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Design of an optimal controller for a discrete-time system
subject to previewable demand

TOHRU KATAYAMA+§, TAKAHIRA OHKI}, TOSHIO INOUE(
and TOMOYUKI KATOft

This paper is concerned with a method of designing a type one servomechanism for a
discrete-time system subject to a time-varying demand and an unmeasurable
constant disturbance. It is assumed that the time-varying demand is previewable in
the sense that some finite future as well as present and past values of the demands are
available at each time. A controller with state feedback plus integral and preview
actions is derived by applying a linear quadratic integral (LQI) technique due to
Tomizuka and Rosenthal (1979). It is shown under the stabilizability and detecta-
bility conditions that the closed-loop system achieves a complete regulation in the
presence of small perturbations in system parameters, eliminating the effect of
disturbance. An example of power plant control is presented to show the flexibility
of the design method and the effectiveness of the preview action for improving the
transient responses of the closed-loop system. '

1. Intreduction

In many practical control systems designs, it is required that the outputs, or the
controlled variables, track without steady-state error the demand signals in the
presence of unmeasurable disturbances. For more than a decade there has been

~ much interest in tracking or servo-mechanism problems for linear time-invariant

multivariable systems (Davison 1972, Smith and Davison 1972, Young and Willems
1972, Bradshaw and Porter 1976, Furuta and Kamiya 1982). Furthermore, design
problems of robust servomechanisms have been extensively studied by the state-space
and frequency-domain approaches (Davison and Goldenberg 1975, Davison 1976,
Francis and Wonham 1976, Ferreira 1976). An overview of the state of knowledge
on the robust servomechanism problem is presented by Desoer and Wang (1980).

In most papers mentioned above, however, it is assumed that the desired signals as
well as disturbances are constants, or ramp functions, or more generally the outputs of
some free time-invariant linear systems. More recently, assuming that the disturb-
ances are previewable, Tomizuka and Rosenthal (1979) have developed a digital
controller with state feedback plus integral and preview actions for a discrete-time
system with a constant demand input; they have shown that the preview of future
disturbances is very effective for improving the transient responses of the closed-loop
system. A related finite preview control problem for a continuous-time system is also
considered by Tomizuka (1975).

This paper deals with a tracking problem for a discrete-time system in the presence
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of unmeasurable disturbances. It is assumed that the demand signal is rather

arbitrary but eventually converges to a constant vector, and that finite future values of
the demand signal are available at each instant of time. These assumptions may not =
be unrealistic in many practical control problems. For example, in power plant -~

control, the outputs must be kept at constant levels over a period of time, where the
constant levels, or the set points, may change from time to time according to the load
demand, for which a local future information is available. We wish to present a
method of designing an optimal type one servomechanism for a discrete-time system

by extending the linear quadratic integral (LQI) technique due to Tomizuka and
Rosenthal (1979).

This paper is organized as follows. In § 2, we formulate the tracking problem as - !

an LQI problem by defining an appropriate performance index and an augmented
state-space model that includes the available future demands as a part of the state
vector. The optimal controller with state feedback plus integral and preview actions
isderivedin § 3. Section 4 presents some preliminary lemmas. 1In § 5, we show that
the closed-loop system is asymptotically stable and hence a complete regulation
occurs under the conditions of stabilizability (or reachability) and detectability (or
observability). We also show that a complete regulation occurs in the presence of

small perturbations in system parameters. Section 6 is devoted to the stability = '

analysis of the overall system when an observer is incorporated into the state feedback
loop. A numerical example taken from a power plant control is provided in § 7 to
show the feasibility of the present method and the effectiveness of the preview action
for improving the transient responses of the plant.

2. Problem statement ‘
We consider a time-invariant linear discrete system described by

x(k + 1) = Ax(k) + Bu(k) + Ew(k) )
0 = Cx(k) ©

where x(k) is the n x 1 state vector, u(k) the r x 1 control vector, y(k) the p x 1 output
vector to be controlled and w(k) the q x 1 inaccessible constant disturbance. A, B C
and E are constant matrices of dimensions n x n, n x r, p X n and n x g, respect-
ively. It is assumed that rank B=r, rank C = p and rank E = q.

Let y,(k) be the p x 1 desired output, or the demand vector, for which we assume
that there exists a constant vector y, such that

klgg) Yd(k) = yq

This implies that the demand vector is an arbitrary time-varying function, except that
it reaches a steady state. We further assume that the demand is previewable in the
sense that at each time k, Ny future values y,(k + 1), ..., yo(k + Ny) as well as the
present and past values of the demand are available. The future values of the desired
output beyond time k + N, are approximated by y4(k + Np), namely

Yok +)=yalk + Np), i=N_+1, ... (3)
The basic design problem considered in this paper is to find a controller such that:

(1) In the steady state, the output y(k) tracks the demand vector ya(k) in the
presence of disturbance wi(k).
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(i) The closed-loop system is asymptotically stable and exibits acceptable transi-
ent responses.

In order to meet the above requirements, it is desired to introduce integrators to
eliminate the tracking error e(k) = y(k) — y4(k). In other words, we must design a type
one servomechanism for the system of (1) and (2) such that the asymptotic regulation
occurs, e(k) >0 as k — oo, while keeping the transient responses satisfactory in some
sense. To this end, we employ the LQI technique (Athans 1971, Smith and Davison
1972, Tomizuka and Rosenthal 1979).

Let the incremental state vector be Ax(k) = x(k) — x(k — 1) and let the incremental
control vector be Au(k)=u(k) —u(k —1). It is well known (Athans 1971) that the
integral action of the controller is introduced by including the incremental control in
the performance index. Therefore we wish to obtain the optimal controller u(k) such
that the performance index

J= 3 [ 0Q.) + AXOQ.AX) + AuT()RAU()] @

~-is minimized at each time k, where Q, and R are px pand r x r symmetric positive

definite matrices respectively, Q, is an n x n symmetric non-negative definite matrix, i
denotes the dummy time index and the superscript (-)T denotes the transpose. '

It should be noted that the term e(i)Q,e(i) represents the loss due to tracking
error, and that Ax™(i)Q,Ax(i) and Au"(i)RAu(i) represent the losses due to the
incremental state and control vectors respectively. Thus the physical interpretation
of J is to achieve the asymptotic regulation without excessive rate of change in the -
state and control vectors. The quadratic term for the rate of change in state vector,
which is not used in Tomizuka and Rosenthal (1979), will make the design technique
more flexible allowing us to directly regulate the transient responses of the state
variables.

3. Design of optimal controller
We derive an augmented state-space description that includes the future informa-

tion on the demand signal as well as the error e(i), the incremental state vector Ax(i)
and the incremental control vector Au(i). From (1), the incremental state is described
by

Ax(i + 1) = AAx(i) + BAu(i), i=k k+1,... (8)]

where we note that the incremental disturbance Aw(k) does not appear because the
disturbance is a step function. Also, we see from (2) and (5) that the tracking error

satisfies
e(i + 1) = e(i) + CAAX(i) + CBAu(i) — Ay (i +1), i=k k+1, ... (6)

~ where the incremental demand is defined by

Ayq(i) = y4()) — y4i — 1) ()
Combining (5) and (6) yields

e(i+1) B I, CAT[ e(i) CB A —1I, Avii o1 g
[Ax(i+1)]—[0 A][Ax(i)]+[3] u(l)+[ 0 ] Yli+1) ®

where i=k, k+1, ..., and I, denotes the p x p unit matrix.
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Since N, future demands y(i), i=k+1, ..., k+ N, are available at time k,
the relevant information on the incremental demand can be summarized as the
PN, x 1 vector

xg(k)=[Ayi(k +1),..., Ayj(k + N )]" ©)
It follows from the assumption of (3) that x(i) satisfies
Xgi + 1) =Agx4(), i=k k+1,... (10)
where
[0 I, 0]
A 0
.= - (11)
K 0 _fprw x pro)
Now define the (p + n+ pN;) x 1 augmented state vector
x(i)="[e"() Ax™() x3g®]" (12)
Putting (8) and (10) together yields
I, ¢4 : -1, 0 .. 0 CB
Xi+1)=10 4 0 0 0} x(@)+| B [Au(i), i=k k+1,... (13)
...... 0 Ad 0

On the other hand, in terms of the augmented state vector x(i), the performance index
J of (4) is expressed as

Q. 0 0
I=3 A0 0 0, 00+ AwT(RAG) (14)
a o 0 ol

Therefore, the optimal controller can be'derived by solving the optimal control =

problem that minimizes the performance index J of.(14) subject to the dynamic
constraint of (13).
For the sake of simplicity, we define

=[Pl r=["] F=[Y] g2[% °1 a2r B s
_[B]’ _[o]’ _[A], Q_[o Q,J’ -A

Theorem 1
The optimal incremental control Au°(k) is given by

Au(k) = — G,e(k) — G, Ax(k) — Zi GDAysk +1) (16)

where
G,=[R+ BTKB] 'B"KT (17 a)
G.=[R+B"KB] 'B'KF (17 b)
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't time f, Gy()= -G, (17 ¢)
3d as the Gy)=[R+ BT RB1"'B"R(—1), 1=2,.. N, (17 d)
~ and where the (p + n) x (p + n) matrix K is the non-negative definite solution of the
©) algebraic Riccati equation
K=A"KA— A"RB[R+B"RB]'B'"RA+ (18)
(10) - Furthermore, the (p + n) x p matrices X(l) are given by
X()=ATX(1-1), 1=2,..,N_; X(1)=—ATKT (19)
where A, is the closed-loop matrix defined by
(1) A.=A—B[R+B"RB1'B"RA , (20)
: Proof
- A proof is elementary, and is given in Appendix A for completeness. O
(lé)‘ 7 Theorem 2
The optimal controller u°(k) is given by
k No
k)=~ Gy _Zo e(i) — G x(k) — IZI Ga(Dyak +1) (1)
L. (13 where it is assumed that y(k) = yy(k) = 0, x(k)= 0 for k=0, —1, ...
nce index Proof
A proof is immediate from Theorem 1. O
It should be noted that the optimal controller u°(k) of (21) consists of three terms;
(14) the first term represents the integral action on the tracking error, the second term
represents the state feedback and the third term is the feedforward or preview action
based on the local future information on the demand vector.
1 control We observe that if Ny =0, then the preview action disappears from (21) so that
dynamic u°(k) becomes
k
w(k)=—G; ), el))— G.x(k) (22)
i=0
(15 Moreover, since G4(1) = — G, if N, = 1, then we have
k
utk)=—G; _ZO e(i) — G,x(k) — Go(1)yq(k + 1) (239
k
= -G _ZO LY@ — yali + )] — G, x(k) (23 b)
(16) This is a state feedback controller with integral and feedforward actions.
Let v(k) be the discrete integral of tracking error e(k), namely
v(k) = v(k — 1) + e(k) (24)
(17 @) or
z
(17 b) k) = p— e(k) (25)
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Thus it follows from (21) and (24) that the optimal controller is expressed as
No
u’(k) = — Go(k) — Gx(k) — I_ZI Ga(Dyak +1) (26)

Hence the resulting configuration of the overall system becomes as shown in
Fig. 1. Noting that e(k) = y(k) — y4(k), it follows from ( 1), (2) and (24) that

v(k + 1) = v(k) + CAx(k) + CBu(k) + CEw(k) — y,(k + 1) (27)
Combining (1) and (27) gives
[U(k ) ] =4 [ v(k)] + Bu(k) + Ew(k) — Iy (k + 1) (28)
x(k +1) x(k)
where
. [CE
E =[ E ] (29)
Substituting (26) into (28) yields
Eﬁi 3 ] = Z[:ig :, -8B E GaDyak + 1) — Tyy(k + 1) + Ew(k) (30)

where A4, is given by (20).

Therefore we observe that the closed-loop characteristic is determined by A, or
the state feedback and the integral action, so that the stability of the overall system is
~ independent of the preview action. It should be noted that the controller u°(k) is
- independent of the matrix E; thus the exact knowledge of the disturbance matrix is not
necessary for designing the optimal controller. Note that this is not the case if the
state vector is not directly accessible (see § 6).

w(k)
Preview action
NL
I g (2t 3
2=1

y (k) - e(k) s 1 u(k) + 1" | xtx) y(k)
LJ—{P—__ ﬁcl B ——cg—— (z21- A)”! c
+

Integral action

(7]
x

State feedback

Figure 1. Overall configuration of feedback system.

4. Preliminary lemmas

In order to prove the asymptotic stability of the closed-loop system we need some
preliminary lemmas for stabilizability (or reachability) and detectability (or
observability).
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Lemma la
The pair (4, B) is stabilizable if and only if (4, B) is stabilizable and the following
rank condition holds
0 C
rank[ =p +n (31)
B A-1I,

Proof

For the proofs of this and following lemmas, the PBH rank test (Kailath 1980) is
employed. Assume that (A, B) is stabilizable and (31) holds. For the stabilizability

of (4, B) it suffices to show that for any complex || =1

(32)

g o (1-A)I, C4 CB
rank [4—A1,,,: B] =rank :|=p+n

0 A—Ail, B

Since rank [A—AI,;EB] =n for any complex || =1, we see that (32) holds for

"”‘“"‘“’l # 1. For the case of 1 =1, it follows from (31) that

CA  CB I, Cqro C
rank[ ]:rank{[ ][ J}:p—i—n : (33)
A—I, B 0 I,ILB A—1,

Thus we have shown tha~t (3~2) holds for any complex |1]| = 1.
Now assume that (4, B) is stabilizable, so that (32) holds for any complex

. JAl=1. Since the matrix [A— Al ptnt B] has a maximal row rank for any complex
|4l 2 1, we see that rank [4 — 1I,: B] = n for any complex |A|= 1. Letting A=1 in

(32) and using (33), we have (31). O

A continuous-time version of Lemma 1a has been proved by Smith and Davison

-~ (1972) by manipulating the controllability matrix. It is also well known that the rank

condition of (31) implies that the system (C, A, B) has no transmission zeros at z = 1
(Davison 1976).

- Lemma 1b

The pair (4, B) is reachable if and only if (4, B) is reachable and the rank condition

~ " of (31) holds. '

~ Proof

For the reachability of (4, B), it suffices to show that (32) holds for any com-
plex 1. Assume that (A4, B) is reachable and (31) holds. It then follows that rank
[4—Al,: Bl =n for any complex A. Thus, for 1# 1, we can easily see that (32)
holds. Moreover, for 4 =1, (33) holds as shown above. This implies that (A4, B)is
reachable. On the other hand, if (4, B) is reachable, then (32) holds for any complex
4. Hence, as in the proof of Lemma la, we have rank [A—AIL, :B] =n for any
complex 4, and we have (31). This completes the proof of Lemma 1b. O

By manipulating the controllability matrix, Seraji (1983) has proved Lemma 1b,
and Young and Willems (1972) and Smith and Davison (1972) have proved the
continuous-time version of Lemma 1b.
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Now let H, and H, be p x p and n x n matrices such that Q.=H!H, and
Q,=HIH, respectively. Then we have
g-AA 34

where

g [He 0
_[o H,J 33

 Lemma 2a
Let Q, be positive definite. If (C, A) is detectable, then (H, A) is detectable.

Proof
We can easily see thai (CA, A) is detectable if and only if (C, A) is detectable. For
the detectability of (H, ) it suffices to show that for any complex |1 =1

- m 0
q 0 H,
rank[~ ]=rank =p+n (36) -
A—Al,,, 1-AI, CA
| 0 A—AI, |

Suppose that (C, 4) is detectable and hence (CA, A) is detectable. Then for any
complex |A| =1

CA .
rank [ ] =n (37
A—1I,
But since rank H, =rank Q, = p, it follows from (37) that (36) holds for any complex*"‘*f"’*”""”""‘-‘»“"%*‘**’”‘“
[A21. . oo
. Lemma 2b

Let Q, be pogitive definite, and assume that A is non-singular. Then if (C, A) is
observable, (H, A) is observable.

Proof
Suppose that (C, A) is observable. Since A is non-singular, (CA, A) is observable
if and only if (C, A) is observable. Therefore (37) holds for any complex 4, so that we

see from rank H, = p that (36) holds for any complex 4. This implies that (H, 4) is
: 0

observable.

It should be noted that if Q, =0, then Lemmas 2a and 2b give necessary and
sufficient conditions for the detectability and observability of (H, A) respectively.
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5. Property of feedback system
In this section, we consider the stability of the closed-loop system described by

(30).

Theorem 3a
Suppose that the following conditions are satisfied:

(@) Q. and R are positive definite,
(b) the rank condition of (31) holds

0 C
rank,: ]=p+n (31
B A4-1,

(¢) (4, B) is stabilizable,
(d) (C, A) is detectable.

Then the algebraic Riccati equation of (18) has the unique non-negative definite

_solution K, and the eigenvalues of A, of (20) are all inside the unit circle in the complex
“plane, namely 4, is asymptotically and exponentially stable.

Proof
From Lemmas la and 2a, it follows that (4, B) is stabilizable and (H, A) is
detectable. Furthermore, since R is positive definite the algebraic Riccati equation

K=A"RA - A"RB[R + B'RB] 'B"RA+ H'A (18')
.. iswell defined. Thus the theorem is proved by applying the well-known theorem for
- the linear quadratic regulator (Kucera 1972, Kwakernaak and Sivan 1972). ]
" Theorem 3b

Suppose that the conditions (a) and (b) of Theorem 3a are satisfied. Moreover,
assume that:

(c') (A4, B) is reachable,
(d) (C, A) is observable and 4 is non-singular.

Then the statement of Theorem 3a holds, except that the algebraic Riccati equation
has the unique positive definite solution. '

Proof

It follows from Lemmas 1b and 2b that (4, B) is reachable and (H, A) is
observable. The rest of the proof is standard (Kucera 1972, Kwakernaak and Sivan
1972). O

Remark 1

It should be noted that the condition of (31) implies that r 2 p. Thus for 4, to be
asymptotically stable, the number of control variables must be greater than or equal
to that of the output variables to be controlled. This is quite common in practical
control problems.

Remark 2
It follows from (17 ¢), (17 d) and (19) that the preview gains are given by

Gy)= —[R+ B'KB]™'BY AN "'RI, 1=1,...,N, (38)
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Thus, under the assumption of Theorem 3a or 3b, the information on the future values
of the demand vector becomes less important as | increases, since A, is exponentially
stable.

Now we show that under the assumption of Theorem 3a or 3b, a complete
regulation occurs for the optimal closed-loop system.

Theorem 4
Assume that the conditions of either Theorem 3a or 3b are satisfied. If the
demand vector is a step function, then a complete regulation occurs

lim e(k) =0 (exponentially) (39)
k-0
and also
lim x(k)=x and lim u°k)=u (40)
k— o k— o0

where X and # are constant vectors related by
X=AXx+ Bu + Ew
(41)
Yya=Cx

and where w(k) = w for k > 0.

Proof
By taking the increment of (30), or by substituting Au’(k) from (16) into (8), it
follows that
&k + 1) = AE(k) + £ (k) (42)

where &(k) = [e"(k) AxT(k)]", and

1= =Tyl + 1)~ B Y. GuDAvifk +1) @)

Since the demand vector is a step function, we have Ayd(k +l)=0forany . Thus - -

Sf{k) =0, so that (42) reduces to é(k + 1) = 4 (k). Butsince A4, is exponentially stable
from Theorem 3a or 3b, it follows that
lim &k)=0
k— o0
so that
lim e(k)=0 and lim Ax(k)=
k- k— o0
By using (16), we have
lim Au(k) =

k= o0

Thus we have shown (40); moreover from (1) and (2), we have 41). O

Theorem 5
Assume that the conditions of either Theorem 3a or 3b are satisfied. If the
demand vector satisfies

lim yy(k) = y4 (44)

k— o0

|

thena cc
41). TI
depends

Proof
A pr«
k— o0 1

Remark
It m:

the rank
thatif p-
and R.

weights.
are great
and X w-

Remark

We 1
preserve:
Theoren
the prese
insensiti’
perturba

6. Obs«

Whe
introduc
vector (C
is given

where y,
matrix.
output v
called th
Since



ure valueg
Onentially
Complete

d. If the
(39)

(40)

(41)

nto (8), it
(42)

(43)

1 1. Thus
ally stable
a

d. If the
(44)

Optimal controller for discrete-time system 687

then a complete regulation also occurs, namely e(k) > 0 as k — oo, and we have (40) and
(41). The convergence of e(k) is, however, not necessarily exponential, since it
depends on the rate of convergence of demand vector y,(k).

e Proof

\ A proof is immediate by noting that A, is exponentially stable and that f(k)—>0as
k — oo in (42). O

Remark 3
It may be noted that since (41) can be written as

[2 4 f,] [ﬂ - [_yéw] (45)

 the rank condition of (31) implies that there exist & and x for given y, and w. Note
-that if p =, then the steady states # and X are independent of the quadratic weights 0
- and R. The transient responses, however, depend heavily on the quadratic
weights. It should also be noted that if r > p, namely the number of control variables
are greater than that of the output variables to be controlled, then. the steady states i
and x will be affected by the quadratic weights.

Remark 4

We note here that the asymptotic stability of a dynamic system is generally
preserved for small perturbations in the system parameters. Thus it follows from
Theorem 4 or 5 that a complete regulation occurs for the closed-loop system of (30) in
the presence of small perturbations in A4, B, C and E matrices, namely the controller is
insensitive to small change in system parameters. Furthermore, the arbitrary
perturbations are allowed as long as the closed-loop system is asymptotically stable.

6. Observer-based controller
When the state vector x(k) is not directly measurable, we are led to the
introduction of an observer or a Kalman filter to obtain the estimate of the state

. vector (O’Reilly 1983). In this section, we assume that the measurable output vector

is given by
Yulk) = Ceux(k) (46)

where y, (k) is the m x 1 measurable output vector, and C,, is the m x m constant
matrix. Usually the p x 1 output vector to be regulated is a part of the measurable
output vector, so that there exists the p x m matrix M such that C=MC,. This is
called the ‘readability condition’ (Francis and Wonham 1976).

Since w(k) is constant, we have

x(k + 1) A ET[x(k) B
Licenl o ol Lol @

wk+1J Lo 1wl Lo
w=rc. o ™ 48)
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Let Y; ' be the measurements up to k—1, namely Y& != {ym©), ym(D), ...,
Ym(k — 1)}, Let %(k) and w(k) be the estimates of x(k) and w(k) based on the measure-
ments Y% ! respectively. Then the full-order observer for the system of (47) and
(48) is given by

fk+1)7 T4 E] %(k) [Lx][ 0 ‘(k)]+[B:| o @
[wm4-n]_1;) I, [ww£l+ p, Pt 0l @)

where L, and L,, are n x m and g x m constant gain matrices respectively, which are
determined so that the (n + q) x (n + ¢) matrix

; Feg@ q 0
R R AR

is asymptotically stable (O’Reilly 1983). It should be noted that u°(k) in (49) is
obtained by replacing x(k) by %(k) in (21) or (26).

Lemma 3
The pair

C 0 4 F 51
R T

is detectable (observable) if and only if (C,, A) is detectable (observable) and the

following rank condition holds

Cn O |
rank [ ] =n+gq . (52
I,—A E

Proof

Assume that (C,,, A)is detectable and (52) holds. For the detectability of the pair
(51), it suffices to show that for any complex |1 = 1 :

R r-. SO

Cn 0 _
rank | AI,—A —E =n+gq (53)
0 (A-1I,
Since _ |
rank [anj A:, =n (54)

for any complex |4] 2 1, (53) holds for any complex 1 # 1. For A= 1, (53) also holds
from (52). Conversely, if (53) holds for any complex |4 = 1, then, as in the proof of
Lemma 1b, we can easily see that (C,, A) is detectable and (52) holds. The
observability part of the lemma can be proved similarly. O

The continuous-time version of the observability part is proved by Young and
Willems (1972). It should also be noted that the rank condition of (52) implies that
the system (C,,, 4, E) has no transmission zeros at z = 1 (Davison 1976), and that

{

|

mz=4q,
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If (C
can finc

Proof
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mZq, namely the number of output variables is not less than that of the
unmeasurable disturbances.

Lemma 4

. If(Cy, A) is detectable (observable) and the rank condition of (52) holds, then we
can find suitable gains L, and L, such that A, of (48) is asymptotically stable.

Proof
A proof is immediate from Lemma 3 and the definition of detectability
(observability). ]

Now define the estimation errors by X(k) = x(k) — %(k) and W(k) = w(k) — w(k).
Then, from (47)-(50), we have
[)E(k+ 1):, - [i(k)]
= AL
wik + 1) w(k)

If we employ the estimate %(k) in place of the state vector x(k) in the controller of (26),
then we have

(55)

(k) = u’(k) + G, %(k) (56)

-

since X(k) = x(k) — %(k). However, if A is asymptotically stable, (k) converges to
zero, so that the controller #°(k) is asymptotically equivalent to u°(k).
Substituting (56) into (28) and combining the resultant system with (55) yields

okt 1)) i ]
A, BG, 0 -
x(k + 1) x(k) E
............ e [ D LEETTTI RE U W(k)
£k + 1) N (k) 0
wry| |° A (k)
" i 1]
5| v il
= | X Galyak+D— || yulk+ 1) (57)
O =1 0

‘.‘Therefore we have the following theorem.

:Theorem 6

Suppose that the conditions of Theorem 3a are satisfied. If the rank condition of
(52) holds, and if the demand vector ya(k) converges to y,, then there exist 7 and x such
_that '

lim v(k)=v¢ and

k—

lim x(k) = x

k—w

(58)

Hence a complete regulation is achieved under the observer-based controller of #°(k).
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Proof

It follows from Theorem 3a and Lemma 4 that the (p+2n+q) x (p + 2n + q)
matrix

A, BG, : 0
U S (59)
0 : A
becomes exponentially stable. Since w(k) is constant, and y,(k) — Vg the rest of the
proof is immediate. O
Remark 5

Conditions (b), (c) and (d) of Theorem 3a together with,the readability condition
(C = MC,,) are equivalent to the necessary and sufficient conditions for the existence
of a robust controller for the system of (1), (2) and (46) (Davison and Goldenberg 1975,
Davison 1976).

Remark 6

As in Remark 4, the observer-based controller of (56) achieves a complete
regulation under small perturbations of system parameters. However, it is to be
noted that the robustness of the LQ regulator is not preserved for the case when a
state observer or a Kalman filter is introduced into the state feedback loop (Doyle and
Stein 1979, O’Reilly 1983).

7. Numerical example

In this section, we apply the present technique to the design of an optimal

controller for a power plant model. A discrete-time model of a typical large-scale
supercritical once-through steam generator is given by

x(k + 1) = Ax(k) + Bu(k) (60)
Ymlk) = Crox(k) (61)

where the sampling interval is 20 s, and where x(k) is the 20 x 1 state vector, u(k) is the
6 x 1 control vector and y,,(k) is the 10 x 1 measurable outputs; thus we have n = 20,
r=6, m=10. Matrices 4, B and C, are given by (B 1)-(B3) in Appendix B
(Katayama er al. 1984). The description of the input and output variables are shown
in Tablel, and a schematic diagram of the input-output model is shown in
Fig. 2. Among ten measurable output variables, six variables MST, TPL, TP, MW,
RHT and NOX are considered as the outputs to be regulated, so that we have p="6
and

V1lk):= ymi(k), ya(k):= Ym2(K),  y3(K):= yme(k)
y4(k) = ym?(k)’ J’5(k) = ymB(k)’ yG(k) = me(k)

Therefore C becomes a 6 x 20 matrix formed by deleting the third, fourth, fifth and
tenth rows from the matrix C,, of (B 3), so that 4, B, J and R are of dimension 26 x 26,
26 x6,26 x 26 and 6 x 6 respectively.

We assume that the desired values of MST, TPL, RHT and NOX are the average

RS AR

Outputs
Vm1
Ym2
Ym3
ym4
Yms
Yme
Y7
Yms
Ymo
Ymi1o

Inputs
Uy
Us
uj
Uy
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Ug
Uy
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is chan
demanc
operati
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R and 1
26 x 26
depict 1
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Name Description (average value at 50% load)
Outputs
Vm1 MST Main steam temperature at turbine inlet (538° C)
V2 TPL Platen superheater outlet temperature (502° C)
V3 T1SH Primary superheater outlet temperature (456° C)
Vms TF Furnace pass outlet temperature (395° C)
Vms TECO Economizer outlet temperature (291° C)
Yms TP Main stream pressure (174 kgf/cm?)
Vm7 MW Generator output (250 MW)
Vs RHT Reheater output steam temperature (556° C)
Vmo NOX NO, content in exhaust gas (102 ppm)
V10 02 O, content in exhaust gas (2-49%)
Inputs
Uy QFW Feedwater flow (760 t/h)
u, QFO Fuel flow (559 t/h)
U LGD Reheater gas damper position (59-6%)
Uy LTV Turbine control valve position (61-0%)
Uus GMF Damper position for gas mixing fan (20-1%)
" ug QSP2 Secondary spray flow (36:2 t/h)
U, QAIR Air flow (39-6%)

Table 1. Description of input and output variables

MST

QFW —— —— TP L

QFO0 — Thermal —— TISH
LGD — — TF

LTV —» Power — TECO
GMF — — TP
{QSPl) — Plant — MW

QSP2 — — RHT

QAIR — — NO X
— 02

Figure 2. Schematic diagram of input-output model.

values at 50% load condition (see Table 1). Also, we assume that the demand for MW
is changed from 50% load to 75% load at 5%/min rate, starting at k= 10. The

~ demand for TP is determined according to the program of variable-pressure

operation (see Fig. 3 (a)).

The closed-loop responses are computed for various quadratic weights Q,, Q, and
R and the preview lengths N;. The algebraic matrix Riccati equation of dimension
26 x 26 is solved via the real Schur method due to Laub (1979). Figures 3 (a)—(e)
depict the closed-loop responses for

Q.=diag (2,1,3,3,4,1)
0.=0 (62)
R =diag (0-1, 01, 10, 0-1, 10, 1)
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It should be noted in Figs. 3 (a)—(e) that all the responses are shown as the deviations
from the average values at 50% load condition. The solid and dashed curves
represent the responses for Ny =5 and N, =1 respectively. Table 2 displays the
mean square errors of the controlled variables

300
=Y k), a=1,...,6 (63)

k=0

where Ny =0, 1,..., 5, and the quadratic weights of (62) are employed. We can
clearly see from Fig. 3 and Table 2 that the preview action is very effective for

80-
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—30-{

2
QSP2

I T ) T 1

0 20 40 ©0 80

(e) Time (min)

Figure 3. Closed-loop responses: (a) main steam pressure TP, (b) generator output MW,
(c) controlled variables MST, TPL, RHT and NOX, (d) measurable outputs TI1SH, TF,
TECO and 02, (¢) control variables QFW, QFO, LGD, LTV, GMF and QSP2.

improving the load following capability of the plant, although the performance of
MST and TPL is not improved by the preview actions. Further we observe that the
variations of other output variables become smoother by introducing the preview
action.

Since the excursion of TF is very large, as shown in Fig. 3 (d), we set Q (8, 8 =10
to regulate the transient response of TF, while keeping Q. and R as in (62) (note that
Xg(k) = yma(k)). Then, as shown in Fig. 3 (d), the dip of TF is reduced from — 44° C
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Ny MST TPL TP MW RHT NOX

0 116 2216 4750 3239 2024 979

x 1 116 2216 2737 700 2024 979

2 83 2124 1112 447 1450 830

2 3 91 2134 445 251 982 697

e 4 119 2207 174 136 686 586

i 5 136 2257 91 7 516 497
.E

b 5t 140 1273 142 80 960 1408

T 0.8, 8 =10

Table 2. Mean square errors of controlled variables.

to —23° C at the expense of the performance of controlled variables, except for TPL,
, as shown in the bottom line of Table 2. Further adjustment of the values of
‘""““"“""J”"*"“”‘“"“"“’Quadratic weights could improve the transient responses of the closed-loop
- system. Therefore we see that the present method is effective for designing a
servomechanism for a multivariable linear system. ‘

8. Conclusions .
This paper has presented a method of designing an optimal servo controller with
state feedback plus integral and preview actions for a discrete-time linear multi-
~ variable system. It is shown under the mild conditions that the closed-loop system
~ achieves a complete regulation in the presence of a step disturbance and small
- perturbations in system parameters. It is also shown that when an observer is
introduced into the state feedback loop, a complete regulation also occurs.
Numerical results show that the present design method is flexible and that the pre-
view action is very effective for improving the transient responses of the closed-loop
system.
Further studies are needed on the robustness issue for the closed-loop system
when an observer or a Kalman filter is incorporated into the state feedback loop.

Appendix A
A proof of Theorem 1
It is well known (Kwakernaak and Sivan 1972) that the problem of minimizing

put MW,

“ISH, TF, J= Y [XT@)QX() + Au"(i)RAu(i)] (A1)
SP2. | =k
' subject to the dynamic constraint
nance of X(i + 1) = A%() + BAu(i) (A2)
: that the h . .
preview as the optimal solution
u’(i))= —[R+ B'KB] *B'KAAx(i), i=k k+1,... (A3)
3,8)=10 _ ‘ . e .
N ot)e that where K is the non-negative definite solution of the algebraic matrix Riccati equation

—ac K=A"RA- A"KB[R + B'KB]'B'RA+Q (A4)
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and where : S Also, by
A 7V |
A= ] (A5) P e
0 Aadipen+pn) xio+ntproy | ATK B
V= [— 0 0][(p+n) x pNL] ' (A 6)
B= [ (A7)
0 [(p+n+pNL)xr1 ) It follov
~ equatio:
0 0 ) L
We partition the (p+n+ pNy) x (p+n+ fN L)~matr1x K as But we
- K X
e-[5 9] "
Xt Z
Then it follows from (A 5), (A 7) and (A 9) that :
R+B'KB=R+ B"'KB (A 10) - Thus u:
B'RA=[BRA:B"RV + B™XA,] A1)
Hence we see from (A 3) that the optimal control is expressed as
ORI I ()] o
Au’(i))= —[R+ B'KB] 'B"KA4 . where .
| —[R+ BTRB] 1B RV + XAd)xd(z) Aa12 ]
But it follows from (A 6) and (9) that ; él This cc
Vxa(i) = — TAy (i + 1) T (A 13)
[ Ayg(i+2) ]
RAgxi)=X : Nz X(I— DAy +1) A4 T Aspen
x4(0) = = —_— Vali + i
T ANy | ‘ ' Ma
5 0
where » °
~ ~ ~ ~ : 0 0
X =[X1):XQ): - : XN rnxpwus (A 19) EI P+
o i o oc
Therefore, noting that A =[I F], we see from (A 12)-(A 14) that % 0 —0(
B ] 01
NL ] 0 -0
Au’Q) = — Gre(i) — G Ax(i)— > Gy(DAyy(i+1), i=k k+1,... (A 16) o]0 o
=1 =10 —0(
0 0«
where G, G, Gy(l) are given by (17 a)-(17d). Putting i =k in (A 16), we have (16). 0 o
We now turn to the proof of (18) and (19). It follows from (A 5) and (A 9) that e
. ? 0 —O"
A'RKA ARV + 47X 4, o o
ATRA = «eeeeeeeeeeeeeiin ettt e e bt a s (A 17) 0 o4
VIRA+ AJX"A ¢ VIRV+ AIXAg+ V"R Ay + ATXTD o
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(A7)

(A'9)

(A 10)
(A 11)

(A 12)

(A 13)

(A 14)

(A 15)

(A 16)

1ave (16).
A 9) that

(A 17)

Also, by using (A 10) and (A 11)
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'BT[KA:KV+XA,]

(A 18)

It follows from (A 17), (A 18) and (A 8) that the (1, 1)-block of the algebraic Riccati

Thus using (A 20), the first block of (A 19) becomes

equation of (A 4) reduces to (18).

Also, the (1, 2)-block of (A 4) becomes

X=A"KV+XAy)— A"KB[R+ B"RB] 'BYRV+ XA,

~ But we see from (A 6), (A 15) and (A 11) that

KV=[—-KIl:0:-:0]

XA,=[0:X(1):-: X(N. — 1)]

=— ATRT

X()= — ART+ A"RB[

where A, is given by (20). Also, the Ith block of (A 19) is expressed as

This completes the proof of (19).

Appendix B

X(=ATX(1-1), 1=2,...,N,

Matrices 4, B, C,, are given by

[0 -04607 0
1-4269 0
00179 0

—0:0090 1
00406 0

—00431 0
01253 0

-01222 0
00086 0

—00094 0
00095 0
00237 0
00189 0

—0:0059 0

—00373 0
00610 0
00 0
00 0
00 0
00 0

DO 0O OO0 OO~

0-0045 0
0-0034 0
—01242 0
1-0126 0
—0:2096 0
0-1458 1
0-1610 0
—02340 0
—01020 0
01284 0
—0:0669 0
00813 0
—-0-3275 0
02417 0
0-0986 0

—00931
0-0
00
0-0
0-0

0
0
0
0
0

01304 0
—0-1702 0
~0-1065 0

02113 0
—00777 0

111320 0

0:0953 0
—00159 1
~01038 0

00851 0
—00342 0

00268 0
—0-149 0

01944 0
—-01332 0

01297 0

00 0

00 o

00 0

00 0

00731 0
—00728 0 —00527 0
—00351 0 —00603 0

0-0608 0

00411 0 00543 0
00492 0 —-00334 0
—-00392 0 00343 0
—06278 ¢ —0-0066 0
15797 0 00551 0
0-0057 0 0-1812 0
—00079 1 07771 ©
00658 0 —0-0341 0
-00848 O 00164 1
00689 ¢ -—-0-1201 O
—00739 0 0-3157 0
0-0657 0 —0-0546 0
—-00714 0 00254 0
00 0 0-0 0
00 0 0-0 0
00 0 0-0 0
00 0 00 0

00178 0
—00595 0
—00939 0

00521 0
—-00421 0

00290 0

00144 0
—-00192 0
—0:0301 0

00253 0

02095 0

06173 0

01359 0

01776 0

00440 0
—0-0848 0

00
00
00

oo oC

00067 0 —-0009% 0 00 0
00011 0 00065 0 00 0
00004 0 00693 0 00 0
00013 0 —-00728 0 00 0
—00082 0 —01448 0 00 0
00002 0 01535 0 00 0
00047 0 01116 0 00 0
—-00004 0 -—-01173 0 00 0
00048 0 —00517 0 00 0
0-0081 0 00529 0 00 0
00107 0 00923 0 00 0
-00138 0 —-009450 00 0
03119 0 —00085 0 Q0 0
03995 0 00516 0 00 0
—-00111 0 -00391 0 00 0
0-0055 1 10233 0 00 0
00 0 00 0 -01228 0
00 0 00 1 0-8965 0
00 0 00 0 —00041 0
00 0 00 0 00042 1

(A 19)

(A 20)

(A 21)

(A 22)

0-0
0-0
00
00
0-0
00
0-0
00
00
0-0
0-0
00
0-0
0-0
0-0
00
2:0351
30747
0-2600
0-1704

(B1)
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[ —0-0026 0-1205 -0-0022 —0-0603 00091 —00362

0-0010 —0-0096 00038 —0-0378 0-0004 0-0019
—0-0025 0-0800 —0-0014 —0-0647 0-0188 0-0001
~ 00011 0-0399 0-0034 —0-0165 0-0057 0-0087
—0-0014 0-0547 —0-0205 —0-0001 0-0070 —0-0005
—0-0004 0-0105 0-0056 —0-0131 —0-0014 0-0023
—0-0086 0-0656 00191 —0-0307 —0-0617 0-0095
—0-0101 02088 —0-0095 —0-0300 0-0038 0-0086
-00033 —-00021 -00294 —0-0086 0-0035 —0-0007

0-0013 0-0050 0-0187 —0-0022 -—-0-0013 0-0002

B=1 00081 00446 —00092 00964 00258 —o00081 | B2

00244 01400 00039 —05574 —00419 00152
00147 —01752 —00013 —12201 —00057 —00014
00103 02547 00006 19353 —00402 00117
00008 01287 00077 —01102 00106 00075
00006 00210 00002 00126 00066 00004

00 00901 —00152 00  —02026 00

00 00810 00026 00  —00255 00

00 00544 00011 00  —00037 00
| 00 —00668 —00035 00 00039 00 |
0 1 000000 00000000000 0]
000100000000 O0O0O0O0O0O00 0
000001 00000000000O0O0 O
000000O0T1O0000O0O0O0O0O0O0O0 0

c._[00000000010000000000| 4y

m=10 000000000 O0T10000000 0
0 0000000000 001000000
0 000000O0O0O0O0O0GO0OO0T1000O0
0 00000O0O0O0O0OO0O0O0O0O0OT1 00
0 000000000000O0O00O0GO0GO0O0 1,

that u,(k)=07u,(k). Thus matrix B above is obtained by modifying as
b,:=b, +0-7b, in Katayama et al. (1984), where b; is the ith column.
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