Modeling Recipe Steps Using Skip-Thought Vectors

Nicholas Hynes, Mandy Korpusik
MIT Computer Science and Artificial Intelligence Laboratory

{nhynes, korpusik}@mit.edu

Abstract

The generation of sequences of instructions remains
an open problem in NLP. A large part of the challenge
is to represent each step in a way that enables the con-
struction of a robust model that supports operations like
reordering and inference. To this end, we investigate the
use of sentence-level embeddings known as skip-thought
vectors in predicting the next and previous steps in a
recipe. Trained on a corpus of 150k recipes with a total
of 1.Tm sentences, skip-thought vectors perform reason-
ably well as features for discriminating the next step,
achieving an accuracy of 66.1% when given five can-
didate steps, but fare poorly when tasked with actually
generating the next step. Additional experiments show
that, while skip-thoughts vectors can be accurately de-
coded to the encoded step, there may be limits to their
representational power.

1. Introduction

When preparing food under constraints—whether
they be dietary restrictions, a sparse pantry, a desire
for novelty, or even lack of any information about the
dish other than its appearance—it is helpful to have a
deep knowledge of how ingredients and steps can be
combined and rearranged to make a recipe. As most
people do not have the ability or time to acquire such
knowledge, it would be advantageous if a machine could
be trained to generate recipes automatically. Not only
would such a system enable the generation of novel
recipes, it could also aid in diet tracking and meal plan-
ning if provided with the necessary nutritional infor-
mation and quantities. Going beyond the domain of
food, though, the general techniques for sequence mod-
eling could be generalized and applied to other problems
including planning for autonomous agents—perhaps in-
cluding those that actually prepare the food.

To this end, we take initial steps toward creating a
model that can be used to generate a new recipe. Specif-
ically, we investigate the use of sentence-level vector em-

beddings known as skip-thought vectors [3] as a basis
for modeling recipe steps. Evaluating the embeddings
on several tasks including identifying the next step and
finding the location of a held-out instruction, we find
that skip-thought vectors outperform credible baselines.
We encounter limitations of the model, however, when
attempting the most difficult task of generating recipe
directions, which suggest that the encoded representa-
tions are too tightly coupled with the method by which
they are created, thereby limiting general applicability.

Thus, the remainder of this paper presents related
work in explains our approach to the problem

of modeling recipes in describes the experi-
mental setup and results in and concludes in
lsection Dl

2. Related work

This section presents related work on skip-thoughts
and recipe modeling, in general, while making clear the
novel contributions of this work.

2.1. Skip-thoughts

Prior work has demonstrated the utility of deep neu-
ral networks for learning vector embeddings of words,
sentences, and paragraphs through unsupervised train-
ing. One popular and effective formulation of the learn-
ing goal is the skip-gram model [9] [§], in which a held-
out word is used to predict its surrounding context
words. Skip-thought vectors [3] are the result of extend-
ing the skip-grams approach to the sentence level by
training an encoder-decoder pair to predict the previ-
ous and next sentences. Additionally, it has been shown
that paragraph vectors [4], representing variable-length
documents, can also be learned in a similar manner; in
this case, however, instead of using an encoder-decoder
pair, the paragraph vector and several word vectors are
concatenated and then used to predict the next word.

Recent work has explored the applications of skip-
thought vectors in training neural memory networks [I]
on a weakly-supervised question answering task by en-
coding the questions and statements with skip-thoughts.

Although the performance is lower than that of end-
to-end systems, it nonetheless presents an interesting
application of the technique.

In another line of inquiry, three multi-task learning
approaches [5] were explored for sequence to sequence
learning: one-to-many encoders to decoders, many-to-
one, and many-to-many. It was then shown that ma-
chine translation results can be improved by the addi-
tion of skip-thought vectors.

This work also explores the application of skip-
thought vectors but focuses on the problem of sequence
modeling instead of question answering or translation.

2.2. Instruction sequence modeling

Previously, recipes have been modeled using graph-
based methods. One example in this domain used a
directed acyclic graph as a basis for a semantic parser
for recipe text [6]. In the larger space of instruction
sequence modeling, an end-to-end recurrent neural net-
work (RNN) was shown to yield state-of-the-art results
on mapping route-navigation instructions to actions [7].
Our work is set apart in that it uses vector represen-
tations, as opposed to graphs, that are encoded and
decoded by disjointly trained models.

3. Approach

Our approach for modeling recipe steps is based on
skip-thought vectors [3], which are distributed repre-
sentations of sentences learned by training an encoder-
decoder model to predict the text surrounding a sen-
tence. Thus, this section presents the skip-thoughts en-
coder and decoder and their application to the specific
task of recipe modeling.

3.1. Skip-thoughts

The general concept of the skip-thoughts model is
that of a disjointly trained encoder-decoder pair which
operates on vector representations of entire sentences.
The desired end results are sentence vectors that can
be used in much the same way as the off-the-shelf em-
beddings produced by word2vec. For clarity we describe
the model in detail here, but it will suffice to familiarize
oneself with only the high-level introduction presented
in each subsection describing the encoder, decoder, and
training methods.

3.1.1 Encoder

The purpose of the encoder is to transform an input
sentence into a fixed-dimensional vector that, ideally,
captures the semantic content of both the sentence and
its constituent words. At its core, the encoder is a RNN
implemented by a gated recurrent unit (GRU), which is

similar to LSTM but conceptually simpler. In a GRU,
the output after each step is the new hidden state, ht,
which is a combination the previous hidden state ht~!
and a proposed state update, . &', in turn, is derived
from the input z and previous state. The contributions
of the input, previous, and proposed states are mediated
by the outputs of a reset gate, ¢, and a forget gate, 2.
Formally, the update equations are as follows:

rt = o(W,a' + U.h' 1) (1)

2t =o(W,at + U.p'™Y) (2)

R = tanh (Wz' + U(r' © hi™1)) (3)
W=0-2)oh '+ oh (4)

where © is the elementwise product and Wy, . 1 and
Uir,.,.} are matrices of learned weights. A skip-thought
vector, then, is simply h after observing every token in
the input sentence.

3.1.2 Decoder

Unlike the encoder which bundles a sequence of tokens
into a single vector, the decoder unrolls a single vector
into a sequence of tokens, namely a sentence. Like the
encoder, however, the decoder also incorporates a GRU,
but is modified slightly to also take into account a con-
text vector, h;, when determining the gate outputs and
proposed next state. While an obvious choice for h; is
the output of the encoder, we experiment with variants
in which additional data are appended. Again, to be
concrete, the state updates are given by

rt = o(Wia'™' + ULt + O\ hy) (5)

2t =o(Wia!=1 + UIRY + CLhy) (6)

R = tanh (W' + Ut © Y + Chy) (7)

R, =01-z)on "+ o1 (8)

where Cy, . .y is a matrix of learned weights applied to
the context vector.

3.1.3 Training

Since training the encoder also requires concurrently
training decoders for the next and time-reversed previ-
ous steps, the training procedure for the decoder will be
described first. For simplicity we focus on the forward
decoder; training the backwards decoder proceeds anal-
ogously. The decoder’s hidden state is used to represent
the probability of the target step’s words, conditioned
on the context vector:

P(w <!, hy) o exp (v, ht) (9)

where v, corresponds to the row of the vocabulary
matrix associated with word w?. The training objective
is then to maximize the sum of the log-probabilities of
each word in the sentence:

> log P(w![w=", hy) (10)
t

When training the encoder, in the manner of skip-
grams, the learning objective is to maximize the proba-
bility of decoding the previous and next step using the
encoding of the current step. This is simply the sum of
the objectives for the forward and backward decoders.

We now proceed to elaborate on the use of the en-
coded step vectors and decoder architecture in the task
of modeling recipe steps.

3.2. Modeling recipe steps

Our ability to model recipes is based on three main
assumptions: the first is that the vector encodings of
semantically-similar steps are spatially related, next is
that an encoded step can be decoded with reasonable
accuracy to the original step, and the last, and perhaps
most important, is that it is possible to learn a map-
ping from the encoding of a step to that of the next.
In the remainder of this section, we validate the first
two assumptions, leaving the third for more detailed
treatment in the following sections on experiments and
results.

The assumption of spatial organization is primarily
related to the sub-task of predicting the next recipe
step since, without this property, there would be no
easy way to learn the required mappings. We qualita-
tively evaluate the skip-thought vector representations
of recipe steps by encoding several test sentences and
then finding their nearest neighbors based on cosine
similarity. As shown in the results are intu-
itively correct, which serves to justify the assumption
that skip-thought vectors, like word embeddings, trans-
form semantic similarity into spatial similarity.

Successful recipe generation using skip-thoughts re-
quires not only the ability to predict the next step’s

Cut the chicken thighs into bite-sized pieces.
Cut chicken into 3/8-inch-square pieces.

Cut chicken and pineapple into bite-sized pieces.
Cut the chicken into cubes.

Heat the olive oil in a large saucepan.
Heat the olive oil in a large saucepan.
Heat the oil in a large saucepan.

Add the tomato, chillies, pine nuts, currants and
parsley .

Add the bay leaves, thyme and parsley.

Add the cloves, bay leaf, thyme and parsley.

Add the crawfish tails, cheese, green onions and parsley.

Figure 1. Examples of nearest neighbors to three test sen-
tences when encoded as skip-thoughts vectors.

encoding, but also to undo the vectorization to pro-
duce human-readable text. To assess the capability of
skip-thought vectors the latter regard, we perform a
simple evaluation in which the steps in the test set
(which is described in the next section) are encoded and
subsequently decoded. For comparison, we construct a
nearest-neighbor baseline that returns the text associ-
ated with the skip-thought vector nearest to the evalu-
ated one, as measured by cosine similarity. The accuracy
of the generated text with respect to the original is as-
sessed using BLEU [10], a modified n-gram precision
metric that is commonly used in similar machine trans-
lation tasks. In below, we present the average
BLEU score using uni-, bi-, and tri-grams for both text
production methods.

In a medium bowl, whisk together the flour,
baking powder, cinnamon, nutmeg, baking soda,
salt and ginger.

In a medium bowl, whisk together the flour, baking
powder, baking soda, salt, ginger and cinnamon.

Pour the wet ingredients into the dry and fold to
blend well.

Pour the wet ingredients into the dry and fold together
well.

Fill the cups of the muffin tin about halfway with
the batter.
Fill the muffin tin halfway with the batter.

Figure 2. Examples of original and decoded recipe steps.

Judging from the results in [Figure 2| and [Table 1|
the skip-thoughts encoder-decoder pair performs well
at its intended task. Subsequent sections, however, will
present evidence suggesting that even slight modifica-
tions to the setup yield significantly degraded results.

Model n-grams Avg. BLEU

baseline 1 671
.609
.576

781
.692
.610

decoder

W N == W

Table 1. BLEU scores for unigrams, bigrams, and trigrams
averaged of each encoded-decoded sentence pair in the test
set. The baseline is the text of the nearest encoded neighbor.

4. Experiments & Results

In this section, we present the dataset, the models
trained on it, tasks in which the models were used, and
the results by which we evaluate the effectiveness of
skip-thought vectors for modeling recipe steps.

4.1. Dataset

For this work, we have assembled a corpus of 148k
recipes and their 337k photos by scraping several recipe
websites. A minimal recipe consists of a title, set of
ingredients—possibly segmented into quantity, unit,
and name—and an ordered list of directions. On av-
erage, a recipe contains ten ingredients and twelve in-
structions. Furthermore, most (93k) include at least one
image, and almost all (128k) list the cooking time. To
maintain general applicability of models trained on this
dataset, the only pre-processing that has been done is
to replace unicode characters with ASCII equivalents
(e.g. 1 becomes 1/4).

Additionally, the data were randomly partitioned by
recipe into training, validation, and test subsets using
a 4:1:1 ratio. Care was taken to avoid contamination.

4.2. Models

In the following experiments, we use 600-dimensional
skip-thought vectors trained using a vocabulary contain-
ing the most frequent 30,000 words (out of 55k), each
of which which is embedded as a 300-dimensional word
vector learned separately for each encoder and decoder.

On top of the step encodings we use linear regression
models. Neural and regularized linear models were also
evaluated but found to perform similarly to the simpler,
linear model.

4.3. Experiment 1: Identify previous/next step

In the first experiment, a linear model is used to
predict the embedding of either the previous or next
step from the embedding of the current step. The re-
sulting vector is then compared using cosine similarity

to the actual next-step vector and several other vectors
sampled from either within the same recipe or from dif-
ferent recipes. The highest scoring vector is then taken
as the previous/next step. Evaluation is done using the
metrics of mean accuracy and mean rank of the target
step in the list of steps sorted by similarity (1 is best).

Task Acc. Mean rank
next, 4 same (baseline) 32.2 2.9
next, 4 same 56.6 1.8
prev, 4 same 57.5 1.9
next, 4 different 66.1 1.6
prev, 4 different 68.9 1.6
next, 9 same 42.2 2.8
prev, 9 same 44.3 2.9
next, 9 different 52.1 2.3
prev, 9 different 57.5 2.3
next, 100 different 0.26 15.3
prev, 100 different 0.06 30.5

Table 2. Accuracy and mean rank for identifying the ad-
jacent step among four or nine candidates from within the
same recipe or from different recipes. The baseline uses bag-
of-words features instead of skip-thought vectors.

Compared to the baseline predictor, the linear mod-
els fare reasonably well. Moreover, the data suggest
that performance begins to plateau when more candi-
date steps are added. These findings, taken together,
support the use of skip-thought vectors in modeling
recipe steps.

The results of this experiment also suggest that the
relationship between the encodings of adjacent steps is
largely linear. As the third experiment will demonstrate,
though, much of the latent semantic content is contained
within the non-linear kernel.

4.4. Experiment 2: Locate missing step

This next task involves identifying the position in a
recipe from which a step was omitted and is motivated
by the task of filling in omitted details in a recipe. We
compare two methods of prediction:

e context - select the location where the next-step
prediction of step ¢ — 1 and the previous-step pre-
diction of step ¢ + 1 are most similar

e held-out - using the models trained in the previous
experiment, select the location where the next-step
and previous-step predictions of the held-out step
best match (via cosine similarity) the actual previ-
ous and next step encodings

Again, we evaluate the models and prediction methods
using accuracy and mean rank.

Model Acc. Mean rank
baseline, 5 locs 20.7 3.0
context, 3 locs 54.9 1.6
context, 5 locs 374 2.3
context, 7 locs 29.5 3.0
held-out, 3 locs 71.7 1.4
held-out, 5 locs 62.9 1.6
held-out, 7 locs 56.7 2.0

Table 3. Accuracy and mean rank for identifying the location
of a missing step from among three, five, or seven candidate
locations using either the context steps or the next/previous-
step predictions of held-out step, itself. The baseline uses a
random encoding.

While the models are less capable of positioning a
missing step than simply identifying an adjacent step,
they still show improvement over the baseline. We hy-
pothesize that the discrepancy between the context and
held-out variants of the task is due to systematic dis-
similarity between the predictions in the forward and
backward directions. This effect may also be observed
in the results of the previous experiment which is man-
ifested as previous-step prediction performance being
generally superior to the reverse. In both cases, however,
the exact cause remains to be determined.

4.5. Experiment 3: Generate next step

The third experiment involves generating the next
step by directly transforming the current step vec-
tor into the next using the previously-described linear
model and then decoding the result. This is a direct eval-
uation of the third assumption of skip-thoughts made
in the Approach section: that a mapping from current
to next step vector can be learned. Again, the metric
used here is BLEU.

n-grams Avg. BLEU
1 0.23
2 0.11
3 0.00

Table 4. BLEU scores for steps obtained by decoding next-
step encoding predicted by linear model.

From the results, as shown in it is clear that,
although a prediction made by the linear model is near
the target skip-thought vector, this is not enough to
produce the correct decoded step. This suggests that

the function learned by the encoder is highly non-linear
and motivates yet further work investigating the use of
a neural next-step predictor.

4.6. Experiment 4: Decode next step

The fourth and final experiment seeks to determine
whether the skip-thoughts architecture, itself, can be
modified to support generation of the next step by train-
ing the decoder to output not the encoded step, but
rather the following step. Results are evaluated quali-
tatively since BLEU scores would be near-meaningless
given the divergence between the target and generated

steps. Example outputs are shown in below.

Form the beef into twelve 4-ounce patties, about
1/2 inch thick
Brush the grates of the grill with oil.

Reduce oven temperature to 300 degrees F (150
degrees C)
Store in an airtight container.

In a small bowl, mix milk with 2 tablespoons
warm water
Preheat oven to 350 degrees F (150 degrees C)

Stir and cook until zucchini is tender, about 5
minutes more.

Cook, stirring, until vegetables are tender, about 5
minutes.

Figure 3. Example output of decoder trained to decode the
next step. In bold is the target output; below is the step
generated by the decoder.

Somewhat surprisingly, the decoder is largely unable
to generate the target outputs despite that being half
of the objective when encoding the step. Moreover, the
tendency is for the decoder to yield the most common
steps like “Preheat the oven” or “Remove from heat
and let cool,” which parallels the failure mode of an
overfit n-gram model.

We also experimented briefly with appending a 100-
dimensional continuous bag-of-words vector over the
recipe ingredients to the decoder context vector in hopes
of improving performance. This offered no benefit to the
next-step decoder and even reduced the performance of
the same-step decoder, as measured by a BLEU score
drop from 0.75 to 0.71. Thus, it seems as though, while
skip-thoughts do an excellent job of encoding and de-
coding the current step, they struggle to do much else.

5. Conclusions and Future Work

In this work, we have demonstrated the utility of skip-
thought vector encodings for modeling recipe steps by
first verifying that they can be accurately decoded to
the encoded step, evaluating their use as features for

predicting adjacent recipe steps and the location of a
missing step, and finally exploring their ability to be
transformed and decoded into the next recipe step.

While the lack of positive results for the last set
of tasks suggests that there may be a fairly low limit
to the representational power of skip-thought vectors,
further work involving neural architectures for next-step
generation may show that this is not the case.

Alternatively, it may also be more feasible to try
other, more established methods taken from domains
such as machine translation [I1} 2] that rely on jointly
training an encoder-decoder pair end-to-end, sequence
to sequence.

As a final note, all code related to this project is
made publicly available at https://github.mit.edu/
nhynes/pomme.

6. Acknowledgements

We thank the 6.864 course staff for their attentive-
ness to both identifying and subsequently attempting
to remedy any issues that we encountered.

References

[1] E. Caballero. Skip-thought memory networks.
arXw preprint arXw:1511.06420, 2015.

[2] K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Ben-
gio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation.
arXw preprint arXiv:1406.1078, 2014.

[3] R. Kiros, Y. Zhu, R. Salakhutdinov, R. Zemel,
A. Torralba, R. Urtasun, and S. Fidler. Skip-
thought vectors. arXiv preprint arXiv:1506.06726,
2015.

[4] Q. Le and T. Mikolov. Distributed representa-
tions of sentences and documents. arXiv preprint
arXiv:1405.4053, 2014.

[5] M. Luong, Q. Le, I. Sutskever, O. Vinyals, and
L. Kaiser. Multi-task sequence to sequence learn-
ing. arXw preprint arXiw:1511.06114, 2015.

[6] H. Maeta, T. Sasada, and S. Mori. A framework
for procedural text understanding. In Proc. IWPT,
pages 50-60, 2015.

[7] H. Mei, M. Bansal, and M. Walter. Listen, at-
tend, and walk: Neural mapping of navigational

instructions to action sequences. arXiv preprint
arXiw:1506.04089, 2015.

[8] T. Mikolov, K. Chen, and J. Dean.
(2013).

word2vec

[9] T. Mikolov, W. Yih, and G. Zweig. Linguistic reg-
ularities in continuous space word representations.

In Proc. HLT-NAACL, pages 746-751, 2013.

[10] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu.
Bleu: a method for automatic evaluation of ma-
chine translation. In Proceedings of the 40th An-
nual Meeting of the Association for Computational
Linguistics, pages 311-318, 2002.

[11] I. Sutskever, O. Vinyals, and Q. Le. Sequence to
sequence learning with neural networks. In Proc.
NIPS, pages 3104-3112, 2014.

https://github.mit.edu/nhynes/pomme
https://github.mit.edu/nhynes/pomme

