
Recipe Scoring with a Recurrent Neural Network
Sequence-to-Sequence Model

Kien Wei Siah
kienwei@mit.edu

Paul D. Myers
pdmyers@mit.edu

Abstract

A system for automatically identifying
suitable substitutes for ingredients in a
given recipe is proposed and implemented.
The task is cast as a sequence-to-sequence
problem, and is solved using a neural ma-
chine translation system based upon an
encoder-decoder recurrent neural network
architecture. Results obtained from train-
ing, validating, and testing on a recipe
corpus crawled from the Internet reveal
that the model produces results superior to
those obtained by the baseline bigram lan-
guage model. 1

1 Introduction

Adapting a sequence of instructions is a common
task in many application domains. For instance,
in the field of chemistry, it is often necessary to
modify a series of chemical reactions in order to
obtain a variety of desired end products. If the
application space is large, the manual modifica-
tion process may become intractable; however, in
many cases, a large subset of the possible modifi-
cations are unsuitable. The purpose of this project
is to devise a scoring system that will automat-
ically find the space of acceptable modifications
to a sequence of instructions, thereby eliminating
the need to search the entire space exhaustively.
For illustrative purposes, the chosen application
domain will be recipe modification. Often, the
user of a particular recipe may find it necessary
to modify the ingredients present in the recipe for
a variety of reasons, such as taste requirements,
ingredient availability, and calorie content, among
others. In order to automate this procedure, a sys-
tem will be designed to score each possible modi-
fication of a given recipe based upon the criterion

1Implementation code, data sets, and results are available
at https://github.mit.edu/pdmyers/DNN-recipe.git.

that the modified recipe retain semantic similar-
ity to the original recipe. The system consists of
a sequence-to-sequence translation model imple-
mented using a recurrent neural network (RNN)
based upon a gated recurrent unit (GRU) architec-
ture. The model is trained by applying individ-
ual sentences to the RNN and requiring that the
network replicate these training sentences. A test
recipe is then given to the network, along with
a number of modified versions; the system then
gives a score to each modification of the original
recipe. Experiments reveal that in many cases, the
system correctly identifies suitable substitutions in
the original recipe.

2 Recurrent Neural Network
Sequence-to-Sequence Model

The task will be framed as a machine translation
problem in which the model, given an input se-
quence x, must produce an output y that is iden-
tical to the input sequence x; the system therefore
functions as an autoencoder. Recently, a neural
machine translation model has been proposed in
which two RNNs are placed in series with one an-
other (Cho, 2014). The first network, termed the
encoder, takes as input at each time step a word in
a given sequence and produces a vector represen-
tation of the sequence once the end of the sequence
has been reached. The second network, called the
decoder, takes as input the vector representation
of the sequence produced by the encoder and pro-
duces a word at each time step, the aggregation of
which form the output sequence; Fig. 1 displays a
schematic of the encoder-decoder architecture.

Neural networks offer, among other advantages,
great flexibility in design. One important de-
sign choice to be made for a RNN is the selec-
tion of a neuron architecture. The simplest RNN
consists of units which simply compute weighted
sums of the inputs. While such a model offers
simplicity of design, training the model proves

Figure 1: Schematic of the encoder-decoder archi-
tecture. The inset image shows the gated recurrent
unit design.

to be difficult, as back-propagation must be per-
formed through time, often resulting in gradients
that tend towards zero; this result is often referred
to as the “vanishing graidents problem.” To solve
this issue, a number of neuron architectures have
been proposed, including long short-term memory
(LSTM) (Hochreiter, 1997) and the gated recur-
rent unit (GRU) (Cho, 2014). Both LSTM and
the GRU attempt to solve the vanishing gradi-
ents problem by selectively allowing memory to
be passed to the next time step or forgotten. In
the present project, both the LSTM and GRU ar-
chitectures were implemented, and no appreciable
difference was found between the two; since the
GRU is known to require fewer parameters than
does LSTM, the GRU model was chosen for the fi-
nal implementation. The design of the GRU, taken
from (Cho, 2014), is shown in the inset in Fig. 1.
Mathematically, the GRU may be represented as a
set of functions called “gates,” which are described
by the following set of equations.

z = σ(U zxt +W zst−1) (1)

r = σ(U rxt +W rst−1) (2)

h = tanh(Uhxt +W h(st−1 · r)) (3)

st = (1− z) · h+ z · st−1 (4)

ot = σ(V st) (5)

Here, z is known as the update gate, r is known
as the reset gate, and o is known as the output gate.
t denotes the current time step, σ is the logistic

sigmoid function, s is the hidden state, and U , V ,
andW are weights of the model that are shared be-
tween time steps and are learned during training;
note that · denotes element-wise multiplication.
The weights may be shared between the encoder
and decoder in a so-called “tied” configuration, or
may be set independently. In order to reduce the
number of parameters to be learned by the model
to reduce the computation time, the tied configu-
ration only was implemented in this project.

The neural machine translation model described
above produces as output the probability of an out-
put sequence y given an input sequence x and pa-
rameters θ as follows:

P (y1, y2, ..., yn, < END > |x1, x2, ..., xm, θ)

=

n+1∏
i=1

P (yi|y1, ..., yi−1, x, θ)

(6)

Here, < END > is a special symbol that de-
notes the end of a sequence, n is the length of the
output sequence, and m is the length of the input
sequence; note that in the present model, n and
m should be equivalent if the model is function-
ing properly. The above probability may be in-
terpreted as a score for the given sequence, as it
denotes how likely the sequence is to occur given
the training set.

With the basic RNN model in place, a num-
ber of customizations particular to this applica-
tion were implemented in Python using the Ten-
sorFlow software package; many of these cus-
tomizations were inspired by work done by the
TensorFlow design team (Abadi, 2015). First, dur-
ing training, the model was given the correct de-
coded word from the previous time step regard-
less of whether the model actually produced this
word. For example, if the sentence to be decoded
was “add chicken to the bowl.” and the model de-
coded “chicken” into “salmon,” the model would
be given “chicken” to ensure that the remainder of
the sentence was decoded correctly. During test-
ing, the model was not supplied with the correct
output, and was therefore required to use the its
own generated results. The predictions made by
the decoder during testing are done in a greedy
fashion, where the decoded word is generated by
taking the argmax of the logistic output. Another
feature of the model design was that inputs to the
encoder were padded and applied to the encoder

in reverse, following the approach suggested by
(Sutskever, 2014). For instance, if the input sen-
tence is “add chicken to the bowl.” and the sen-
tence is set to be of length seven, the input would
be [PAD PAD “.” “bowl” “the” “to” “chicken”
“add”] and the correctly decoded sentence would
be [GO “add” “chicken” “to” “the” “bowl” “.”
EOS PAD PAD]; here, “GO” and “EOS” mark the
beginning and end of the sequence, respectively.
To improve the efficiency of the model, sentences
were permitted to be of certain fixed lengths. To
accomplish this task, a number of buckets repre-
senting fixed sentences lengths were chosen, and
sentences were placed into these buckets based
upon their lengths; PAD symbols were appended
to sentences that did not fit into any one bucket.
The buckets chosen were for sentences of lengths
5, 10, 20, and 40, where length is measured by the
number of tokens in the sentence. For further ef-
ficiency improvements, the sampled softmax and
output projection techniques were used to manage
the large vocabulary size (Jean, 2014). If the vo-
cabulary size is large, such as in the present case
where the vocabulary size was set to 3, 000, the
outputs of the model will require a large amount
of memory to store, thereby rendering the compu-
tation intractable for commercial computers. Sam-
pled sotmaxes and output projections may be used
to efficiently reduce the dimensionality of these
outputs for storage and manipulation, and allow
the original outputs to be recovered when neces-
sary.

In addition to the approach described above, a
number of other approaches were explored in the
hopes of achiveing improved performance. One
such approach involvedusing the encoder-decoder
architecture in a manner different from that de-
scribed above. Since the encoder produces a com-
pressed vector representaiton of each sentence in
a given corpus, one approach might be to use the
similarity between the vector reprepresentation of
the original sentence and the modified sentence.
Modified sentences that are semantically similar to
the original sentence should produce vector repre-
sentations that are similar to the the vector repre-
sentation of the original sentence. The cosine sim-
ilarity was used as the comparison metric. While
the approach seemed reasonable, it was found to
produce poor results, likely because the assump-
tion that good substitions should produce encoded
vectors similar to the original vector was faulty.

Since the RNN architecture is quite complex, it
is not clear how semantic relationships are en-
coded in the state vector; perhaps, some compo-
nents of the vector possess more information than
others do, thereby rendering the cosine similarity a
poor metric for scoring. An alternative procedure
was implemented in the Python package called
Keras (Chollet, 2015). This implementation was
largely a simplified precursor to the more sophis-
taced model described above, in that it did not
include a method to provide the model with cor-
rectly decoded words during training, contained
no bucketing mechanism, used the mean squared
error for evaluateion rather than sampled softmax,
did not learn word embeddings, but instead used
pre-trained word vectors directly, and contained
no feedback in the decoder, as shown in Fig. 1.
This model was found to produce inadequate re-
sults.

3 Recipe Data Collection and Processing

In order to train, validate, and test the model it
was first necessary to collect recipe data. To do
so, a web-crawling program was written using
the Scrapy (Scrapy Team, 2015) software package
and designed to extract recipe instructions and in-
gredients from the websites AllRecipes.com (All-
Recipes.com, 2015) and Food.com (Food.com,
2015). In order to ensure that no conflicting con-
texts would occur for a given ingredient due to dif-
fering uses in disparate recipe families, the domain
of recipe types was limited to pasta; in total, ap-
proximately 4, 000 recipes were collected, giving
19, 000 training sentences, 6, 500 validation sen-
tences, and 6, 500 test sentences. While many
recipes offered reasonably good training data, a
large number of recipes contained inconsisten-
cies, such as spelling errors, non-standard abbre-
viations, and obscure ingredient names; thus, it
was necessary to apply significant preprocessing
techniques to the data. Examples of errors in-
clude misspelling certain ingredient names, such
as “spaghetti,” which was sometimes incorrectly
spelled as “spagheti,” and abbreviating measure-
ment quantities, such as “Qt.” and “Qrt.” in place
of “Quart.” Although much of the preprocessing
was automated, the random nature of the incon-
sistencies in the data required that a significant
amount of the preprocessing effort needed to be
done manually. Preprocessing the text was shown
to improve the quality of the results noticeably.

4 Word Embeddings Data

As noted above, the employed model takes as in-
put a sequence of words that compose a sentence;
these words are presented to the model in the form
of word vectors, so it is therefore necessary to con-
sider the means by which the word vectors may be
generated. One option is to allow the model to
learn the word embeddings from the training data;
this approach can be advantageous, as it will pro-
duce word vectors that capture semantic relation-
ships specific to the domain of interest. The pri-
mary disadvantage of learning the word embed-
dings from the training data is that a large train-
ing corpus is required to obtain robust word vec-
tors. Another option is to use pre-trained word
vectors. Although these word vectors were gener-
ated from corpora outside of the domain of inter-
est, it is likely that they will still capture meaning-
ful semantic relationships for the present applica-
tion; this option avoids the need to generate a large
training corpus to learn the embeddings. A third
option is to use a combination of the preceding two
approaches, wherein pre-trained word vectors are
used to initialize the vectors to be learned and then
the model is allowed to refine these embeddings.
This approach is advantageous because it reduces
the effects of having a small training corpus on the
quality of the word embeddings, and allows the
model to learn embeddings for words not found
in the pre-trained word vectors. The Global Vec-
tors for Word Representation (GloVe) word vec-
tors trained on 2014 Wikipedia and Gigaword 5
articles with six billion tokens, a vocabulary size
of 400, 000, and 50 dimensions were used for ini-
tialization (Pennington, 2014).

5 Testing Procedure

As discussed briefly in the introduction, the objec-
tive of this study is to design a system capable of
identifying suitable substitutes for ingredients in a
recipe. The high-level procedure is as follows:

For a given recipe:
1. Choose an ingredient to replace
2. Choose a replacement criterion
3. Rank the possible substitutes
4. Generate a modified recipe using the best
substitute

Table 1: Description of the high-level recipe gen-
eration procedure.

Figure 2: Graphical depiction of the objective of
this study.

Fig. 2 presents a graphical display of the desired
task.

As discussed above, the model is trained to re-
produce the recipes in the training corpus. The
training procedure is as follows: Tokenize the
recipes into sentences; input each sentence to the
model; and repeat until the model reconstructs the
input sentences; Fig. 3 shows the training proce-
dure on a test sentence. Each variation on the
model was trained for at least 150, 000 epochs,
which ensured that the models sufficiently con-
vereged.

Figure 3: Example of the training procedure with
a sample sentence.

After training, the simulation procedure follows
that outlined in Table 1. In order to obtain statisti-
cally meaningful results, it was necessary to use a
testing corpus of adequate size, which further re-
quired that the testing procedure be automated to
the fullest extent possible. Thus, to accomplish
Step 1 in Table 1, a random ingredient was cho-
sen to be replaced in each recipe; in practice, the
user would select the desired ingredient. For Step
2, semantic similarity was chosen as the replace-
ment criterion. For example, if the ingredient to
be replaced is chicken, then a reasonable substi-
tution might be turkey. Less acceptable substitu-
tions might include beef or pork, which satisfy the
requirement that the replacement ingredient be a
meat, but fail to satisfy the requirement that the
replacement ingredient be poultry. Other selec-
tion criteria are possible, but would require a more

specialized training corpus than the one utilized in
this study. For instance, the user might wish to
perform a substitution based on the calorie content
of the ingredient. The system here utilized could
likely perform this task given appropriate training
data.

With the selection criterion selected, Step 3 may
be accomplished as described in Table 2; Fig. 4
provides a graphical depiction of this procedure.

For a given recipe and a given ingredient:
1. Replace all occurrences of the chosen ingre-
dient with a template word < WORD >
2. For each ingredient in the test corpus, replace
all occurrences of < WORD > with the that
ingredient
3. Calculate the average perplexity of the recipe
with the substituted ingredient in place

Table 2: Description of the testing procedure.

Figure 4: Graphical depiction of the testing proce-
dure.

Following the procedure outlined in Table 2, an
ingredient in a chosen recipe is chosen at random
and all occurrences of this ingredient in the recipe
are replaced with a template word, denoted by
< WORD >. All ingredients in the test corpus
across all recipes are then collected into a single
list, and the template word is iteratively replaced
by each word in this list. The model then cal-
culates the average perplexity of the recipe with
each substitute ingredient in place. After all ingre-
dients are scored, the ingredients are ranked from
lowest perplexity to highest perplexity, and the top
five ingredients are examined. If at least one of
the top five ingredients is found to be an accept-
able substitute for the original ingredient, as de-
termined by a human annotator, then the model is
said to have succeeded for that recipe; the model
is likewise said to fail if none of the top five in-
gredients is found to be suitable. The accuracy is
then computed by taking the ratio of the number of
successfully modified recipes to the total number
of recipes tested, as follows:

Accuracy =
Successfully Modified Recipes

Recipes
(7)

6 Results and Analysis

The evaluation procedure described above was ap-
plied to the proposed model. For comparison,
a bigram language model was implemented as a
baseline. The bigram language model computes
the perplexity of a given recipe by calculating
the product of the probabilities obtained from the
training corpus of all bigrams in the given recipe;
add-α smoothing was employed and a validation
set was used to choose the smoothing parame-
ter. The perplexity calculated by both the bigram
model is defined as follows:

Perplexity = 2−
1
N

∑N
i=1 logP (wi|wi−2,wi−1) (8)

Here, N is the number of bigrams in the cor-
pus, and w is a word. The perplexity was used
to rank the ingredients substituted into the given
recipe; the ingredients with the lowest perplexities
were considered to be the best substitutions, since
those ingredients produce bigrams that are more
likely to appear in similar contexts in the original
recipe. Eq. (6) was used in a similar fashion for
the RNN model, but with some variations. Since
the RNN model is designed to decode an input
sequence into an output sequence during testing,
evaluation of the model is based on the perplexity,
which is derived from Eq. (6), of the original sen-
tence in the recipe as compared with the perplex-
ity of the modified sentence; the model therefore
calculates the probability of decoding the modi-
fied sentence into the original sentence. Modifica-
tions with higher probabilities represent semanti-
cally similar substitutions as a result. For exam-
ple, if the original sentence is “Add chicken to the
bowl.”, the modification “Add beef to the bowl.”
is more likely to decode into the original sentence
than would “Add water to the bowl.”, since beef
and chicken are more similar than are water and
chicken.

As is the case with most statistical learning al-
gorithms, the RNN model used here possesses a
number of hyperparameters that may be adjusted
to improve the performance of the model. Due
to the long training and testing times required to
obtain meaningful results, only a subset of these

hyperparameters was investigated thoroughly; the
subset includes the number of layers in the net-
work, the number of which was chosen to be ei-
ther two or three, and whether or not the gener-
ated word embeddings were initialized with pre-
trained word vectors. Other hyperparameters such
as the number of hidden units, batch size, and
initial learning rate were held constant across all
training and testing sessions. The number of hid-
den units was set to 50 to match the dimensions
of the word vectors, the batch size was set to 64,
and the initial learning rate, which was modified
adaptively during training, was set to 0.5.

A total of 200 recipes from the test set were
evaluated using four variations on the proposed
model and the baseline. Running the testing pro-
cedure outlined above was found to require a great
deal of time; coupled with the need to manually
examine the results for each recipe in the test
set, it was not possible to score more than 200
recipes given the short time-frame, shortage of
man-power, and limited computing resources.

Table 3 presents the results of the testing proce-
dure. A number of trends may be surmised from
the table. First, it appears that using word vector
initializations dramatically improves the results,
since for both the two-layer and three-layer net-
works, the models with word vector initializations
performed markedly better than the models with-
out word vector initializations. This result is con-
sistent with expectation, since the relatively small
training set used in this study was perhaps insuf-
ficient for properly learning the word embeddings
for all of the ingredients. Second, it appears that,
at least for the models with word vector initializa-
tions, increasing the number of layers improves
the results. An interesting results obtained dur-
ing the evaluation procedure was that the model
with three layers and word vector initializations
was quite adept at recognizing suitable substitu-
tions for the various types of pasta noodles in the
recipes. For example, if a recipe used fusilli, a
spiral-shaped noodle, the model correctly identi-
fied linguine, a long, thick noodle, as a valid sub-
stitution. All other models, including the baseline,
were unable to perform this task reliably in the
majority of the cases. Moreover, the three-layer
model with word vector initializations was able
to identify suitable substitutes for onions much of
the time, such as shallots and chives, while the
other models were unable to do so. Both the three-

layer network with initializations and the baseline
model were generally capable of finding suitable
substitutes for common meats, such as chicken,
and some seafoods, such as shrimp, while the
other models were less able to do so.

To gain further insight into the capabilities of
the model, the three-layer network with initial-
izations, which was the optimal model, and the
baseline model were further examined on a num-
ber of hand-crafted toy recipes. One such recipe
is shown in Fig. 5. The ingredient to be re-
placed in this task was chicken, and the models
were given four other ingredients from which to
choose a substitute: Turkey, beef, broccoli, and
onions. Interestingly, the optimal network model
selected beef rather than turkey, which would pre-
sumably be the optimal substitution; the bigram
model chose broccoli. To gain insight into the
choice made by the model, the training corpus
was examined in detail. All sentences contain-
ing the ingredients chicken, turkey, and beef were
compared with the sentences found in the toy test
recipe. It was found that in the training corpus, the
of sentences in which chicken and beef occurred
generally contained similar context words, such as
saute and chop, both of which were found in the
toy recipe; the ingredient turkey did not appear in
similar contexts anywhere in the training corpus,
so it is therefore reasonable that the model chose
beef instead of turkey as the best substitution. This
simple exercise revealed the importance of using
a training set of good quality and adequate size.
Given additional time, a number of other mod-
els would have been trained with much larger and
much more carefully pre-processed training cor-
pora. Upon further retrospection, restricting the
recipe domain to pasta was perhaps unnecessary;
it is likely that using recipes from a wider vari-
ety of domains would have further improved the
results by introducing additional context informa-
tion for each ingredient.

7 Conclusion and Future Work

The findings of this study underscore the chal-
lenges and opportunities inherent in designing rec-
ommender systems, of which the proposed recipe
scoring system is an example. While the proposed
system achieved adequate results on the speci-
fied task, there is a great deal of margin for im-
provement. Besides increasing the size and qual-
ity of the training corpus, further improvements

Layers Initialization? Accuracy
2 No 20.30%
2 Yes 24.10%
3 No 19.35%
3 Yes 33.86%
Baseline – 19.47%

Table 3: Results of the testing procedure. The
Initialization? column refers to whether the word
embeddings were initialized with GloVe word vec-
tors.

Figure 5: An example of results generated by
the proposed RNN model and the baseline bigram
model.

might include more detailed tuning of the network
hyperparameters, particularly the number of lay-
ers, and deeper exploration into the word embed-
ding training procedure. Although 50-dimensional
word vectors were used in this study for compu-
tational reasons, vectors of higher dimensional-
ity could also have been used and may have fur-
ther improved the results. Moreover, examining
the use of word vectors trained on sources other
than Wikipedia and Gigaword, such as Google
News, might have yielded interesting results had
time allowed for this exploration; perhaps even
more interesting would have been the results ob-
tained from learning the word embeddings from
a large recipe corpus without initialization using
pre-trained vectors. Implicit in these considera-
tions is the importance of attention to the system
setup on the performance of the model. While
the encoder-decoder model discussed in this study
seems well suited to the proposed task, the details
of the implementation are what allow the model
to work well. The rapidly growing interest in the
application of neural network models to a variety
of problem domains will likely result in clever so-
lutions to these implementation considerations in

the near future, allowing for the design of high-
performance models for recipe scoring and be-
yond.

Acknowledgments

The authors would like to thank Professor Regina
Barzilay, Professor Tommi Jaakkola, and Mr.
Karthik Narasimhan for their valuable advice
throughout the semester.

References
K. Cho, B. van Merrienboer, C. Gulcehre, D. Bah-

danau, F. Bougares, H. Schwenk, and Y. Ben-
gio, “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,”
EMNLP 2014, 2014.

S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, Vol. 9, no. 8,
pp.1735-1780, 1997.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, R. Jozefowicz, Y. Jia, L. Kaiser, M. Kud-
lur, J. Levenberg, D.M., M Schuster, R. Monga, S.
Moore, D. Murray, C. Olah, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Vigas, O. Vinyals, P. Warden, M.
Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “Ten-
sorFlow: Large-scale machine learning on hetero-
geneous systems,” Software available from tensor-
flow.org, 2015.

I. Sutskever, O. Vinyals and Q.V. Le, “Sequence to se-
quence learning with neural networks,” NIPS 2014,
2014.

S.Jean, K. Cho, R. Memisevic, and Y. Bengio, “On us-
ing very large target vocabulary for neural machine
translation,” 2014.

F. Chollet, “Keras,” GitHub Repository,
https://github.com/fchollet/keras, 2015.

Scrapy Team, “Scrapy,” GitHub Repository,
https://github.com/scrapy/scrapy/tree/1.0, 2015.

Retrieved from http://allrecipes.com/search/results/pasta,
2015.

Retrieved from http://www.food.com/search/pasta,
2015.

J. Pennington, R. Socher, and C.D. Manning, “GloVe:
Global Vectors for Word Representation,” 2014.

