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Abstract

One of the most basic tasks in natural language processing are ques-
tion/answering tasks. Recent advancements in deep neural networks have
shown promise in extracting information over long sequences of data as
well as integrating a semantic knowledge base. In this work, I look at re-
cently introduced neural network models including the Memory Network
and Dynamic Memory Network. These models seek to apply a semantic
memory as well as an attention mechanism to answering questions about
articles. While they have seen success on smaller corpuses (such as the
Babi tasks), it remains to be seen whether they can be successful on larger
datasets. I evaluate the models on such datasets (Wiki QA, Google-CNN)
and observe a considerable improvement over a baseline GRU model. The
size of the dataset affects the result, with the best results achieved by the
Memory Network on the large Google-CNN dataset.

1 Introduction

Question answering tasks are some of the most general in natural language pro-
cessing. They are broad because many natural language processing tasks from
machine translation to recommendation systems can be stated as question an-
swering tasks. Additionally, QA algorithms provide potential for widespread ap-
plications : from winning game shows [1], to helping humans plan their evening,
to providing medical care in the developing world. Developing effective and gen-
eral QA approaches would greatly benefit field of natural language processing
as well as the people using its technology.

However, developing effective QA systems is difficult because of the massive
amounts of data and wide variety of questions that they must handle. Given a
question and an information source, it is key to know where (for example, which
sentences) to look for an answer. Furthermore, certain QA tasks may require
inference. For example, to answer the question posed in Fig. 1, the algorithm
must be able to find the relevant phrases and infer Sally’s motivation.



Sally liked going outside. She put on her
shoes. She went outside to walk. [..]
Missy the cat meowed to Sally. Sally
waved to Missy the cat. [..] Sally hears
her name. “Sally, Sally, come home,”
Sally’s mom calls out. Sally runs home to
her Mom. Sally liked going outside.

Why did Sally put on her shoes?

A. To wave to Missy the cat

B. To hear her name

C. Because she wanted to go outside
D. Tocome home

Figure 1: Example QA task from MC Test dataset. Taken from [3].

One relatively new approach to QA problems are deep neural networks.
These neural networks have recently seen wide success in vision and speech
recognition; however, it is still unclear whether they offer such dramatic im-
provements to natural language processing [2]. Advancements in deep neural
networks over the past year, such as adding memory and attention mechanisms,
could show significant improvements. However, these methods have been tested
primarily on toy datasets. This projects seeks to evaluate these methods on
more realistic corpora.

2 Prior Work

Many approaches have been proposed to solve QA tasks, among them, feature-
based methods and parsing-based. One of the earlier approaches presents a
pipeline approach where questions are classified into types, keywords are ex-
tracted, and a database is searched for possible answers, which are then ranked
[4]. An approach described in [5] uses a semantic parsing approach to align
natural language phrases with logical forms that can then be used to query a
knowledge base. The method is effective because of its ability to generate logi-
cal predicates when the question is unclear or a predicate is not in the lexicon.
Another approach works with the MC Test dataset and uses hidden variables
to model which sentences are important to answering a question [3].

Neural networks provide another approach to solving this problem. Ideally,
they have the major advantage of avoiding tedious feature engineering or requir-
ing alignment of sentences with logical forms. This means that one could train
on simple (text, question, answer ) tuples, which can, in theory, be generated
from raw text. Recurrent neural networks seem especially well-suited for this
problem because of their ability to use sequential data as input. More recent
models such as LSTM (Long Short Term Memory) units and GRU (Gated Re-
current Units) make it possible to train on longer sequences of data by avoiding
the problem of exploding gradients [8]. However, some question and answer
tasks require analyzing very large sequences of data and even these models have
difficulty [13].

Advancements made in the past year in deep neural networks provide more



promise. These networks combine the sequential encoding found in RNNs and
add memory and attention. Attention mechanisms are important because, given
a large amount of information and a question, finding the relevant information
is a challenge. While these have shown promise on smaller corpora, it remains
to be seen their advantages on larger datasets. The goal of this project is
to evaluate these neural network architectures and compare them against one
another. Specifically, I investigate the Memory Network described in [6] and
the Dynamic Memory Network from [7].

3 Neural Network Architectures

In this project, I consider three neural network architectures: a simple GRU
encoder (baseline), a Memory Network, and a Dynamic Memory Network.

Figure 2: Gated Recurrent Layer Architecture. Taken from [8].

WordVector WordVector

Figure 3: Simple GRU Encoder.

3.1 GRU Encoder

The baseline algorithm is simply a Gated Recurrent Unit (GRU) encoder, pic-
tured in Fig. 3. This is simply a recurrent neural network that reads in each
word of a sequence and, through a softmax layer, produces an output answer.
To form the sequence, a vector representing the question is concatenated with
a vector containing the article (or information from which an answer is gener-
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Figure 4: Memory Network Overview.

ated). While the inputs can be generated by Word2Vec, for these experiments
they were either one-hot vectors or word indices.

The base unit for the encoder (and also the subsequent Dynamic Memory
Network) is the Gated Recurrent Unit. The unit consists of two gates, a reset
gate and an update gate, which determine whether or not to update the unit’s
hidden state with an input or simply propagate the previous hidden state. A
detailed description of the Gated Recurrent Unit is out of the scope of this
report, but one is referred to [8] for more information. The GRU was chosen
over an LSTM because it is reportedly quicker to train while maintaining the
LSTM’s ability to deal with long sequences of information.

3.2 Memory Network

During the previous year, researchers at Facebook have developed the Memory
Network as an end-to-end neural network architecture that combines a memory
into which facts can be encoded as well as an attention mechanism that can
make inference over these facts [6]. The fact that it is end-to-end is important
because it means that the algorithm only requires (tezt, question, answer) tuples
instead of relying on fact annotations, which requires less effort to produce in a
dataset.

The Memory Network proceeds as follows: an input sequence of words W and
an input question @ are both transformed into embeddings through embedding
matrices A and B respectively. Input embeddings are transformed into memory
embeddings m (Numbered 1 in Fig. 4) and questions into state embeddings u
(Numbered 2 in Fig. 4). At this point a softmax layer is applied between the
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Figure 5: Dynamic Memory Network Overview. The DMN shown represents a
DMN that reads a document twice.

input and question embeddings (Numbered 3 in Fig. 4):
pi = Softmax (u”'m;) (1)

Intuitively, this softmax determines which memories are relevant to answering
the question. In addition to the memory embeddings m, the input stream is also
embed into an output embedding, C. The result of the softmax layer, Eq. 1,
is multiplied by this output embedding, mumbered 4 in the figure. This result
passes through a summation with the question state w, numbered 5. Finally,
this can either be passed to a softmax for a final answer or passed to another
memory network layer. That is, the layers are stacked and the result of one is
passed to another as an input state u. In the implementation, the layers are
stacked 2-3 times before an answer is output.

3.3 Dynamic Memory Network

The final model investigated is the Dynamic Memory Network as presented in
[7]. The dynamic memory network is somewhat similar to the Memory Network;
however, it relies more explicitly on GRU encodings and adds the potential of
“re-reading” sentences.

First, each sentence is encoded into a fact through a GRU-based RNN. This
RNN reads each word in the sentence and updates its hidden state. The final
output, a “fact” encoding, is passed to the next layer. This process is repeated
for the entire document to generate a set of fact encodings, which is shown as
1 in Fig. 5.



Next, given a set of facts from the entire document, it must be determined
which of them is relevant to answering the given question. For this, a gating
mechanism is deployed, numbered 3 in the figure. The functional form of this
gate is:
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where ¢! is the t*" fact encoding at the i*" reading, m! is the hidden state of the
Episodic Layer at reading ¢ (described below), and ¢ is the question encoding.
The magnitude of gate g - a scalar - determines whether or not fact encoding
¢! will be propagated forwards. This is done through a update equation in the
form of a modified GRU-RNN:

hi = giGRU (¢}, hi_,) + (1 —g;) hi_, (4)

Finally, the final state of this modified-GRU-RNN (that is, when variable ¢ is
equal to the total number of facts) is passed to another GRU-RNN representing
the FEpisodic Layer. This layer provides the ability for the Dynamic Memory
Network to read the document multiple times (where the current reading is
indexed by 4 in the notation above). This may be advantageous when the
ordering of facts matters but when the second fact in the text occurred before
the first fact in the text, i.e. John went to the store on Saturday. On the
Wednesday prior, John drove to California. Therefore, the example shown in
Fig. 5 is shown reading a document twice, producing two sets of facts (one fact
for each sentence), and choosing episodes for each of these. Finally, the result
of the FEpisodic Layer is fed through a decoder to produce an answer.

4 Datasets

One of the challenges with QA tasks is designing datasets that are nontrivial
and require inference to answer questions but are also large enough that the
neural network will learn well. For this project, I investigated the Babi Tasks, a
manually annotated dataset from Wikpedia, and a large Google-CNN dataset.

4.1 Babi Tasks

The Babi Tasks are a set of 20 tasks created by researchers at Facebook and
are described in [15]. The motivation is to create a set of tasks to test a gen-
eral question answering algorithm. The algorithm should be general in that it
should be able to perform well on all of them. The set contains a wide variety
of tasks. For example, understanding orientation: The hallway is east of the
bathroom. The bedroom is west of the bathroom. What is the bathroom east of ¢
or understanding counting objects: Mary mowved to the bathroom. John went to
the kitchen. Mary took the football there. How many object is Mary carrying?
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Mary journeyed to the office.
Whereis Mary?

John traveled to the hallway. Sandratravelled to the kitchen.
Mary journeyed to the Sandratravelled to the hallway.
bathroom. Mary went to the bathroom.
Sandra moved to the garden.
Sandra travelled to the office.
Daniel journeyed to the hallway.
Daniel journeyed to the office.

hallway John moved to the hallway. John

travelled to the bathroom.
John journeyed to the office.

Whereis Daniel?

hallway

Figure 6: Examples of Babi tasks used for this project.

For this project, I focused on Babi Task 1, which involves determining where
people went. I split the task into simple, medium, and full versions as pictured
in Fig. 6. The simple and medium were primarily for debugging - even the
simple GRU encoder can easily obtain 100% correct responses on the simple
version.

An advantage of the Babi set is that it tests the neural networks on attention
and inference. However, their corpora is limited in size (Babi Task 1 only
contains about 20 different words) and does not represent actual corpora that
one may see in the real world.

4.2 WikiQA

The second dataset that I used was one suggested by researchers at Carnegie
Mellon University involving Wikipedia articles and questions that can be an-
swered upon reading the articles [9]. One example is shown in 7. An advantage
of this dataset is that it represents a more realistic corpus size than the Babi
Tasks. However, a major disadvantage of the set is that it is very small. It con-
sists of approximately 200 articles and 5,000 questions concerning those articles.
As seen in the results, the neural networks have difficulty learning anything but
basic yes/no questions on this dataset.

4.3 Google - CNN

The third dataset that I considered was provided by researchers at Google and
described in [10]. This dataset consists of articles from CNN (another simi-
lar dataset from Daily Mail is also described) with machine-generated question
statements and answers. The question statements are generated through the
simple, but effective, observation that all CNN/Daily Mail articles have accom-
panying human-written summaries. Words can be replaced from these sum-



Kangaroo.
A kangaroo is a marsupial from the family
Macropodidae (macropods, meaning'large

foot’). Incommonuse the term is used to over its sale, a @entityl police official told
describe the largest species from this family, @entity9 on thursday . the owner of the door,
the Red Kangaroo, the Antilopine Kangaroo, 3 @entity10, filed a complaintwith a @entityl
and the Eastern and Western Grey Kangaroo of courtstatingthat , without realizingits value,
the Macropusgenus. The family alsoincludes he sold the door for just$ 175 @entityl6 the
many smaller species which include the irondoor will remaininthe possessionofthe
wallabies, tree-kangaroos, wallarcos, @entity20 police in southern @entityl untila
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@entityl0's @placeholderhome was
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Figure 7: Example of article, ques- Figure 8: Example of Google-CNN
tion, and answer tuple from Wik- article, question statement, and an-
iQA dataset. swer tuple.

maries to create question statements where an algorithm attempts to predict
the word that was removed. The advantage with creating training examples
from a source like CNN is that a huge number of examples can be produced
(the full dataset is approximately one million articles).

5 Implementation

The three above-described networks were implemented and tested on the datasets,
when possible. All of the networks relied on the Theano neural network library
[11]. The simple GRU encoder and Memory Network were implemented in
Lasagne, an easy-to-use neural network library that runs on top of Theano [12].
Furthermore, the Memory Network implementation was greatly aided by an im-
plementation that the paper’s authors provide on Github, which only needed
slight modifications for this work. The Dymanic Memory Network’s gating fea-
ture was difficult to implement using Lasagne and, therefore, pure Theano was
used to construct this network.

Stochastic gradient descent was used to learn the models with a learning
rate of 0.01. The objective was the negative log-likelihood of the training data.
Gradient clippings were used on the models. Training was done using batches
to improve convergence rates, with batch sizes of 30 - 100 tested. All tests were
done either on my local desktop machine with a 3.4 GHz Intel Core i7 CPU
and 8 GB of RAM or my laptop with a 2.7 GHz Intel Core i7 CPU and 12 GB
of RAM. A GPU was not used for these experiments but would definitely be
an improvement for future work as the large datasets (Google-CNN) take a full
day for processing 5-6 epochs.



Dataset GRU Encoder | MemNet | DynamMemNet

Babi Task 1 (Simple) 100% 100% 100%

Babi Task 1(Medium) 100% 100% 100%

Babi Task 1(Full) 18% 100% 100%
Wiki QA (Yes/No) - 76% -
Wiki QA (Full) - 14% -
Google-CNN, 3,000 Examples - 51.2% -
Google-CNN, 30,000 Examples - 73.5% -

Table 1: Accuracy of neural networks on various datasets.

6 Results

Results for the experiments are shown in Table. 1. All algorithms perform well
on Babi Task 1, the simple and medium versions (where examples of the Simple,
Medium, and Full Babi task are provided in Fig. 6). The Memory Network and
Dynamic Memory network are both able to achieve 100% on the full Babi Task
1 as well. Regarding tests on larger datasets, the Memory Network was the
only network to achieve convergence. This is most likely due to the consider-
ably longer sequences of the WikiQA dataset and Google-CNN dataset that the
GRUs of the GRU encoder and Dynamic Memory Network must encode.

Concerning the Memory Network’s performance, one can see the effect of
increased dataset size. The Wikipedia QA dataset does relatively well when only
Yes/No answers are used for testing (an approach suggested in [13]). However,
when all possible answers are used, the result is merely 14% accuracy. The
Google-CNN dataset performs much better - accuracy is improved by more
than 20% moving from 3,000 training examples to 30,000.

Note that the training and test examples for Google-CNN that generated the
above results were simpler than full examples in that the articles only contained
sentences that contained the desired answer. This was done because of memory
limitations of my computer and rendered the task slightly simpler though still
non-trivial because of the articles’ complexity. An improved implementation
could get around this by only loading batches of articles into memory at one
time.

7 Conclusion & Future Steps

The proposed Memory Network and Dynamic Memory Network neural archi-
tectures definitely show an advantage over the baseline model. As the results
show on the Babi Dataset, these models are able to deal with QA tasks well
over relatively long streams of characters. The Dynamic Memory Network and
Memory Network are able to correctly answer all the statements of Babi Task
1.

More difficulty was experienced getting results on the larger datasets. This
difficulty involved both processing the larger datasets on an ordinary CPU and



achieving neural network convergence on larger sequences: the Google-CNN
dataset contained articles of a few hundred sentences in length and sentences of
a few hundred words. This was problematic for the Dynamic Memory Network,
which needed to encode these sentences into facts. Training required setting
very small learning rates and extreme clipping of gradients, which caused it to
proceed very slowly.

Despite the difficulties of working with larger datasets, there are still clear
advantages to training the deep neural models on them - as the results of moving
from 3,000 to 30,000 CNN examples on the Memory Network show. These
results indicate that further study of these models on larger datasets is definitely
warranted, albeit with improved learning mechanisms (one possibility could be
using adaptive gradient methods) and improved hardware (such as using GPUs).
Another valuable comparison would be of neural and non-neural models on
similar datasets. This would provide greater insight on whether or under what
circumstances deep neural networks improve natural language tasks, as they
have improved other fields of machine learning.
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