
Non-Markovian Control Policies for Text-based Games

Surya Bhupatiraju, Simanta Gautam

Abstract— Recent work by Narasimhan et. al. (2015) em-
ployed a deep reinforcement learning framework to learn
control policies for text-based games, where all interactions
within the game are through text. This previous framework
was Markovian in that the agents selected actions from only
the current textual description. However, games in general
do not always exhibit this Markov property because relevant
information from past descriptions could affect the current
action. Our work deals with the non-Markovian nature of these
games by preserving relevant information over many time steps
using experience replay memory and memory networks. We
compare the results of our architecture with the framework in
Narasimhan et. al. on custom games with quests that require
memory from previous game states. 1

I. INTRODUCTION

Text-based games involve a player interacting with ele-
ments of a virtual world only through text. A player is given
a quest as a textual description, and attempts to complete
this quest by navigating in the virtual world with natural
language commands to take actions. In particular, the player
must learn to perform the right actions on relevant objects
by understanding the textual descriptions provided during
the game. Since the player cannot observe the underlying
state directly, she must understand the text to choose relevant
actions.

In creating an autonomous agent for such games, we adopt
a reinforcement learning framework as done by Narasimhan
et. al (2015) [9]. Using reward signals from the game
environment , the agent learns to approximate action-value
function Q(s, a), which denotes the expected reward over
time by taking action a at state s, and performing optimally
thereafter. The agent can use the action-value function to
form a policy by considering the values of Q(s, a) across all
actions a at any given s.

In this work, we parameterize the action-value function us-
ing a deep recurrent neural network with a memory network
component. The network consists of three modules, the first
and third of which are are adapted from [9]. The first module
converts textual descriptions into vector representations using
Long Short-Term Memory (LSTM) networks [6]. The second
module chooses representations of states in previous time
steps that are relevant to the current state representation
using memory networks [10]. Finally, the third module scores
approximates Q(s, a) across all possible actions given the
current state representation computed by the first component
and the relevant memories selected by the second component.

The agent will learn a good approximation of action-value
function by backpropagating the game feedback through all

1For the complete code repository, please follow this link: https://
github.mit.edu/simanta/TBGames

three connected modules in the network. In particular, we
use Deep Q-learning with experience replay and priority
sampling to train the neural network [8].

To evaluate our model, we create a custom Multi-User
Dungeon (MUD) game that involves remembering descrip-
tions from previous timesteps to complete quests [2]. The
game environment is based on Evennia, an open-source
library for building online text-based games. It is a Python
framework that allows one to build new games by writing
a batch file that describes the environment with details of
the text-based game, including various objects and actions.
In addition, the game engine keeps track of an internal game
state, providing both textual descriptions of the current state,
as well as reward signals.

Since our work involves extending the LSTM-DQN model
used in [9] with an integrated memory component, we use
the results from that work as our baselines. In particular,
we compare our LSTM-Mem-DQN model with the previous
LSTM-DQN model on our custom game to show that our
model finds better control policies by extracting relevant
memories from previous time steps.

II. RELATED WORK

Learning control policies from textual environments is a
challenging problem and one that is gaining attention in
the NLP community. Games in particular present a rich
domain to conduct controlled language analysis; the various
states presented and the transitions between them are well
understood and can be controlled. Much of past work in this
area has involved inferring suitable control policies when
provided fully observable game states or given game-related
documents and precompiled traces of the game [4][3][1].
Work by Narasimhan et. al and Mnih et. al aimed to
jointly infer the state representation from textual or visual
information and learn control policies [9][8][7].

In addition to learning novel control policies, there have
also been a number of recent efforts to capture long-
term structure within sequences using recurrent models. The
notion of memory was investigated in number of ways.
Steinbuch and Piske [11] and Taylor [12] considered memory
that performed nearest-neighbor operations of stored input
vectors and then fit parametric models to the retrieved sets,
which is abstractly close to how we utilize memory. More
work on associative memory was explored in the 1990s,
and most recently, the Neural Turing Machine (NTM) by
Graves et. al, [5] shows considerable promise for deploying
memory to agents. The NTM uses a continuous memory
representation and allows for both content and address-based
access. Our paper uses the work done in the End-to-end

https://github.mit.edu/simanta/TBGames
https://github.mit.edu/simanta/TBGames


Memory Networks paper [10] because the model is simpler
than in the NTM and because we will only write memory
sequentially and will not require operations like sharpening.

Our work is an extension of the work by Narasimhan et.
al in that we study control policies for text-based games. As
aforementioned, we adopt the overall reinforcement learning
framework, including the deep Q-network and LSTMs used
for language understanding, but we augment the model with
memory networks to aid the agent in making more informed
decisions. Previously, memory networks have largely been
used in isolated question-answering language systems, but
we hope that it is extendable for general purpose language
processing. Throughout this paper, we demonstrate the over-
all model and argue for its efficacy.

III. BACKGROUND

A. Markovian framework

In the approach by Narasimhan et. al., the automatic player
is able to learn extensive control policies for completing
almost all quests in the various games. As a simple example,
the agent may be placed in one of several rooms and be
tasked with navigating to the kitchen and drinking the water
by emitting textual commands to the game environment, such
as ‘go east’ and ‘drink water’. In these games, the agent is
provided with the description of the current room and the
quest description at every time step, and a reward is given if
the quest is completed at this time step.

While it works well, the framework was limited in that
it was unable to consistently solve quests that required
knowledge of prior interactions. In other words, this previous
framework was Markovian because the agent only made de-
cisions based on the current description and disregarded prior
experiences. However, games in general are non-Markovian
in that players must often incorporate past experiences and
previous interactions with the game environment to move
forward. This is especially in extensive role-playing games or
puzzle games when prior knowledge needs to be incorporated
with the information being presented currently.

B. Memory Networks

When the agent is able to consider prior information, more
informed decisions can be made and more difficult quests can
be solved. To this end, we strive to improve on the Markovian
constraint of the framework by providing the agent access
to memories of previous interactions. We would like the
agent to learn to select relevant information from previous
timesteps given the current textual description. However,
integrating a memory component into the framework is
difficult because we would like to be able to backpropagate
the game feedback to the memory component so that an
agent can better learn to select relevant memories.

To resolve this issue, we adapt the single memory hop
architecture from Sukhbaatar et. al (2015) [10]. This allows
us to integrate the memory component into the existing
framework so that the game feedback can be backprogated
through the entire framework. In this way, the agent can learn
to select particular memories that can be combined with the

current state representation to improve controller. The overall
model is described in full detail in Section IV.

IV. MODEL

One of the main contributions of this work is the LSTM-
Mem-DQN model, which is presented in Figure 2. As is de-
scribed by Narasimhan et. al., the stream of words observed
in state s is propagated through a number of LSTMs, the
hidden states are then mean-pooled, and an overall sentence
embedding is produced as a vector representation vi. In the
previous model, this vi was the input to an action scorer,
which then decides what action to take at that particular state
to yield the highest reward. This entire model is trained by
a squared loss with regards to the reward received, and the
parameters in the LSTMs and in the action scorer are updated
to move towards some local minima.

The goal is that we want to append relevant information to
vi such that the action scorer is able to make a more informed
decision about which action to take. This extra information
can be produced in a number of ways, but a natural approach
is to incorporate previous memories. As such, one copy of
vi is copied to the next part of the model, while the other
copy is used to decide which memory to select.

First, vi is passed into a MemIn module that selects
up to 20 previous state representations x1, . . . , x20 from
experience replay where an xi may be padded with zeros
if a particular xi is not contained in the same episode. These
memories are converted to memory vectors mi of the same
dimension computed by embedding each xi in a continuous
space by propagating xi through a single-layer feedforward
neural network with one fully connected linear layer and a
ReLU nonlinearity. We compute that match between vi and
each memory mi by computing the dot product of vi and
mi followed by a softmax:

pi = Softmax(vTi mi)

where Softmax(zi) = ezi/
∑

j e
zj . In this way, we compute

the probability vector p over the inputs. Intuitively, this layer
encodes the input memory representation.

Next, p is propagated through the MemOut module where
we retrieve the same cached set of transitions x1, . . . , x20

and compute the response vector:

o =
∑
i

pici

Because the function from input to output is smooth and
differentiable, we can easily compute gradients and back-
propagate through it [10]. We can interpret o as a mixture of
the previous transitions where we weigh relevant memories
more and others less. This mixture is then concatenated with
vi and this new embedding is passed forward to the action
scorer, where an action can be selected.

However, due to time constraints, we were unable to
implement the entire memory network attachment, and in-
stead defer to a simpler, more naive memory augmentation
depicted in Figure 3.



The model described by this architecture performs a
similar notion of ‘splitting’ vi into two separate tracks.
In the memory track, vi is fed into a 2-layer feedforward
neural network, where the output layer has size 20. The
ith in the output layer represents the ith previous transition
stored in experience replay; when we compute an argmax
of the output, we are choosing which transition from the
experience replay we are sampling; this ith transition is
chosen by the subsequent layer, converted into a bag-of-
words representation and then appended to vi to by scored
in the same fashion by the action scorer. We note that this
also allows for non-Markovian control policies, but we find
that in practice, this approach does not work as well as we
thought it would.

V. EXPERIMENTAL SETUP

To test the new augmented model, we constructed a
custom version of the game world, as well as a number
of different experiments to benchmark the performance of
the original framework by Narasimhan et. al. on games that
required past knowledge to successfully complete, as well as
test our new models.

In designing the first experiment, we noted that a quest
description was given to the agent at every timestep in the
previous work. However, in a realistic setting, it may be
likely that the agent is given the quest description in only the
first state, and must remember that description as its playing
the game. Therefore, we our first experiment involves the
same Home World game used in Narasimhan et. al., except
that we do not give the quest description as a part of the state
representation in every timestep. Instead, we give the quest
description on the first state, and only the room descriptions
on states thereafter.

For our second experiment, we made changes to the
Home World game itself. In particular, we added a few new
objects to the game without changing the architecture of the
rooms. These changes are described in detail in the following
subsection, and the overall architecture of the custom world
is shown in Figure 1.

A. Custom Game Environment

We designed a different game than in Narasimhan et. al.
to require the agent to recall text descriptions from previous
states to find the optimal policy. In this new game, the agent
is randomly put in one of four rooms and given the text
description of that room as the initial state representation.
From there, the agent needs to go to the Living Room to
watch the TV, where it will be given the quest description.
The quests involves either drinking the soda, eating the apple,
napping on the couch, or sleeping on the sofa.

In this game, we incur a penalty using a reward signal of
−0.5 if the agent drinks the soda when the quest is to eat
the apple, and vice versa, or if the agent sleeps on the bed
when the quest is to nap on the couch, and vice versa. By
changing the existing reward function in this way, it is more
valuable for the agent to watch the TV to retrieve the exact

quest description, as opposed to arbitrarily trying actions on
different objects.

After watching the TV to retrieve the quest description,
the agent must also remember that quest description in the
choosing optimal actions in future states. Therefore, this
custom game is a good environment to determine whether the
memories selected by the agent at each timestep are actually
relevant to optimally solving the quest. Ideally, we would
like this particular memory to be recalled more frequently,
or weighed more heavily when considering what to do any
particular timestep.

Bedroom Kitchen

GardenLiving

Fig. 1. Our custom game environment.

VI. RESULTS

As aforementioned, we run a number of experiments using
the more naive model. While less robust than the full memory
network, this model provides insight into the difficult of
learning non-Markovian control policies and the care with
which these must implemented.



These two plots represent the average quest completion rate
and the average reward accumulated over test epochs as the
iterations increases of the first experiment run on Narasimhan
et. al’s model.

These two plots represent the same set of data where the
second experiment in our custom game world is run on
Narasimhan et. al’s model.

Finally, these two plots represent the same set of data where
the second experiment of only showing the quest once is run

on our naive memory framework. The two remaining plots
represent the same set of data where the first experiment is
run on our naive memory framework; because this data looks
very similar, we omit it for brevity.

VII. DISCUSSION

The graphs show a number of results and also demon-
strate the difficult in constructing proper memory-acquisition
routines. In the case of the first experiment run on the
framework by Narasimhan et. al, we see that the average
quest completion rate amortizes to about 0.25, because in
one-fourth of the possible quests and starting configurations,
the agent can solve the task in one step, i.e. doing the right
action in the same room. The rest of the time, the agent
will act randomly, which is the noise that we see and what
contributes to the fluctuations. Because the quest completion
rate is relatively low, we see that the average reward is
consequently quite low and hovers only slightly above 0.

The following two graphs also show similar, but slightly
improved performance. We see that the average quest com-
pletion rate is still approximately 0.25, while the average
reward accumulated is now slightly higher on average. We
see the same behavior happening in the last set of graphs,
where we run the second experiment of the custom game
environment using our naive memory model. Surprisingly,
we see very similar performance; the average quest comple-
tion seems to be slightly higher than one-fourth on average,
and the average reward accumulated seems only slightly
higher. In the plots where we run the custom world using
Narasimhan et al’s framework, we see similar but slightly
worse performance, which is a reasonable conclusion. The
game should do no better than our implementation because
it should identically as it did the in the experiment, because
the quest is only shown once and then forgotten.

Overall, we do not see the performance gains that we
expect to, and it is made clear by the various metrics
collected. Indeed, adding the memory components in the
designated fashion is not helpful to selecting reasonable
actions and may actually inhibit the learnability of the task.
Furthermore, there are inherent limitations with using a static
feedforward neural network to selecting relevant memory;
even if we backpropagate errors, the particular indices or
index that we select will be dynamic as we encounter more
states, and this is not something the neural network will
capture.

VIII. FUTURE STEPS

There is now considerable reason to believe that fully im-
plemented memory networks will yield much more favorable
results. They have the built-in notion of deciding what mem-
ories are important to store. For instance, if we continually do
invalid actions (such as trying to eat an apple when the agent
is in the bedroom), we do not want to store such transitions
and have those be considered. Ideally, we would want our
memory module to prioritize high-impact transitions, such
as the quest given when the agent watches the TV. This is
something that the memory network, especially with multiple



memory hops, can theoretically achieve; the naive approach
shows no such promise. This is ongoing work and work in
this direction is already being made, but was unfortunately
unable to come to fruition.

IX. CONCLUSION

In this work, we looked at extending the neural network
model in Narasimhan et. al. to incorporate memory from
previous states. The previous work parameterized the action-
value function using a deep recurrent neural network, which
was trained with game feedback. However, the game se-
quences were formulated as an MDP and constrained the
autonomous player to learn only Markovian control policies.
Our work involved integrating a memory component to the
previous framework that could be trained to select relevant
memories with game feedback, which allows the agent to
find non-Markovian control policies.

To this end, we designed two versions of the framework,
LSTM-Simple-DQN and LSTM-Mem-DQN, each with an
integrated memory component. The former framework was
the first approach which used a naive memory selection
module, while the latter framework uses a memory network
to allow the game feedback to backpropagate into the mem-
ory module. Due to the time constraints for this project,
the implementation of our LSTM-Mem-DQN model was
not complete. However, there is considerable ongoing work
in incorporating K-hop memory networks into the existing
module, and we believe there is considerable promise with
this approach; we’ve learned that selecting memories to aug-
ment control policies is a challenging and nuanced problem.

X. ACKNOWLEDGMENTS

Thank you to Karthik Narasimhan and Regina Barzilay
for guidance and assistance for this project.

REFERENCES

[1] SRK Branavan, D. Silver, and R. Barzilay. 2011a. Learning to win
by reading manuals in a monte-carlo framework. In Proceedings
of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1, pages 268277.
Association for Computational Linguistics.

[2] P. Curtis. 1992. Mudding: Social phenomena in text-based virtual
realities. High noon on the electronic frontier: Conceptual issues in
cyberspace, pages 347374.

[3] J. Eisenstein, J. Clarke, D. Goldwasser, D. Roth. 2009. Reading to
learn: Constructing features from semantic abstracts. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing,
pages 958967, Singapore, August. Association for Computational
Linguistics.

[4] P. Gorniak and D. Roy. 2005. Speaking with your sidekick: Un-
derstanding situated speech in computer role playing games. In R.
Michael Young and John E. Laird, editors, Proceedings of the First
Artificial Intelligence and Interactive Digital Entertainment Confer-
ence, June 1-5, 2005, Marina del Rey, California, USA, pages 57 62.
AAAI Press.

[5] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv
preprint: 1410.5401, 2014.

[6] S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory.
Neural computation, 9(8):17351780

[7] J. Koutnk, G. Cuccu, J. Schmidhuber, and F. Gomez. 2013. Evolving
large-scale neural networks for visionbased reinforcement learning. In
Proceedings of the 15th annual conference on Genetic and evolutionary
computation, pages 10611068. ACM.

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):529533, 02.

[9] K. Narasimhan, T. Kulkarni, and R. Barzilay. Language understand-
ing for text-based games using deep reinforcement learning. CoRR,
abs/1506.08941, 2015.

[10] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. End-to-End
Memory Networks. CoRR, abs/1503.08895, 2015.

[11] K. Steinbuch and U. Piske. Learning matrices and their applications.
IEEE Transactions on Electronic Computers, 12:846862, 1963.

[12] W. K. Taylor. Pattern recognition by means of automatic analogue
apparatus. Proceedings of The Institution of Electrical Engineers,
106:198209, 1959.



LSTM
LSTM

LSTM
LSTM

w1

w2

w3

wn

M
ean Pooling

vi

Mem-In
Modulevi o

Linear

ReLU

Linear
Linear

Q(s,a)

Q(s,o)Softm
ax

Mem-Out
Module

vi

Memory

x1:20

 ANN

m1:20

M
atrix M

ultiply

vi
vi Tm20

vi Tm2

vi Tm1

Mem-In Module

p

Memory

x1:20

Mem-Out Module

W
eighted Sump

o

vi

Memory

x1:20

 ANN

m1:20

M
atrix M

ultiply

vi
vi Tm20

vi Tm2

vi Tm1

Mem-In Module

p

Memory

x1:20

Mem-Out Module

W
eighted Sump

o

Fig. 2. LSTM-Mem-DQN Model

Fig. 3. LSTM-Simple-DQN Model


	Introduction
	Related Work
	Background
	Markovian framework
	Memory Networks

	Model
	Experimental Setup
	Custom Game Environment

	Results
	Discussion
	Future Steps
	Conclusion
	Acknowledgments
	References

