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Abstract

While automatic essay grading remains a topic of interest in NLP, methods which seek to evaluate argument
strength, instead of more formal dimensions, remain rare; furthermore, those described in the literature
primarily rely on feature-based classifiers, whose heuristic rules can lose predictive value when applied
across different essay sets. We propose a supervised, neural network-based approach, based on word2vec
and one of its extensions, doc2vec, to construct a classifier over trained essay and prompt embeddings; this
classifier provides a means for scoring essays on the basis of the quality of their argument in answering the
relevant prompt without a priori feature extraction or annotation. Our methods significantly outperform a
frequency-based baseline, achieving upwards of 75-80% accuracy on unseen student essays drawn from
two distinct prompt-response sets.1

I. Introduction

Many of the dominant trends in education re-
form today—standards-based educational eval-
uation (Common Core); individualized dig-
ital instruction (Khan Academy); and Mas-
sive Open Online Courses (edX), to name a
few—require some degree of automated per-
formance evaluation to be efficient or even fea-
sible at scale. While computerized technologies
to evaluate simple, factual responses to mul-
tiple choice, true-or-false, and computation-
based questions have gained traction—either
in the form of machine-gradable answer sheets
(Scantron) or computer-adaptive testing (a ma-
jority of the GRE)—the same cannot be said for
more open-ended questions which require a
free-form response. For this class of questions,
of which our domain of interest, prompted ar-
gumentative essays, is a subset, manual scoring
by humans is most often used instead. How-
ever, human grading of essays in particular suf-
fers from a number of structural pitfalls which

weigh against the enormous value of these as-
sessments in broad evaluation of educational
outcomes.

For one, human graders, unlike machines,
require wages; this represents a significant cost
burden on educational institutions, who may
need to hire several graders to achieve the level
of accuracy required for even low-stakes eval-
uations. As a consequence, the number of
open-ended questions that can reasonably be
included in an assessment drops off quickly
at scale. More of concern to those students
and teachers and administrators whose educa-
tional and vocational outcomes may depend
on the results of educational assessments, how-
ever, are the regrettably human traits of human
graders. These workers may score on the order
of hundreds of essays per day with little back-
ground in education or commensurate training.
To quote a newspaper article on the subject,

In a matter of minutes, a $10-an-
hour temp assigns a score to your
child’s test, a grade that helps deter-

1The code used to construct the models and perform the analysis for this paper is available on github
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mine how money is spent in Wash-
ington schools, which courses stu-
dents take and ... who is denied a
high-school diploma.2

Especially worrisome is the level of inconsis-
tency in assigned scores—between different
graders, between different grading sessions,
and even across a single grader’s work in a sin-
gle session – even when a well-defined rubric
is provided; the level of disagreement between
graders may reach as high as 40% in some
cases. Thus, a method to perform automat-
ically such essay scoring in a consistent and
accurate manner would be a boon for educa-
tion reformers.3

This lack motivates our investigation.
While automated techniques for evaluation of
text quality on lexical dimensions such as gram-
maticality and fluency have been frequently
explored in the literature, approaches which
probe instead more semantic dimensions of
essay quality remain scant. In particular, evalu-
ation of the argument strength of essays writ-
ten to answer open-ended prompts is seldom
explored. Moreover, the methods that are de-
scribed in the literature oftentimes rely on
heuristics which may be appropriate for some
essay sets but not others: as a concrete exam-
ple, function-based labeling of sentences on the
basis of presence of string-prefixes like "sug-
gest," "conflict," or "hypothes" may produce
meaningful results over essays by college un-
dergraduates [2, 1], but the same is certainly
not true for the essays by 8th or 10th graders
which compose our corpus.

In this paper, we develop a more general
approach which relies on the semantic content
of an essay, captured in a single embedding
for each essay by the doc2vec model, within
the context of the expected semantic content
for essays written by students in response to a
specific prompt, captured likewise in a single
embedding, to assign a score for the strength of
its argument over a discrete range. Significant
variations in model performance dependent
on the topology of our neural networks sug-

gest that our obtained results are not optimal;
instead, we seek merely to demonstrate the vi-
ability and fitness of our novel approach and
to motivate further work along these lines.

II. Corpus and Instrumentation

One possible reason for the relative dearth of
work on evaluation of essay argument strength
is the lack of a publicly accessible corpus with
explicit score annotations along this dimension.
That said, we found adequate analogues in the
scoring rubrics for two of the essay sets used in
the 2012 Hewlett Foundation Automated Essay
Scoring competition on Kaggle. Specifically,
we made use of Essay Sets #1 and #2. The
(concatenated) prompts for each follow.

More and more people use comput-
ers, but not everyone agrees that
this benefits society... Write a letter
to your local newspaper in which
you state your opinion on the ef-
fects computers have on people.
Persuade the readers to agree with
you.

Write a persuasive essay to a news-
paper reflecting your views on
censorship in libraries... Support
your position with convincing argu-
ments from your own experience,
observations, and/or reading.

Essay Set #1 contained 1785 essay responses
composed by 8th graders. The average length
of each essay was 350 words, and essays were
given a score from 1-6 by two separate graders;
"a well-developed response that takes a clear
and thoughtful position and provides persua-
sive support" merited a score of 6, while "an
undeveloped response that may take a position
but offers no more than very minimal support"
earned a score of 1.

Essay Set #2 contained 1800 essay responses
composed by 10th graders. The average length
of each essay was also 350 words, and essays

2Jolayne Houtz writing for the Seattle Times
3ibid.
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were scored across two domains: writing ap-
plications and language conventions. Only the
first is relevant to our investigation. Essays
were given a score for this domain from 1-6
by two separate graders; within this domain
were included the dimensions of "Ideas and
Content," "Organization," "Style," and "Voice."

It is important to note that in neither set
was the selected scoring domain dependent
on lexical measures; rather, in both cases, the
scores awarded were evaluations of the qual-
ity of the essay specifically on the basis of the
strength of its forwarded argument in answer-
ing the relevant prompt. In addition, for each
essay, two scores produced by two different hu-
man graders were provided; as we will discuss
later, we chose to target one of these scores, but
use both in order to validate the accuracy of
our predictions. This is consistent with the sce-
nario in which our machine grader functions
as a third set of "eyes" to evaluate the quality of
the scores assigned by the two human graders.

Table 1: Score Frequencies

Set 1 2 3 4 5 6

#1 0.01 0.02 0.11 0.52 0.28 0.30
#2 0.01 0.09 0.42 0.43 0.04 0.01

#1 ∪ #2 0.01 0.05 0.27 0.47 0.16 0.05

Within Essay Set #1, the two human graders
disagreed in their assigned scores 34.7% of the
time; in Essay Set #2, the two disagreed 21.7%
of the time. We must view our results in this
context: an absolute accuracy (that is, where
the score predicted is exactly the score given
by the rater whose scores we target during
training) above 65.3% on Essay Set #1 or above
78.3% on Essay Set #2 (or over the whole set,
above 71.9%) indicates that our machine grader
assigns scores more more consistently (with
respect to the first grader) than the second hu-
man grader does.

The ordering of essays within our dataset
was shuffled once to ensure consistency of re-
sults and to prevent time-sensitive overfitting
of the neural networks. Training and testing
were performed on (disjoint) random slices of

80% and 20% of the dataset respectively. We
used the Keras wrapper around the Tensor-
Flow platform for construction and training of
our neural networks and the gensim implemen-
tation of doc2vec to extract essay embeddings.

III. Methods

To evaluate the performance of our two pro-
posed methods, we first construct a baseline
grading system. We use the same Most Fre-
quent Baseline used elsewhere in the literature
[1]. We also considered implementing either
the Learning-based Ong et al. approach [2, 1]
or the Persing and Ng feature-rich approach
[1] as additional baselines; however, the ad-
vertised accuracy gain over the Most Frequent
Baseline was only 1.6% for the first and 5.0%
for the second [1]. Because our two developed
methods immediately yielded more significant
gains in accuracy and because implementation
of either approach as a baseline would require
a mapping between words identified in the
heuristics used to their appropriate equivalents
in our corpus [1], neither was an appropriate
candidate.

For all three methods, training and testing
were performed on (disjoint) random slices of
80% and 20% respectively of the entire set of
essays; that is, we made no partition between
essays from Essay Set #1 and Essay Set #2 in
training or testing.

1. Most Frequent Baseline

During training, the frequency distribution of
scores is computed over the training set. Dur-
ing testing, we assign a score for each essay
equal to the most frequently occurring score
per the computed distribution. Based on the
frequencies provided in Table 1, we expect ev-
ery essay to be assigned a score of 4 during
testing.

Essay2Vec

Our two proposed methods both make use of a
single embedding vector to capture the seman-

3



tic content of each essay; we compute these
essay embeddings prior to training. These em-
beddings are used as ordinary inputs to the
neural networks constructed in each approach
so as to prevent pollution of the semantic con-
tent captured in each essay embedding with
information related to the essay’s score. We
use the doc2vec model developed by Le and
Mikolov to learn such a vector representation
for each essay.

First, the text of each essay is split according
to its whitespace; then, we substitute a STOP
token as appropriate to demarcate the end of
each sentence. This list of appropriately post
processed words is the document of the essay.
A classifier is then trained on some number of
sampled skip-grams within each fixed-length
window, taking as inputs the embedding for
the document of the essay and a skip gram and
producing as outputs the softmax probability
that a given word wi is present in the window,
and thus, the document [3]. After a sufficient
number of these unsupervised iterations, the
embedding for an essay’s document becomes
a dense vector representation of the semantic
content contained therein [3]. Because this se-
mantic content is what interests us, we use this
embedding as a vector representation for the
essay itself.

We used the gensim implementation of
doc2vec with both hierarchical and negative
sampling with a window size of 20 words
and pruned words that occurred in the corpus
fewer than five times; the size of the resulting
vocabulary was 9904 words. We trained vector
representations over the complete contents of
Essay Sets #1-8 to ensure a broadly represen-
tational corpus. At the conclusion of this step,
we therefore have a relation essay2vec(essayi)
which maps each distinct essayi to a distinct
dense vector representation of some fixed di-
mension.

Prompt2Vec

To actually predict the score of an essay,
given its vector representation as provided by
essay2vec(), we will construct an additional

neural network. The inputs to this neural net-
work will be the fixed vector representation of
an essay and the embedding for its associated
prompt. The precise topology of the output
layer will differ between our two approaches,
but in ether case will provide the means to con-
struct a predicted score for the essay, given its
associated prompt. Thus, training will consist
of stepping over the essays in our training set;
for each, we will use the essay2vec() relation
to set the value of some number of inputs and
set the remaining inputs to the latest values of
the embedding of its associated prompt. If our
training example is essayi, which was written
in response to promptj, then the inputs to the
network will be given by essay2vec(essayi) and
prompt2vec(promptj). After forward propaga-
tion, we compare the predicted score to the
actual score awarded by the grader we target—
in practice, we always select the first grader—
and perform the appropriate back propaga-
tion through the network according to the
topology of the output layer so as to mini-
mize error. After back propagation, we up-
date the network’s weights and the prompt em-
bedding, prompt2vec(promptj). As discussed
above, however, we do not make any updates
to the embedding given by essay2vec(essayi)
because we treat it here as a simple input vec-
tor.

We experimented with a range of topolo-
gies for the intermediate (hidden) layers in
the network and methods of back propagation,
but this characterization of the input layer and
training procedure remained constant through-
out. Visualizations of both network topologies
are offered in the Appendix.

2. Categorical Prediction

In our first proposed method, the output layer
of the neural network is a simple softmax prob-
ability estimation for each of the six categories
of essay performance where each category rep-
resents one of the six possible discrete scores.
After forward propagation, we can predict the
score for an essay, given its associated prompt,
by simply determining the score associated
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with the largest probability estimate at the out-
put layer. To train the neural network, we set
the output target to the appropriate one-hot
vector given the real score assigned by the tar-
geted grader and perform the associated back
propagation.

3. Absolute Prediction

In our second proposed method, the out-
put layer of the neural network is a single
node. After forward propagation, we can pre-
dict the score for an essay given its associ-
ated prompt by determining which of the six
interval-defined "buckets" contains the final
output value of the network. These buckets are
given by splitting the interval [0, 1] six ways, in
ascending order, where the width of a score’s
bucket is equal to its weight in the frequency
distribution of scores in the training set. That
is, if the score 1 had frequency 0.2, score 2 had
0.2, score 3 had 0.2, score 4 had 0.2, and scores
5 and 6 both had frequency 0.1, then values in
the interval (−∞, 0.2) would be assigned scores
of 1, values in the interval [0.2, 0.4) would be
assigned scores of 2, and so on, with values in
the interval of [0.9, ∞) receiving a score of 6.

To train with this output layer, we would
set the target output value of the network to
be in the center of the real score’s associated
bucket; continuing the prior example, a real
score of 2 would translate to a target output
value of 0.3.

IV. Evaluation

Given that our goal was to construct an essay
scoring model which generates accurate and
consistent score predictions and that, as estab-
lished in the introduction, the scores awarded
by the first human grader may be neither en-
tirely consistent nor absolutely accurate, we
selected three primary metrics to evaluate the
performance of our models.

Absolute Accuracy the frequency with
which the predicted score exactly matched the
real score awarded by the first human grader

Acceptable Accuracy the frequency with

which the predicted score matched either the
real score awarded by the first human grader
or the real score awarded by the second human
grader

Diff>1 the frequency with which the pre-
dicted score differed by more than one full point
from the real score awarded by the first human
grader

V. Results

Table 2: Performance under maximal observed network
topology

Training Set Testing Set
Model AbA AcA D>1 AbA AcA D>1

BL 0.483 0.594 0.096 0.441 0.578 0.095
CatP 0.635 0.761 0.014 0.653 0.801 0.020
AbsP 0.605 0.740 0.025 0.641 0.778 0.023

In the table above, we record the performance
of each method under the maximal observed
network topology. With categorical prediction,
we achieved an absolute accuracy of 65.3% and
an acceptable accuracy of 80.1%—a gain of
slightly more than 20% across both metrics
from the baseline. The performance gains
achieved by the absolute prediction model
were a bit more modest but still represent a
significant improvement over the baseline, es-
pecially in comparison to the models presented
by Persing and Ng [1].

Curiously, for both models under maxi-
mal network topologies, the absolute and ac-
ceptable accuracies were higher on the testing
set than the training set. Moreover, this phe-
nomenon occurs frequently across different net-
work topologies, suggesting that something
more systemic than a particularly favorable lo-
cal maxima is to blame. We hypothesize that
this effect could be due to the use of Dropout
(with p = 0.5) at every hidden layer in the
network [4]; we reason that, because we apply
Dropout only during training, some neuronal
circuits necessary for good fits over the training
data are missing when we test on the training
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set after convergence. The neuronal circuits
preserved in spite of Dropout during training,
however, are sufficiently general to produce
accurate results on the testing data [4]. In spite
of the lower absolute and acceptable accuracy
on the training set, that the D>1 measure is
lower on the training set would tend to suggest
that the network is still fit better—speaking
broadly—on the training data.

A second curious result relates to the maxi-
mal topologies for each model: namely, they’re
quite different. The maximal topology for the
Categorical Prediction approach included 128-
node hidden layers immediately after both the
prompt embedding input nodes and the es-
say embedding nodes, which both fed into a
256-node hidden layer node, which fed into
the output layer. The maximal topology for
the Absolute Prediction approach, however, re-
quired only a single 128-node hidden layer, fed
by both embeddings, which fed into the single-
node output layer—additional complexity in
the network in the form of additional hidden
layers actually hurt performance. This could
perhaps be explained by the greater discrimina-
tion afforded by the absolute prediction scheme
relative to the comparatively rigid categorical
softmax output layer used in the Categorical
Prediction approach.

VI. Conclusion

Given the extent to which topological vari-
ations in the hidden layers of the net-
work between the input and output layers
can positively or negatively impact model
performance—sometimes, with little apparent
rhyme, reason, or explanatory principle—we
seriously doubt that we discovered the max-
imally performant topology for either model

over the course of our investigations. Presum-
ing that there is room for improvement in our
models, there exists the distinct possibility that
an embedding-based approach could surpass
71.9% absolute accuracy; recalling our discus-
sion of the corpus, this would mean that such
a machine grader awarded scores more consis-
tently than a second human grader. That said,
in our most-performant model, the consistency
in scores awarded by our machine grader is
only about 6% lower than in scores awarded
by the second human grader—whether that 6%
figure or something of a similar magnitude is
acceptable relative to resources saved by using
a machine instead is beyond the scope of this
investigation. At any rate, the substantial gains
in scoring accuracy—just north of 20% in the
highest performing model—over the baseline
with even a straightforward embedding-based
approach relative to the disappointingly poor
performance enabled by complex feature-rich
approaches merits further exploration.
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Appendix A

The following is the maximal discovered network topology for the Categorical Prediction method.

prompt_embedding = Sequential()
prompt_embedding.add(Embedding(config.prompt_count+1, config.prompt_embedding_size,

input_length = 1))
prompt_embedding.add(Flatten())
prompt_embedding.add(Dense(config.prompt_hidden_layer_size))
prompt_embedding.add(Activation(’sigmoid’))
prompt_embedding.add(Dropout(0.5))

d2v = Sequential()
d2v.add(Reshape((config.essay_embedding_size,),

input_shape=(config.essay_embedding_size,)))
d2v.add(Dense(config.essay_hidden_layer_size))
d2v.add(Activation(’sigmoid’))
d2v.add(Dropout(0.5))

out_score = Sequential()
out_score.add(Merge([prompt_embedding, d2v], mode=’concat’))
out_score.add(Dense(config.hidden_layer_size))
out_score.add(Activation(’sigmoid’))
out_score.add(Dropout(0.5))

out_score.add(Dense(config.hidden_layer_size))
out_score.add(Activation(’sigmoid’))
out_score.add(Dropout(0.5))

out_score.add(Dense((config.score_range[1] - config.score_range[0])+1))
out_score.add(Activation(’softmax’))
out_score.compile(loss=’categorical_crossentropy’, optimizer=config.optimizer)

with the configuration

essay_embedding_size = 150
prompt_embedding_size = 600
essay_hidden_layer_size = 128
prompt_hidden_layer_size = 128
hidden_layer_size = 256
targeted_prompts = [1, 2]
targeted_field = "rater_1_domain_1"
validation_fields = ["rater_1_domain_1", "rater_2_domain_1"]
score_range = (1, 6)
prompt_count = 8
p2v_training_iterations = 200
testing_slice_size = 0.2
batch_size = 8
optimizer = ’adam’
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Appendix B

The following is the maximal discovered network topology for the Absolute Prediction method

prompt_embedding = Sequential()
prompt_embedding.add(Embedding(config.prompt_count+1, config.prompt_embedding_size,

input_length = 1))
prompt_embedding.add(Flatten())

d2v = Sequential()
d2v.add(Reshape((config.essay_embedding_size,),

input_shape=(config.essay_embedding_size,)))

out_score = Sequential()
out_score.add(Merge([prompt_embedding, d2v], mode=’concat’))
out_score.add(Dense(config.hidden_layer_size))
out_score.add(Activation(’sigmoid’))
out_score.add(Dropout(0.5))
out_score.add(Dense(1))
out_score.compile(loss=’mse’, optimizer=config.optimizer)

with the configuration

essay_embedding_size = 150
prompt_embedding_size = 600
hidden_layer_size = 128
targeted_prompts = [1, 2]
targeted_field = "rater_1_domain_1"
validation_fields = ["rater_1_domain_1", "rater_2_domain_1"]
score_range = (1, 6)
prompt_count = 8
p2v_training_iterations = 200
testing_slice_size = 0.2
batch_size = 8
optimizer = ’adam’
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