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Abstract— Simplified models of limit-cycle walking on flat
terrain have provided important insights into the nature of
legged locomotion. Real walking robots (and humans), however,
do not exhibit true limit cycle dynamics because terrain, even
in a carefully designed laboratory setting, is inevitably non-flat.
Walking systems on stochastically rough terrain may not satisfy
strict conditions for limit-cycle stability but can still demonstrate
impressively long-living periods of continuous walking. Here, we
examine the dynamics of rimless-wheel and compass-gait walking
on randomly generated rough terrain and employ tools from
stochastic processes to describe the ‘stochastic stability’ of these
gaits. This analysis generalizes our understanding of walking
stability and may provide statistical tools for experimental limit
cycle analysis on real walking systems.

I. INTRODUCTION

The science of legged locomotion is plagued with com-
plexity. Many of the fundamental results for legged robots
have come from detailed analytical and computational inves-
tigations of simplified models (e.g., [3, 5, 7, 10, 11]). These
analyses reveal the limit cycle nature of ideal walking systems,
and employ Poincaré map analysis to assess the stability of
these limit cycles. However, the very simplifications which
have made these models tractable for analysis can limit their
utility.

Experimental analyses of real machines based on these
simple models [4] have revealed that real machines differ
from these idealized dynamics in a number of important ways.
Certainly the dynamics of impact and contact with the ground
are more subtle than what is captured by the idealized models.
But perhaps more fundamental is the inevitable stochasticity in
the real system. More than just measurement noise, robots that
walk are inherently prone to the stochastic influences of their
environment by interacting with slightly different terrain on
each footstep. Even in a carefully designed laboratory setting,
and especially for passive and minimally-actuated walking
machines, the effects of this stochasticity can have a major
impact on the system dynamics. In practice, it is very difficult
(and technically incorrect) to apply deterministic limit cycle
stability analyses from the simple systems to our experimental
walking machines - the real machines do not have true limit
cycle dynamics.

In this paper, we extend the analysis of simplified walking
models toward real machines by adding an element of stochas-
ticity into the walking model. Although we have considered a
number of sources of uncertainty, we will focus our presenta-
tion on the most compact model - where the geometry of the
ground is drawn from a random distribution. Even with very
mild deviations in the ground from a nominal slope angle, the
resulting trajectories of the machine are different on every
step and end with the robot eventually falling down (with

probability one as t →∞). As the deviations from the nominal
slope increase, the analysis also suggests a way to model and
even control a walking robot on moderately rough, unmodeled
terrain.

II. BACKGROUND

Many stochastic dynamic systems exhibit behaviors which
are impressively long-living, but which are also guaranteed
to exit these behaviors (“fail”) with probability one given
enough time. Such systems cannot be classified as “stable”,
but it is also misleading and incomplete to classify them as
“unstable”. Physicists have long used the term metastable
to capture this interesting phenomenon and have developed
a number of tools for quantifying this behavior [8, 9, 12,
15]. Many other branches of science and engineering have
also borrowed the terminology to describe dynamic systems
in a wide variety of fields. Familiar metastable systems in-
clude crystalline structures (e.g. diamonds), flip-flop circuits,
radioactive elements, oscillatory wave patterns in the brain,
and ferromagnetic materials, such as spin glass or magnetic
tape film (which explains why a taped recording sitting in
storage still inevitably fades over time).

U(x)

xA B

escape attempts

Fig. 1. Cartoon of a particle subject to Brownian motion in a potential U(x)
with two metastable states, A and B.

The canonical example of metastability is a particle in a
potential well subject to Brownian motion, as cartooned in
Figure 1. These systems have local attractors which tend to
keep the dynamics within a particular neighborhood in state
space. In the limit as such systems become deterministic (no
noise), these local attractors are fixed points, and the system
is truly stable whenever the dynamics begin with an initial
condition somewhere inside the basin of attraction of the fixed
point. In contrast, stochasticity constantly pushes the dynamics
about within this neighborhood, and for some systems and
noise types, this turns a stable system into a metastable one.
Occasionally, such systems deviate particularly far from a



metastable attractor in state space (making “escape attempts”)
and eventually they will exit (by which we mean entering a
region where a different attractor is now a far more dominating
influence).

III. METASTABLE LIMIT CYCLE ANALYSIS

The dynamics of walking systems are continuous, but they
are punctuated by discrete impact events, such as when a foot
comes into contact with the ground. These impacts provide
a natural time-discretization of a gait onto a Poincaré map.
Therefore, we will consider walking systems governed by the
discrete, closed-loop return-map dynamics:

x[n + 1] = f(x[n], γ[n]), (1)

where x[n] denotes the state of the robot at step n and
γ[n] represents the slope of the ground, which is a random
variable drawn independently from a distribution Pγ at each
n. This model for stochastically rough terrain dramatically
simplifies our presentation in this paper, but it does require us
to restrict our analysis to strictly forward walking1. These state
evolution equations represent a discrete-time, continuous-state
Markov process (or infinite Markov chain). For computational
purposes, we will also discretize the state space into a finite
set of states, xi. Defining the state distribution vector, p[n],
as

pi[n] = Pr(X[n] = xi), (2)

we can describe the state distribution (master) equation in the
matrix-form

p[n + 1] = p[n]T, Tij = Pr(X[n + 1] = xj | X[n] = xi).
(3)

T is the state-transition matrix; it is a stochastic matrix (each
row must sum to one). The n-step dynamics are revealed by
the Chapman-Kolmogorov equation,

p[n] = p[0]Tn.

We obtain the transition matrix numerically by integrating
the governing differential equation forward from each mesh
point, then using barycentric interpolation [13] to compute the
transition probabilities.

For walking, we will designate one special state, x1, as an
absorbing state representing all configurations in which the
robot has fallen down. Transitions to this state can come from
many regions of the state space; there are no transitions away
from this state. Assuming that it is possible to get to this
absorbing state (possibly in multiple steps) from any state,
then this absorbing Markov chain will have a unique stationary
distribution, with the entire probability mass in the absorbing
state.

The dynamics of convergence to the absorbing state can
be investigated using an eigenmode analysis [1]. Without
loss of generality, let us order the eigenvalues, λi in order
of decreasing magnitude, and label the corresponding (left)

1Including backward steps is straightforward, but requires the model to
include spatio-temporal correlations in the slope angle

eigenvectors, vi, and characteristic times, τi = −1
log(λi)

. The
transition matrix from an absorbing Markov chain will have
λ1 = 1, with v1 representing the stationary distribution on the
absorbing state. The magnitude of the remaining eigenvalues
(0 ≤ |λi| < 1, ∀i > 1) describe the transient dynamics and
convergence rate (or mixing time) to this stationary distribu-
tion. Transient analysis on the walking models we investigate
here will reveal a general phenomenon; λ2 is very close to
1, and τ2 À τ3. This is an example of metastability: initial
conditions in eigenmodes 3 and higher are forgotten quickly,
but v2 describes the long-living (metastable) neighborhood
of the dynamics. In metastable systems, it becomes useful
to define the metastable distribution, φ, as the stationary
distribution conditioned on having not entered the absorbing
state:

φi = lim
n→∞

Pr(X[n] = xi | X[n] 6= x1).

It is easily computed by zeroing the first element of v2 and
normalizing the vector to sum to one.

Individual trajectories in the vicinity of a metastable at-
tractor are characterized by random fluctuations around the
attractor, with occasional “escape attempts”, in which the
system has entered a region of relatively low influence from
the attractor. For walking systems this is equivalent to noisy,
random fluctuations around the nominal limit cycle, with occa-
sional transitions to the absorbing (fallen) state. The existence
of these escape attempts suggests a natural quantification of
the relative stability of metastable attractors in terms of first-
passage times. The mean first-passage time (MFPT) to the
fallen absorbing state describes the time we should expect our
robot to walk before falling down.

Let us define the mean first-passage time vector, m, where
mi is the expected time to transition from the state xi into
the absorbing state. Fortunately, the mean first-passage time is
particularly easy to compute, as it obeys the relation:

mi =

{
0 i = 1
1 +

∑
j>1 Tijmj otherwise

(the expected first-passage time must be one more than the
expected first-passage time after a single transition into a
non-absorbing state). In matrix form, this yields the one-shot
calculation:

m =
[

0
(I− T̂)−11

]
, (4)

where T̂ is T with the first row and first column removed. m
quantifies the relative stability of each point in state space.
One interesting characteristic of metastable systems is that
the mean first-passage time around an attractor tends be very
flat; most system trajectories rapidly converge to the same
metastable distribution (forgetting initial conditions) before
escaping to the absorbing state. Therefore, it is also meaningful
to define a system mean first-passage time, M , by computing
the expected first-passage time over the entire metastable
distribution,

M =
∑

i

miφi. (5)



When τ2 À τ3, we have M ≈ τ2, and when λ2 ≈ 1, we have

M ≈ τ2 =
−1

log(λ2)
≈ 1

1− λ2
.

IV. NUMERICAL MODELING RESULTS

This section uses two simple, classic walking models to
demonstrate use of the methodology presented in Section III
and to illustrate some of the important characteristics typical
for metastable walking systems more generally. The two
systems presented here are the rimless wheel and the passive
compass gait walker, each of which is illustrated in Figure 2.
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Fig. 2. The Rimless Wheel (left) and Compass Gait Walker (right) models.

A. Rimless Wheel

The rimless wheel (RW) model consists of a set of N
massless, equally-spaced spokes about a point mass. Potential
energy is gained as it rolls downhill, while conservation of
angular momentum results in a loss of kinetic energy at each
impact. For the right combination of constant slope and initial
conditions, a particular RW will converge to a steady limit
cycle behavior, rolling forever and approaching a particular
velocity at any (Poincaré) “snapshot” in its motion (e.g. when
the mass is vertically above a leg and θ = 0 in Fig. 2). The
motions of the rimless wheel on a constant slope have been
studied in depth [3, 16].

In this section, we will examine the dynamics of the RW
when the slope varies stochastically at each new impact. To
do this, we discretize the continuous set of velocities, using
a set of 251 values of ω, from 0.01 to 2.5 (rad/s). We also
include an absorbing failure state, which is defined here to
include all cases where the wheel did not have sufficient
velocity roll past its apex on a particular step. Our wheel
model has N = 8 spokes (α = π

4 ). At each ground collision,
we assume that slope between ground contact points of the
previous and new stance leg is drawn from an approximately2

Gaussian distribution with a mean of γ̄ = 8◦. For clarity,
we will study only wheels which begin at θ = 0 with some
initial, downhill velocity, ωo, and we consider a wheel to have
failed on a particular step if it does to reach an apex in travel,
θ = 0 with ω > 0. (ω is defined as positive going downhill,
i.e. CW in Fig. 2.) Note that the dynamic evolution of angular
velocity over time will not depend on the choice of a particular
magnitude of the point mass, and we will use spokes of unit
length, l = 1 meter, throughout.

2To avoid simulating pathological cases, the distribution is always truncated
to remain within ±10◦, or roughly 6σ, of the mean

On a constant slope of γ = 8◦, any wheel which starts
with ωo > 0 has a deterministic evolution over time and is
guaranteed to converge to a fixed point of ω = 1.2097 (rad/s).
The return map defining the step-to-step transitions from ωn

to ωn+1 is given as:

ωn+1 =

√
cos2 α

(
ω2

n +
2g

L
(1− cosβ1)

)
− 2g

L
(1− cosβ2)

where β1 = α
2 +γ and β2 = α

2 −γ, with γ > 0 as the downhill
slope. A plot of this return function is shown in Figure 3.
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Fig. 3. Return map and fixed point for an 8-spoke rimless wheel on constant,
downhill slope of 8 ◦. Here, ωn, is defined as angular velocity when the
support spoke is exactly vertical. The wheel correspondingly fails to complete
a step whenever ω < 0.

Fig. 4. Return distribution and metastable “neighborhood” for an 8-spoke
rimless wheel on downhill terrain with a mean step-to-step slope of 8 degrees
and σ = 1.5◦. There is now a probability density function describing the
transition from ωn to ωn+1.

When the slope between successive ground contacts is
drawn from a stochastic distribution, the function given in
Figure 3 is now replaced by a probabilistic description of the
transitions, as illustrated in Figure 4. Given the current state
is some particular ωn, there is a corresponding probability
density function (PDF) to describe what the next state, ωn+1,



will be. Figure 5 shows this set of PDF’s clearly; it is a 3D
plot of the same probabilistic return map shown from overhead
in Figure 4. For our discretized model, each height value in
Figure 5 is in fact the magnitude of the value of the transition
matrix, Tij , where i is the state we are coming from (ωn, on
the x-axis) and j is the state we are going to (ωn+1, on the y-
axis); figures 4 and 5 provide a graphical representation of the
transition matrix describing this metastable dynamic system.

Fig. 5. 3D view of the return distribution for the rimless wheel system.
This is a smoothed rendering of the step-to-step transition matrix, T , with
the probability density functions for some particular states (ωn) overlaid as
lines for greater clarity. For the deterministic rimless wheel, the corresponding
picture is the return map in Figure 3.

To generate the discrete transition matrix, we calculate
ωn+1 = f(ωn, γ) for each of a discrete set of 601 possible
γ values, in the range of ±10 degrees from the mean. Each
new state is then represented in the mesh using barycentric
weighting interpolation [13], which (we note) inherently adds
a small level of additional (unintended) noise to the modeled
dynamic. In figures 4 and 5, the noise has a standard deviation
of σ = 1.5◦. Using MATLAB to take the 3 largest eigenvalues
of the transpose of the transition matrix for this case, we find
that the largest eigenvalue, λ1, is within 10−14 of being exactly
unity, which is within the mathematical accuracy expected.
This eigenvalue corresponds to the absorbing failure state,
and the corresponding eigenvector sums to 1, with all values
except the failure state having essentially zero weight3 in this
vector (since all wheels will eventually be at this state, as
t →∞). All other eigenvectors sum to zero (within numerical
limits), since they must die away as t → ∞. The second-
largest eigenvalue is λ2 = 0.999998446. Using the methods
presented in Section III, this corresponds to a system-wide
MFPT of about 1/0.000001554 = 643, 600 steps. Each initial
condition has a particular MFPT, m(ω), which is obtained
from Eq. 4 and plotted in Figure 6. Note that the value of
the mean first-passage time is nearly flat throughout a large
portion of state space. This is characteristic for metastable
systems, which justifies the notion of a “system-wide” MFPT,

3All states except the failure state had a magnitude less than 10−10,
numerically.

M ≈ 1/(1 − λ2), quantifying the overall stochastic stability
of a particular dynamic system. For this particular case, there
are no regions in state space (except the failure state) with
MFPT significantly lower than the system-wide value, which
is not typical more generally; the passive compass gait walker
in Section IV-B is highly sensitive to initial conditions, for
instance, although it too has regions of state space which share
a nearly uniform MFPT value.

0 0.5 1 1.5 2 2.5
6.41

6.415

6.42

6.425

6.43

6.435

6.44
x 10

5

ω
n
 (rad/s)

M
F

P
T

(ω
n) 

fo
r 

rim
le

ss
 w

he
el

 

 

MFPT from discrete approximation
curved fit

Fig. 6. Mean first-passage time as a function of the initial condition, ωo. Data
are for a rimless wheel on stochastic terrain with mean slope of 8 deg and
σ = 1.5◦. Points show the approximation obtained through eigen-analysis of
the discretized system, and a smoothed line is overlaid. Note that MFPT is
largely constant over a large portion of state space.

The eigenvector associated with λ2 yields the PDF of the
metastable dynamic process – the relative probability of being
in at each location in state space, given initial conditions have
been forgotten and the walker has not yet failed. Figure 7
shows the resulting probability distribution functions for the
rimless wheel for each of several levels of noise. Pictorially,
each system-wide PDF for a metastable system is analogous
to the fixed point for a stable, deterministic system. In the
deterministic case, the probability of being exactly at the fixed
point approach unity at t →∞.
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Fig. 7. Quasi-stationary probability density functions for the stochastic
rimless wheel for each of several values of terrain noise, σ. Each distribution
is estimated by renormalizing the eigenvector associated with the second-
largest eigenvalue of the transpose of the transition matrix. Note that meshing
inherently adds noise to the dynamic system; smoothed lines are drawn on
top of the raw data (shown as points) from the scaled eigenvectors.

The third-largest eigenvalue of transition matrix, λ3, quan-
tifies the characteristic time scale in which initial conditions



are forgotten, as the dynamics evolve toward the metastable
distribution (or toward failure). For the case presented here
(σ = 1.5◦), λ3 ≈ 0.50009, which means almost half of the
PDF of the initial condition composed of this eigenvector is
lost (“forgotten”) with each, successive step; an even larger
fraction-per-step is lost for all remaining eigenvectors (with
even smaller values of λ). Within a few steps, initial conditions
for any wheel beginning in our range of analysis 0 < ωo ≤
2.5 have therefore predominantly evolved into the metastable
PDF (or have failed). If we multiply the metastable PDF,
φ(ω), by the transition matrix, we obtain the joint probability,
Pr(ωn, ωn+1) of having just transitioned from ωn to ωn+1,
given the wheel has not failed by step n + 1. This is shown
both as a 3D plot in Figure 8 and as a set of contour lines
overlaid in Figure 4.

Fig. 8. 3D view of the metastable “neighborhood” of state-to-state transitions,
(ωn, ωn+1). If a rimless wheel starts from some arbitrary initial condition
and has not fallen after several steps, this contour map represents the joint
probability density function of being in state ωn now and transitioning to
ωn+1. The contour lines drawn are identical to those overlaid in Figure 4.
They correspond to the neighborhood of likely (ωn, ωn+1) pairings, analo-
gous to the unique fixed point of the deterministic case.

This particular system has a beautiful simplicity which al-
lows us to extract some additional insight from the conditional
probability in Figure 8. Because of the definition of ωn as
being the velocity when the mass is at its apex in a given
step, the value of ωn+1 = 0 represents the boundary to the
absorbing failure state in this example. If we visualize the
contours of the conditional probability as they extend toward
ωn+1 = 0 in Figure 4, we see that most failures do not occur
because we transition from a very slow state (ωn close to zero)
to failure but are more typically due to sudden transitions from
more dominant states in the metastable distribution to failure.

Finally, when this methodology is used to analyze the
rimless wheel for each of a variety of noise levels (σ), the
dependence of system-wide MFPT on σ falls as shown in
Figure 9. For very low levels of noise, MATLAB does not
find a meaningful solution (due to numerical limits). As the
level of noise increases, the MFPT decreases smoothly but
precipitously. (Note that the y-axis is plotted on a logarhithmic
scale.) The stochastic stability of each particular system can be
quantified and compared by calculating this estimate of MFPT
which comes from λ2 of the transition matrix.
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Fig. 9. Mean first-passage time (MFPT) for the rimless wheel, as a function
of terrain variation, σ. Estimates above 1014 correspond to eigenvalues on the
order of 1− 10−14 and are beyond the calculation capabilities of MATLAB.

B. Passive Compass Gait Walker

The second metastable dynamic system we analyze in this
paper is a passive compass gait (CG) walker. This system
consists of two, massless legs with concentrated masses at
the intersection of the legs (“the hip”) and partway along leg,
and it has been studied in detail by several authors, e.g. [5,
7, 14]. Referring to Figure 2, the parameters used for our
metastable passive walker are m = 5, mh = 1.5, a = .7, and
b = .3. Given an appropriate combination of initial conditions,
physical parameters and constant terrain slope, this ideal model
will walk downhill forever.

When each step-to-step terrain slope is instead selected from
a stochastic distribution (near-Gaussian, as in Section IV-A),
evolution of the dynamics becomes stochastic, too, and we
can analyze the stochastic stability by creating a step-to-step
transition matrix, as described in detail for the rimless wheel.
The resulting system-wide MFPT as a function of terrain
noise, M(σ), is shown in Figure 10. Note that it is similar
in shape to the dependence shown in Figure 9.

To analyze this system, our discretized mesh is defined
using the state immediately after each leg-ground collision.
The state is defined completely by the two leg angles and
their velocities. On a constant slope, these four states are
reduced to three states, because a particular combination of
slope and inter-leg angle will exactly define the orientation of
both the stance and swing leg during impact. We use three
states to define our mesh, although we allow for variations
in slope from the nominal (mean) value. To approximate the
transition matrix, we simulate the deterministic dynamics a
short distance forward or backward in time to find a state
where the slope of the line connecting the “feet” of the legs
is equivalent to our desired, nominal slope. Because the dy-
namics between collisions are entirely deterministic, these two
states are mathematically equivalent for the stochastic analysis.
If such a state does not exist for a particular collision (which
occurs only very rarely), we treat this as a member of the
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Fig. 10. Mean first-passage time as a function of terrain variation. Results for
analysis of a compass gait walker using a discretized (meshed) approximation
of the transitions. Average slope is 4 degrees, with the standard deviation in
slope shown on the x-axis. Noise is a truncated Gaussian distribution, limited
to between 0 and 8 degrees for all cases.

absorbing failure state. The advantage of this approximation is
that reduction of the dimensionality from 4 states to 3 provides
a significant improvement in accuracy. Specifically, it allows us
to mesh finely enough to capture near-infinite MFPT for low-
noise systems, while using four states did not. Instead of using
either the absolute stance leg angle, X1, or the relative swing
leg angle, X2, we mesh using the inter-leg angle, α = π−X2.
The three states we use are then: (1) absolute angular velocity
of the stance leg, X3, (2) relative velocity of the swing leg,
X4, and (3) the inter-leg angle, α.

Figure 11 shows a slice of the basin of attraction for this
compass gait on a constant slope (top), along with regions in
state space with nearly-constant MFPT (bottom two) for two
different magnitude of noise (σ) in terrain. Each slice is taken
at the same inter-leg angle, α ≈ 25.2◦. In the deterministic
case, the basin of attraction defines the set of all states with
infinite first-passage time: all walkers beginning with an initial
condition in this set will converge toward the fixed point with
probability 1. For stochastic systems which result in metastable
dynamics, there is an analogous region which defines initial
conditions having MFPT very close to the system-wide value,
M . Interestingly, the deterministic and stochastic basin shapes
are quite similar here; we expect this may often be the case
for systems such as this with discrete jumps in state space.

The image at the top of Figure 12 shows the deterministic
basin of attraction for this CG walker more clearly. This plot
was generated by sampling carefully over the state space and
simulating the dynamics. The plot at the top of Figure 11
intentionally uses the same mesh discretization used for the
stochastic system, to provide a better head-to-head comparison
of the change in shape due to the addition of terrain noise
(as opposed to the noise of the discretization itself). The
second image in Figure 12 shows the deterministic basin of
attraction for a different set of physical parameters (m = mh;
a = b = .5) on the same, constant slope of 4◦. This basin

Fig. 11. Basin of attraction (top) for deterministic CG walker and map of
MFPT for low-noise (σ = 0.5◦, lower left) and high-noise (σ = 1.0◦, lower
right) examples. To aide in visual comparison, all 3 plots use the same mesh.
The “near-constant MFPT basin” for each stochastic system is essentially a
low-pass filtered version of the deterministic basin of attraction, and its shape
does not change significantly, even when the magnitude of the MFPT itself
varies greatly (e.g. 180,000 steps [left] vs 390 [right]). This region represents
a boundary on the volume in state space from which a walker is likely to pulled
into the metastable distribution.

looks qualitatively more delicate and the resulting performance
of this walker on stochastic terrain is in fact much worse
(e.g. MFPT of about 20 steps when σ = 0.5◦, where we find
M = 180, 000 for the other walker).

Just as in the case of the rimless wheel, the fixed point (for
our deterministic compass gait system) is now replaced (in
the stochastic case) by a probability density function, defining
the likelihood of being in any particular state (conditioned on
not having fallen) as t → ∞. Figure 13 shows 2D contour
plot sections of the PDF obtained from the eigen-analysis of
the stochastic compass gait. The outermost contour defines a
boundary containing 0.999 of the probability distribution in
state space. The distribution spreads over more of state space
as the level of noise increases, in a manner analogous to the
widening of the distribution with noise seen in Figure 7.

Finally, we note that the relationship in state space between
the PDF of the metastable dynamics, shown in Figure 13,
and the region of nearly-uniform mean first-passage time, M ,
shown at the bottom of Figure 11, hints at where successful
“escape attempts” are most likely to occur over time. Figure 14
overlays these two regions across a different dimensional slice
of the 3D space for the σ = .5◦ and σ = 1.0◦ cases. As the
tails of the metastable PDF (shown in yellow) approach the
boundary of the uniform-MFPT basin (shown in blue), there
is a higher probability of failing on any given step during the
metastable process, resulting in turn to a less stochastically
stable system (i.e. with a lower system-wide value of M ).

V. DISCUSSION

This section briefly discusses the use of the stochastic
methods presented toward designing controllers for walking
systems and also provides a few further observations on
the properties of metastable system which result in multiple
attractors (e.g. period-n gaits).
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Fig. 12. Basins of attraction (blue region) and fixed point for two compass
gait walkers, each on a constant slope of 4◦. Walker with basin at top is more
stable and uses the parameters defined for the stochastic system described
throughout Section IV-B; for the other walker, m = mh and a = b = .5.
MFPT is infinite inside the shaded region and is small (1-4 steps) outside
of it. This image shows only a slice of the 3D basin, taken at the inter-leg
angle of the fixed point for each respective walker. The fixed point is at
X3 = −.89 (rad/s), X4 = 2.89 (rad/s), α = 25.2◦ for the first walker, and
it is at X3 = −1.14 (rad/s), X4 = 1.26 (rad/s), α = 33.4◦ for the lower
one. The deterministic basin of attraction for the second walker is narrower
in shape, and this walker is significantly less stable on stochastic terrain.

A. Impacts on Control Design

One of the primary goals of a controller is to enhance
the dynamic stability of a system. For walking systems, we
propose throughout this paper that this should be defined
as increasing the stochastic stability. We would like time-to-
failure to be long, and we would like a system to converge
toward the metastable distribution from a large set of initial
conditions. The tools provided here can be used in optimizing
controllers with either or both of these two aims in mind.

As an example, consider an active compass gait walker, with
a torque source at the hip but with the ankles still unactuated at
the ground contact. Putting this walker on a repeating terrain,
as depicted in Figure 15, allows us to mesh across the entire
state space of possible poses. By designing a low-level PD
controller on inter-leg angle, we can discretize the action space
on a single once-per-step policy decision. The optimal high-
level policy (to select desired inter-leg angle) for the system
can now be solved via value iteration. Preliminary results for
such a control methodology allow this underactuated compass
gait model to walk continuously over impressively rough
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Fig. 13. On stochastic terrain, there is no fixed point for the compass gait
walker. Instead, there are metastable “neighborhoods” of state space which
are visited most often. As time goes to infinity, if a walker has not fallen, it
will most likely be in a this region. The contours shown here are analogous
to the PDF magnitude contours in Figure 7; they are drawn to enclose regions
capturing 90%, 99%, and 99.9% of walkers at any snapshot during metastable
walking. Top picture corresponds to σ = 0.5◦. Larger noise (σ = 1.0◦,
bottom) results in larger excursions in state space, as expected.

terrain [2].

B. Multiple stable limit cycles

Metastable dynamic systems sometimes have an inherent
periodicity. We expect this may be the case on a slightly
steeper slope, for instance, where compass gait models expe-
rience period-doubling bifurcations [7]. Another case where
periodicity arises is for wrapping terrain, such as the terrain
for the controlled walker in figure 15. Wrapping is a realistic
model for many in-laboratory walking robots, as they are often
confined to walk on a boom – repeatedly covering the same
terrain again and again. In our simulation of a hip-actuated CG
walker on wrapping terrain, we observe that a repeating, n-step
cycle results in multiple eigenvalues, λ2 through λn+1, all with
magnitude just under unity. They are complex eigenvalues,
as are the corresponding eigenvectors. The top left image in
Figure 15 shows such a set of eigenvalues, all lying just within
the unit circle. The next-smallest set of eigenvalues are all
significantly smaller in this example. The complex eigenvalues
and eigenvectors mathematically capture an inherent period-
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Fig. 14. Metastable system: Contours of the stochastic “basin of attraction”
are shown where MFPT is 0.5M , 0.9M and 0.99M (blue) versus contours
where the integral of the PDF accounts for .9, .99, and .999 of the total
metastable distribution (yellow). The metastable dynamics tend to keep the
system well inside the “yellow” neighborhood. As the tails of this region
extend out of the blue region, the system dynamics become less stochastically
stable (lower M ). The axis into the page represents the angle of the swing
leg relative velocity, X4, and a slice is taken at X4 = 2.33rad/s. Terrain
variation for the top plot is σ = 0.5 degrees (with M ≈ 180, 000 steps). For
the noisier system at bottom (σ = 1.0 degrees), M is only steps or so.
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Fig. 15. Controlled compass gait walker, with torque at the hip. To solve for
an optimal policy using value iteration, the terrain wraps every 7 meters. The
optimization maximizes the MFPT from any given state. An eigenanalysis
reveals a complex set of eigenvalues (top), spaced evenly about (but strictly
inside of) the unit circle. Corresponding eigenvectors are also complex.

icity, in which the probability density function changes over
time in a cyclical manner.

VI. CONCLUSIONS

The goal of this paper has been to motivate the use of
stochastic analysis in studying and (ultimately) enhancing the
stability of walking systems. Robots that walk are inherently
more prone to the stochastic influences of their environment
than traditional (e.g. factory) robots. Locomotory systems
capable of interacting with the real world must deal with
significant uncertainty and must perform well with limited
energy budgets and despite limited control authority.

The stochastic dynamics of walking on rough terrain fit
nicely into the well-developed study of metastability. The
simplified models studied here elucidate the essential picture
of a metastable limit cycle dynamics which makes occasional
escape attempts to the fallen-down state. Metrics for stochastic
stability, such as the mean first-passage time, may be potent
metrics for quantifying both the relative stability across state-
space and the overall system stability for real walking systems.
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