with ‘stabbing things’ than pens are. We can

replicate this kind of connection using word

vector similarity! Consider if we pulled out

the keywords ‘pen’ and ‘sword’, along with

the keywords ‘stab’ and ‘things’. Then, we

compare the ‘relatedness’ of the keyword

‘pen’ to the keywords ‘stab’ and ‘things’,

getting some kind of overall relatedness

score. Next, we do the same thing between

the keyword ‘sword’ and the keywords ‘stab’

and ‘things’ for a second score. Intuitively,

the relatedness score of the ‘sword’ would be

higher, and on that basis we could decide

that ‘it’ referred to ‘the sword’. We will use

this method (more explanation of exactly

how keywords are determined and

relatedness is computed will appear later

on).

However, this method cannot apply to

all sentences:

Ex: George scored against Thomas in

the shootout, so he won the game.

Here, the two candidate entities ‘George’

and ‘Thomas’ have little to no semantic

information tied to them. In order to solve

this problem, we need to look at the

relationship between the entities – namely,

the fact that George ‘scored against’

3 Available at
https://radimrehurek.com/gensim/index.html

Thomas. Scoring has a relationship with

winning, and so if George is the one who

scores, it makes sense that George is the one

who wins. Hence, we will take the word

‘scored’ and consider it a keyword of

‘George’. This allows us to represent (albeit

crudely) relationships between entities

using our keyword-centric approach.

Implementation

Our system takes in as input a datapoint

formatted like the Winograd dataset – four

lines consisting of sentence, pronoun,

candidate entities, correct entity. First off,

we part-of-speech tag the words and detect

named entities (done through the NLTK

toolkit4).

We now create one set of keywords for

each candidate entity. For each candidate

entity, we extract keywords from the text of

the entity (i.e. ‘the sword’) only if the

candidate entity was not recognized as a

named entity (such as ‘George’ or ‘Thomas’).

Assuming the candidate entity is not a

name, then we take all words from the

candidate entity that are either a noun, an

adjective, or a verb, unless the word is in a

predefined list of words to ignore. The list of

words to ignore consists of tenses of ‘t0 be’

along with several other common words

that provide no meaningful information.

Next, we consider the described

relationship between the two candidate

entities defined by the chunk of the sentence

between the two candidate entities. We

extract the keywords from this chunk just as

before. All keywords are added to the

keyword set of the candidate entity that

4 Available at http://www.nltk.org/

comes first in the sentence, as X VERB Y

usually means that VERB can be attributed

to X. However, if the VERB follows either a

negation (not) or a word that indicates

passivity (was), then it is added to the

keyword set of the second candidate entity.

Finally, we look through the sentence to

locate the pronoun to be resolved, and take

out the clause or phrase that the pronoun

belongs to. For example, in “The pen is

mightier than the sword because it can only

stab things.”, this clause would be ‘can only

stab things’. We perform the same keyword-

extracting operation as before on this clause

to produce a set of ‘pronoun keywords’.

We now have three sets of keywords –

one for candidate entity 1, one for candidate

entity 2, and one for the pronoun. We

calculate the average similarity between the

candidate entity 1 keywords and the

pronoun keywords by taking the average

word vector similarity of all pairs (word1,

word2) where word1 is from the candidate

entity 1 keywords and word2 is from the

pronoun keywords. This gives us a similarity

number between 0 and 1. Similarly, we

calculate the average similarity between the

candidate entity 2 keywords and the

pronoun keywords. Our system chooses the

candidate entity whose similarity to the

pronoun keywords is the highest, and

returns that as the answer to the

coreference.

Results

We tested the system on the Winograd

test set. The word-vector-only system

improved significantly over the baseline.

Table 1: Performance results of the system discussed in this paper as compared to several

other coreference systems.

However, it is still far below the

performance of the best coreference systems

for Winograd-style problems. Of course, this

is partially due to the huge difference in

complexity between the word vector system

described in this paper and the other

systems. Both the Rahman and Ng and

KnowComb systems are comprised of an

ensemble of various statistical and other

methods, whereas our system only uses one

relatively simple method.

Conclusion

We outlined a method to solve difficult

coreference problems using word vectors,

and showed its performance against several

state-of-the-art coreference systems.

Ultimately, word vectors are useful for

resolving coreference, but they alone are not

enough. The semantic information provided

by word vectors is not enough on its own.

While word vectors are good for measuring

word associations and similarities, we often

need to do more than that to resolve

coreferences. For example, consider the

sentence:

5 See Chang et al., 2013
6 See Rahman and Ng, 2012
7 See Peng et al., 2015

Ex: “Bob helped Joe because he wanted

to help.”

It is very hard to see how word vector

similarities would be able to resolve this

sentence. For this sentence, we need a

method that recognizes that ‘wanting to

help’ is a good reason to help someone,

which is a very different kind of information

than what word vectors provide. Indeed, a

predicate-based schema like that of Peng et

al. (2015) seems more appropriate for this

kind of problem.

Nonetheless, our results show that word

vectors can contribute significantly towards

resolving coreference. We hope to see

coreference systems adopting word vectors

as one powerful part of an ensemble of

methods.

IlliCons5 Word Vectors Rahman and Ng6 KnowComb7

53.26 58.28 73.05 76.41

References

K. Chang, R. Samdani, and D. Roth. 2013. A constrained latent variable model for coreference

resolution. In Proceedings of the 2013 Conference on Empirical Methods in Natural

Language Processing, pages 601–612. Association for Computational Linguistics.

A. Rahman and V. Ng. 2012. Resolving complex cases of definite pronouns: the Winograd

schema challenge. In Proceedings of the 2012 Joint Conference on Empirical Methods in

Natural Language Processing and Computational Natural Language Learning, pages 777–

789. Association for Computational Linguistics.

H. Peng, D. Khashabi, and D. Roth. 2015. Solving Hard Coreference Problems. In Proceedings of

the 2015 Conference of the North American Chapter of the Association for Computational

Linguistics – Human Language Technologies, pages 809-819.

http://cogcomp.cs.illinois.edu/papers/PengKhRo15.pdf

