
Application Of Information Extraction

To Automate Research On Chinese

Corruption

Shidan Xu, Tingtao Zhou

December 14, 2015

1 Abstract

This project is an attempt to extract structured information from
Chinese news articles reporting corruption cases, as an input for
subsequent research on Chinese corruption. In particular, for
each article, we are interested in knowing the culprit, the crime
and punishment, the job of culprit, and time and location of
crime and the corresponding relations.

We used regex matching, logistic modeling classfier, Boson
NLP(commercial software), and conditional random field(CRF)
for Named Entity Recognition. We then did word alignment and
occupation filtering, and utilized distance metrics to aid us in
performing relation matching.

In this paper, we discuss the approaches and compromises
we made to achieve a 38% recall and 39% precision score (for
the entire pipeline), and 70% and 68% normalized scores (for the
relation mapping part only), respectively for this relation based
extraction problem.

Our work can be found in the Github repository
https://github.com/shidanxu/corruption.

2 Introduction

Corruption has been one of the major concerns in Chinese govern-
ment. Frequently news agencies report incidence of corruption
involving bribery and money laundering. A typical newsreader
needs to read through the entire article to get information on who
committed what crime and for how much money. Given a news
article, it would be useful to automatically extract the crucial
information, such as the culprit and the crime. This project was
suggested to us by Prof. Regina Barzilay to supplement Prof.
Karen Zheng’s ongoing research at the Sloan School of Manage-
ment.

3 Dataset

We had 460 segmented text corpus from People’s Daily, a Chinese
newspaper agency. Each text corpus is a news article related to

financial crimes. A UROP student annotates each news article
by extracting the culprit, the location of crime, the amount of
crime, the time the crime was discovered, and the punishment.
The student also identifies which attributes correspond to whom.
The selection of text corpus from a larger corpus base of People’s
Daily articles is done by an automated script, and for each cor-
pus, sentences are presented to us with readily word segmented
text using Stanford’s NLP parser.

Our task was to automatically produce the annotation files
just as a student would. Figure 1 shows an example annotation
file.

Figure 1: Part of L R 1993 4280.txt The news raw data is word
segmented.

Figure 2: L R 1993 4280.ann The 1 in 1Crime tells us person 1
committed ”corruption”.

1



4 Methods & Approaches

Multiple aspects of project are unique due to its scope and chal-
lenges. First, summarization task is one of the most difficult
aspects of natural language processing. Second, not only did we
need to extract all the relevant information, we also had to cor-
rectly identify the relations. Finding name attribute reference
is in general, a difficult task as it introduces ambiguity. Third,
Chinese language has no spaces in its natural form. We can
use various existing APIs to do word segmentation, but differ-
ent parameters and different APIs introduce noise. In practice,
we found that Stanford NLP parser’s performance is lower than
other commercial available software. Extra dirty work was nec-
essary to align the outputs.

We had several possible approaches to tackle this problem.
We chose the one that was most results-oriented as opposed to
trying out the coolest tricks. For each step, we had a clear
thought on what our next largest margin would be, and tack-
led right away.

With only 460 data points, training a neural network would
be less promising, if not fruitless. Given Chinese has over 50
thousand[1] characters, training a bigram or trigram model is
sparse. Each article has on average 300 characters for a total of
140 thousand bigram training data in a 2.5 million long one hot
vector.

Hence we decided to use our knowledge to help us with the
feature vectors. In particular, Prof. Zheng provided us two lists
of all financial crimes and lawful punishments from the law en-
forcement documents, respectively. She also provided us an excel
file with all cities in China, along with their provinces. Because
of this added dataset, we were able to reach a better performance
than word embedding.

4.1 Pipelined Procedure

• Named Entity Recognition (NER)

– We extract people’s names and locations using Boson
NLP[2]

– We extract crimes, punishments, location, job posi-
tion, money amount using feature vector matching.

– We extract crimes, punishments, location, job posi-
tion, money amount, time crime started, and time of
discovery using a CRF.

– We extract time crime started, time of discovery of
crime by training a logistic regression model.

• Word Alignment

– To combine the Boson and Stanford returned values

• Occupation Filtering

– Remove irrelevant persons by occupation features

• Correspondence

– Using a distance metric, we capture the relationship

– Syntactic parsing to parse parallelization.

4.2 NER

Since we are interested in relation based data at the end, the first
step is to extract the human’s names. We used a language model
(LM) provided by Boson NLP. Boson is a commercial software
for Chinese. We experimented with various parameters that are
more loose vs. strict at recognizing NERs. We decided to use 2
out of [1, 2, 3, 4, 5] for our NER. 1 means highest recall(lenient
and finds more entities but can introduce false positive), 5 means
highest precision (strict and finds less entities but found entities
are accurate).

Prof. Zheng provided us a combined list of crimes from sev-
eral law enforcement documents. Given that People’s Daily is a
paper that is mainly managed by the Party, the writing style is
very formal. We hence decided to use directly the list as a fea-
ture vector. We were able to reach 66% precision and 40% recall
for crimes extractions alone. A large proportion of the misses
were due to inconsistency in annotations. The human annota-
tions were done by multiple students and some write terse some
copy paste the entire sentence. Hence when we match word for
word to give a score, there is some extra info / info missing.

Prof. Zheng also provided us a list of cities in China. How-
ever this list only includes relatively big cities and do not include
smaller divisions such as counties. In a typical article, a county
can occur without the city name. Boson NLP does a better job
of capturing the counties. Hence we used both feature vector
matching and language model for this part. For Boson NLP, the
parameter of 2 out of 5 is mostly for this part we want to detect
more cities. In retrospect, we lost some precision on the name
identification from here.

For job position, punishments, money amount, time of crime,
we used several different approaches.

In general, there were two approaches. 1. Use our own knowl-
edge of what constitutes a job position / punishment etc, and look
for the exact string in sentence. 2. Use machine learning to aid us
in finding the weights of the features, where features are loosely
what these keyword are plus some additional ideas. We used a
conditional random field (CRF) approach for machine learning
part. We reached a much higher precision with the regex extrac-
tion as expected. The recall for most fields were higher with the
CRF approach.

For job position, punishments, we did two approaches. The
first approach is first to use a small script to extract the job po-
sitions and punishments in the first 40 annotation files. With
those information, we wrote a regex matching algorithm that
have some subset of the job positions and punishments found in
the script, along with additions as we find appropriate by intu-
ition. We previously had some idea of what job positions and
punishments are available. We included almost everything that
happened in the annotation file, along with some specific word
patterns that humans can detect from these annotations. For
example, we have city mayors as an occupation. Likewise we can
deduce that we should also have county mayors, associate city
mayors, etc. The second approach is to train a CRF, which will
be discussed later.

For money amount, for first approach, we looked at 10 ex-
ample output files and extracted the basic regex string that rep-

2



resents a money amount. We were able to reach 46% precision
with this extraction. The recall number is high because we were
able to extract most of the numerical values and that gave score.
The precision is lower because there are various ways to repre-
sent money in Chinese that were overlooked by the model. The
second approach also uses CRF.

For time when crime started, and time when crime was dis-
covered, there is extra difficulty in ambiguity. We can identify
a time entry from regex matching, but knowing whether it is
discovery time or the beginning of crime is difficult. Both of us
(native Chinese speakers) had no clear idea what features domi-
nate the decision. Hence we decided to train a logistic regression
model, in additional to the CRF approach. We gave the following
features:

• isStartOfArticle This feature detects whether the time
appears at the beginning 10% of the article. We noticed
that at the beginning of each article, there’s always a time
to specify when this article was written. This time has
nothing to do with the crime time.

• nearCrime This feature detects whether the complete sen-
tence the time occurs in includes an incidence of crime, as
detected by our language model. We believe that seeing an
incidence of crime makes the time more likely to be either
a crime discovery time or a crime start time.

• earliestTime, latestTime These features check whether
this time stamp is the latest or earliest of all times in the
news. We know that the latest time is usually the time the
article is written. Because of the nature of law enforcement
articles, it is common courtesy to wait till the person is con-
victed to publish news article. Therefore the latest time in
the article is unlikely the crime times. The earliestTime is
possibly the start of the crime.

• nearCaughtKeywords, nearReportKeywords We
have several tens of features for those keywords. The fea-
ture just checks whether a specific word is in the same sen-
tence as the time. Due to neural net training data size limit,
we specified the list of keywords by outputting the highest
frequency keywords in sentences where time is found for
the 40 training articles.

With these features, the training happened. For each time
we found in the article, we compared with the annotation files
and gave it one of three tags: y = ”None”, ”Year Disc”, or
”Year Crime”. In testing we take the wTx to get the outputs.
We allow for multiple tags for each yi = 1. Not to our surprise
but worth noting, the testing results were disastrous. We had
4% precision and recall for time tags, respectively. This shows
us that no features that we used were dominating.

For culprit - attribute matching, we used naive nearest dis-
tance. So if A is a person in sentence 1 and B is a crime in the
following sentence, they would be attributed together. This does
not take account of sentence structure.

With these features we have our baseline. For all numerical
results please refer to results section.

CRF Training

For each tag, we also trained a CRF model. The CRF
model takes account of the context and is useful in POS tag-
ging for capturing the transitions. Here we extend it to do
NER. Our training data consisted of 400 training files gener-
ated from each article in the following way: For every sentence
in the article, if there is a relevant (nonzero) tag in the article,
we add the entire sentence, in separated words format, to the
training file. Otherwise we add the sentence with a probability
λ. For example, the sentence ”James/0 was/0 sentenced/punish
to/punish death/punish” will be added to the training file as 5
rows, whereas ”She/0 finished/0 her/0 homework/0” will not be
added unless random.random() < λ.

Our feature vector was of length 88. It involves mostly key-
words matching, and certain minimal additional information such
as the position in the sentence. The features were similar of those
used in the regex matching, as we would like to compare the per-
formance of the two.

After training with the pycrfsuite package using BFGS, we
evaluate our performance on the training set(with all sentences)
and the remaining test data sets.

This usage of λ produces a very interesting point. The reason
why we used λ is due to data scarcity. Initially we used the en-
tire document as training data, and the output is unanimously 0.
Because of the imbalance of 0 and other tags, everything is more
likely a 0. In the original document, we have many words that are
tagged ”0”. These words do not help in distinguishing the useful
information. When we include those irrelevant information into
the training data, it will cause bias in our transition matrix for
the CRF. The overabundance of 0− > 0 state transitions cause
our matrix to assign large values to x0,0, leaving minimal prob-
ability for the remaining entries of the same row and column as
each row/column sums to 1.

After realizing this point, we decided to only use the sentences
that have nonzero tags. With this, we see a significant increase in
predicting other tags. However, because the number of zeroes is
now underrepresented in the population, we sacrificed precision.
The imbalance of data now says we need more zeroes.

So we calculated the total number of words that have 0 as
tags, with those who have other tags. Approximately 6% of all
words have nonzero as tags. As we make the training, we’d like
to evaluate some model close to the reality. Hence we decided to
randomly add sentences that have all 0 tags to the training data
with probability λ. We used λ = [0.01, 0.02, ...0.10].

3



Figure 3: How different λs affected other training data. With no
added 0’s, recognition of crime is impossible. The low f1 score
for 0 is largely due to a low recall at low λs.

Figure 3 illustrates this point. Initially with no added 0s
(λ = 0), we have much lower F1 scores on crime and 0. With
increased λs, we include more sentences with no tags to balance
out the lack of zeroes, and hence reached better performance for
both crime detection and 0 recall. The sensitive zone is roughly
5, 6%, in accordance to the 6% nonzero tags we calculated earlier.

4.3 Word Alignment

Perplexed, we examined the output to see where the largest mar-
gins of improvement are. Turns out some results were misaligned
due to the use of multiple APIs. Consistently we had a off-by-2
position error. This compromised our scores. We implemented
a linear search algorithm that, given the Boson returned output,
finds the corresponding (and possibly mismatched because seg-
mented word may be different) match in the original text file,
segmented by Stanford NLP.

Our word alignment results more than doubled our recall, but
had minimal increment on the precision.

4.4 Occupation Filtering

With a overall recall of 0.17, we are extracting some relevant
text. But why is precision extremely low? By exploring some
machine annotation files, we realized that the culprit - attribute
relation is the hindrance. For instance, we can have a situation
such as: The reporter A learned that he’s been stealing money
for the past 5 years. Here ”he” is doing the stealing, but we are
associating the stealing with the reporter.

We have two approaches here: 1. Resolve who he is by coref-
erence. 2. Filter out the good occupations. Approach 1 is an
open research area and in general a hard problem[4]. We decided
to shun away from it after discussing with the TAs.

Because People’s Daily is a article managed mostly by the
Party, certain occupations are less likely to be accused of crimes.

Reporters, judges, police officers, and other law enforcement of-
ficials represent the protection for society. The People’s Daily is
unlikely to post a news where a reporter or police officer commits
a crime. We decided that whenever we see those occupations
associated with a name, we deem that person good, and filter
him/her out for the calculation of nearest name, etc. City may-
ors, accountants, secretaries who are closer to power are more
likely to commit a financial crime.

This brilliant observation gave us the largest margin. We were
able to reach 39% precision and 38% recall after filtering out the
good occupations.

4.5 Correspondence

Lastly we try to fix correspondence issues. Instead of using a dis-
tance metric that finds the nearest name by the closest word, we
now look only in the current, previous, and next sentences. This
resolves the issue of one particular attribute being extremely far
away gets assigned to a name one paragraph ago.

We have higher precision but sacrificed recall.

Language Technology Platform - cloud (LTP)[3] was the lan-
guage model we used for syntactic parsing. This is another lan-
guage model for Chinese open source on Github. We were not
able to complete the testing by this deadline, as final reports for
6.864 are due on Monday. Essentially, we target the case where
there are multiple culprits and multiple punishments in the same
sentence. For instance, ”A and B were each charged with a sen-
tence of 10 years, 5 years, respectively.” Here by using nearest
name matching, B will be matched with two punishments, but in
reality it is a parallel ”respectively” situation. By using syntactic
parsing, we can detect where parallelization happens and assigns
accordingly.

However, we do not expect our performance to increase by
much because such case is rare.

5 Evaluations

Here we present the baseline, later evaluation metrics. Since
evaluations are nonstandard.

We treat the 460 human annotated files as gold standard. For
NLP tasks, we are mainly concerned with balancing precision and
recall. As previously defined, precision = true positive / (true
positive + false positive). Recall = true positive / (true positive
+ false negative).

Because Prof. Zheng wants the annotations to be accurate
and terse, we were harsh on ourselves defining the scores.

Precision: For every entry the machine found, we check the
maximum continuous substring match in the gold standard
under the same person. Given the maximum substring match
length, we divide by length of the machine found entry. Hence if
our machine found entry is too long, it will receive a low score.
This is a measure of both the relation and the extraction.

4



Recall: For every entry in the gold standard, we check the
maximum continuous substring match in the machine an-
notation under the same person. Given the maximum substring
match length, we divide by length of the gold standard entry. So
if our machine found a long entry but contains the gold standard,
it receives a score of 1. This is a measure of both the relation
and the extraction.

Information Extraction Precision: Same as precision but
without the condition under the same person. This is a measure
of information extraction.

Information Extraction Recall: Same as recall but with-
out the condition under the same person. This is a measure of
information extraction.

Normalized Precision: Precision / Information Extraction
Precision. Loosely speaking, this is a measure of only the relation
precision.

Normalized Recall: Recall / Information Extraction Re-
call. Loosely speaking, this is a measure of only the relation
recall.

6 Results

Here we give the results.

For each individual tag

Precision Recall F1
Job Position CRF 0.20 0.31 0.25
Job Position Combined 0.76 0.30 0.48
Punishment CRF 0.31 0.37 0.34
Punishment Combined 0.66 0.16 0.32
Crime CRF 0.27 0.15 0.20
Crime Regex 0.66 0.40 0.51
Money Amount CRF 0.26 0.81 0.46
Money Amount Regex 0.46 0.63 0.54
Time Regex 0.21 0.24 0.22
Time LR Train 0.04 0.05 0.04
Time LR Test 0.02 0.03 0.02
Time CRF 0.14 0.48 0.26
Location Boson 0.82 0.77 0.79

For CRF the training set is the first 400 articles whereas the
testing set is the remaining 60 articles. Combined means regex
matching, to combine the features found in 40 annotation files,
along with human interpretation to complete as a simple regex.
As seen from the table, most trained features were outperformed
by a regex. The time feature training is non-surprisingly espe-
cially bad because we have no short phrases to help us distinguish
between Year disc and Year crime. When the researchers do not
have good features, we do not expect logistic regression to shine
light on us. A randomly assigned time achieves 21% and 24%.
Trained data is worse than random. The CRF performed best
for detecting time. Here human intuition were terrible, which is
why CRF outperformed by large margins. Here if we had more
data, a neural net could potentially be useful.

Another important point to make is that CRF achieves worse

results than our regex in general in terms of performance. In most
cases other than crime detection, CRF achieves a higher recall.
For common POS tagging algorithms, each word is tagged with
some information, unlike here the majority of words carry ”0”
as information. The lack of information was mistreated by the
algorithm as some form of information, therefore downgrading
the performance. The very interesting thing is for both models
to detect time, CRF outperformed the simple logistic regression
vastly.

This gives us confidence that the use of machine learning is
useful when we have high level features of the data. If we are
very clear which features will decide the tag, we are better off
just using those values for precision. However, if we are unsure
what exactly causes the tag, such as the ambiguity in time, we
can utilize machine learning to help us distinguish the important
factors.

From these numbers, we discover that crime, punishment, job
position and location are relatively easy to detect. We tend to
have low recall by using regex matching as clearly we are not
omnipotent in knowing the features. The low precision in money
amount regex matching is due to multiple alternative orders to
represent a currency in Chinese. In general, the F1 scores are
higher for regex matching, which means we still have room for
improvement in the amount of data, and the depth of data. We
can increase that score by having a more sophisticated CRF that
tags each individual word with some information, for instance
make each tag two dimensional: POS and our crime tags.

For pipeline final results:

Approach Precision Recall EPrecision ERecall
Baseline 0.03 0.11 N/A N/A
Word Alignment 0.09 0.17 0.34 0.48
Occup. Filtering 0.38 0.39 0.54 0.53
Correspondence 0.43 0.36 0.60 0.52

Approach Normalized Precision Normalized Recall
Baseline N/A N/A
Word Alignment 0.26 0.35
Occup. Filtering 0.67 0.65
Correspondence 0.71 0.68

For the baseline some evaluation data were not available. The
greatest margin of improvement comes from occupational filter-
ing. Correspondence has not been completely implemented, but
we expect the each individual case to be rather spread out and
it may further improve precision but hurt recall.

5



Figure 4: Clockwise: Distribution of scores, each dot represents
an article. Distribution of precision. Distribution of normalized
precision. Distribution of recall. All for occupational filtering
step.

We ended our research here because we do not see any large
margin. The distribution of normalized scores is roughly linear.
The distribution of average precision, recall, and normalized pre-
cision are all approximately Gaussian. This means that other
than systematic errors, other sources of error are independent.
There is no single dominant criterion that we are not capturing
that is causing the score distributions. There may be multiple
factors that affect the scores, but these factors tend to be in-
dependent of each other. Hence by law of large numbers we
approach a Gaussian distribution at the end.

An example of a bad output is

Figure 5: Gold Standard for 2004 9085.

Figure 6: Machine annotation for 2004 9085..

Here the problem is we found too many positions. In retro-
spect, these positions are there because there are many people
who were not mentioned by name due to privacy. Because they
are not mentioned by name, the machine found the nearest name,
which there is only 1. So one person was incorrectly identified to
20 positions.

Another example of a bad output is

6



Figure 7: Gold standard, machine annotation, respectively, for
2007 10815.

Here the issue is that Boson NLP returned wrong named en-
tities. If you observe closely at the machine translation, the 4
different persons all share three same characters. The three com-
mon characters are the person’s name. Hence they are the same
person but the API recognized them as different names due to
incorrect segmentation. This has detrimental affect on relation
precision as the name matching is simply wrong.

An example of a good output is

Figure 8: Gold standard, machine annotation, respectively, for
2008 11148.

Here we correctly identified the culprits, the crime type, the
location, and one of the money amount involved, and the posi-
tions.

Based on our discovery, the errors are individual and inde-
pendent. There is no single fix that can easier increase the per-
formance by whopping amounts.

7 Discussion

This real world project really changed my opinion on machine
learning and natural language processing. We have a difficult
task at a high level, and we used a very practical approach. We
were not surprised that training may not be as efficient as di-
rect feature matching. Two things we are especially thankful for:
1. The obsolete formal sentence structure of People’s Daily. 2.
Our great feature intuition as native speakers. The giant alpha-
bet of Chinese also makes training difficult. As opposed to pure
academia, data is always incomplete and dirty.

One particular challenge in data processing was the encoding
of Chinese languages in python. In python 2, Chinese languages
need to be encoded as unicode strings. This introduces extra
layer of difficulty as we were not previously experienced. In ret-
rospect, instead of worrying about encoding in the middle of a
function, we should convert all text files to unicode strings as
preprocessing once and for all.

Shidan’s advisor, Prof. Gerald Sussman once asked him what
his name was. In perplexity, Shidan responded with delay. Suss-
man said something that struct Shidan, ”It took you 0.5 seconds
to respond. That’s only enough time for 50 neurons firing.” Hence
a model cannot be overly complex. In testing out the bi-grams
and trigram models, especially with Chinese and its overabun-
dance of characters, I find it less credible that such an approach
is how humans think. Such a bashing approach seems fruitless.
Neural net, in essence, is to wait for a kid to turn to 20, and then
feed him all the human knowledge, instead of training him as he
grows up.

8 Future works

For future works, we’d like to explore more syntactic parsing.
The juxtaposition of culprits, relation disambiguity with depen-
dency parsing are two immediate approaches that come to mind.
While these are clear cases the current algorithm does not ac-
count for, we are not sure how often these situations happen.
They can probably increase the score by single digit percentages.

Another direction we can take is to extend this application
to other datasets. Initially, the project idea was that for expe-
rienced judges, by reading the court transcript, they can decide,
with high accuracy, whether the defendant is guilty or not. We
switched because of lack of data. Nevertheless, such an appli-
cation can benefit from our information extraction, and use the
information we extracted as feature vectors. This is when we can
train a more elaborate model for predicting a single tag guilty or
not.

9 Distribution of Work

Shidan Xu and Tingtao Zhou worked on this project. Shidan
worked on the custom evaluation methods, implemented the CRF
model, worked out the feature extraction and regex matching,
and struggled with parsing Chinese text into python. Tingtao

7



worked on indexing the paragraphs, figuring out the distance
metric, occupation filtering, connecting all the APIs to generate
correct tagging, and the logistic regression for time. Both re-
searchers spent a lot of time on word alignment. We spent more
than 70 working hours each on this project.

10 Acknowledgements

The authors would like to thank Prof. Regina Barzilay for in-
troducing them to such an interesting real world problem. The
authors thank Prof. Karen Zheng for providing the documenta-
tions and asking the UROPs to proofread annotated data in a
very timely fashion. The authors thank Kiva and Tao for sug-
gesting approaches and APIs for the problem. We wanted the
final product to be useful in aiding Prof. Zheng’s research, hence
we took a more results oriented approach. We sincerely believe
that given the timeframe, the approach in this paper gives the

highest score.

11 References

1. Chinese Characters. http://www.bbc.co.uk/languages/chinese/
real chinese/mini guides/characters/characters howmany.shtml

2. Boson NLP, http://bosonnlp.com/

3. Language Technology Platform, http://www.ltp-
cloud.com/

4. Fader, Anthony. Identifying Relations for Open Informa-
tion Extraction. https://homes.cs.washington.edu/ soderlan/Fader-
emnlp11.pdf

5. Okurowski, Mary Ellen. INFORMATION EXTRACTION
OVERVIEW. http://www.aclweb.org/anthology/X93-1012

8


