
Extending Morphological Chains with Supervised Learning and
Cross-Language Features

Calvin Huang (calvinh@mit.edu), 6.867
Brian Shimanuki (bshimanuki@mit.edu), 6.867

Charlotte Chen (czchen@mit.edu), 6.806

Abstract

Building on an existing algorithm to perform
morphological analysis, based on using seman-
tic features and contrastive estimation to detect
morphological chains, we investigate the effects
of various types of extensions to this algorithm.
We extend the unsupervised model with the log-
likelihood of known word segmentations, produc-
ing a semi-supervised model. Finally, we also at-
tempt to use Turkish morphological parents and
an English-Turkish translation dictionary to help
detect and disambiguate English word segmenta-
tions and transformations.

1 Introduction

The division of words into morphemes–basic
units of meaning, such as root words, affixes,
et cetera—encodes information about how words
are constructed and derive their meaning, as well
as how languages evolve.

When performing morphological analysis,
there are a few different cases to consider: words
that share similar meaning but appear in different
syntactic contexts (“German”—“Germanic”),
new words generated from the combination of
two separate words (“bookcase”—“book”—
“case”), words with dissimilar meaning but
derived from one another “insufficient”—
“sufficient”). In the first and last case, words
are often related by the addition of prefixes,
suffixes, and other affixes. This allows us to form
morphological chains - which link a base word

to its derivative through a series of affixations.
Most work in the field looks at either or-

thographic information or semantic information.
Narasimhan et al. [2015] integrates these ap-
proaches by representing a word with a series
of derivations from the base form of the word,
thereby capturing both types of information in
each derivation. At each step, the similarity
across the derivation can be analyzed using both
character similarity measures and semantic simi-
larity measures.

2 Unsupervised Model

Our model builds on work by Narasimhan
et al. in constructing morphological chains to
model the morphological segmentation of words
in a language in an unsupervised manner. The
idea behind morphological chains is that complex
words are constructed by attaching morphemes
simpler words. Thus, complex words have words
from which they are directly derived, which we
call parent words. Likewise, the derived word
is a child word. A morphological chain is a se-
quence of words such that consecutive pairs form
a parent-child relationship. For example, the
word unsustainable can be constructed from sus-
tain, as demonstrated in the chain sustain→ sus-
tainable → unsustainable. Words without par-
ents are called base words. In our example, sus-
tain is a base word.

Since a parent word can have multiple chil-
dren (e.g., play → plays and play → played),
words can be part of multiple chains. Thus mul-



tiple chains can share segments. Narasimhan
et al. makes use of this shared information by
constructing a model which analyzes parent-child
pairs.

Because we have chains where different chains
can share segments, it is natural to consider the
graph formulation where each word is repre-
sented by a node and each parent-child transition
is represented by a directed edge. Then if we con-
sider only the most likely parent for a word,1 the
resulting graph forms a forest, and our objective
is to find the path to from a given node to the root
in an unsupervised manner without any explicit
information about any of the edges.

Note that by constructing morphological
chains rather than just finding segmentations,
more information is gained about the words
tested. Generating the chain, in addition to seg-
menting a word, also finds the base word and pre-
dicts the order in which the morphemes attach to
the base word.

2.1 Model

In the unsupervised version of our model, we
observe words in a wordlist with their word count
of occurrences. Additionally, we have access to
a large corpus of text from which we can obtain
semantic information. Our objective is to gen-
erate morphological segmentations, which we do
by generating morphological chains, as given by
Narasimhan et al.

A log-linear model is used to evaluate different
pairs. For this, a feature mapping φ : W ×Z →
Rd to compute a corresponding weight vector
θ ∈ Rd. W is the set of words being trained
on, and Z is the set of candidates for the par-
ents the words in W . For a word w ∈ W , Z
is constructed by splitting w at many points. To
capture orthographic changes in the parent word
as it undergoes the derivation from z ∈ Z to w
(eg., believe → believing), the type of transition

1Words are not restricted to having a single valid parent
(or segmentation). In cases where there are multiple parents
(segmentations), we care only that the algorithm selects one
of them.

is kept as part of the candidate. Thus the candi-
dates take the form (parent, type), where the type
is the type of transition.

Note that parent words usually undergo
changes only when attaching suffixes. Thus there
is one Prefix class, but there are a variety of suffix
classes. When acquiring a suffix, the parent word
can:

(1) Undergo no change (bike→ bikes)

(2) Repeat a character (star→ starring)

(3) Delete a character (believe→ believing)

(4) Modify a character (parry→ parried)

These correspond to the candidates (bike, Suf-
fix), (star, Repeat), (believe, Delete), and (parry,
Modify). Finally, there is a Stop type, which is
used to signify that the word is a base word.

2.2 Word Vectors

It has been shown that words can be mapped to
word vectors in a reasonably-sized dimensional
space such that semantically similar words align
in similar directions [Mikolov et al., 2013], thus
we can compute a cosine similarity as a distance
metric between words which captures semantic
similarity. Given vector representations of two
words, the cosine similarity is measured as the
ratio of the dot product between the word vectors
and the product of the norms of the word vectors.

In our work, we generate 200-dimensional
vectors for words using Word2Vec, which looks
at word alignment and co-occurrence patterns
across many documents. In generating our vec-
tors, we use text from Wikipedia, to generate the
English word vectors, along with the BOUN Web
Corpus (consisting of news articles) to generate
Turkish word vectors.

2.3 Features

The model uses a variety of features covering
orthographic and semantic aspects of the word-
candidate pairs. These features are computed for
pairs (w, z) ∈ W ×Z .

2



Affixes Prefixes and suffixes appear in many
words. For a given word with its potential
parent, the affix removed can be compared
against a precompiled list of potential af-
fixes. This allows the model to learn which
affixes are real and apply them to other cases
with the same potential affix.

Affix Correlation Similar to comparing affixes
across words, we can use the joint distri-
bution of words and their potential affixes.
There is a correlation between affixes that
can usually attach to the same stem, often
corresponding to the part of speech. For ex-
ample, the participles formed from the suf-
fixes -ing and -ed usually occur together. For
candidates with an affix that is correlated
with another affix, we can check if the par-
ent with the other affix also occurs in the ob-
served wordlist.

Semantic Similarity Morphologically related
words should have similar meanings. We
measure the cosine similarity between the
word and its candidate parent as a feature to
represent semantic similarity.

Transformations As discussed above, some
derivations involve a change to the parent
word. To allow for non-concatenative mor-
phology, we use binary features which cap-
ture the type of transformation. We use the
same types of transformations for features
as we do for generating candidates: repeti-
tions, deletions, and modifications. The set
of binary features are the cartesian product
of the type of transformation with the char-
acters transformed.

Wordlist Most of the time, we want the par-
ents to be valid words. To this effect, we
compare the candidate parent against the
wordlist, and add a feature for the log of the
word count. Additionally, we set a binary
feature corresponding to whether the word
was found at all in the wordlist.

Stop Features We have a number of miscella-
neous features targeted at finding the end

of chains. These include orthographic in-
formation like the length of the parent, uni-
grams and bigrams at the beginning and end
of the parent, and the highest cosine similar-
ity between the word and any of its candi-
date parents.

2.4 Unsupervised Learning

Recall that in our model, we want to find
weights θ for the feature vectors φ(w, z), where
w ∈ W and z ∈ Z . Define the probabilities
of a word-candidate pair (w, z) as P (w, z) ∝
eθ·φ(w,z). Then the probability of a candidate z
ocuring given w is

P (z|w) =
eθ·φ(w,z)∑

z′∈C(w) e
θ·φ(w,z′)

(1)

Let our set of observed words be D. We ap-
proach this by trying to maximize the likelihood
of observing the words in D from the space of all
constructible strings from the alphabet, Σ∗. We
maximize the log-likelihood over θ as given by

L(θ;D) = log
∏
w∗∈D

P (w∗)

= log
∏
w∗∈D

∑
z∈C(w∗)

P (w∗, z)

= log
∏
w∗∈D

∑
z∈C(w∗) e

θ·φ(w∗,z)∑
w∈Σ∗

∑
z∈C(w)eθ·φ(w,z)

(2)

We cannot compute L(θ;D) directly since we
cannot compute over all strings in Σ∗. Instead,
we approximate this distribution by considering
only strings which are similar to those encoun-
tered in D.

We use the method of Contrastive Estimation
[Smith and Eisner, 2005] and substitute the space
of all strings Σ∗ with neighbors of each word,
N(w). Toward this end, we transpose pairs of
consecutive letters of w near both ends of the
word. We also do both simultaneously. Together
these form our set of neighbors for w. The neigh-
bors form a proxy for Σ∗, and represent the set of

3



strings we want to reduce the probability of see-
ing in our model because they are not observed.
This has the benefit of providing contrast in the
structure of words while not requiring the model
to look at the entire Σ∗.

With this substitution, we can formulate the
contrastive log-likelihood as

LC(θ;D) = log
∏
w∗∈D

∑
z∈C(w∗) e

θ·φ(w∗,z)∑
w∈N(w∗)

∑
z∈C(w) e

θ·φ(w,z)

(3)
With a regularization term, this becomes

LC(θ;D) = log
∏
w∗∈D

∑
z∈C(w∗) e

θ·φ(w∗,z)∑
w∈N(w∗)

∑
z∈C(w) e

θ·φ(w,z)

− λ‖θ‖2

(4)

Simplifying, this becomes:

LC(θ;D) =
∑
w∗∈D

(
log

∑
z∈C(w∗)

eθ·φ(w∗,z)

− log
∑

w∈N(w∗)

∑
z∈C(w)

eθ·φ(w,z)

)
− λ‖θ‖2

(5)

This has the gradient given by

∂LC(θ;D)

∂θj

=
∑
w∗∈D

(∑
z∈C(w∗) φj(w

∗, z) · eθ·φ(w∗,z)∑
z∈C(w∗) e

θ·φ(w∗,z)

−
∑

w∈N(w∗)

∑
z∈C(w) φj(w, z) · eθ·φ(w,z)∑

w∈N(w∗)

∑
z∈C(w) e

θ·φ(w,z)

)
− 2λθj

(6)

We optimize LC(θ;D) with its gradient using
the LBFGS-B algorithm.

2.5 Prediction

The algorithm yields an optimal θ∗ of weights
of the features generated from D. Then given a
test word w, we can predict the probability of a
given parent candidate z by computingP (z|w) =
eθ
∗·φ(w,z) as in Equation 1. To predict the par-

ent of w, we pick the MLE candidate from parent
candidates generated for w, which we can gener-
ate in the same way as we did while training.

To generate a morphological chain for w, we
recursively predict the MLE parent for w, then
the MLE parent of that prediction, and so forth
until the Stop candidate is predicted. Together,
this sequence forms our chain. A morphological
segmentation can be constructed from the chain
by splitting w at every point corresponding to
where each of the edges in the chain splits its
child word.

3 Semi-supervised Learning with
Known Word Segmentations

In a semi-supervised learning model, we still
have access to a large wordlist of observed words
as well as the corpus for semantic information.
In addition, we have a small amount of pre-
segmented words (about 2% of the size of the
wordlist). We use these pre-segmented words to
generate probable morphological chains, which
we can then incorporate into the likelihood
model. Specifically, we want to maximize the
joint distribution of observing the words in the
wordlist along with observing the segmentations
of the words from the list of pre-segmented
words, with some weighting on each of them.

3.1 Generating Chains from Segmentations

Based on the correct segmentation of a word,
we construct a probable chain. In addition to the
split points of the segmentation, we have access
to tags for each segment which give the original
form of the segment. This information is used
to construct the type (Repeat, Modify, etc) of the
transformation.

4



Assuming no infixes, each parent must be
formed by removing segments at either the be-
ginning or the end of the word. In generating
morphological chains from segmentations, we as-
sume most segmentations are derived from sin-
gle affix transitions. Our method cannot generate
the correct chain for compound words where both
parts are derived from parent words, for example.

Given a segmentation for a word which is not
a base word, we have two candidates for the seg-
mentation of the parent word:

(1) The parent is the child without a prefix.

(2) The parent is the child without a suffix.

We use a heuristic to decide between them.
Our heuristic captures properties like the fre-
quency of the parent word in the wordlist, the co-
sine similarity between the parent and child, and
the length of the parent relative to the child. We
select the parent candidate with the higher score.

By recursing on the parent, we can generate
more word-parent pairs that we want our model
to generate.

3.2 Semi-supervised Model

Using the word-parent pairs generated from
the pre-segmented list, in addition to maximiz-
ing the log-likelihood of the known wordlist, we
can also maximize the log-likelihood of the cor-
rect segmentation of the training data.

If a given word can be expressed as a morpho-
logical chain, the likelihood of its correct seg-
mentation is equal to the product of the likeli-
hoods of each word-to-parent transition within
the morphological chain. Therefore, the like-
lihood of the segmentation of the training data
is the product of the likelihoods of each correct
word-to-parent transition for every morphologi-
cal chain in the training data.

Let MC(w) be the set of word-parent pairs
constructed from the morphological chains of the
pre-segmented list. We want to maximize the
likelihood of the document D in the following:

∏
w,c∈D

P (c|w) =
∏

w,c∈D

 ∏
w′,z′∈MC(w,c)

P (z′|w′)


(7)

where w is a word in D and c is its segmentation.
We can simplify this product by letting

TR(D) be all pairs of words and parents im-
plied in each of the morphological chains of all
words inD—then, the log-likelihood of our train-
ing data can be expressed as

LS(θ;D) = log
∏

w,z∈TR(D)

P (z|w)

=
∑

w,z∈TR(D)

(
θ · φ(w, z)

− log

 ∑
z′∈C(w)

eθ·φ(w,z′)

)
(8)

We can also express its gradient as such:

∇θLS =
∑
w,z∈D

(
φ(w, z)

−
∑

z′∈C(w) φ(w, z′)eθ·φ(w,z′)∑
z′∈C(w) e

θ·φ(w,z′)

)
(9)

Adding this to our original log-likelihood from
contrastive estimation along with an L2 regular-
ization term, we get our objective:

L(θ;D) = LCE(θ;D) + αLS(θ;D)− λ‖θ‖2

∇θL = ∇θLCE + α∇θLS − 2λθ

(10)

where α is a free parameter that specifies by how
much to weight the labeled training data like-
lihood against the contrastive estimation likeli-
hood. As before, with its gradient given above,
we minimize L(θ,D) with LBFGS-B.

5



4 Using Cross-Language Features and
Candidates

Due to the simple nature of our parent candi-
date generation routine, there are many cases in
which the potential parent is not actually gener-
ated; for example, the morphological parent of
“feet” is the singular “foot”; however, there is no
prefix or suffix that turns one into the other, and
therefore the parent for “feet” is not generated by
our system.

However, other languages may not have such
an irregular transformation for the same words,
for example in Turkish the corresponding trans-
lations for “feet” and “foot” are “ayaklar” and
“ayak”. A properly trained Turkish morpholog-
ical parent model will correctly detect “ayak” as
a parent of “ayaklar”, and can be used to sug-
gest morphological parents in English after trans-
lation.

Since there are multiple possible morpholog-
ical parents for a given word, and multiple pos-
sible translations in either direction, this leads to
many possible candidates for a given word, we
generate a set of possible parent candidates (from
translation):

C2(w) =
⋃

wt∈TET (w)

 ⋃
wtp∈MPT (wt)

TTE(wtp)


(11)

where TET returns the set of possible Turkish
translations for an English word; MPT returns
the set of possible parents for some Turkish word,
TTE returns the set of possible English transla-
tions for an English word, and this potentially
large set of candidates is pruned with heuristics
judging how similar the candidate is to the origi-
nal word. We then extend our original parent can-
didate with this parent candidate set.

Additionally, we extend our feature set with
features regarding the translation link between
the word and potential parent, to include infor-
mation such as whether or not each candidate
was generated by a Turkish translation (a strong
indicator for parent-ness) and how confident the

Turkish model was in selecting a parent.
Therefore, our model becomes:

P (w) =
∑

z∈C′(w)

P (w, z)

=

∑
z∈C′(w) e

θ·φ(w,z,T (w),T (z))∑
w′∈N(w)

∑
z∈C′(w′) e

θ·φ(w′,z′,T (w′),T (z′))

(12)

whereC ′(w) is the potential parents ofw updated
with potential irregular translations, and T (w) is
the set of Turkish translations of w.

To build the two-language model, we first
train the Turkish model with semi-supervised
data. Using this model and an English-
Turkish/Turkish-English dictionary, we derive an
extended set of possible English parent candi-
dates for English words, and additional features.
These are then used in conjunction with training
the English model on the unlabeled word lists,
and also with the labeled training data.

5 Experimental Validation

5.1 Data

We used the datasets provided by 2010 Mor-
pho Challenges. For English, this includes a
wordlist with word frequencies of approximately
878,000 words scraped from the Wortschatz col-
lection from the University of Leipzig, CLEF,
and the Europarl corpus as well as gold stan-
dard segmentation training and development sets
of approximately 1000 randomly selected words.
The MorphoChallenge 2010 gold standard seg-
mentation is based on the CELEX database. For
Turkish, the word list contains approximately
670,000 words, with gold standards from a mor-
phological parser developed at Boğaziçi Uni-
versity. The Turkish wordlist was obtained
from a significantly smaller corpus—at 1 mil-
lion words, compared to the English corpus of
18 million. For a word-word translation dictio-
nary, we used a English-Turkish dictionary (re-
trieved from http://www.fen.bilkent.
edu.tr/˜aykutlu/sozluk.txt).

6

http://www.fen.bilkent.edu.tr/~aykutlu/sozluk.txt
http://www.fen.bilkent.edu.tr/~aykutlu/sozluk.txt


103 104 105
0

0.2

0.4

0.6

0.8

1

Training Vocab Size

F-
1

Sc
or

e
English
Turkish

Figure 1. Performance of unsuper-
vised model after frequency threshold-
ing training data

The Turkish language contains characters like
ç and ğ which are not in the English alphabet.
In computing with them and in our results below,
we have preprocessed the Turkish texts to replace
characters not found in English with a capitalized
letter. (We convert all words to lowercase before-
hand, so there are no ambiguous symbols.)

5.2 Evaluation

Performance was measured by looking at the
segmentation points within each word (i.e. the
points within the word where it is split into sep-
arate morphemes) and evaluating the F1 mea-
sure, i.e. the harmonic mean of precision and
recall; precision is the fraction of the segmenta-
tion points that are present in the gold segmen-
tation; recall is the fraction of the gold segmen-
tation points that are correctly identified by our
estimator.

6 Results

We found that utilizing information from the
gold segmentations, we were able to substantially
increase our performance, from an accuracy of
75% to 81.7% with English, and from 54.3% to
69.7% with Turkish. This is a substantial but

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

α

F-
1

Sc
or

e

English
Turkish

Figure 2. Performance of the semi-
supervised model based on α.

expected increase; observing the unsupervised
model reveals that it performs many segmenta-
tions with nonexistent affixes, which are rectified
by providing input about known affixes.

It should be noted that as α increases, the like-
lihood of the labeled training data matters more
and more, and the score is positively influenced
up to a point—as α increases further, the labeled
data dominates the loss function, and the infor-
mation from the unstructured model ceases to be
used, causing a slow decline in the score.

We try using differently sized training sets by
varying frequency thresholds for the words. As
training sets often contain some amount of er-
ror and noise (the English wordlist contains an
html tag as a word), the frequency threshhold is
a good approximation of error; words with low
frequency are may be mispelling or words from
other languages. We find that for datasets rang-
ing from 2500 words to 48,000 words give simi-
lar quality results, with a sharp drop off in scores
afterwards.

We found that adding the additional Turkish
candidates and features regarding translation did
not help accuracy of training very much; this is
likely due to the incompleteness of the transla-
tion dictionary only being able to provide poten-
tial translations for very few words. Furthermore,

7



Language Method Precision Recall F1
Narasimhan et al. 0.807 0.722 0.762
Unsupervised (Baseline) 0.744 0.756 0.750

English Semi-supervised (α = 15) 0.892 0.777 0.831
Two language unsupervised 0.502 0.682 0.578
Two language semi-supervised 0.519 0.789 0.623
Narasimhan et al. 0.743 0.520 0.612

Turkish Unsupervised (Baseline) 0.627 0.478 0.543
Semi-supervised (α = 50) 0.763 0.642 0.697

Table 1. Accuracies of Various Models. For our model, we used the top 48000 English
words in the wordlist, and the MorphoChallenge 2010 Train/Development sets for training
and testing, respectively.

Language Correct Segmentations Incorrect Segmentations
Word Segmentation Word Predicted Correct

English suburbanite suburb/an/ite provokingly provok/ing/ly provoking/ly
buffeted buffet/ed invalidated in/validat/ed in/valid/at/ed
ewers’ ewer/s/’ dutifully dutiful/ly duti/ful/ly
yowling yowl/ing ignominiously ignominious/ly ignomni/ous/ly
kompozisyonudur kompozisyon/u/dur aklInIz aklI/nIz akl/In/Iz

Turkish ayet ayet genCliGinizi genC/liGi/ni/zi genC/liG/iniz/i
rUyalarInIz rUya/lar/InIz irdeleyin irdeley/in irdele/yin
borular boru/lar indirgenemez indirgenemez indirge/n/emez

Table 2. Examples of Correct and Incorrect Segmentations

8



due to the ambiguity of translation, it’s very hard
to tell whether or not something would make a
good parent of a word after translating the word
into Turkish, taking the parent in Turkish, and
translating it back. The additional candidates, for
the most part, reduced accuracy by increasing the
number of incorrect parent choices, as opposed to
their intended result of providing parents that our
candidate generation algorithms missed.

References

Tomas Mikolov, Kai Chen, Greg Corrado, and
Jeffrey Dean. Efficient estimation of word
representations in vector space. CoRR,
abs/1301.3781, 2013. URL http://
arxiv.org/abs/1301.3781.

Karthik Narasimhan, Regina Barzilay, and
Tommi S. Jaakkola. An unsupervised method
for uncovering morphological chains. CoRR,
abs/1503.02335, 2015. URL http://
arxiv.org/abs/1503.02335.

Noah A. Smith and Jason Eisner. Contrastive es-
timation: Training log-linear models on unla-
beled data. In Proceedings of the 43rd An-
nual Meeting on Association for Computa-
tional Linguistics, ACL ’05, pages 354–362,
Stroudsburg, PA, USA, 2005. Association for
Computational Linguistics. doi: 10.3115/
1219840.1219884. URL http://dx.doi.
org/10.3115/1219840.1219884.

9

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1503.02335
http://arxiv.org/abs/1503.02335
http://dx.doi.org/10.3115/1219840.1219884
http://dx.doi.org/10.3115/1219840.1219884

	Introduction
	Unsupervised Model
	Model
	Word Vectors
	Features
	Unsupervised Learning
	Prediction

	Semi-supervised Learning with Known Word Segmentations
	Generating Chains from Segmentations
	Semi-supervised Model

	Using Cross-Language Features and Candidates
	Experimental Validation
	Data
	Evaluation

	Results

