RParse -- Extracting Structured Information
from Materials Science Literature

Ziqin Rong, Dec 7th, 2015

Abstract

In Materials Sciences Research Community, one big painful process for research scientists is to search through a
huge amount of literature to find a synthesis process for certain material system. It will be nice to have a database
where researchers can just query certain material and find a visualized synthesis workflow directly. The goal of this
project is to implement a machine learning system to digest Materials Science literature texts and extract structured
information from them. For each sentence, we first classify whether that sentence tells a action like

b
input -, output or it only provides extra information for previous actions. Then, for the sentence which contains

action i'r']lf)ct)hrnrﬁation, substrings or words are extracted to fill 3 different fields:

1. key action verb
2. method argument associated with action verbs
3. input/output arguments

For field 1 and field 2, we use heuristic rules built from 3 papers and achieve a F1 score of 0.769 (verbs) and 0.724
(method arguments) on 14 test papers. For field 3, we used maximum entropy model and achieved an F1 score of
0.481.

Problem Statement

In Materials Sciences Research Community, one big painful process for research scientists is to search through a
huge amount of literature to find a synthesis process for certain material system. It will be nice to have a database
where researchers can just query certain material and find a visualized synthesis workflow directly.

On the other hand, the language describing these synthesis processes are generally instructional language, which in

theory can be automatically digested by algorithms to generate action graphs. Leveraging the relative easiness for

handling imperative language, similar tasks have been done to extract ingredients and instructions out of cooking
; 1

recipes. —

However, it is not trivial to replicate what has been done in cooking recipes to Materials Science literature, mainly
because the speciality of research language as well as the existence of special symbols (chemical formulas, units,
etc.)

The goal of this project is to implement a machine learning system to digest instructional texts and extract structured
information from them. These texts are paragraphs from literatures describing the synthesis process of certain
material system. An example of such parsing can be seen in the following section.

Dataset

The training corpus comes from the papers on ceder group publications and some papers provided by Prof. Elsa
Olivetti. An example input paragraph will be like:

A typical synthesis of NaB3MnPO4COa3 is as follows: Separately, 0.02 mol of Mn(NO3)2-4H20 was dissolved in 50
mL of water to form a clear solution (A). A total of 0.02 mol of (NH4)2HPO4 and 20 g of Na2CO3 were dissolved
in 100 mL of water to form a clear solution (B). Solution A was then quickly added to solution B under fast
magnetic stirring. The obtained slurry was then transferred to a glass bottle sealed with a cap. The bottle was
heated in a 120 °C oil bath in an Ar flushed glovebox for 4-72 h, after which it was taken out of the oil bath and

file:///Users/Shaun/Documents/PhD_Course/6.806_NLP/project/Report/rparse_--_extracting_structured_information_from_materials_science_literature.md#fn:1
http://web.mit.edu/ceder/publications.html

slowly cooled down to room temperature. The slurry was centrifuged and washed with distilled water and
methanol several times to separate the solids. The solid samples were dried in a vacuum oven at 40 °C
overnight.

Parsing this paragraph manually, we are able to extract structured information from each sentence:

1. sent:
o action1:
= v: 'dissolved'
= jinput1: '0.02 mol of Mn(NO3)2-:4H20"
= output1: 'a clear solution (A)'
= method1: 'in 50 mL of water"
2. sen2:
o actiont:
= v: 'dissolved'
= input1: '0.02 mol of (NH4)2HPO4'
= input2: '20 g of Na2CO3'
= output1: 'a clear solution (B)'
= method1: 'in 100 mL of water
3. sen3:
o action1:
= v: 'added'
= input1: 'Solution A'
= outputi: 'implicit object’
= method1: 'under fast magnetic stirring'
= method2: 'quickly’
= method3: 'to solution B'
4. sen4:
o action1:
= v: 'transferred’
= input1: 'The obtained slurry'
= outputi: 'implicit object’
= method1: 'to a glass bottle sealed with a cap'
5. senb:
o action1:
= v: 'heated'
= input1: 'the bottle'
= outputi: 'implicit object’
= method1: 'in a 120 °C oil bath in an Ar flushed glovebox'
= method2: 'for 4-72 h, after which it was taken out of the oil bath and slowly cooled down to
room temperature.'
6. sen6:
o action1:
= v: 'centrifuged, washed'
= input1: 'the slurry’
= outputi: 'implicit object’
= method1: 'with distilled water and methanol several times'
7. senT:
o actiont:
= v: 'dried'

= input1: 'The solid samples'

= outputi: 'implicit object’

= method1: 'in a vacuum oven'
= method2: 'at 40 °C overnight'

If there are multiple actions in one sentence, such as the sentence: The mixture was then manually mixed with
polytetrafluoroethylene (PTFE) and rolled into thin film. Then the annotation will be something like

e send:

o action1:
= v: 'mixed’
= input1: 'The mixture'
= outputi: 'imiplicit object'
= method1: ‘'manually’
= method2: 'with polytetrafluoroethylene (PTFE)'

o action2:
= v: 'rolled’
= input1: 'imiplicit object'
= outputi: 'imiplicit object'
= method1: 'into thin film'

Two more things worth mentioning:

e For some sentences, they only provide extra information rather than a action step, then such sentence will be
tagged as extra information, the annotation will be:
e sen5:
o state: extra information
e For each sentence which is not tagged as extra information, there must exist at least one input and one output
argument for every action, if there is no such corresponding substrings in the original sentences, input and
output arguments will be annotated as implicit object

Similar to the above examples, we manually annotated 17 papers as our working dataset. All the data can be found at
data repo. For every paper, the original text is in the file *.raw.txt, its manual gold annotation is stored in
corresponding *.gold.yaml, the RParse algorithm parsed data is stored in *.RParse.yaml

Method and Results

Digest on a sentence basis

As demonstrated in the previous section, we digest the text on a sentence basis, for each sentence, we aim to extract
4 different domain information, i.e. key action verb, input argument, output argument, method argument, such each
sentence express a transition like

. verb
input —— output
method

Extracting Action Verbs and Method Arguments using heuristic rules

We use heuristic rules to extract action verbs and associated method arguments. These heuristic rules were
established when creating gold annotation for the first 3 papers. They are then evaluated over the extra 14 papers to
ensure their effectiveness. The results are shown below.

These heuristic rules are based on sentence tree parsing and dependency parsing. We first generally state the rules

https://github.mit.edu/rongzq08/RParser/tree/master/data
https://github.mit.edu/rongzq08/RParser/tree/master/data/train
https://github.mit.edu/rongzq08/RParser/tree/master/data/test

below and then show several examples to demonstrate them.
Rules for extracting action verbs

e Find the word with a part of speech tag VBN at the highest level of parse tree. This verb is the key action verbs.

e |f there are multiple verbs at the same level, then we check if these verbs have the same parent node. If they
belong to the same parent node, they belong to the same action group, if they have different parent nodes,
they belong to different action groups (example in previous section, action1 and action2). The verbs that appear
early in the sentence has a smaller action group sequence number.

Rules for extracting method arguments

e method arguments are the PP, RB or ADVP phrases that belong the same parent node of the key action verb
e if there is VBG which has a xcomp dependency relation to the action verb, the VP that VBG is in is also acting
as a method argument

Demonstration examples 1

Original Text: For Na3V2(PO4)2F3, the mixture was pelletized and heated to 750 °C under a flow of argon for 4 h,
and for Na3GaV(PO4)2F3 the mixture was pelletized and heated to 850 °C under a flow of argon for 8 h.

For the example above, according to the verb extraction rules, there are 4 VBNs at the same level. But there are two
parent nodes for these verbs, so there are two action verb groups, each of which have two verbs, and for each action
group, there are three method arguments (3 PPs) associated with it, because these PPs share the same parent node
with the action verbs. thus, RParse.py will parse the sentence into the following format:

e action1:
o v: 'pelletized, heated'
o input1: 'the mixture'
o output1: 'Na3V2(PO4)2F3'
o method1: 'to 750 °C'
o method2: 'under a flow of argon'
o method3: 'for 4 h'
e action2:
o v: 'pelletized, heated'
o input1: 'the mixture'
o outputi: 'Na3GaV(PO4)2F3'
o method1: 'to 850 °C'
o method2: 'under a flow of argon'
o method3: 'for 8 h'

Demonstration examples 2

DT
|
a

| |
curent of CD NN NN NN
|

|
10 UNIT

Original Text: Cells were assembled following earlier reports and cycled on an Arbin battery tester using a current of
10 mA/g at room temperature or 55 °C.

For the example above, there are two action groups according to the verb extraction rule. Besides all the PP acting as
method arguments, the VP phrase using a current of 10 mA/g at room temperature or 55 °C is also a method
argument following the 2nd rule in identifying method arguments, because of dependency relationship ((u'cycled',
u'VBN'), u'xcomp', (u'using', u'VBG')).

Results (Key Action Verbs & Method Arguments)

Implementing the above heuristic rules, we evaluate the effectiveness of parsing on key action verbs and method
arguments. Detailed steps below:

1.

Enter the root directory of RParse Repo (make sure you installed the dependencies and run python setup.py
develop , details about dependencies can be found in Appendix: Code Implementation)

cd misc

python RPrase_predict_folder.py -f ../data/verb_method_arg/train to read all *.raw.txt files and
generate corresponding *.RParse.yaml files. Under folder ../data/verb_method_arg/train are 3 papers
which we used to establish the heuristic rules

cd ../misc/evaluation_scripts

python evaluate_action_verbs.py -f ../data/verb_method_arg/train to compare *.RParse.yaml
files with gold annotation *.gold.yaml files, evaluate the recall, precision and F1 scores of key action verbs
python evaluate_method_arg.py -f ../data/verb_method_arg/train evaluate the recall, precision and
F1 scores of method arguments.

The results are:

recall for key action verbs is 0.870
precision for key action verbs is 0.952
F1 score for key action verbs is 0.909

recall for method arguments is 0.647

precision for method argument is 0.667
F1 score for key method argument is 0.657

Similar procedures can be done on the test papers dataset (14 papers used to test heuristic rules), from the root
directory of the repo

1.

cd misc

https://github.mit.edu/rongzq08/RParser

python RPrase_predict_folder.py -f ../data/verb_method_arg/test
cd ../misc/evaluation_scripts

python evaluate_action_verbs.py -f ../data/verb_method_arg/test
python evaluate_method_arg.py -f ../data/verb_method_arg/test

S S

The results are:

e recall for key action verbs is 0.783
e precision for key action verbs is 0.755
e F1 scorefor key action verbs is 0.769

¢ recall for method arguments is 0.669

e precision for method argument is 0.770
e F1 score for key method argument is 0.716

These results on test dataset show that the heuristic rules generalize quite well on identifying key action verbs and
associated method arguments.

Extracting input output arguments using Maximum Entropy Model

Here we detail our method in finding input and output arguments. We aim to build a machine learning pipeline. The
first classifier read original text from paper and extract input and output arguments together, the second classifier
classify these extracted phrases into input and output arguments respectively.

This pipeline system makes sense as the input arguments of one sentence can be output of the other sentence, thus
linguistically input and output arguments are symmetric. It is much easier to extract them together than extract input
output separately.

Due to the time constrain of this project, we only implement and report the first classifier here.

Heuristic Rules Baseline Test

Extracting input output arguments is not as easy as action verbs and method arguments. We here run a baseline test
using heuristic rules extracting input output arguments.

As all of the input and output arguments in gold annotations are Noun Phrases in the parsing tree, thus, for each
sentence, we extract all of the NPs from sentence parse tree, and identify them as the input and output arguments.
Compare this baseline algorithm with the gold annotations:

1. cd misc

2. python ioput_baseline_predict_folder.py -f ../data/input_output_arg/test
ioput_baseline_predict_folder.py is the script implementing this heuristic baseline rule across all .raw.txt files in
a folder.

3. cd ../misc/evaluation_scripts

4. python evaluate_ioput_baseline.py -f ../data/input_output_arg/test/

The results are:

e recall for input output argument is 1.0
e precision for input output argument is 0.0342
e F1 score for input output argument is 0.0661

The baseline test shows that heuristic rules can't achieve a satisfactory performance. The recall score of baseline test
is really high, this is because all of the input output arguments in gold annotations are NPs (as expected).

Unigram Maximum Entropy Model for classifying NP phrases

Thus, we construct a maximum entropy model to classify whether a NP phrase is input output argument or not.

This is supervised machine learning algorithm and we need to construct a training dataset.

Step 1: First step is to split all papers randomly to treat part of them as training data and part of them as testing data.
This is done by script misc/data_split_input_output_arg.py . The script splits the data and move 12 papers to
folder data/input_output_arg/train and 5 papers to folder data/input_output_arg/test.

Step 2, we construct the training dataset by running script construct_ioput_train.py. What this script does is to
read all of the NPs of sentence in the parse tree, and compare against the gold annotation, if this NP is an input output
argument according to the gold annotation, then we tag it as input_output class, if not, we tag it as else class. The
results of this script is saved in file ioput_train_db.yaml

Step 3: script train_ioput_maxent_unigram.py constructs the features of each NP using the unigram maximum
entropy model and train a MaxEnt classifier, the classifier is saved in ioput_maxent_classifier.pickle file. How
to construct the unigram feature from a phrase can be referred at RParse._maxent_unigram_feats function in
RPasre.py module.

Step 4: RParse.parse_input_output module will read ioput_maxent_classifier.pickle file and use to classify the
new NPs as else or input_output tag.

We evaluate the performance of extracting input output arguments:

1. cd misc

2. RPrase_predict_folder.py -r ../data/input_output_arg/test

3. cd ../evaluation_scripts/

4. python evaluate_ioput_arg.py -f ../data/input_output_arg/test/
Results:

e recall for input output argument is 0.5

e precision for input output argument is 0.464

e F1 score for input output argument is 0.481
The result shows a huge improvement on the performance by constructing a maximum entropy model.
Similar procedures is done on the training dataset, results:

e recall for input output argument is 0.568

e precision for input output argument is 0.588
e F1 score for input output argument is 0.5777

Note: There are some subtleties in the code implementation. The classifiers are trained on the phrases before
Postprocess, so common words from PreProcess such as COMPOUND UNITS can be leveraged.

Better MaxEnt Model

Due to the time constraint and resource limitation, | can only personally annotate 14 papers, | assume with more data,
this Maximum Entropy model can work much better. It is also possible that we construct bi-gram or trigram features
from NP with more data.

Appendix: Code Implementation

Run python setup.py develop after downloading the repo from MIT repo or Personal repo

http://blog.datumbox.com/machine-learning-tutorial-the-max-entropy-text-classifier/
https://github.mit.edu/rongzq08/RParser
https://github.com/shaunrong/RParser

Architecture

original

Tt PreProcess.py

RParser.py PosPrcess.py

| * RParse.yaml|

sub
> table

The code architecture is shown in the figure above. The original text is firstly digested by a PreProcess.py module. The
existence of Preprocess module is to substitute some special words in the text which are hard to work on for the
RParse.py module. For example, all chemical formulas such as Na3MnPO4CO3 is substituted by word COMPOUND.
The PreProcess.py module will then the processed text and create a substitute table, in which all such
Na3MnP0O4C0O3 — COMPOUND substitution is recorded. The processed text is passed to RParse.py model, which
extracts domain specific substrings, these substrings still contain substituted words such as COMPOUND etc. They
are passed together with the sub table to PostProcess.py which will recover the original words from substituted ones.
These final results are written in the *. RParse.yaml files.

Codes

PreProcess.py

Several main problems solved by PreProcess.py module is

e encoding problems: some symbols are not recognizable by normal utf-8 encoding, we resolve this issue in
PreProcess module by unicode coding

e chemical formula: chemical formulas are hard to run with parsing algorithms, as one single chemical formula
will be parsed into multiple word tokens, such as the chemical formula blow. PreProcessor will turn these
words into a single word COMPOUND.

Na3V2(PO4)2F3 — [Na3V2,(,PO4,),2F3]

e Units: some units are hard to run with parsing algorithms, one single unit word gets parsed into multiple
tokens, such as the example below. PreProcessor will turn these words into a single word UNIT.

mAhlg — [mAh,/, g]

¢ Number Range: some number ranges are hard to run with parsing algorithms, one single unit word gets
parsed into multiple tokens, such as the example below. PreProcessor will turn these words into a single word
NUMBER.

4-72 - [4,-,72]

e etc. There are multiple other things PreProcessor.py takes care of. PreProcessor.py mainly uses heuristic rules
for detecting these special words and substitute them correspondingly.

https://github.mit.edu/rongzq08/RParser/blob/master/PreProcessor.py

RParse.py

RParse has two key functions:

e parse_v_method returns key action verb groups and associated method arguments using heuristic rules
e parse_input_output returns noun phrases tagged as input_output

PostProcess.py

e recover the original substrings using substitute table from the output of PreProcess.py.
e recover some special symbol and comma, periods position.
o To parse the original sentence correctly, PreProcessor.py will always put an extra space between word
and comma or period, PostProcessor.py recovers this change
o In parsing, '(* will be notified as special '-LRB-', and ') will be notified as special '-RRB-',
PostProcessor.py recovers this change
e etc.

Evaluation Scripts

Evaluation scripts are written to compare all of the *. RParse.yaml files with corresponding *.gold.yaml annotations to
evaluate recall, precision, F1 scores of each specific domains.

evaluate action_verbs.py

e Takes a file folder as input and compare all matched *.RParse.yaml and *.gold.yaml files under that file folder
to evaluate the effectiveness of extracting key actions verbs.
e example: python evaluate_action_verbs.py -f ../data/verb_method_arg/test

evaluate_method_arg.py.

e Similar to evaluate_action_verbs.py, but evaluate the effectiveness of extracting associated method arguments.
e example: python evaluate_method_arg.py -f ../data/verb_method_arg/train

e etc.

Dependencies

This code repo replies heavily on the standford NLP codes, which is interfaced within NLTK package. The way to
configure standford codes

1. download it from link

2. Create a new folder (stanford_parser_folder in my environ.yaml file). Place the extracted files into this jar folder:
stanford-parser-3.x.x-models.jar and stanford-parser.jar.

3. Open the stanford-parser-3.x.x-models.jar using command jar xf jar-file [archived-file(s)]

Browse inside the jar file; edu/stanford/nlp/models/lexparser. Again, extract the file called 'englishPCFG.ser.gz'.

5. Copy 'englishPCFG.ser.gz' into a different folder and copy its path to model_path in environ.yaml file.

&

1. New York Times Cooking_Recipe Database is one example, Los Angeles Times Cooking Recipe Database is
another«<.

https://github.mit.edu/rongzq08/RParser/blob/master/RParser.py
https://github.mit.edu/rongzq08/RParser/blob/master/PostProcessor.py
https://github.mit.edu/rongzq08/RParser/blob/master/evaluation_scripts/evaluate_action_verbs.py
https://github.mit.edu/rongzq08/RParser/blob/master/evaluation_scripts/evaluate_method_arg.py
http://nlp.stanford.edu/software/lex-parser.shtml#Download
http://cooking.nytimes.com/
http://recipes.latimes.com/
file:///Users/Shaun/Documents/PhD_Course/6.806_NLP/project/Report/rparse_--_extracting_structured_information_from_materials_science_literature.md#fnref:1

