
A Simulink-Driven Dynamic Signal Analyzer

by

Katherine A. Lilienkamp

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Bachelor of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1999

 1999 Katherine A. Lilienkamp
All Rights Reserved.

The author hereby grants to MIT permission to reproduce
and to distribute publicly paper and electronic copies of

this thesis document in whole or in part.

Author ...
Department of Mechanical Engineering

January 27, 1999

Certified by ..
David L. Trumper

Rockwell Associate Professor of Mechanical Engineering
Thesis Supervisor

Accepted by ...
Ernest G. Cravalho

Chairman, Undergraduate Thesis Committee
Department of Mechanical Engineering

Quick Guide to Running the DSA
This file documents the Simulink Dynamic Signal Analyzer for 2.737. You can use the analyzer to get automated Bode plots of a system response.To run the analyzer, you will need two file: dsa_tf.m dsa_demo.mdl (or another *.mdl file with the DSA subsystem block)To meaure a desired system response:===============================You can click-and-drag the DSA subsystem block into another model (just as you drag simulink library blocks into your models). Hook up the block as outlined in Appendix A. The block itself does nothing alone; you need to run the m-file script 'dsa_tf.m' to make the analyzer work. See Chapter 4 (the DSA "User's Guide") for details on running the m-file.Feel free to email me with any questions (or apparent bugs): gonzo@mit.edu [Katie Lilienkamp] file last edited: 2/16/99

2

screte
 and
such a
ing,
ulink
con-
 of
to a
ic
A Simulink-Driven Dynamic Signal Analyzer

by

Katherine A. Lilienkamp

Submitted to the Department of Mechanical Engineering
on January 27, 1999, in partial fulfillment of the requirements for

the degree of Bachelor of Science in Mechanical Engineering

Abstract

Fourier methods can transform the system response to an input sine wave from a di
data vector in the time domain into the frequency domain components of magnitude
phase at this excitation frequency. The dynamic signal analyzer described here uses
process to identify the non-parametric transfer function of such a LTI system by sweep
one-at-a-time, through a range of desired frequencies. The analyzer consists of a Sim
block and a MATLAB script file; together, they access and process data on a dSPACE
troller board. The board can, in turn, send and receive signals with an analog system
interest. The sampling rate of the dSPACE board limits the bandwidth of the analyzer
maximum of about 1 kHz. This document describes the implementation of the dynam
signal analyzer and also serves as a practical guide to its use.

Thesis Supervisor: David L. Trumper
Title: Rockwell Associate Professor of Mechanical Engineering

9
. . 9
9

1
11
12

3
13
14
14
19
2

 . 24

25
25
26

29
29
30

 . 31
34

5
36
. 37

41
1
41
Table of Contents

 1 - Introduction .
 1.1 Purpose .
 1.2 What is the Dynamic Signal Analyzer? .
 1.3 Motivation for a Dynamic Signal Analyzer . 1
 1.4 Roadmap .
 1.5 Acknowledgements .

 2 - Theory . 1
 2.1 Scope of Theoretical Presentation .
 2.2 Some Relevant Properties of Fourier Series and Integral
 2.2.1 Summation of Harmonics .
 2.2.2 Harmonic Product .
 2.3 The Dynamic Signal Analyzer’s Method: Swept Sine Response 2
 2.4 Section References and Suggested Reading .

 3 - Implementation in the Simulink/dSPACE Environment 25
 3.1 Introduction .
 3.2 Design Goals .
 3.3 Flow Chart of the Design .

 4 - User’s Guide to the Dynamic Signal Analyzer. 29
 4.1 Getting Started .
 4.1.1 Zero-Pole System .
 4.1.2 Parameter Settings and Build .
 4.2 Running the MATLAB Function dsa_tf() . 30
 4.3 Pause and Other Features .
 4.4 Data Output Format and Replotting .

 5 - Results: Comparisons and Estimated Error . 35
 5.1 Comparison with a Commercial Dynamic Signal Analyzer. 3
 5.2 Lower Than Expected Gain .
 5.3 Phase Lag .

 6 - Suggestions for Future Simulink/dSPACE Tools. 41
 6.1 Sampling Rate .
 6.2 Error Correction for High-Frequency Phase Calculations 4
 6.3 Outside Sine Wave Source .

43
43
44
4

54
54
6

9
3
5

7

App. A - The Simulink DSA Subsystem Block. 43
 A.1 Measuring System Response .
 A.2 Loop Transmission .
 A.2 Closed-Loop Response .
 A.2 Details About the Subsystem Block . 4

App. B - MATLAB Source Code to Run the DSA . 45

App. C - TRACE and COCKPIT . 53
 C.1 The Trace File .
 C.2 Using TRACE .
 C.3 Using COCKPIT . 5

App. D - Mlib, Mtrace, and Trcview . 59
 D.1 Mlib Tutorial . 5
 D.2 Mtrace Tutorial . 6
 D.3 Using trcview . 6

References . 6
6

List of Figures

 1.1 DSA and a System to be Analyzed . 10

 2.1 Adding Complimentary Harmonics . 15
 2.2 Correlated Functions . 15
 2.3 Orthogonal Vectors . 16
 2.4 Translating a Harmonic to Find Magnitude and Phase 18
 2.5 Pointwise Multiplication of Same-Frequency Sin and Cos Waves 19
 2.6 Multiplying Harmonics of Differing Frequencies . 20
 2.7 Integrating the Product of Non-orthogonal Functions 21
 2.8 Extracting Amplitudes of Component Sine and Cosine 21

 3.1 Design Flow Chart (left half) . 26
 3.2 Design Flow Chart (right half) . 27

 4.1 Demo Model ’dsa_demo.mdl’ . 29
 4.2 Expected System Bode Plot . 29
 4.3 Initial Display . 31
 4.4 The Dynamic Signal Analyzer in Progress . 32

 5.1 Low-Pass RC Cicuit Response . 35
 5.2 Low-pass RC Circuit . 35
 5.3 Discrete Sampling Lag with 1kHz Sine Wave . 37
 5.4 Zero-Order Hold Sampling . 38
 5.5 Half Sample Phase Shift . 39
 5.6 Asymmetric Zero-Order Hold . 39

 A.1 Dynamic Signal Analyzer Measuring System Response 43
 A.2 Linking Additional Components with the DSA Block 43
 A.3 Inside the DSA Subsystem Block . 44

 B.1 MATLAB M-file Code: dsa_tf.m . 45

 C.1 Part of a .trc File . 53
 C.2 System Tree Showing Trace File Groups . 54
 C.3 Trace Output List . 55
 C.4 Sample TRACE Output . 55
 C.5 COCKPIT Display for Amplitude Change . 56
 C.6 TRACE Output After Amplitude Change . 58

 D.1 The Trcview Layout . 65

8

List of Equations
Click on the menu bar at left to open the List of Equations. Select an equation number of interest to go to the appropriate page.

n of a

the

truc-

alyzer.

ope

on

nt.

the

ant

. The

nical

less

en-

unc-

icular

, com-

he sig-
Chapter 1

Introduction

1.1 Purpose
This document has two principal purposes. First, it describes the theory and operatio

dynamic signal analyzer (or DSA). The DSA will be used as a tool for students in

undergraduate course ‘Mechatronics’ (2.737) at MIT. This report should serve as ins

tion manual to enable the reader to understand and to operate the dynamic signal an

In describing the implementation of the DSA, I have a second intention, which I h

you will keep in mind. This dynamic signal analyzer was specifically developed to run

a dSPACE board using basic tools available in the MATLAB/Simulink environme

These tools include MATLAB m-files, the programs COCKPIT and TRACE, and

MATLAB functions mlib and mtrace. All are valuable resources for investigating pl

characteristics and designing successful control systems with the dSPACE boards

specific descriptions which follow can (and should) therefore be used both as a tech

manual for understanding the DSA I have implemented and secondly, though no

importantly, as a tutorial guide in becoming familiar with each of the other tools m

tioned above.

1.2 What is the Dynamic Signal Analyzer?
Stated briefly, the Dynamic Signal Analyzer identifies the non-parametric transfer f

tion from one system node to another. A sine wave excites the system at a part

desired frequency. Data recorded from the two system locations are then analyzed

pared, and stored. By repeating this process at each discrete frequency of interest, t

nal analyzer generates a Bode plot of the system in an automated way.
999

each

y state,

m the

zer.

m to

s of
Figure 1.1 illustrates this process. The signal analyzer outputs a sine wave at

specified frequency to be tested. Once the system has settled into sinusoidal stead

so that no significant transient response remains, channels 1 and 2 collect data fro

desired locations in the system. The gain and phase calculatedfromchannel 1to channel 2

at each tested frequency are used to create the transfer function output by the analy

Figure 1.1:DSA and a System to be Analyzed

The DSA operates digitally; it is implemented entirely on the computer. The syste

be analyzed may simply be a Simulink model, or, using the D/A and A/D capabillitie

the dSPACE board, it may also include components in the ‘real’, analog world.

SYSTEM

si
ne

 o
ut

pu
t

ch
an

ne
l 1

ch
an

ne
l 2

DSA

10
1

10
2

10
3

−20

0

20

40
BODE PLOT

G
A

IN

FREQUENCY

10
1

10
2

10
3

−180

−135

−90

−45

0

45

90

P
H

A
S

E

FREQUENCY

BODE PLOT
10

ency

ani-

and

obtain

bined

ction

could

’by

or to

loca-

eating

f the

rate

mics

ed to

ignal

to its

in sec-

each.

d with

the
1.3 Motivation for a Dynamic Signal Analyzer
The dynamic signal analyzer is a tool for characterizing system dynamics in the frequ

domain. It will be used by students studying digital controller design of electro-mech

cal systems. The output from the DSA is a transfer function which maps both gain

phase as functions of frequency between two nodes of a system. Designers must

such empirical data to support and refine models of real-world systems and of com

controller-system dynamics. The signal analyzer simply automates this data colle

and processing to provide the information more quickly and accurately than a user

obtain it ’by hand’.

Students should still become familiar with the process of collecting such data

hand’. This can be done by (1) using a sine wave output from a function generat

excite a system, (2) recording the requisite gain and phase shift between two system

tions from an oscilliscope, once the transient response has subsided, and then (3) rep

this process at a variety of frequencies within a range of interest. The bandwidth o

dynamic signal analyzer is limited by the approximately 10 kHz maximum sampling

of the dSPACE board, so that, typically, the DSA cannot characterize system dyna

above 1 kHZ. (See chapter 5 for more details.) The user may therefore be requir

obtain some data ’by hand’ to complete the data set output by the signal analyzer.

1.4 Roadmap
Chapter 2 develops theory to support the ‘swept sine’ method used by the dynamic s

analyzer. Chapter 3 details the implementation of the DSA, and chapter 4 is a guide

features and operation. These two chapters also introduce the basic tools mentioned

tion 1.1. Several appendices provide more detailed descriptions on basic use of

These appendices may be referenced directly to obtain concise help getting starte

the dSPACE programs COCKPIT and TRACE and in writing script files which use
111111

al-

rcial

ected

ns to

vi-

tron-

his

navi-

d his
MATLAB functions mlib and mtrace to communicate with the dSPACE board in re

time.

Chapter 5 provides comparisons between the simulink-driven DSA and a comme

analyzer manufactured by Hewlitt-Packard and discusses limitations and the exp

magnitude of error of the DSA. Finally, chapter 6 suggests some possible modificatio

the DSA and gives guidelines for developing novel MATLAB code in the dSPACE en

ronment.

1.5 Acknowledgements
The dynamic analyzer project stemmed from my enrollment in the class 2.73, ’Mecha

ics’. I would like to thank Professor Trumper for suggesting this thesis topic and for

support and guidance as my thesis advisor. Steve Ludwick’s patient supervision in

gating the mechatronics laboratory at MIT enabled my undertaking of this project, an

support through its completion is also appreciated.
12

ain

on-

fre-

crete

ini-

tech-

sing

s are

topic.

ant to
Chapter 2

Theory

2.1 Scope of Theoretical Presentation
Digital controller design is often simplified by transforming data from the time dom

into the frequency domain. Fourier’s principles of harmonic analysis facilitate this c

version. Fourier transformation converts a function of time, , into a function of

quency, , and the inverse Fourier transform provides the reverse mapping:

(2.1)

(2.2)

For digital computations, the counterparts to these continuous integrals form the dis

Fourier transform pair, or DFT:

(2.3)

(2.4)

The fast Fourier transform, or FFT, is a clever implementation of this, developed to m

mize the number of computations necessary to calculate the DFT. Modern computer

nology and FFT algorithms have, in fact, made the field of digital signal proces

possible; Fourier methods are the basis of frequency domain analysis.

Most texts on DSP develop the ideas of digital Fourier analysis; several refence

suggested at the end of the chapter which provide more detailed coverage of this

This chapter presents aspects of the Fourier series and Fourier transformation relev

f t()

F jω()

F jω() f t()e j ωt– td

∞–

∞

∫=

f t() 1
2π
------ F jω()ej ωt ωd

∞–

∞

∫=

Fn f ke j2πn k N⁄()–

k 0=

N 1–

∑=

f k
1
N
---- Fnej2πn k N⁄()

n 0=

N 1–

∑=
131313

arily

eries

tion;

and

urier

ese

ve

se of

c sig-

time.

linear

als,

in our

ative

time

ve at

e 2.1.

senta-
the implementation of the dynamic signal analyzer. The presentation here is prim

graphical. The objective is to explain the elegant and unique properties of harmonic s

which allow direct conversion of sampled data into a frequency domain representa

this is the basic process done by the DSA. The visual format is intended to be intuitive

concise.

2.2 Some Relevant Properties of Fourier Series and Integral
A periodic signal can be represented as a weighted sum of harmonic functions: its Fo

series. Theorthogonalityof harmonics allows us to find these individual weightingsinde-

pendently of one another, using a least-squares fit. Theircompletenessassures that when

we find all such individual weightings for a given function, , and then recombine th

harmonic components, the sum will be the original function, . We will not ha

missed any part of the original signal.

Much more can be said about the unique properties of Fourier series. The purpo

this section is to give the reader enough basic intuition to understand how the dynami

nal analyzer is able to extract gain and phase from response data, one frequency at a

Any system to be analyzed using the techniques described is assumed to to be

and time-invariant. Linearity incorporates superposition: that if we add two input sign

the response can be found by adding the two individual outputs, and scaling: that is,

range of interest, an amplitude change in input signal will result in the same rel

change in the output. Time-invariance simply means that shifting the input signal in

shifts the output by the same amount in time. These are basic assumptions.

2.2.1 Summation of Harmonics
Adding a sine and cosine wave of a particular frequency results in a new harmonic wa

the same frequency. An example, represented in the time domain, is shown in Figur

Figure 2.4 presents the same information in the frequency domain. The latter repre

f t()

f t()
14

tion more clearly illustrates how to obtain the resulting waveform.

Figure 2.1 shows how the following function

can be built from its individual components of sine

and cosine. One representation of the resulting

function is:

(2.5)

with . In this example, the two compo-

nent amplitudes are and . For this

example the frequency is [rad/sec],

so the x-axis can easily be associated with degrees,

as well. Plottingsine vs cosinedisplays their

0 90 180 270 360 450 540 630 720

−5

−4

−3

−2

−1

0

1

2

3

4

5

Time

M
ag

ni
tu

de

Time Domain

53.13

+3sin(x)
−4cos(x)
+3sin(x)−4cos(x)

Figure 2.1:Adding Complimentary Harmonics

−1.5 −1 −0.5 0 0.5 1 1.5

−5

−4

−3

−2

−1

0

1

2

3

4

5

sin

f(
x)

 =
 3

si
n−

4c
os

f(x) vs sin

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

sin

co
s

cos vs sin

−1.5 −1 −0.5 0 0.5 1 1.5

−5

−4

−3

−2

−1

0

1

2

3

4

5

cos

f(
x)

 =
 3

si
n−

4c
os

f(x) vs cos

Figure 2.2:Correlated Functions

(a)

(b) (c)

f t() a1 x() a2 x()cos+sin=

x 2πωt=

a1 3= a2 4–=

ω 1 360⁄()=
151515

plot,

sign,

ine is

osine,

-

nt. Its

own

’.
orthogonality. (See Fig. 2.2 (a).) For each sine coordinate along the x-axis in the

either:

1. There are two cosine coordinates. They are equal in magnitude and opposite in
adding to zero.

2. There is one cosine coordinate, and it is zero.

In either case, the sum of all cosine values at a particular sine value is zero, and cos

therefore uncorrelated with sine. Swapping the axes, clearly sine is uncorrelated to c

as well. In contrast, the plot of vs sineover one period is asymmetric about the x

axis. If we average the values at each point along the x-axis, the result is a line segme

slope is equal to the amplitude of the sine wave component of the function, ’+3’, as sh

in Fig. 2.2 (b). Performing the same correlation routine with vs cosineextracts the

amount, or amplitude, of the cosine component. Note in Fig. 2.2 (c), that slope is ’-4

The orthogonality of sine and cosine is closely

related to their lack of correlation. Two vectors are

orthogonal if their inner product is zero. Figure 2.3

shows two such vectors, defined generally inN

dimensions as:

Connecting the end points will create a right triangle, the side lengths related as:

(2.6)

Evaluating the left-hand side:

(2.7)

or

f t()

f t()

Figure 2.3:Orthogonal Vectors

2

U = u
1
 + u

2
 + u

3

3

1

V = v
1
 + v

2
 + v

3

U u1 u2 … uN, , ,()=

V v1 v2 … vN, , ,()=

U V– 2 U 2 V 2+=

U V– 2 U 2 V 2 2 u1v1 u2v2 … uNvN+ + +{ }–+=
16

only

an

e

very

ferent

of a

f the

of

ed to

ce of

iently
The quantity is the curly brackets in Eq. 2.7is the inner, or dot, product:

(2.8)

This dot product must equal zero for orthogonal vectors, since Eq. 2.6 holds.

The concept of orthogonal functions is very similar. If the functions arediscretevec-

tors of the same length, Eq. 2.8 gives the dot product, which again will be zero if and

if the functions are orthogonal. We can rewrite this for and as:

(2.9)

Sine and cosine satisfy this requirement,if these N samples are evenly spaced along

integral number of complete cycles.This sampling requirement is important to th

dynamic signal analyzer and will be discussed in more detail in Section 2.3. In fact, e

sine and cosine wave is orthogonal to every other sine and cosine; harmonics at dif

frequencies are not correlated. This can be represented as:

 and (2.10)

whenm andn are different integers.

More intuitively, if you change the magnitude of any one, harmonic component

signal, you will not affect the magnitudes of other, different harmonic components o

signal. They act (and add) indepently. Only theoutput is changed. This is the essence

orthogonality.

Given a particular function, there must be some harmonic(s) which can be add

produce this output. No signal can be orthogonal to all harmonics. This is the essen

completeness. Together, orthogonality and completeness allow us to shift conven

between the time and frequency domains.

U V⋅ u1v1 u2v2 … uNvN+ + +{ }=

u t() v t()

unvn

n 0=

N 1–

∑ 0=

mxcos() nxcos() xd

π–

π

∫ 0= mxcos() nsin x() xd

π–

π

∫ 0=
171717

with

g fre-

uency.

is +3,

ilar to

phase
Now that we have shown their orthogonality, we can create perpendicular axes

sine and cosine: the coordinates represent the amplitude of each harmonic. Usin

quency as a third axis, we can show the components of sine and cosine at each freq

Fig. 2.4 represents the function from Eq. 2.5. The magnitude of the sine component

and the magnitude of cosine is -4. Translating this to get magnitude and phase is sim

a transposition from Cartesian to polar coordinates, as shown. The magnitude and

are familiar, geometric quantities. We can rewrite the function in Equation 2.5 as:

 or (2.11)

Frequency

Sine

C
os

in
e

Figure 2.4:Translating a Harmonic to Find Magnitude and Phase

a1=+3

a2=-4

f t() A x φ1+()sin= f t() A x φ2–()cos=
18

nd

pre-

ential
where magnitude, , and phase as, or , a

whereatan represents the four quadrant inverse tangent. A Bode plot is a familiar re

sentation of this magnitude and phase information. Note that the complex expon

form below and Equations 2.5 and 2.11 are all completely identical:

(2.12)

2.2.2 Harmonic Product
.

Just as the addition of a sine and cosine

wave at a particular frequency will produce

a new, pure harmonic, their point-wise mul-

tiplication will, as well. The top of Fig. 2.5

shows the result of multiplying two compo-

nents of the function presented in Eq. 2.5.

The resulting harmonic is a sine wave:

(2.13)

The frequency of this new function is twice

that of the component sine and cosine

waves. The amplitude is the product of the

component wave amplitudes:

(2.14)

A a1
2 a2

2+= φ1 a2 a1⁄()atan= φ2 a1 a2⁄()atan=

f t() 1
2
--- e

j x φ2–()
e

j x φ2–()–
+()=

0 90 180 270 360 450 540 630 720

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Time

M
ag

ni
tu

de

Product of a Sine and Cosine Wave

+3sin(x)
−4cos(x)
(3sin(x))*(−4cos(x))

0 90 180 270 360 450 540 630 720

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Time

M
ag

ni
tu

de

Integrating the Harmonic Function

Figure 2.5:Pointwise Multiplication of
Same-Frequency Sin and Cos Waves

(a)

(b)

g t() a1 x() a2 x() B 2x()sin=cos⋅sin=

B a1 a2×=
191919

zero

mple,

cen-

s is

zero.

tion,

are

these

is the

ulti-
Multiplying two waves of differing fre-

quency produces more ornate-looking

results. Recall that any two, different har-

monics will be orthogonal, if we use a time

period that allows an integral number of

each wave. Figure 2.6 shows the function:

(2.15)

over such a period.

In both examples, the orthogonality of

the component waves means theintegral of

each resulting product will be zero. Now we

can see more clearly why this is. With

same-frequency sine and cosine waves, the

resulting product is a sine wave which oscillates about zero. The integral of sine is

over . This integral is also zero for the general case of orthogonal waves. For exa

in Fig. 2.6 (b), we can visualize spinning the resulting function 180 degrees about its

ter, (360,0). It is rotationally symmetric, so the integral is again clearly zero. Thi

essentially a restatement of the fact that the dot product of orthogonal vectors will be

Now, we can consider two, non-orthogonal functions. Figure 2.7 uses the func

, defined in Eq. 2.5. This time, I have shown the product:

(2.16)

Fig. 2.7 (b) shows the integral of . It is non-zero, because the multiplied vectors

non-orthogonal. The lightly-shaded tips show the regions which cancel one another;

areas are equal in magnitude but opposite in sign. The non-zero quantity remaining

area of the darker region in this middle image. At the bottom, we see the result of m

0 90 180 270 360 450 540 630 720

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Time

M
ag

ni
tu

de

Product of a Sine and Cosine Wave

+3sin(x)
−2cos(2.5x)
(3sin(x))*(−2cos(2.5x))

0 90 180 270 360 450 540 630 720

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

Time

M
ag

ni
tu

de

Integrating the Harmonic Function

Figure 2.6:Multiplying Harmonics of
Differing Frequencies

(a)

(b)

h t() 3 x()sin() 2 5 2⁄()x()cos–()⋅=

2πn

f t()

Fs t() x()sin f t()⋅=

Fs t()
20

erse -

ion,
plying sin(x) times itself:

Because of superposition, we can sep-

arate the product in Eq. 2.16 to get:

(2.17)

Since sin(x) and cos(x) are orthogonal

over this period, their contribution to

vanishes, and we need only con-

sider . The magnitude of

the sine component present, in this case

+3, will equal the ratio of the integrals of

and . Section 2.2.1

described how to create a harmonic out of

individual, orthogonal components. Here, we have a method to accomplish the rev

finding the individual, orthogonal components from a given signal. One final illustrat

shown below, should make the process clear:

x()sin()2 1
2
--- 1 2x()cos–()=

0 90 180 270 360 450 540 630 720

−6
−5
−4
−3
−2
−1

0
1
2
3
4
5
6

Time

M
ag

ni
tu

de

Product of two Harmonic Waves

+sin(x)
+3sin(x)−4cos(x)
sin(x)*(+3sin(x)−4cos(x))

0 90 180 270 360 450 540 630 720

−1

0

1

2

3

4

Time

M
ag

ni
tu

de

Integrating the Harmonic Product

53.13

0 90 180 270 360 450 540 630 720

0

0.25

0.5

0.75

1

Time

M
ag

ni
tu

de

sin2(x)

Figure 2.7: Integrating the Product of
Non-orthogonal Functions

(a)

(b)

(c)

Fs t() x()sin 3 x() 4 x()cos–sin()⋅=

Fs t() 3 x()sin()2 4 x() x()cos⋅sin()–=

Fs t()∫
Fs t() 3 x()sin()2=

Fs t() x()sin()2

0 50 100 150 200 250 300 350

−1

0

1

2

3

4

0 50 100 150 200 250 300 350

−1

0

1

2

3

4

0 50 100 150 200 250 300 350
−5

−4

−3

−2

−1

0

1

Figure 2.8:Extracting Amplitudes of Component Sine and Cosine

At top left, integrating sin(x).*f(x) over
one wavelength. The light areas are
opposite in sign and cancel. Manipulat-
ing the dark areas results in the total
rectangular region shown at top right.
Its area is one wavelength times the
mean height of the dot-product wave.
Here, that mean height is +1.5.

At bottom, the dot-product of f(x).*cos(x) can be manipulated (as
above) to show the integral results in a rectangular area with height of
-2. Again, this height is the mean height of the sum of the dot product.
Multiplying this mean height by 2 results in the amplitude of the har-
monic (sin(x) or cos(x)) used to create this dot product. Above:
2*(1.5) = +3. At right: 2*(-2) = -4. And our function is defined as:
f(x) = (+3*sin(x))+(-4*cos(x)). [We have extracted these amplitudes.]

(a) (b)

(c)
212121

ng

rm a

func-

e

,

er

tions

d,

he

e

s

e

y at a

uses
More formally, a given vector,f(t), can be thought of as a single unit of a repeati

sequence. Imagine copies of the function tacked end-to-end with one another to fo

periodic sequence. This function in the time domain can be represented by a unique

tion in the frequency domain. That is,f(t) is a sum of a set of harmonics, each with som

particular amplitude. If we integrate the product off(t) with a sine wave at frequency

the contributions from all these other harmonic components inf(t) terms vanish [because

of orthogonality]exceptthe term. (Figures 2.5 and 2.6 illustrate why the oth

terms vanish.) Likewise, for the product off(t) and a cosine wave, only the term

remains. Figures 2.7 and 2.8 show how taking an integral off(t) times some harmonic thus

allows us to extract the component amplitude of that harmonic. The following equa

provide the resulting integrals directly:

(2.18)

(2.19)

The result is that the magnitudeof the sinecomponentis equalto 2 timesthe mean

heightof thisproduct-wave. (Divide the result from Eq. 2.18 (or Eq. 2.19) over one perio

T, to get the mean, and then multiply by two: . This returns t

amplitude of the harmonic present in our function,f(t).) Recall our original function from

Eq. 2.5: . ([rad/sec]) In figure 2.8 (a) and (b), th

mean value of is 1.5, so the amplitude of within f(t) i

. In Fig. 2.8 (c), the component amplitude of in f(t) is twice th

mean product wave value of negative two: .

2.3 The Dynamic Signal Analyzer’s Method: Swept Sine Response
The dynamic signal analyzer outputs a discrete sine wave at one particular frequenc

time. Data from the excited system are collected on two channels, A and B. The DSA

ω

ωtsin2

ωtcos2

a1 ωtsin() ωtsin⋅() td
0

T

∫
a– 1

2
-------- 2ωtcos

a1

2
-----+

 td
0

T

∫
a1–

2
-------- 2ωtsin

a1t

2
-------+

0

T
a1T

2
---------= = =

a1 ωtcos() ωcos t⋅() td
0

T

∫
a1

2
----- 2ωtcos

a1

2
-----+

 td
0

T

∫
a1

2
----- 2ωtsin

a1t

2
-------+

0

T
a1T

2
---------= = =

2 a1T 2⁄() T⁄[]× a1=

f t() 3 xsin 4 xcos–= x 2πt 360⁄=

f t() xsin× xsin

a1 2 1.5× 3= = xcos

a2 2 2–()× 4–= =
22

f each

iscrete

the

ber of

inte-

ould

.)

limi-

t that

ignal

non-

gral

ns in

2.1):

g

sfer
the procedure outlined in Section 2.2.2 to recover the sine and cosine components o

collected data set. The equations to derive the sine and cosine amplitudes from a d

data vector, , are:

 ; (2.20)

where is the sampling rate, is the frequency of the input sine wave, and is

number of samples.

As mentioned on page 17, the data must be evenly spaced along an integral num

cycles. Otherwise, the orthogonality of the sine and cosine functions is lost, and the

grals will not provide the correct result. (Look at Figures 2.7 and 2.8 again, and it sh

be clear that integration must occur over a complete number of product-wave cycles

The dot products of the sampled vector with sine and cosine (Eq. 2.20) should e

nate most noise. Random noise will be uncorrelated to sine and cosine functions a

frequency (and to anything else, by definition). Other frequency components in the s

will be orthogonal to harmonics at the excitation frequency. They may have a small,

zero contribution, since the total sampling period may (likely) not extend over an inte

number of cycles for some given noise frequency, but this should not be significant.

Once the individual amplitudes of sine and cosine are found, using the equatio

2.20 , the information can be transformed into the frequency domain (see Section 2.

 ; (2.21)

is the amplitude of the harmonic at this frequency, and is the phase. Calculatin

and for a signal received by channel one, and , for channel two, the tran

function from one to two is:

 ; (2.22)

y k()

BC
2
N
---- y k() 2πωk t∆()()cos

k 0=

N 1–

∑= Bs
2
N
---- y k() 2πωk t∆()()sin

k 0=

N 1–

∑=

t∆ ω N

B B2
c Bs

2+()= φ
Bc

Bs
-----atan=

B φ B1

φ1 B2 φ2

G e2πω j()
B2

B1
------= G e2πω j()∠ φ2 φ1–=
232323

67.

] by

m the

ks by

vide

forms

from

mes

k-

9-357

:

r.
was
 new

ncy,

to
r-

he
tep
o

is
2.4 Section References and Suggested Reading
Complete references for each of the sources below are in the Bibliography on page

For a concise overview of Fourier analysis, ’FFT Fundamentals and Concepts’ [10

Ramirez uses direct, easy-to-understand language. This is a short book, written fro

practical perspective of an engineer and intended to convey major concepts. The boo

Paul Lynn [7] and by Stearns and Hush [12] have similar emphasis, while they pro

more detailed examples of particular equations and concepts, like the Fourier trans

and convolution. I have borrowed the example of orthogonal vectors (on page 16)

Lynn’s book.

Section 2.3, “The Dynamic Signal Analyzer’s Method: Swept Sine Response” co

directly from "Digital Control of Dynamic Systems," [4] by Franklin, Powell and Wor

man. Their discussion of non-parametric system identification methods on pages 34

is my primary source in implementing the dynamic signal analyzer.

A review of the method for extracting transfer function data at a particular frequency

1. Take data at a constant sampling rate. These N data points now form a vecto
2. For each point above, evaluate sin(t/T), where t is the time at which the point

sampled and T is the wavelength period at this particular frequency. This creates a
vector of length N. Do the same for cos(t/T).

3. Since any other harmonics are orthogonal to harmonics at our particular freque
if we take the sum of the dot product between the data vector and the sine vector,only the
component part of sine at this particular frequency will have non-zero contributions
this integral. Summing the dot product with cosine will likewise provide non-zero info
mation only for the cosine function at this frequency.

4. We know, therefore, that a non-zero value of the ’dot-product sum’ indicates t
presence of the particular harmonic we have multiplied with our data vector (from s
1.) But what exactly is this relationship? This chapter has illustrated the DSA method t
extract the amplitude present from this ’dot-product sum’ in four, equivalent ways:

• Figure 2.8 shows rectangular areas of ’mean dot-product’ height. Two times th
mean height value yields the component sine or cosine amplitude.

• Eq.’s 2.18 and 2.19 derive the result in a continuous integral form.
• The underlined sentence on page 22 describes this verbally.
• Equation 2.20 restates the relationship in the discrete form used by the DSA.
24

dem:

es

in the

AB

ns),

imate

rea-

s and

ly

n

re to
e (for

ly
dur-

ncies.
oard
Chapter 3

Implementation in the Simulink/dSPACE Environment

3.1 Introduction
The dynamic signal analyzer is comprised of two separate parts which work in tan

a Simulink subsystem block and a MATLAB function. The Simulink block interfac

with the dSPACE analog conversion channels and/or with controllers and systems

Simulink models, allowing analyses of both analog and digital systems. The MATL

function does the work of reading and writing data (using mlib and mtrace functio

interacting with the user during a run, and processing the sampled signal to approx

the transfer function at each frequency.

3.2 Design Goals
The analyzer should calculate the non-parametric transfer function up to 1 kHz with

sonably accurate results. It must also be useable. Below is a list of requirement

desired features to make the analyzer practical, intuitive and convenient to use.

1. It must not be difficult to learn to run the DSA. The user should be able learn
enough by typing the m-function name in a MATLAB window to operate it at a basic
level.

2. The Simulink DSA block should be simple and intuitive. It should be reasonab
clear how to connect subsystem ports to other simulink blocks in a system.

3. The MATLAB function should exit gracefully if the user wishes to quit before a ru
is complete. Ideally, a button would allow this option at any time.

4. Pausing the program during a run is also desirable. If properly designed, a featu
pause and restart would allow the user to reset the amplitude of the output sine wav
instance, by using COCKPIT and TRACE) to an appropriate value when necessary.

5. The program must display sampled data to allow the user to verify it is probab
valid. A Bode plot of the transfer function should be displayed and, ideally, updated
ing the run.

6. The function must output vectors of raw data and of the corresponding freque
7. Values for amplitude and frequency should be read directly from the dSPACE b

at each step, so the user may pause and alter the amplitude with COCKPIT.
252525

3.3 Flow Chart of the Design

Start Ask: Is a Simulink
model running?

No

Check Function
Arguments:

Frequency List? 1

Amplitude Value(s)? 2

Plotting Symbol?3

Yes

No

No

No

Yes

Yes

Yes

Use default frequency list values,

Ask:What are the UNITS
for input frequencies?

ra
d/

se
c

 (
de

fa
ul

t)

 H
er

tz

Use Hertz.Use rad/sec.

Read current amplitude from
dSPACE board: Is it >0 ?

Use first (or only)
amplitude input.

21 points from 10 to 1000 Hz.

 Use 0.1
 (default).

No
Yes

Keep this
setting.

Default to ‘bo’ (blue circle).

Plot TF with the
user-defined symbol.

Display header text for output
of values in MATLAB window.

Solve for each frequency...

Exit.

Figure 3.1:Design Flow Chart (left half)
26

Exit.

Set index i=1, to loop
through all frequencies.

(...continuing.)

Calculate Gain
and Phase at
this frequency. i=i+1

Return TF values.
Print information
on the format of
the output data
(and how to replot).

Done?

Pause Routine

Wait for ’Continue’
or ’Exit’ Button Press.

i=i-1

Continue
E

xi
t

Check: Did user change
amplitude manually?

Destroy
amplitude
argument
list.

NoYes

No Yes

Dashed arrows show paths to
the Pause Routine. Script
will follow this path if the
Pause button has value ’hit’.

Lock board.
Take data.
Unlock board.
Plot raw data.

Wait for system
to settle.

Set board to
Freq(i).
If amplitude
argument
list exists,
Set board to
Amp(i).

If i=1, show
waitbar.

Create Pause Button
with value ’unhit’.

Figure 3.2:Design Flow Chart (right half)
27

f the

sure

possi-

t from
spec-
n dur-

ad
c-

e. If
y

ti-
d, if
he

als a

pause

n

col-

first

last

ually,

, if

e rest

h cal-

er.
The flow chart across the two, preceding pages illustrates the basic structure o

MATLAB script file. In Figure 3.1, the function parses user input arguments to make

all necessary information is defined. There are default values for each of the three,

ble arguments:

1. Frequency values. If the user does not specify desired values, the range is se
10 to 1000 Hertz, with 21 points spaced equally on a logarithmic scale. If values are
ified, the user is asked is the units are Hertz or rad/sec. Plots of the transfer functio
ing the run will convert rad/sec to Hertz for the x-axis.

2. Amplitude value(s). If no value is given, the current ’Swept Sine.Amplitude’ is re
from the DSA block. A non-positive value is overwritten by the default of ’0.1’. If a ve
tor of values is supplied, each one is associated with the same index frequency valu
this vector is shorter than the frequency list length, the final value will be used for an
remaining points to be analyzed.

3. Plotting symbol. The figure plotting the system transfer function is not automa
cally cleared with each run, so that data from sequential runs can be easily compare
desired. This argument should be one of the acceptible MATLAB plotting options. T
default uses blue circles to plot points.

The program loops through all requested frequency values. A break button sign

pause. At several points in the loop, there is a pause test. Once the program enters

mode, it will wait until a click on either a ’Continue’ or ’Exit’ button. Exiting ends the ru

with a brief message acknowledging the break. If the program continues, data are

lected for the previous frequency value, except if the current value was already the

point. The amplitude value is read from the dSPACE board, to compare with the

known value. If the two differ, the user has apparently changed the amplitude man

for instance by using COCKPIT. Any list of amplitude values for the run is destroyed

the program detects a manual user change. The amplitude will not change during th

of the run, unless the user breaks and resets it again manually.

The output provides three columns, with frequency, magnitude and phase for eac

culated point. A message with format and unit information is printed to inform the us
28

runs

king

b)).

output.
Chapter 4

User’s Guide to the Dynamic Signal Analyzer

4.1 Getting Started
The model ’dsa_demo.mdl’ incorporates the DSA block in a simple model.

In Figure 4.1 (a), output from the analyzer enters a Zero-Pole block. This system

entirely on the dSPACE board, with no connections to the outside world. Double-clic

on the ’Dynamic Signal Analyzer’ block will open the subsystem (shown Fig. 4.1 (

Channel1 measures the input to the Zero-Pole system, and channel2 measures its

4.1.1 Zero-Pole System
The demo system we will measure has one pole, with a

breakpoint at 250 Hz, and one zero, with a breakpoint at 40

Hz. To convert to radians/sec for the zero-pole block, each

value is multiplied by . If you are creating this model

from scratch, the values would be:

zero=(2*pi)*[-40]; pole=(2*pi)*[-250];
gain=[1].

MATLAB can provide a quick profile on the expected sys-

tem Bode plot, as shown in Figure 4.2. In MATLAB:

>> sys1=zpk((2*pi)*[-40],(2*pi)*[250],[1]);

Figure 4.1:Demo Model ’dsa_demo.mdl’

1

(a) (b)

2

1

Frequency (rad/sec)

P
ha

se
 (

de
g)

 M
ag

ni
tu

de
 (

dB
)

−15

−10

−5

0

10
1

10
2

10
3

20

30

40

Figure 4.2:Expected
System Bode Plot

 Frequency (Hz)

 P
ha

se
 (

de
g)

G

ai
n

(d
b)

2π
29

el

 to the

ou

e:

The

rtant:

e
z. In

.
ault

un-

ve a
>> bode(sys1)

4.1.2 Parameter Settings and Build
1. There should be a DSA directory containing two files you will need.Copy these filesto
a directory in your own locker:

• dsa_demo.mdl
• dsa_tf.m

2. Select theParameters:Settingsmenu at the top of the model window. The demo mod
should already have the following settings:

• Thestop time should be a huge number, like1e10, so we won’t worry about the
model ending during our experimentations.

• Use afixed step size of 0.5e-4 (or 1.0e-4)
• Solve usingEuler ode1.

3. Save the Simulink model and selectTools:RTW Build to begin running it on the
dSPACE board. (You may sometimes need to resave and begin a second build, due
quirkiness of the file server in the lab.)
4. Run the MATLAB function dsa_tf() to calculate the system frequency response. Y
should be able run the program simply by entering

>> dsa_tf

at the MATLAB command prompt. You will be prompted to hit enter again to continu

Note: Make sure your (DSA) model is built and running.
This program will erase any images or plots in figure 1 and figure 2.

 If you would like to STOP this program now, enter ’q’ to quit,
 otherwise, just hit enter to continue :

The analyzer will use a default sine wave amplitude of 0.1 range from 10 Hz to 1kHz.
next section provides a quick guide to using the function.

4.2 Running the MATLAB Function dsa_tf()
Here is an example of a command to run the analyzer MATLAB function:

>> my_tf = dsa_tf(10.^[1:.1:3],0.1,’bo’)

The function takes up to 3 arguments, separated by commas. The first two are impo

1. A vector of frequencies. Frequencies below 10 Hz may take a fairly long time, sinc
the program will wait for the system to settle, and you should not use values over 1kH
the underlined command above, the frequencies have logarithmic spacing from to
[All of the argument values shown in the underlined example above are also the def
values for the function.]

The program will ask you whether these values are in Hertz or radians/sec. R
time transfer function plots will be done using Hertz for the x-axis, regardless. Each
radian/sec value will be converted to Hertz for the plot.
2. A vector or scalar for amplitude(s) for the sine wave generator.If you use a list, the
nth amplitude is associated with the nth value from your frequency list. If you just gi

101 103
30

ios

es

tch

must

ls will

you
single number, that amplitude will be used at all frequencies.
3. A symbol to use for plotting the transfer function. If you do two, consecutive runs,
specifying a different symbol for each will make the plot more clear. Type

>> help plot

at the MATLAB prompt for a description of available plotting symbols. To erase a prev
plot before a given run, clear the figure by typing:

>> figure(1)
>> clf

4.3 Pause and Other Features
You should now have dsa_tf running.

The program will wait some time for

the system to settle; you should a

screen similar to the one in Figure 4.3,

with a waitbar indicating progress

overlaid.

After a minute or so, the first set of

data should be displayed in the left-

hand MATLAB figure (’figure(2)’ on

your computer screen) and the first

transfer function values should be

plotted at the right (’figure(1)’).

Let the analyzer collect the first few points. MATLAB should display two figur

which look similar to those in Figure 4.4. While the analyzer is running, you should wa

the figure at the left carefully, to make sure data from bothchannel1andchannel2 look

reasonable. More specifically, you should see basically sinusoidal output, and you

be sure the peaks of the waves are not being clipped by saturation. The D/A channe

only allow values in the range of -1 to +1, for instance. If the signal looks problematic,

should hit theBreak button at the bottom of the lefthand figure to pause the run.

COLLECTING

FIRST

DATA SET...

HIT to BREAK

Figure 4.3: Initial Display
31

with

o dis-

e sine

cribes

dis-

from

litude

per-

the
Your data should look fine, but hit the Break button now, anyway, to experiment

stopping and restarting.

When you hit the Break button, the bottom of the screen should have changed t

play a new message, indicated the program has halted and reminding you that th

wave amplitude can be reset while the program is in pause mode. Appendix C des

how to use COCKPIT to modify variables like the sine wave amplitude and to create

plays of both system outputs and variables. Specifically, if the sinusoidal output

either channel looks saturated, you can use COCKPIT to reduce the sine wave amp

while the program is in pause mode. There is also a guide to using TRACE, which o

ates like an oscilloscope for Simulink/dSPACE system outputs.

The analyzer will not continue until you select one of two buttons at the bottom of

lefthand figure:Exit or Continue. Choose one when you are ready

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02
RED: channel2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
BLUE: channel1 (input)

seconds

Check that the OUTPUTS above are :

* NOT SATURATED.

* making good use of the −1 to +1 range available.

otherwise, BREAK and run with new AMPLITUDEs.

10
1

10
2

−15.7

−15.65

−15.6

−15.55

−15.5

−15.45

−15.4

−15.35

−15.3

−15.25

Frequency (Hertz)

G
ai

n
(d

b)

Transfer Function (channel2/channel1)

10
1

10
2

11

12

13

14

15

16

17

18

19

Frequency (Hertz)

P
ha

se
 (

D
eg

re
es

)

Figure 4.4:The Dynamic Signal Analyzer in Progress

HIT to BREAK

Check that the OUTPUTS above are:

 * NOT SATURATED.

 * Not buried in noise.

otherwise, BREAK and run with new AMPLITUDEs.
32

33

For the example MATLAB run below, the program was interrupted after the third data

point (at 15.8 Hz), and restarted. Shortly after this, it was paused again and then exited.

The transfer function for the first three points is output after the exit. Each row in the 3x3

matrix at the bottom of the page refers to a particular frequency (in Hertz). The second and

third columns indicate gain and phase (see next section).

» dsa_tf7

Note: Make sure your (DSA) model is built and running.
 This program will erase any images or plots in figures 1 and 2.

 If you would like to STOP this program now, enter ’q’ to quit,
 otherwise, just hit enter to continue :

Running 21 points.
 [Range = 10.00 [Hz] (min) to 1000.00 [Hz] (max)]
Current model amplitude is 0.100

--- :: -----------------------
_________Frequency_________ _SineAmp__ :: __GAIN___ _PHASE_
 Hertz [rad/sec] :: db Degrees
--- :: -----------------------
 10.0000 [62.8319] 0.100000 :: -15.664 11.75
 12.5893 [79.1006] 0.100000 :: -15.522 14.60
 15.8489 [99.5818] 0.100000 :: -15.308 18.00
 19.9526 [125.3660] 0.100000 ::
BREAK: going back to previous frequency.
 * Use COCKPIT to reset Amplitude.
 * USE TRACE to view resulting sine waves.
Restart DSA by hitting RESTART button in figure 2.
 15.8489 [99.5818] 0.199000 ::
BREAK: going back to previous frequency.
 * Use COCKPIT to reset Amplitude.
 * USE TRACE to view resulting sine waves.
Restart DSA by hitting RESTART button in figure 2.

 **
 *** Program exited by user during run.... bye. ***
 **

ans =

 10.0000 0.1647 11.75
 12.5893 0.1674 14.60
 15.8489 0.1716 18.00

n
el1,

units

with

use
4.4 Data Output Format and Replotting
The function dsa_tf() returns a matrix of three columns.

1. Column one is a list of thefrequencies analyzed, in the units selected by the user.

2. The second column gives thegain from channel1 to channel2 at this frequency, as a
absolute quantity. (For instance, if the amplitude at channel2 is 10 times that of chann
the gain returned will be 10.0,not 20 db.)

3. The third column gives the phase from channel1 to channel2 at this frequency, in
of degrees.

You can define a new variable to store the returned data by invoking the function

a MATLAB command such as:

>> my_tf = dsa_tf(my_freqs, my_amp)

To replot the transfer function data now stored in the new matrix ’my_tf’, you can

the following plotting commands:

>> figure(3); clf
>> subplot(211)
>> semilogx(my_tf(:,1), 20*log10(my_tf(:,2)), ’r--’)
>> ylabel(’Gain (db)’)
>> subplot(212)
>> semilogx(my_tf(:,1), my_tf(:,3), ’r--’)
>> ylabel(’Phase (degrees)’)
34

z.
Chapter 5

Results: Comparisons and Estimated Error

5.1 Comparison with a Commercial Dynamic Signal Analyzer.
Below are data for the low-pass RC circuit in Figure 5.2 with a breakpoint near 100 H

I tested the circuit both with the Simulink

analyzer and with a commercial dynamic signal

analyzer manufactured by Hewlitt-Packard.

The solid lines in Figure 5.1 show the transfer

function obtained by the HP machine, which is

very close to the expected output. The Simulink

data are shown as points.

10
1

10
2

10
3

−25

−20

−15

−10

−5

0

Frequency (Hz)

G
ai

n
(d

B
)

Low−pass RC circuit with breakpoint at 100 Hz

10
1

10
2

10
3

−105

−90

−75

−60

−45

−30

−15

0

Frequency (Hz)

P
ha

se
 (

de
gr

ee
s)

HP analyzer
Simulink DSA

Figure 5.1:Low-Pass RC Cicuit Response

D/A A/D

Figure 5.2:Low-pass RC Circuit

R = 73 kΩ

C = .022µF

bp = = 99Hz
1

2πRC

35

ansfer

r are

nce is

ltage

e at

he Sim-

ult of

, due

The

ystems

in-

design

el is:

in a

,

ld be

ain

y.
There are two primary discrepancies between the expected and measured tr

function. First, the gain values at low frequencies measured by the Simulink analyze

approximately 2db lower than predicted. This occurs because the RC circuit resista

high, compared to the resistance of a dSPACE A/D channel to ground, creating a vo

divider.

The more significant errors in the Simulink output occur in the calculations of phas

higher frequencies. Using a step size of 1e-4 seconds, the phase measurements of t

ulink analyzer lag the predicted value by about 18 degrees. This is a predictable res

the discrete sine wave output from the DSA.

Both discrepancies are described in more detail below. They are both real effects

to the design of the dSPACE board and the sampling rate, which will affect models.

DSA is measuring the actual system response accurately. Users should note that s

implemented within the Simulink/dSPACE environment will differ from idealized, cont

uous system models, as described below, and that this may sometimes be a notable

concern.

5.2 Lower Than Expected Gain
The A/D channels on the dSPACE board have an effective resistance of about

to ground. The fraction of the total voltage drop measured by the dSPACE A/D chann

For less than a few , the voltage measured by the AD channel will be with

percent or two of the predicted value. The RC circuit resistance used here was 73

however, creating a significant voltage divider. The predicted AD measurement wou

, or about 80% of the ideal. This corresponds to . The g

seen was about 2 db below the ideal value, so this seems to explain the discrepanc

RAD 300kΩ=

VAD

RAD

RAD RRC+

 Vtotal=

RRC kΩ

kΩ

300
300 73+
--------------------- 20

300
373

 log 1.9db–=
36

. The

erate

. 5.3

tional

0e-4

s, or:

lf as
5.3 Phase Lag
Figure 5.3 shows the expected lag in output caused by using a discrete input signal

plotted data come from a Simulink model of the same low-pass filter analyzed to gen

Figure 5.1. When the input signal (Fig. 5.3 (a)) is continuous, the RC filter output (Fig

(b)) lags the input by nearly 90 degrees of phase. With the discrete inputs, the addi

output lag is one half the zero-order hold sampling rate. With a sampling period of 1.

seconds (10 points per 1kHz signal wave), this amounts to a delay of 0.5e-4 second

Additional Phase Lag

With a sampling period half as long (0.5e-4 seconds), this additional "error" lag is ha

great. In Figure 5.3 (b), you can see the relative delays for each.

360° 0.5 4–×10

1.0 3–×10

= 18°=

Figure 5.3:Discrete Sampling Lag with 1kHz Sine Wave

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

x 10
−3

−1

−0.5

0

0.5

1

Time (sec)

V
ol

ta
ge

RC−System Input

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

x 10
−3

−3
−2.5

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2
2.5

3
x 10

−3 RC−System Output

Time (sec)

V
ol

ta
ge

Continuous
StepSize of 0.5e−4
StepSize of 1.0e−4

(a)

(b)
37

ling

f the

r the

at ten

of no

rier

y sam-

ring

rep-

for
The general result is a "one-half sample delay" in output1 This means the sampling-

induced "error" is linearly related to the sampling period: if you can speed your samp

rate by a factor of two, you will cut the lag error by half.

The sampling rate capability of the dSPACE board depends on the task load o

entire model. For the DS1102, a rate of 20kHz is possible in a simple model. Fo

dynamic signal analyzer to provide reasonable results, I would suggest no fewer th

points per wavelength. For a bandwidth of 1kHz, this means using a stepsize setting

more than 1e-4 in the Simulink model.

One way to quickly visualize the half-sample delay is to reconstruct part of the Fou

series needed to create the continuous equivalent of this staircase signal created b

pling. With a zero-order hold, the D/A channel continues to output the same value du

the interval between updates. Figure 5.4 shows a zero-order hold signal. If we wish to

1. See Oppenheim [9], pages 538-540. Refer to the rest of chapter 8 in "Signals and Systems"
discriptions of other sampling issues, as well.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Continuous
Discrete
Zero−Order Hold

Figure 5.4:Zero-Order Hold Sampling
38

e

e for

xis of

main

e.)
resent this jagged path in thefrequency domain, there is clearly a large component at th

frequency of the pre-sampled, continuous signal (represented by the dashed line).

Figure 5.5 shows an enlarged section of

the previous figure. The sampling interval

here creates a stepping pattern that is sym-

metric about the vertical line at ,

as shown above. Because of the symmetry,

it is clear the phase of the predominant har-

monic component (i.e. the original, continu-

ous frequency) is shifted by exactly half a

sample width. For a particular sampling rate, however, the phase shift is still the sam

any set of evenly spaced samples. In Figure 5.6, the steps do not have a vertical a

symmetry, but a Fourier transform will generate exactly the same phase shift for that

frequency component. (It is simply easier to notice this initially in the symmetric cas

0.6 0.65 0.7 0.75 0.8 0.85 0.9
−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

Continuous
Discrete
Zero−Order Hold

Figure 5.5:Half Sample Phase Shift

Figure 5.6:Asymmetric Zero-Order Hold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x 0.775=
39

40

qually

quire

odel

this.

-file

ecause

t the

gating

nting

e-4

e out-

o par-

could

fre-

from
Chapter 6

Suggestions for Future Simulink/dSPACE Tools

6.1 Sampling Rate
As mentioned on page 17, the sampling rate should ideally be set to space the data e

and evenly along some number of complete cycles. To accomplish this would re

resetting the sampling rate for each frequency. This probably requires resetting the m

step size after the model is built and running. The DSA m-file function does not do

Future refinements could include investigating whether mtrace and mlib functionscan

change the simulation step size in real-time and, if so, then implementing this in the m

code.

6.2 Error Correction for High-Frequency Phase Calculations
As discussed in Section 5.1, the calculated phase will lag the actual system phase b

the sine wave exciting the system is not continuous. It is certainly possible to predic

magnitude of this lag, thus correcting the phase calculation to some degree. Investi

the how to do this, calculating the extent of the expected improvement, and impleme

the correction routine as part of the current dsa M-file could be beneficial.

6.3 Outside Sine Wave Source
The bandwidth of the DSA is limited by the model step size, which is typically about 1

seconds for RTI models. For frequencies approaching 1 kHz, the discrete sine wav

put by the analyzer hampers the accuracy of the analyzer (as mentioned above). T

tially automate data acquisition above the current bandwidth, an outside source

generate the input sine wave. A discrete Fourier transform would distinguish the

quency of the outside source. This system would require more hands-on attention
41

and

m-

rea-
the user, particularly to insure the input values are reasonable.

The sampling rate would still be limited by the step size of the dSPACE board,

will in turn limit the maximum bandwidth. (Sampling theory requires more than two sa

ples per cycle.) With some careful planning, such a Simulink tool might still provide a

sonably automated data acquisition system for higher frequencies.
42

r out-

nnel1’

gura-

n. As

ill be

A.2
Appendix A

The Simulink DSA Subsystem Block
This appendix describes some typical DSA configurations.

Measuring System Response
Figure A.1 shows the DSA subsystem in its simplest arrangement. Here, the analyze

puts a discrete sine wave to a D/A channel and also uses this signal as input to ’cha

of the DSA. Channel2 receives system response through an A/D channel. This confi

tion measures system response.

Loop Transmission
To measure the loop transmission, insert the analyzer in a desired signal-input locatio

in the previous example, feed SineOut into channel1 of the DSA. In general, there w

additional elements - for instance, some digital controller. The solid lines in Figure

connect a DSA block to measure loop transmission.

Figure A.1: Dynamic Signal Analyzer Measuring System Response

Σ
 ADC

DAC
 Your
 Controller

Figure A.2: Linking Additional Components with the DSA Block

+

-

43

ed the

nes in

port,

inks,

n the

ever,

s exist

sing
Closed-Loop Response
You can measure closed-loop response by branching from the channel2 input to fe

signal into a summing block. The additional elements needed are drawn in dashed li

Figure A.2.

Details About the Subsystem Block
The examples in this section show the

SineOut signal being fed into channel1. This

configuration is typical but not necessary.

Channel1 and channel2 are used to obtain the

transfer function between two, desired loca-

tions in a system. The sine wave input can go

to a completely different location within the

system.

The DSA subsystem block consists of a swept sine source, sent to the output

’SineOut’, and two input channels. The input channels connect to Simulink display s

as shown in Figure A.3. The display does not function when the dSPACE code runs o

board. When I left channel1 and channel2 unconnected to any Simulink blocks, how

their variable names did not seem to appear in the generated trace file. The display

to force the RTI to identify channel inputs, so they may be identified and sampled u

mtrace functions.

Figure A.3: Inside the DSA Subsystem
Block

1

2

1

44

the

r a

ri-

(and
Appendix B

MATLAB Source Code to Run the DSA
The m-file below runs the dynamic signal analyze block. The Simulink block and

MATLAB function are designed to run together. The DSA can not run without this (o

similar) MATLAB function. The Simulink DSA subsystem block defines particular va

able names which the code below references directly. Either may be edited

improved), but care should be exercised in doing so.

Figure B.1: MATLAB M-file Code: dsa_tf.m

(below)

function [mytf] = dsa_tf(w_list,amp_list,sval)

% function [mytf] = dsa_tf1(w_list,amp_list,sval)

% w_list : optional vector of INPUT FREQUENCY values at which to find TF

% amp_list : optional vector of INPUT AMPLITUDE values at which SINE

% output will sweep. (If amp_list is a scalar, the same

% amplitude will be used at ALL frequencies...)

% sval : optional string value for the plot (e.g. 'r*' would plot

% red *'s at points on figure(1)

%---

% OUTPUTS: The output is an (N x 3) matrix. ’N’ is the length of w_list.

% Column 1: Returned FREQUENCY list (w_list values)

% Column 2: GAIN, as the ratio of channel2/channel1 (not in db)

% Column 3: PHASE, in degrees

%---

% NOTES:

% (1) You must be running a SIMULINK model on the ds1102 board

% for the MATLAB function dsa_tf() to work, and the simulink

% model must include a special block called 'Dynamic Signal Analyzer'

% (2) This program will overwrite figures 1 and 2 (in matlab)!!

% Before running dsa_tf(), make sure you do not have images/plots

% in either figure which should not be destroyed.

%---

% Section 0: Define number of samples and default siggen amplitude.

N=10000; % N: number of points to sample.

w_rad=0; % indicates frequencies are NOT in rad/sec by default (Hz default)

dsa_A=.1; % default AMPLITUDE of Swept Sine from DSA

exitval=0; % program will exit if this is non-zero.

fprintf(1,'\nNote: Make sure your (DSA) model is built and running.\n');
45

fprintf(1,' This program will erase any images or plots in figures 1 and
2.\n\n');

fprintf(1,' If you would like to STOP this program now, enter ''q'' to
quit,\n');

isok=input(' otherwise, just hit enter to continue : ','s');

if strcmpi(isok,'q')

 fprintf(1,'\nOK, bye.\n')

else

 %---

 % Section 1: Get dSPACE board parameter addresses with mlib().

 mlib('SelectBoard','ds1102');

 mtrc31('SelectBoard','ds1102');

amp_addr=mlib('GetSimAddr','P[Model Root/Dynamic Signal Analyzer/Swept
Sine.Amplitude]');

freq_addr=mlib('GetSimAddr','P[Model Root/Dynamic Signal Analyzer/Swept
Sine.Frequency]');

 phi_last=0; B=1;

 %---

 % Section 2: Make sure all frequencies and amplitudes are set for this run:

 if ~exist('sval') % default symbol for Bode plot

 sval='bo';

 end

 if ~exist('w_list')

 w0=1:(1/10):3.0;

 w_use=10.^w0;

fprintf('\nRunning %d points.\n [Range = %.2f [Hz] (min) to %.2f [Hz]
(max)] \n',length(w_use),min(w_use),max(w_use));

 else

 is_rad=input('\nThe list of frequencies you entered was in:\n HERTZ (h) or
RAD/SEC (r) [default to Hertz]? ','s');

 if strcmpi(is_rad,'r')

 fprintf('\n--> using RAD/SEC\n');

 w_use=(1/(2*pi))*w_list;

 w_rad=1;

 elseif strcmpi(is_rad,'h')

 fprintf('\n--> using HERTZ\n');

 w_use=w_list;

 else

fprintf('\n...hmmm, I don''t understand, so I''m going to default and
use HERTZ.\n');

 w_use=w_list;

 end

 end

 if ~exist('amp_list')

 A=mlib('Readf',amp_addr);

 if A<=0

 A=dsa_A; % initial SINE WAVE amplitude

 fprintf('Using a DEFAULT amplitude of %5.3f\n',A);

 mlib('WriteF',amp_addr,A);

 else

 fprintf('Current model amplitude is %5.3f\n',A);

 end

 %amp_list=A+(0*w_use);

 else
46

 if length(amp_list)<length(w_use)

 if length(amp_list)==1

fprintf('Using %.4f as SINE WAVE amplitude as ALL frequen-
cies...\n',amp_list);

 else

fprintf('WARNING: User amplitude and frequency vectors of unequal
length\n');

 end

 %amp_list=amp_list(1)+(0*w_use);

 A=amp_list(1);

 end

 end

 %---

 % Section 3: Begin outputting the frame for a TABLE to the matlab screen.

fprintf('\n--- :: ---------------------
--\n');

fprintf('_________Frequency_________ _SineAmp__ :: __GAIN___
PHASE\n');

fprintf(' Hertz [rad/sec] :: db
Degrees\n');

fprintf('--- :: -----------------------
\n');

 %---

% Section 4: Run through all requested FREQUENCY values; find gain and phase
at each.

 f1=figure(1); set(f1,'Position',[465,220,450,520]);

 f2=figure(2); clf; set(f2,'Position',[10,220,450,520]);

 patch([-.5 1.5 1.5 -.5 -.5],[-.5 -.5 1.5 1.5 -.5],[0 0 0])

 patch([0 0 1 1 0],[0 1 1 0 0],[0 1 0])

 axis([-.5 1.5 -.5 1.5])

 t1=text(.5,.65,'COLLECTING'); set(t1,'HorizontalAlignment','center');

 t1=text(.5,.5,'FIRST'); set(t1,'HorizontalAlignment','center');

 t1=text(.5,.35,'DATA SET...'); set(t1,'HorizontalAlignment','center');

 axis off

 u1=uicontrol(2,'Position',[10 10 150 30],...

 'String','HIT to BREAK',...

 'Callback','stopval=1;',...

 'Enable','on','Value',5);

 i=1;

 while (i<=length(w_use)) & (exitval==0)

 w=w_use(i); % frequency for this data set

 if exist('amp_list')

 if length(amp_list)>=i

 A=amp_list(i); % NOTE: amplitude must be 'reasonable'...

 mlib('WriteF',amp_addr,A);

 % USER must visually check that OUTPUT is not saturated!!!

 end

 end

 A=mlib('ReadF',amp_addr);

 fprintf('%9.4f [%10.4f] %9.6f :: ',w,2*pi*w,A);

 drawnow;

 mlib('WriteF',freq_addr,w); % mlib('WriteF',amp_addr,A);

 tmax=(150/w)+2;
47

 if i==1

 hwait=waitbar(0,'Please wait...');

 end

 tic % give system some time to settle...

 while (toc<(150/w)) & (get(u1,'Value')>1)

 drawnow

 if exist('hwait')

 waitbar(toc/tmax)

 end

 end

 %---

 % Section 4-1: Here is the actual procedure to get gain and phase at

 % a particular frequency. This would be more elegantly implemented

 % as a separate function. Instead, it is included within this loop

 % so that the dynamic signal analyzer can be run from a SINGLE FILE.

 % (Otherwise, the user has to worry about having all files needed.)

 %k=[0:(N-1)]';

 A=mlib('Readf',amp_addr); w=mlib('Readf',freq_addr); T=1/w;

 %mtrc31('SelectBoard','ds1102');

y_addr=mtrc31('GetAddr','rti B[Model Root/Dynamic Signal Analyzer/
channel1]',...

 'rti B[Model Root/Dynamic Signal Analyzer/channel2]',...

 'rti B[Model Root/Dynamic Signal Analyzer/Swept Sine]');

 mtrc31('TraceVars',y_addr);

 samp_per=mlib('GetSimAddr','Task Info/Timer Task 1/sampleTime');

 dt=mlib('ReadF',samp_per);

 ncyc=floor(w*dt*N); % Use an INTEGRAL number of sine waves!!

 Nlast=round(ncyc/(w*dt));

if ncyc>10 % Display no more than this number of sine waves

 Nplot=round(10/(w*dt)); % for the user to observe during the run...

 else

 Nplot=Nlast;

 end

 tic

 while (toc<2) & (get(u1,'Value')>1) % settle time pause...

 drawnow

 if exist('hwait')

 waitbar((tmax-2+toc)/tmax)

 end

 end

 if exist('hwait')

 close(hwait)

 clear hwait

 end

 if (get(u1,'Value')>1)

 % !@!!! set frame in desired way!!!

 mtrc31('SetFrame',[],1,0,N);

 %mtrc31('SetFrame',dt,1,0,dt*(N));

 mtrc31('SetTrigger',y_addr(3,:),0,1);

 mtrc31('LockProgram');

 mtrc31('StartCapture');

 while mtrc31('CaptureState')~=0

 drawnow;

 end
48

 my_data=mtrc31('FetchData');

 % Take an INTEGRAL number of sine waves, total:

 k=[0:(Nlast-1)]';

 ncyc=floor(w*dt*Nlast);

 y_out=my_data(2,1:Nlast);

 y_in=my_data(1,1:Nlast);

 t_out=dt*[1:Nlast];

 mtrc31('UnlockProgram');

 end

 set(u1,'Enable','off'); % do not allow a break until new data presented

 if (get(u1,'Value')<1)

 i=max(1,(i-1));

 w=w_use(i); % frequency for this data set

 if exist('amp_list')

 if length(amp_list)>=i

 A=amp_list(i); % NOTE: amplitude must be 'reasonable'...

 mlib('WriteF',amp_addr,A);

 end

 end

 % USER must visually check that OUTPUT is not saturated!!!

 fprintf(1,'\nBREAK: going back to previous frequency.\n');

 fprintf(1,' * Use COCKPIT to reset Amplitude.\n');

 fprintf(1,' * USE TRACE to view resulting sine waves.\n');

 fprintf(1,'Restart DSA by hitting RESTART button in figure 2.\n');

 %fprintf('%9.4f [%10.4f] %9.6f :: ',w,2*pi*w,A);

 drawnow;

 % Go back and RESET freq and amp to last values, in case

 % user decides to view and change, using TRACE and COCKPIT

 mlib('WriteF',freq_addr,w); %mlib('WriteF',amp_addr,A);

 startval=0; exitval=0;

 subplot(3,1,3); cla;

 patch([0 30 30 0 0],[2 2 7 7 2],[0 1 0]);

 axis off; axis([0 30 2 7]);

 text(.5,6,'You can use COCKPIT and TRACE to reset');

 my_str=num2str(w_use(i),'%.1f');

 text(.5,5,['Amplitude and then CONTINUE at ' my_str ' Hz...']);

 text(.5,4,'...or you can EXIT to completely rerun DSA.');

 text(.5,3,'[choose EXIT or CONTINUE]');

 set(u1,'String','HIT to EXIT','Callback','exitval=1;');

 u2=uicontrol('Position',[200 10 150 30],'Value',5,...

 'String','CONTINUE','Callback','startval=1;');

 set(u1,'Enable','on','Value',5);

 while (get(u1,'Value')~=0) & (get(u2,'Value')~=0)

 drawnow; % wait for user to hit a button...

 end

 if get(u1,'Value')==0

 exitval=1; % exit the dsa

 else

 startval=1; % restart the dsa

 A=mlib('ReadF',amp_addr);

 if exist('amp_list')

 if length(amp_list)>=i

if A~=amp_list(i) % USER HAS RESET AMPLITUDE! ignor future
presets
49

 clear amp_list; % amp_list no longer exists for this run.

 end

 end

 end

 figure(2); clf;

 patch([-.5 1.5 1.5 -.5 -.5],[-.5 -.5 1.5 1.5 -.5],[0 0 0])

 patch([0 0 1 1 0],[0 1 1 0 0],[0 1 0])

 axis([-.5 1.5 -.5 1.5])

t1=text(.5,.65,'COLLECTING'); set(t1,'HorizontalAlignment','center');

t1=text(.5,.5,[my_str ' Hz']); set(t1,'HorizontalAlignment','cen-
ter');

t1=text(.5,.35,'DATA SET...'); set(t1,'HorizontalAlignment','cen-
ter');

 axis off

 u1=uicontrol(2,'Position',[10 10 150 30],...

 'String','HIT to BREAK',...

 'Callback','stopval=1;',...

 'Enable','on','Value',5);

 end

 else

 % user did NOT request a break, so analyze this data set:

 if exist('y_out')

if (max(y_out)<0.95) & (min(y_out)>-.95) & (max(y_in)<.95) &
(min(y_out)>-.95)

warncolor=[1 1 0]; % Amplitude not 'saturated'.
OK to use this data.

 else

 warncolor=[1 0 0];

 end

 % y_sin=(dt*(w*2*pi)*(k))';

 y_sin=((w*2*pi)*t_out); % Ideal SINE at this freq

 Bc=(2/(length(y_out)))*sum((y_out).*cos(y_sin));

 Bs=(2/(length(y_out)))*sum((y_out).*sin(y_sin));

 B_=sqrt(Bc^2+Bs^2); % Amplitude of OUTPUT at this freq

 Ac=(2/(length(y_out)))*sum((y_in).*cos(y_sin));

 As=(2/(length(y_out)))*sum((y_in).*sin(y_sin));

A_=sqrt(Ac^2+As^2); % Amplitude of INPUT at this freq (check)

 Gain=B_/A_;

 phi_out=atan2(Bc,Bs);

 phi_in=atan2(Ac,As);

 phi=phi_out-phi_in; % Difference in phase (input->output) (rad)

 figure(2); clf

 subplot(311)

 plot(t_out(1:Nplot),y_out(1:Nplot),'r.');

 hold on; grid on; title('RED: channel2'); %xlabel('seconds')

 subplot(312)

 plot(t_out(1:Nplot),y_in(1:Nplot),'b.');

 hold on; grid on; title('BLUE: channel1 (input)'); xlabel('seconds')

 subplot(313)

 patch([0 30 30 0 0],[2 2 7 7 2],warncolor);

 axis off; axis([0 30 2 7]);

 text(.5,6,'Check that the OUTPUTS above are :');
50

A

 text(1.5,5,'* NOT SATURATED.');

 text(1.5,4,'* Not buried in noise.');

 text(.5,3,'otherwise, BREAK and run with new AMPLITUDEs.');

 u1=uicontrol(2,'Position',[10 10 150 30],...

 'String','HIT to BREAK',...

 'Callback','stopval=1;',...

 'Enable','on', 'Value',5);

 stopval=0; % insure 'stopval' is reset to show 'OK' state

 %else

 % A=A*3/4; % REDUCE INPUT AMPLITUDE AND RETAKE DATA!

% fprintf('Reducing input amplitude from %5.3f volts to %5.3f
volts...\n',(4/3)*A,A);

 % mlib('SelectBoard','ds1102');

 % mlib('WriteF',amp_addr,A);

 %end

 %end

 end

 if phi>phi_last

 while (phi-phi_last)>(pi)

 phi=phi-(2*pi);

 end

 else

 while (phi-phi_last)<(-pi)

 phi=phi+(2*pi);

 end

 end

 mytf(i,:)=[w Gain (180/pi)*phi];

 fprintf(1,'%8.3f %9.2f\n',20*log10(Gain),(180/pi)*phi);

 figure(1)

 subplot(2,1,1); semilogx(mytf(i,1),20*log10(mytf(i,2)),sval); hold on;

 semilogx(mytf(1:i,1),20*log10(mytf(1:i,2)),'-'); axis auto; grid on;

 xlabel('Frequency (Hertz)');

 ylabel('Gain (db)'); title('Transfer Function (channel2/channel1)');

 subplot(2,1,2); semilogx(mytf(i,1),(i,3),sval);hold on;

 semilogx(mytf(1:i,1),mytf(1:i,3),'-'); axis auto; grid on;

 xlabel('Frequency (Hertz)');

 ylabel('Phase (Degrees)');

 %if ((180/pi)*(max(mytf(1:i,3))-min(mytf(1:i,3))))>80

% set(gca,'YTick',[45*floor((180/
pi)*min(mytf(1:i,3))):45:45*ceil((180/pi)*max(mytf(1:i,3)))]);

%elseif (((180/pi)*(max(mytf(1:i,3))-min(mytf(1:i,3))))>40) &
(get(gca,'YTickMode')=='manual')

% set(gca,'YTick',[15*floor((180/
pi)*min(mytf(1:i,3))):15:15*ceil((180/pi)*max(mytf(1:i,3)))]);

 %end

 drawnow

 phi_last=phi;

figure(2) % PUT FIGURE 2 ON TOP TO FORCE USER TO LOOK AT SINE WAVE DAT

 i=i+1;

 end

 %if startval==0

 % i=max(1,(i-1));

 %end
51

 end

 if exitval==0

 if w_rad==1

 fprintf(1,'\nThe TF created has 3 columns: Frequency (rad/sec), Magni-
tude (absolute), Phase (degrees)\n')

 mytf(:,1)=(2*pi)*mytf(:,1);

 else

fprintf(1,'\nThe TF created has 3 columns: Frequency (Hz), Magnitude
(absolute), Phase (degrees)\n')

 end

fprintf(1,'To replot GAIN in Bode format: semi-
logx(tf(:,1),20*log10(tf(:,2))\n');

fprintf(1,'To replot PHASE in Bode format: semilogx(tf(:,1),tf(:,3)\n');

 else

 if w_rad==1

 mytf(:,1)=(2*pi)*mytf(:,1);

 end

 figure(2)

 subplot(313)

 cla

 patch([0 30 30 0 0],[2 2 7 7 2],[0 0 .7]);

 axis off; axis([0 30 2 7]);

 t1=text(1,4.5,'OK! Program has stopped, bye.');

 set(u1,'Enable','off'); set(u2,'Enable','off');

 set(t1,'Color',[1 1 .3]);

 set(t1,'FontSize',18);

 set(t1,'FontName','Times');

 fprintf(1,'\n\n **\n');

 fprintf(1, ' *** Program exited by user during run.... bye. ***\n');

fprintf(1, ' **\n\n');

 end % ends user query if 'ok' to continue

 mlib('WriteF',freq_addr,w_use(1));

 mlib('WriteF',amp_addr,0);

end

return

function y = setstop()

y=1;

return
52

ACE

ues of

nning,

tuto-

to the
Appendix C

TRACE and COCKPIT
TRACE and COCKPIT are programs which access data on the dSPACE board. TR

plots sampled streams of data versus time. COCKPIT can display and/or change val

system parameters and outputs. Both programs operate while dSPACE code is ru

making them useful for analyzing and adjusting models. This section provides a brief

rial on each. These are intended as a guides for getting started; users should refer

dSPACE manuals for TRACE and COCKPIT for more detailed information.

-- ******** Block outputs, states and parameters of the model ************

group "Model Root"
 rtB[2] float
 "B:DS1102ADC->ADC #3" renames rtB[2]
 rtB[4] float
 "B:Dynamic Signal Analyzer->SineOut" renames rtB[4]
 rtB[5] float
 "B:Signal Generator" renames rtB[5]
 rtRealGROUND float
 "S:Display" renames rtRealGROUND
 WaveForm_root_Signal_Generator int
 "P:Signal Generator.WaveForm" renames WaveForm_root_Signal_Generator
 rtP[62] float
 "P:Signal Generator.Amplitude" renames rtP[62]
 rtP[63] float
 "P:Signal Generator.Frequency" renames rtP[63]
 group "Dynamic Signal Analyzer"
 rtB[4] float
 "B:channel1" renames rtB[4]
 rtB[2] float
 "B:channel2" renames rtB[2]
 rtB[4] float
 "B:Swept Sine" renames rtB[4]
 rtB[4] float
 "S:Display1" renames rtB[4]
 rtB[2] float
 "S:Display2" renames rtB[2]
 WaveForm_s3_Swept_Sine int
 "P:Swept Sine.WaveForm" renames WaveForm_s3_Swept_Sine
 rtP[36] float
 "P:Swept Sine.Amplitude" renames rtP[36]
 rtP[37] float
 "P:Swept Sine.Frequency" renames rtP[37]
 endgroup
endgroup

Figure C.1: Part of a .trc File
53

is

ter-

new

and

tem

eps can

K.

g

nt
r the

e

C.1 The Trace File
The dSPACE RTI will automatically create a trace file during a Simulink build. This

essentially a map, identifying variable names from the Simulink model with their coun

parts in the newly-created C code. Figure C.1 shows a section of the trace filerc_test1.trc,

created for the a simulink model namedrc_test1.mdl. Both COCKPIT and TRACE load

parameters from a ’.trc’ file. For either application, each time a model is rebuilt, the

trace file must be reloaded.

The trace file information can also be used to identify variable names for mlib

mtrace functions;trcview can provide the correct syntax. (See Appendix D.)

C.2 Using TRACE
The guide below uses the Simulink demo model,dsa_demo.mdl. Refer to the User’s

Guide (Chapter 4) for a model description. The Dynamic Signal Analyzer subsys

block measures the response of a single lead, zero-pole system. The same basic st

be used to view data from other Simulink models.

1. Build a Simulink model. Preset parameter settings for dsa_demo.mdl should be O

2. Begin TRACE.Use the desktop icon, if available, or start the program ’Trace’ usin
the Windows Finder (within the Start button options at the lower left screen corner).

3. Load the ’.trc’ file. Use the mouse to select ’File:Load Trace File...’ Select the appro-
priate directory path at the prompt’Look in...’ . The graphical interface automatically fil-
ters file names to present only trace files; select the one corresponding to your curre
model. It will have the same base name as the model, for instance ’dsa_demo.trc’ fo
example used here.

4. Select desired plotting variables.Trace will present a tree structure representing th

 Task Info Timer Task 1

 Model Root Dynamic Signal Analyzer
DSA_DEMO

Figure C.2: System Tree Showing Trace File Groups
54

e
ro
ets,
ls will

put

on-
model substructures. Scroll to the right side of the tree
and click on the group ’Dynamic Signal Analyzer’. A
list of parameter names and block outputs will appear
to the right of the tree. Select the first two to view
channel1 andchannel2, the signals the DSA sub-
system block compares to calculate gain and phase at
each frequency. Also choose theSwept Sine output -
since it is fed intochannel1, these two signals should
look identical. TRACE will open a second window
with subplot spaces for each signal selected.

5. Highlight the box to the left of Swept Sine.This selects the sine wave generator as th
trigger for TRACE data collection. Using this source signal insures there will be a ze
crossing on which to trigger. In general, the channel signals can have significant offs
preventing a zero crossing. For the dsa_demo model, any of the three, selected signa
work as triggers, but theSwept Sine is the safe choice for typical DSA models.

6. Select an appropriate length of time for each TRACE display of data. The Length
input box is located just below the model tree shown in Figure C.2. For a 10 Hertz in
signal, a length of 0.1 seconds will fit one wavelength.

7. Hit the START button at the upper left of the screen. The second window should
now display your requested signal outputs. Click AUTO in the plot window to enable c
tinual retriggering. ToggleSTART/STOP to freeze and then capture new data.

[] B: channel1
[] B: channel2
[] B: Swept Sine
[] S: Display1
[] S: Display2
[] P: Swept Sine.Waveform
[] P: Swept Sine.Amplitude
[] P: Swept Sine.Frequency

Figure C.3: Trace Output List

Figure C.4: Sample TRACE Output
55

r
and

lly, to
ing.

cy here
hat.
8. Set desired Options. Within the Options menu, you can turn on and off grid lines, o
select cross hairs to measure ’delta’ distances on a given plot. Explore on your own
refer to the TRACE manual to learn more detailed information.

9. Select File:Print to make a hard copy of the traces.Figure C.4 shows a typical
printer output. Here, the dark, vertical lines are cross hairs. They were placed manua
measure the x-axis distance (in time) from the origin (0,0) to the next rising zero cross
This is displayed in parentheses at the top of each subplot. We can see the frequen
is roughly (1/(0.063)) Hertz: about 15.9 Hz; and that channel2 leads channel1 somew
TRACE can provide more detailed and precise information, too.

10. Use File:Save to store data for later processing,if you wish to analyze captured
data more directly with MATLAB. You can also save your TRACE set-up.

C.3 Using COCKPIT
COCKPIT allows you to display outputs

and modify variables while a Simulink

model is running. You should find some

of the program interface similar to

TRACE.

We will continue here with the same

model,dsa_demo.mdl, used to introduce

TRACE on page 54. The steps below

describe how to create displays and con-

trols for the system. As with TRACE,

you will need to have this model running.

1. Build the Simulink model.

2. Begin COCKPIT using the desktop icon (or Windows Finder program).

3. File: Load Trace File...and select the appropriate ’.trc’ file

4. Go to the Control menu at the top of the COCKPIT window and select:
Input/Output Control -> Slider

Figure C.5: COCKPIT Display for
Amplitude Change

(a)

(b)
56

con-

ing

and 7
ine
is

enu.
e
to

tion

y.
litude

T

tion
5. Click-and-Drag the mouse within the COCKPIT window to create a ’Slider’, as
shown in Figure C.5. When you do this, make sure youhold down the left mouse button
as you stretch the rubber band box outlining the slider shape. You can create multiple
trols and displays in the window using this basic procedure.

6. Double-click on the new Slider control. COCKPIT will display a system tree similar
to the one shown in Figure C.2.

7. Select a system parameter from the tree.For this example, we will select
P: Swept Sine.Amplitude

You can change the scale limits for the Slider to range from 0 to +1.0. The fields allow
this should be in the upper right of the window which displayed the system tree.

8. Go to the Control menu again, and now select:
Output Controls -> Display

Once again, click-and-drag to create the Display, as you did in step 5. Repeat steps 6
to select ’P: Swept Sine. Amplitude’ again. The Slider will allow you to change the s
wave amplitude, and the Display will show its (changing) value. In Figure C.5, there
also a Display which outputs the parameter:

P: Swept Sine.Frequency
You can create this Display, as well, or experiment with other devices in the Control m
Note that you canset the formatof the Display using syntax similar to that for C-languag
numbers. [For instance %6.3f would display 6-digit floating point numbers with 3 digits
the right of the decimal place.] The field for this input will appear near the same loca
you found the scale limits in step 7.

9. Press the START button to make your Control and Display(s) active.

10. Hold down the left mouse button on the Slider knob and move it to change the
amplitude of the sine wave. You should see the value change in the amplitude Displa
You can rename each Control or Display, resize them and move them. Reset the amp
to some new value, for instance ’0.3’.

11. Select Animation: Stopwhere the START button used to be to make the COCKPI
devices inactive.

12. File:Print to get a hard copy of the COCKPIT window (if you wish).

13. File: Saveto save this COCKPIT set-up. You can then reopen the same configura
without having to recreate all of the devices.
57

amic

odel

ou

same;

on
Now that you have changed the amplitude of the sine wave output from the dyn

signal analyzer, you can return to TRACE and view the outputs of the Simulink m

again. Figure C.6 shows TRACE output for a ’Swept Sine.Amplitude’ set to ’0.3’. Y

can compare this with Figure C.4. The frequency and phase of each output are the

the amplitudes are now three times their previous values.

You can refer to the manuals for both COCKPIT and TRACE for more information

their use.

Figure C.6: TRACE Output After Amplitude Change
58

itate

ns

ectly.

ously,

and

nient

the

le

-40.

ntire

via
Appendix D

Mlib, Mtrace, and Trcview
Real-time data acquisition and on-the-fly parameter modification can greatly facil

DSP design. COCKPIT and TRACE do just this. Mlib and mtrace are MATLAB functio

which can be incorporated in script files, to access the same information more dir

Mlib reads from and writes to variable addresses on the dSPACE board asynchron

while mtrace can downsample data for real-time analysis. M-files are relatively quick

easy to write, compared with equivalent C-code, making these two functions conve

and complementary tools for design in the Simulink/dSPACE environment.

Below are brief tutorials for mlib and mtrace. Also included is a description of

MATLAB tool trcview, which indentifies the proper mlib/mtrace syntax for variab

names.

D.1 Mlib Tutorial
dSPACE Demos

We’ll start with the example programs described in the mlib user’s guide [8], pp.35

The code for this is already on the lab computers. I would suggest copying the e

directory of examples into your own (z:) directory, so you can play with it:

1. Go to c:\Dsp_cit\Demo1102\
2. Select the ’mlib’ folder.
3. Copy it (ctr-c), and Paste it (ctr-v) into your personal directory
4. Start MATLAB and ’cd’ to your new, personal ’mlib’ directory
5. At the MATLAB prompt, type:’rtilib ’ and then open the simulink model ’smd.mdl’

This a basic, Spring-Mass-Damper system. We don’t need any connections (I/O

nerdkit, etc) to build and run the model on the dSPACE board. Let’s run the model:

6. In the Simulink model (smd), select ’Tools:RTW Build’ (or ctr-B)
59

ave

hich

for

rmat.

n-

eir

trace

’.trc’

e sys-

rac-

is:

ther

he
C-code is now generated and downloaded onto the DS1102.

Note that the files generated during a build with extensions ’.trc’ and ’.map’ h

information about the variables. Specifically, ’smd.trc’ now provides a roadmap w

mlib (or applications like TRACE and COCKPIT) will use to map the model names

variables to their c-code equivalents. You can open ’smd.trc’ to look at the general fo

The ’Model Root’ variables will remind you of TRACE and COCKPIT. The naming co

vection used labels Block Outputs (’B:’), States (’S:’) and Parameters (’P:’) [with th

respective names from the Simulink model]. You can find the appropriate mlib and m

syntax for Simulink variable names using the program trcview; load the associated

file and click on the groups and variables for which you need name.

The spring-mass-damper model should now be running on the DS1102.

7. Start up TRACE. Select’File: Load Trace File’ (’smd.trc’ should now exist, from the
Build).

8. In the ’TRACE Control Panel’: Click on ’Model Root’ in the main window and select
’B:Spring-Mass-Damper System’and ’B:Signal Generator’ to view system response
and input, respectively.

9. In the ’Trace Plots’ template: Click ’Auto’ and ’Start’.

You should see a square wave from the generator and the 2nd order response of th

tem. I would suggest fixing the y-axis (since we’re about to play with the system cha

teristics). Select ’Options: Scaling of Axes...’ (Shift-S). Select ’Scaling Mode Y-Ax

Fixed (manual)’, and set the new limits to max=0.2 and min=-0.2. Repeat for the o

trace plot (signal generator vs system plot).

Let’s look at some of the m-files in your new mlib directory. (As mentioned, all t

examples are documented in the mlib guide.)
60

 all

ee
all

t

sing

s is

;

;
ote

d
can
siggen()
10. At the MATLAB prompt, just type:

>> siggen

Without arguments, this returns the current ’Signal Generator’ settings:

Usage: siggen(peak,period)

Signal generator parameters: Peak=0.1, Period=0.02 sec

11.Now, change the amplitude to 0.05 and period to 0.01. Enter:

>> siggen(.05,.01)

You can see the result in TRACE.

12. Open the m-file ’siggen.m’ to look at the script file.Here we see 4 very basic mlib
functions. If you eventually use mlib in your own m-file scripts, you will probably
include lines similar to the ones presented below. For more information on these and
other mlib functions, refer to the mlib user’s guide[8]. (Section 4, pp. 7-34):

1. ’SelectBoard’ : You’ll always select the ’ds1102’. By the way, you can check to s
what board(s) we have installed on the lab computers by typing your first direct ’mlib’ c
at the MATLAB prompt:

>> mlib(’GetBoard’,0)

MATLAB will return ’ds1102’ as the dSPACE board with index ’0’. Try "mlib(’Get-
Board’,1)", and MATLAB will tell you there’s no board installed with this index. (We jus
have the DS1102.) ’SelectBoard’ may not seem critical for us, (there being only one
board!) but it is necessary some board is defined. When you write your own scripts u
mlib, you should include this line near the top, which will always read:

mlib(’SelectBoard’,’DS1102’);
2. ’GetSimAddr’ : Find the address of a Simulink variable. (Compare with ’Get-

VarAddr’, used for global variables.) The syntax for naming Simulink model variable
similar to the ’.trc’ and TRACE formats for displaying them. Here are examples from
’siggen.m’:

peak_addr = mlib(’GetSimAddr’,’P[Model Root/Signal Generator.Amplitude]’)

freq_addr = mlib(’GetSimAddr’,’P[Model Root/Signal Generator.Frequency]’)
’P’ identifies a ’Parameter’. Our smd signal generator is called ’Signal Generator’. (N
thatwhite space is important in these names.) Look at ’smd.trc’ again and you can fin
"P:Signal Generator.Amplitude" renames rtP[4] listed under group "Model Root" You
see the basic naming convention from the mlib() calls shown. (See pages 14-16)
61

ce,

mlib
ite

tually

ly

(sec-

ing),

’?’

ping

lues

M-
3. ’ReadF’ : Get the value of the floating point variable at this address. For instan

peak = mlib(’ReadF’,peak_addr);

freq = mlib(’ReadF’,freq_addr);
4. ’WriteF’ : Change the value of the floating point variable at this address:

mlib(’WriteF’,freq_addr,1/period);

mlib(’WriteF’,peak_addr,peak);

You can read and write integers and doubles, too. (e.g. ’ReadI’ to read an integer. See
manual for more details, of course, but essentially you are using mlib to read and wr
variable from the ds1102 while the model is running.)

Note: When you use mlib to access variables on the DSP board, the board ac

’halts’ very briefly while the PC reads or writes data from it. (’Very briefly’ means on

300 ns per (32 bit) word!) See the mlib manual for more details, if you are interested

tion 5.2 ’MLIB Programming Details’, on p.41 of the mlib user’s guide).

ch_damp()

Have your TRACE window active and handy (so you can watch the system runn

and then:

13. Type at the MATLAB prompt:

>> ch_damp

You can just hit ’return’ two more times after entering this, in response to the

prompts.

You should see the TRACE output changing and ch_damp() modifies the dam

ratio. The MATLAB window should be updating you at each step. Set the ’siggen’ va

as you prefer and play around more with ’ch_damp’, if you like. You can open up the

file ’ch_damp.m’ to see how it works, too (as we did with siggen.m).
62

get

tum

e-

’

ecify

data

AB

cap-

ands

e,

re

de),

(in

h

Other example files:
There are other M-files in your new mlib directory which you might examine to

more ideas on how to use mlib() for your own script files.

14. Check out ’plotuy.m’, for instance.

The time units for plotuy are not evenly spaced. The mlib function just grabs a da

asynchronously and goes on.To get the data at the rate of sampling(which can be set in

the model under ’Simulation:Parameters’ before a Build of the model),you can capture a

set of variable values using mtrc31, called ’mtrace’ . (See the mtrace user’s guide for sp

cifics. The actual function you will use within MATLAB is called ’mtrc31’. ’Mtrace

and ’mtrc31’ are used interchangeably in this document; they are the same.)

D.2 Mtrace Tutorial
Mtrace allows you to capture data of system outputs at fixed time steps. You can sp

which variables to collect and set ’triggering’ options for the step size and number of

points. The resulting vector(s) of data can be plotted and manipulated in the MATL

environment. This data can also be collected using the program TRACE, by saving

tured data. For repetitive operations, mtrc31() just allows you to do this in a more ’h

on’ way.

What follows is a script file you can type in yourself. By now in your MIT experienc

you are probably well-acquainted with MATLAB script files. If not, begin now! They a

extremely useful. (Ask around the lab for help.)

Note that when using the mtrc31 function ’GetAddr’ (p.13 in the mtrace user’s gui

you can use rti to specify a dSPACE RTI variable from a SIMULINK block diagram

addition to more typical types, link int, etc).

15. Open a new m-file from the MATLAB File:Open menu andtype in the lines on
the next page.(You can ignor any lines beginning with ’%’, which are comments and
will be ignored by MATLAB). You should still have the model smd.mdl running (whic
you built in step 6).
63

mtr c31() example code:

% You can use many commands here as templates to your own files.
% mtrc31 example script: For use while running smd.mdl
% ** Collects data during a Simulink run and then plots it.

% Always SELECT BOARD. then, Get address of smd system

mtrc31(’SelectBoard’,’DS1102’);
kt1=mtrc31(’GetAddr’,’rti B[Model Root/Spring-Mass-Damper System]’);
mtrc31(’TraceVars’,kt1)

% Define triggering: 410 samples, 10 samples pre-triggering...

mtrc31(’SetFrame’,[],1,-10,410);
mtrc31(’SetTrigger’,kt1(1,:),0,1);

% lock program during capture...

mtrc31(’LockProgram’);

% start capture and wait until it is complete (w/ drawnow loop)

mtrc31(’StartCapture’)
while mtrc31(’CaptureState’)~=0
 drawnow;
end

% transfer data when capture is complete and then release lock

out_data = mtrc31(’FetchData’);
mtrc31(’UnlockProgram’);

% plot results
% Since we should have sampling at 1e-4 (as set in the
% ’Simulation:Parameters’ menu of the SIMULINK model,
% before we ever did our Build), we can use this scaling
% for the data collected [for the units of Time. One point
% was recorded per sample period]

clf;
plot((1e-4)*[1:410],out_data’); hold on; grid on;
plot((1e-4)*[1:410],out_data’,’.’);

% Note: You should be able to convince yourself the period is OK,
% by looking at the plot. How often does the signal repeat,
% on the x-scaling here?
64

ce file

iffer-

pro-

’.)

race

sible
D.3 Using trcview

Both mlib and mtrace reference variables used in the RTI-generated C-code. The tra

identifies these parameter, but the syntax required for mlib and mtrace is somewhat d

ent from that found in the trace file. Trcview is a convenient tool for finding these ap

priate names.The steps below show how to use trcview to find correct syntax.

1. At the MATLAB prompt, enter: trcview

2. Select File:Loadand pick from available trace files (with the ’.trc’ extension).

3.Figure D.1 shows the layout of the trcview tool.In the upper, left window, clicking on
a box will open (or close) branches stemming from this location.(For example, the box
to the left of ’Model Root’ will reveal or hide the subgroup ’Dynamic Signal Analyzer

4. In the same window, select the group (or subgroup) of interest to display variables.

5. These variable names will appear in the upper, right window. Click on a variable, and
its mlib-appropriate name will appear in the lower window.

The variable names shown in the lower window of Figure D.1 correspond to the t

names in the shaded regions of Figure C.1 With some experience, it is typically pos

to derive the right syntax for mlib and mtrace directly from the ’.trc’ file.

Root
 Model Root

Dynamic Signal Analyzer
 Task Info

Timer Task

Variable Type
B:channel1 FltType
B:channel2 FltType
B:Swept Sine FltType
S:Display1 FltType
S:Display2 FltType
P:Swept Sine.WaveForm IntType
P:Swept Sine.Amplitude FltType
P:Swept Sine.Frequency FltType

P[Model Root/Signal Generator.Amplitude]
P[Model Root/Signal Generator.Frequency]
B[Model Root/Dynamic Signal Analyzer/channel2]
B[Model Root/Dynamic Signal Analyzer/Swept Sine]

Figure D.1: The Trcview Layout
65

66

:

References

[1] Cooley, J.W.; Lewis, P.A.W.; and Welch, P.D.,The Fast Fourier Transform and its
Application (Yorktown Heights: IBM Watson Research Center, 1967).

[2] Dabney, James B. and Thomas, L. Harman,Mastering Simulink(Upper Saddle River,
N.J.: Prentice-Hall, 1998).

[3] Ersoy, Okan,Fourier-Related Transforms, Fast Algorithms and Applications(Upper
Saddle River, N.J.: Prentice Hall, 1997).

[4] Franklin, Gene F., Powell, J. David and Workman, Michael L.,Digital Control of
Dynamic Systems (Reading: Addison-Wesley 1990).

[5] The Fundamentals of Signal Analysis[Application Note 243] (Hewlitt-Packard Co.,
1994).

[6] Horowitz, Paul and Hill, Winfield,The Art of Electronics, 2nd Edition(New York:
Cambridge University Press, 1989)

[7] Lynn, Paul A. and Fuerst, Wolfgang,Digital Signal Processing(New York: John
Wiley & Sons, 1989).

[8] MLIB MATLAB-DSP Interface Library: User’s Guide[Version 3.0] (Paderborn,
Germany: dSPACE).

[9] Oppenheim, Alan V., Willsky, Alan S. and Young, Ian T.,Signals and Systems
(Englewood Cliffs, N.J.: Prentice-Hall, 1983).

[10] Ramirez, Robert W.,The FFT: Fundamentals and Concepts(Englewood Cliffs, N.J.:
Prentice-Hall, 1985).

[11] Real-Time TRACE Module for MATLAB[Version 2.0] (Paderborn, Germany
dSPACE).

[12] Stearns, Samuel D. and Hush, Don R.,Digital Signal Analysis(Englewood Cliffs,
N.J.: Prentice Hall, 1990).

[13] Strang, Gilbert, Introduction to Applied Mathematics(Wellesley: Wellesley-
Cambridge Press, 1986).
67

68

69

70

71

	Title Page
	Abstract
	Table of Contents
	List of Figures
	Figure 1.1: DSA and a System to be Analyzed
	Figure 2.1: Adding Complimentary Harmonics
	Figure 2.2: Correlated Functions
	Figure 2.3: Orthogonal Vectors
	Figure 2.4: Translating a Harmonic to Find Magnitude and Phase
	Figure 2.5: Pointwise Multiplication of Same-Frequency Sin and Cos Waves
	Figure 2.6: Multiplying Harmonics of Differing Frequencies
	Figure 2.7: Integrating the Product of Non-orthogonal Functions
	Figure 2.8: Extracting Amplitudes of Component Sine and Cosine
	Figure 3.1: Design Flow Chart (left half)
	Figure 3.2: Design Flow Chart (right half)
	Figure 4.1: Demo Model ’dsa_demo.mdl’
	Figure 4.2: Expected System Bode Plot
	Figure 4.3: Initial Display
	Figure 4.4: The Dynamic Signal Analyzer in Progress
	Figure 5.1: Low-Pass RC Cicuit Response
	Figure 5.2: Low-pass RC Circuit
	Figure 5.3: Discrete Sampling Lag with 1kHz Sine Wave
	Figure 5.4: Zero-Order Hold Sampling
	Figure 5.5: Half Sample Phase Shift
	Figure 5.6: Asymmetric Zero-Order Hold
	Figure A.1: Dynamic Signal Analyzer Measuring System Response
	Figure A.2: Linking Additional Components with the DSA Block
	Figure A.3: Inside the DSA Subsystem Block
	Figure B.1: MATLAB M-file Code: dsa_tf.m
	Figure C.1: Part of a .trc File
	Figure C.2: System Tree Showing Trace File Groups
	Figure C.3: Trace Output List
	Figure C.4: Sample TRACE Output
	Figure C.5: COCKPIT Display for Amplitude Change
	Figure C.6: TRACE Output After Amplitude Change
	Figure D.1: The Trcview Layout

	List of Equations
	(2.1)
	(2.2)
	(2.3)
	(2.4)
	(2.5)
	(2.6)
	(2.7)
	(2.8)
	(2.9)
	(2.10)
	(2.11)
	(2.12)
	(2.13)
	(2.14)
	(2.15)
	(2.16)
	(2.17)
	(2.18)
	(2.19)
	(2.20)
	(2.21)
	(2.22)

	Chapter 1
	Introduction
	1.1 Purpose
	1.2 What is the Dynamic Signal Analyzer?
	1.3 Motivation for a Dynamic Signal Analyzer
	1.4 Roadmap
	1.5 Acknowledgements

	Chapter 2
	Theory
	2.1 Scope of Theoretical Presentation
	2.2 Some Relevant Properties of Fourier Series and Integral
	2.2.1 Summation of Harmonics
	2.2.2 Harmonic Product

	2.3 The Dynamic Signal Analyzer’s Method: Swept Sine Response
	2.4 Section References and Suggested Reading

	Chapter 3
	Implementation in the Simulink/dSPACE Environment
	3.1 Introduction
	3.2 Design Goals
	1. It must not be difficult to learn to run the DSA. The user should be able learn enough by typi...
	2. The Simulink DSA block should be simple and intuitive. It should be reasonably clear how to co...
	3. The MATLAB function should exit gracefully if the user wishes to quit before a run is complete...
	4. Pausing the program during a run is also desirable. If properly designed, a feature to pause a...
	5. The program must display sampled data to allow the user to verify it is probably valid. A Bode...
	6. The function must output vectors of raw data and of the corresponding frequencies.
	7. Values for amplitude and frequency should be read directly from the dSPACE board at each step,...

	3.3 Flow Chart of the Design
	1. Frequency values. If the user does not specify desired values, the range is set from 10 to 100...
	2. Amplitude value(s). If no value is given, the current ’Swept Sine.Amplitude’ is read from the ...
	3. Plotting symbol. The figure plotting the system transfer function is not automatically cleared...

	Chapter 4
	User’s Guide to the Dynamic Signal Analyzer
	1. There should be a DSA directory containing two files you will need. Copy these files to a dire...
	2. Select the Parameters:Settings menu at the top of the model window. The demo model should alre...
	3. Save the Simulink model and select Tools:RTW Build to begin running it on the dSPACE board. (Y...
	4. Run the MATLAB function dsa_tf() to calculate the system frequency response. You should be abl...

	4.1 Getting Started
	4.1.1 Zero-Pole System
	4.1.2 Parameter Settings and Build

	4.2 Running the MATLAB Function dsa_tf()
	1. A vector of frequencies. Frequencies below 10 Hz may take a fairly long time, since the progra...
	2. A vector or scalar for amplitude(s) for the sine wave generator. If you use a list, the nth am...
	3. A symbol to use for plotting the transfer function. If you do two, consecutive runs, specifyin...

	4.3 Pause and Other Features
	4.4 Data Output Format and Replotting
	1. Column one is a list of the frequencies analyzed, in the units selected by the user.
	2. The second column gives the gain from channel1 to channel2 at this frequency, as an absolute q...
	3. The third column gives the phase from channel1 to channel2 at this frequency, in units of degr...

	Chapter 5
	Results: Comparisons and Estimated Error
	5.1 Comparison with a Commercial Dynamic Signal Analyzer.
	5.2 Lower Than Expected Gain
	5.3 Phase Lag
	Additional Phase Lag

	Chapter 6
	Suggestions for Future Simulink/dSPACE Tools
	6.1 Sampling Rate
	6.2 Error Correction for High-Frequency Phase Calculations
	6.3 Outside Sine Wave Source

	Appendix A
	The Simulink DSA Subsystem Block
	Measuring System Response
	Loop Transmission
	Closed-Loop Response
	Details About the Subsystem Block

	Appendix B
	MATLAB Source Code to Run the DSA

	Appendix C
	TRACE and COCKPIT
	C.1 The Trace File
	C.2 Using TRACE
	1. Build a Simulink model. Preset parameter settings for dsa_demo.mdl should be OK.
	2. Begin TRACE. Use the desktop icon, if available, or start the program ’Trace’ using the Window...
	3. Load the ’.trc’ file. Use the mouse to select ’File:Load Trace File...’ Select the appropriate...
	4. Select desired plotting variables. Trace will present a tree structure representing the
	5. Highlight the box to the left of Swept Sine. This selects the sine wave generator as the trigg...
	6. Select an appropriate length of time for each TRACE display of data. The Length input box is l...
	7. Hit the START button at the upper left of the screen. The second window should now display you...
	8. Set desired Options. Within the Options menu, you can turn on and off grid lines, or select cr...
	9. Select File:Print to make a hard copy of the traces. Figure C.4 shows a typical printer output...
	10. Use File:Save to store data for later processing, if you wish to analyze captured data more d...

	C.3 Using COCKPIT
	1. Build the Simulink model.
	2. Begin COCKPIT using the desktop icon (or Windows Finder program).
	3. File: Load Trace File... and select the appropriate ’.trc’ file
	4. Go to the Control menu at the top of the COCKPIT window and select:
	5. Click-and-Drag the mouse within the COCKPIT window to create a ’Slider’, as shown in Figure C....
	6. Double-click on the new Slider control. COCKPIT will display a system tree similar to the one ...
	7. Select a system parameter from the tree. For this example, we will select
	8. Go to the Control menu again, and now select:
	9. Press the START button to make your Control and Display(s) active.
	10. Hold down the left mouse button on the Slider knob and move it to change the amplitude of the...
	11. Select Animation: Stop where the START button used to be to make the COCKPIT devices inactive.
	12. File:Print to get a hard copy of the COCKPIT window (if you wish).
	13. File: Save to save this COCKPIT set-up. You can then reopen the same configuration without ha...

	Appendix D
	Mlib, Mtrace, and Trcview
	D.1 Mlib Tutorial
	1. Go to c:\Dsp_cit\Demo1102\
	2. Select the ’mlib’ folder.
	3. Copy it (ctr-c), and Paste it (ctr-v) into your personal directory
	4. Start MATLAB and ’cd’ to your new, personal ’mlib’ directory
	5. At the MATLAB prompt, type:’rtilib’ and then open the simulink model ’smd.mdl’
	6. In the Simulink model (smd), select ’Tools:RTW Build’ (or ctr-B)
	7. Start up TRACE. Select ’File: Load Trace File’ (’smd.trc’ should now exist, from the Build).
	8. In the ’TRACE Control Panel’: Click on ’Model Root’ in the main window and select ’B:Spring-Ma...
	9. In the ’Trace Plots’ template: Click ’Auto’ and ’Start’.
	siggen()
	10. At the MATLAB prompt, just type:
	11. Now, change the amplitude to 0.05 and period to 0.01. Enter:
	12. Open the m-file ’siggen.m’ to look at the script file. Here we see 4 very basic mlib function...
	1. ’SelectBoard’ : You’ll always select the ’ds1102’. By the way, you can check to see what board...
	2. ’GetSimAddr’ : Find the address of a Simulink variable. (Compare with ’GetVarAddr’, used for g...
	3. ’ReadF’ : Get the value of the floating point variable at this address. For instance,
	4. ’WriteF’ : Change the value of the floating point variable at this address:

	13. Type at the MATLAB prompt:
	14. Check out ’plotuy.m’, for instance.

	D.2 Mtrace Tutorial
	15. Open a new m-file from the MATLAB File:Open menu and type in the lines on the next page. (You...

	D.3 Using trcview
	1. At the MATLAB prompt, enter: trcview
	2. Select File:Load and pick from available trace files (with the ’.trc’ extension).
	3. Figure D.1 shows the layout of the trcview tool. In the upper, left window, clicking on a box ...
	4. In the same window, select the group (or subgroup) of interest to display variables.
	5. These variable names will appear in the upper, right window. Click on a variable, and its mlib...

	References

