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ABSTRACT

Cloud computing infrastructures are increasingly being used by
network-intensive applications that transfer significant amounts of
data between the nodes on which they run. This paper shows that
tenants can do a better job placing applications by understanding
the underlying cloud network as well as the demands of the appli-
cations. To do so, tenants must be able to quickly and accurately
measure the cloud network and profile their applications, and then
use a network-aware placement method to place applications. This
paper describes Choreo, a system that solves these problems. Our
experiments measure Amazon’s EC2 and Rackspace networks and
use three weeks of network data from applications running on the
HP Cloud network [15]. We find that Choreo reduces application
completion time by an average of 8%—14% (max improvement:
61%) when applications are placed all at once, and 22%-43% (max
improvement: 79%) when they arrive in real-time, compared to
alternative placement schemes.
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1. INTRODUCTION

A significant number of applications that run on cloud computing
infrastructures are network-intensive, transferring large amounts
of data between machines. Examples include Hadoop jobs [12],
analytic database workloads, storage/backup services, and scientific
or numerical computations (see http://aws.amazon.com/
hpc—-applications). Such applications operate across dozens
of machines [31], and are deployed on both public cloud providers
such as Amazon EC2 and Rackspace, as well as enterprise datacen-
ters (“private clouds”).

The performance of such applications depends not just on com-
putational and disk resources, but also on the network throughput
between the machines on which they are deployed. Previous re-
search [4, 11] has shown that the datacenter network is the limiting
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factor for many applications. For example, the VL2 paper reports
that “the demand for bandwidth between servers inside a datacenter
is growing faster than the demand for bandwidth to external hosts,”
and that “the network is a bottleneck to computation” with top-of-
rack (ToR) switches frequently experiencing link utilizations above
80% [11].

Much previous work has focused on better ways to design data-
center networks to avoid hot spots and bottlenecks. In this paper,
we take a different approach and ask the converse question: given
a network architecture, what is the impact of a network-aware task
placement method on end-to-end performance (e.g., application
completion time)? Our hypothesis is that by measuring the inter-
node rates and bottlenecks in a datacenter network, and by profiling
applications to understand their data transfer characteristics, it is
possible to improve the performance of a mix of applications.

A concrete context for our work is a tenant (an organization
paying for computing resources) of a cloud computing provider
with a set of network-intensive cloud applications. To run these
applications, the tenant requests a set of virtual machine (VM)
instances from the cloud provider; to contain costs, the tenant is
thrifty about how many VMs or instances it requests. When it
gets access to the VMs, the tenant now has a decision to make:
how should the different applications be placed on these VMs to
maximize application performance? A common tenant goal is to
minimize the run-time of the application.

For network-intensive applications, an ideal solution is to map
an application’s tasks to the VMs taking the inter-task network
demands as well as the inter-VM network rates into consideration.
We use “tasks” as an intuitive term: a task may map to a collection of
processes in an application, for instance a map or reduce task during
a MapReduce job. As a simple example, suppose an application
has three tasks, S,A, and B, where A and B communicate often with
S, but not much with each other. If we are given three VMs (in
general on different physical machines) and measure the network
rates between them to be different—say, two of them were higher
than the third—then the best solution would be to place S on the
VM with the highest network rates to the other two VMs. By not
taking the performance of the underlying network into account,
applications can end up sending large amounts of data across slow
paths, while faster, more reliable paths remain under-utilized. Our
goal is to build on this insight and develop a scalable system that
works well on current cloud providers.

This paper makes two contributions. The first is a network-aware
placement system, called Choreo, which tenants can use to place
a mix of applications on a cloud infrastructure. Choreo has three
sub-systems: a low-overhead measurement component to obtain
inter-VM network rates, a component to profile the data transfer
characteristics of a distributed application, and an algorithm to



map application tasks to VMs so that tasks that communicate often
are placed on VMs with higher rates between them. These sub-
systems must overcome four challenges: first, inter-VM network
rates are not constant [6]; second, cloud providers often use a “hose
model” to control the maximum output rate from any VM; third,
any practical measurement or profiling method must not introduce
much extra traffic; and fourth, placing a subset of tasks changes the
network rates available for subsequent tasks. Moreover, an optimal
placement method given the network rates and application profile is
computationally intractable, so any practical approach can only be
approximate. To the best of our knowledge, the problem of matching
compute tasks to nodes while taking inter-VM network properties
into account has not received much prior attention.

The second contribution is an evaluation of how well Choreo
performs compared to other placement methods that do not consider
network rates or inter-task communication patterns. We collect
network performance data from Amazon’s EC2 and Rackspace, as
well as application profiles from the HP Cloud [15], to evaluate
Choreo. We find that it is possible to use packet trains to estimate
TCP throughput within a few minutes for 90 VM pairs. We find
that Choreo can reduce the average running time of applications by
8%—14% (max improvement: 61%) when applications are placed
all at once, and 22%-43% (max improvement: 79%) when applica-
tions arrive in real-time, compared to alternative placement methods
on a variety of workloads. These results validate our hypothesis
that task mapping using network measurements and application
communication profiles are worthwhile in practice.

2. CHOREO

Choreo has three sub-systems, which perform three distinct jobs:
(1) profile the tenant’s application tasks, (2) measure the perfor-
mance of the network between the VMs allotted by the cloud
provider, and (3) place and monitor application tasks.

2.1 Profiling Applications

Choreo uses a network monitoring tool such as sFlow or
tcpdump to gather application communication patterns. Choreo
assumes that by profiling an application offline (during a testing
phase or in production for long-running services), it will have rea-
sonably accurate knowledge of the application’s communication
pattern online. For batch computations, this assumption may be rea-
sonable because the relative amounts of data sent between different
application tasks might not change dramatically between testing and
production; on an encouraging note, some previous work suggests
that application traffic patterns are predictable [4]. The dataset we
use for our evaluation (see Section 6.1) justifies this assumption;
in this dataset, we found that data from the previous hour and the
time-of-day are good predictors of the number of bytes transferred
in the next hour.

Choreo models the inter-task network needs of an application
by profiling the number of bytes sent, rather than the rate observed.
The reason is that the network rate achieved depends on what else
is going on in the network, whereas the number of bytes is usually
independent of cross-traffic in cloud applications.

The output of the application profiling step is a matrix whose
rows and columns are the application’s tasks, where each entry A;;
is a value proportional to the number of bytes sent from task 7 to
task j.

2.2 Measuring the Network

Choreo measures the network path between each pair of VMs
to infer the TCP throughput between them. When we started this
project over a year ago, we found that the TCP throughput between
the VMs obtained on Amazon’s EC2 was highly variable, as shown

us-east-1a ,f
us-east-1b =wweseseen "5
0.8 L us-east-1c &
: us-east-1d wwww: £
4
06 £
L £
5 ;
O £
0.4 /f
0.2 i
0 : TR
0 100 200 300 400 500 600 700 800 900 1000

Throughput (Mbit/s)

Figure 1: TCP throughput measurements on Amazon EC2
taken roughly one year ago, in May, 2012. Each line represents
data from a different availability zone in the US East datacen-
ter. Path throughputs vary from as low as 100 Mbit/s to almost
1 Gbit/s.

in Figure 1. Over the past few months, however, we have observed
a significant change in how EC2 (and Rackspace) manage their
internal bandwidth.

To measure spatial stability, we used 19 10-instance topologies
made up of medium Amazon EC2 instances, and 4 10-instance
topologies made up of 8-GByte Rackspace instances. For each of
the paths in a given topology, we measured the TCP throughput on
the path by running netperf for 10 seconds. This method gives us
1710 data points in total across the 19 topologies for EC2, and 360
data points for Rackspace. Figure 2 shows a CDF of the throughputs
we observed on the instances in both networks. In EC2 (Figure 2(a)),
although the CDF shows a large range of spatial variability, with
throughputs ranging from 296 Mbit/s to 4405 Mbit/s, most paths
(roughly 80%) have throughputs between 900 Mbit/s and 1100
Mbit/s (the mean throughput is 957 Mbit/s and the median is 929
Mbit/s). Not shown on the CDF are 18 paths that had extremely
high throughput (near 4 Gbit/s). We believe that most of these paths
were on the same physical server (see Section 4.2). Because all of
these measurements were taken at roughly the same time, we can
conclude that the variability in 20% of the paths is not strictly a
function of the time of day.

Another interesting feature of Figure 2(a) is the distinct knees
around 950 Mbit/s and 1100 Mbit/s. We suspect that this is partly
due to a correlation between path throughput and path length; see
Section 4.2.

In Rackspace (Figure2(b), there is very little spatial variation. In
fact, every path has a throughput of almost exactly 300 Mbit/s, which
is the advertised internal network rate for the 8 GByte Rackspace
instances.! This implies that if a tenant were placing a single ap-
plication on the Rackspace network, there would be virtually no
variation for Choreo to exploit. However, Choreo is still effective in
this type of network when a tenant is placing multiple applications
in sequence, as traffic from existing applications causes variations
in available throughput (Section 6.3).

In all our experiments, we have found that both of these networks
are rate-limited and implement a hose model [10] to set a maximum
outgoing rate for each VM. Figures 2(a) and 2(b) give evidence for
such rate-limiting, as the typical throughput for a path remains close

"http://rackspace.com/cloud/servers/pricing
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Figure 2: TCP throughput measured in May, 2013 on 1710 paths for EC2 and 360 paths for Rackspace. We see some variation on
EC2, but less than in Figure 1. Rackspace exhibits almost no spatial variation in throughput.

to a particular value for each network (1 Gbit/s for EC2, 300 Mbit/s
for Rackspace). We develop techniques to confirm both of these
hypotheses in Section 3, and verify them on EC2 and Rackspace in
Section 4.3.

Our approach to estimating TCP throughput in these figures was
to use netperf, but this approach induces significant overhead for
online use. Choreo must also measure the network quickly, so that
applications can be placed in a timely manner. Moreover, if Choreo’s
measurement phase takes too long, there is a chance the network
could change between measurement time and placement (we discuss
the temporal stability of public cloud networks in Section 4.1).

To overcome this issue, Choreo uses packet trains to measure
available throughput. We discuss this method, as well as Choreo’s
methods for assessing rate limits and bottlenecks, in Section 3.
Briefly, packet trains allow Choreo to get a snapshot of the network
within just a few minutes for a ten-node topology, including the
overhead of retrieving throughput measurements from each machine
back to a centralized server.

2.3 Placing Applications

Once the network has been measured and the application profiled,
Choreo must place each application’s tasks on the network. In the
Appendix, we show how to formulate the problem of task placement
as an integer linear program (ILP). Because solving ILPs can be
slow in practice, we develop a greedy placement algorithm that takes
far less time to run, and in practice gives near-optimal results (see
Section 5).

2.4 Handling Multiple Applications

A tenant may not know all of the applications it needs to run ahead
of time, or may want to start some applications after others have
begun. To run a new application while existing ones are running,
Choreo re-measures the network, and places its tasks as it would
normally (presumably there is more variation in the network in
this case, because existing applications create cross traffic). It is
possible, however, that placing applications in sequence in this
manner will result in a sub-optimal placement compared to knowing
their demands all at once. For that reason, every 7' minutes, Choreo
re-evaluates its placement of the existing applications, and migrates
tasks if necessary. T' can be chosen to reflect the cost of migration;
if migration is cheap, T should be smaller. This re-evaluation also
allows Choreo to react to major changes in the network.

3. MEASUREMENT TECHNIQUES

Choreo’s primary function is placing application tasks on a set of
VMs. To do this, it needs to know three things. First, the available
throughput on each path, which tells Choreo what the throughput
of a single connection on that path is. Second, the amount of cross
traffic in the network, which tells Choreo how multiple connections
on the same path will be affected by each other. For instance, if one
connection gets a throughput of 600 Mbit/s on a path, it is possible
that two connections on that path will each see 300 Mbit/s—if they
are the only connections on a path with link speed of 600 Mbit/s—
or that they will each see 400 Mbit/s—if there is one background
TCP connection on a path with a link speed of 1200 Mbit/s. Third,
which paths share bottlenecks, which tells Choreo how connections
between different pairs of VMs will be aftected by each other. For
instance, knowing that A ~» B shares a bottlenecks with C ~ D
informs Choreo’s estimated rate of a new connection on A ~» B
when connections exist on C ~» D.

3.1 Measuring Pair-Wise Throughput

The first measurement that Choreo does is to estimate the pairwise
TCP throughput between the cloud VMs, to understand what the
throughput of a single connection will be. Estimating the pairwise
TCP throughput between N VMs by running bulk TCP transfers
takes a long time for even modest values of N. Packet trains, orig-
inally proposed in [18] and also used in [7], have been adapted in
various ways, but with only varying success over Internet paths [27,
28]. The question is whether more homogeneous and higher-rate
cloud infrastructures permit the method to be more successful.?

Choreo’s measurement module sends K bursts of P-byte UDP
packets, each burst made up of a sequence of B back-to-back packets.
Bursts are separated by 6 milliseconds to avoid causing persistent
congestion. This collection of K bursts is one packet train; to
estimate throughput on a path, we send only one packet train on that
path.

At the receiver, the measurement module observes the kernel-level
timestamps at which the first and last packet of each burst b; was
received using the SO_TIMESTAMPNS socket option, and records
this time difference, #;. If either the first or last packet of a burst is

2In our experiments, “packet pairs”, in which only two packets
are sent, were not very accurate on any cloud environment, and so
Choreo does not use that method.



(b) Cloud topology. Links between
sender/receiver nodes and ToR switches
are 1 Gbit/s, and links between ToR switches
and the aggregate switch (labeled “A”) are 10
Ghbit/s.

Figure 3: ns-2 simulation topologies for our cross traffic
method. The dashed lines are bottlenecks where cross traffic
will interfere.

lost (which we can determine via the sequence numbers we inserted
into the UDP payload), we adjust #; to take into account what the
time difference should have been, by calculating the average time it
took to transfer one packet and adjusting for the number of packets
missing from the beginning or end of the burst. We also record the
number of packets received in each burst, n; < B.

Using this data, we estimate the bulk TCP throughput as
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This throughput estimate is equivalent to estimating the through-
put as w, where N is the number of packets sent, £ is the
packet loss rate, and T is the time between the receipt of the first
packet and the last packet. An alternative method for estimating

: MSS-C :
TCP throughput is to use the formula RIT AT where C is the con-

stant of proportionality, roughly \/3/7 [23]. This formula, however,
is an upper-bound on the actual throughput, and departs from the
true value when ¢ is small, and is not always useful in datacenter
networks with low packet loss rates. Our estimator combines these
two expressions and estimates the throughput as:

min {PN-1)(1-0)/7,MSS-C/RTT-/i}.
Section 4.1 evaluates this method on EC2 and Rackspace.

3.2 Estimating Cross Traffic

The second measurement that Choreo makes is to estimate cross
traffic on the network, to understand how multiple connections on
the same path will be affected. As part of this task, Choreo also
needs to understand how the cross traffic on a path varies over time;
e.g., does the number of other connections on a path remain stable,
or does it vary significantly with time?

To estimate the “equivalent” number of concurrent bulk TCP
connections along a path between two VMs, we send one bulk TCP
connection between two instances (e.g., using netperf), run it
for ten seconds, and log the timestamp of each receiving packet at
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(b) Simulation results for ¢ > 10 on a more realistic cloud topology.

Figure 4: ns-2 simulation results for our cross traffic method.
We are able to quickly and accurately determine the number
of background connections, particularly for small values of
¢, even when the number of background connections changes
rapidly.

the receiver. This method allows us to measure the throughput of
the connection every 10 milliseconds. Given the maximum path
rate, the throughput of our connection should indicate how many
other connections there are. For instance, if the path rate is 1 Gbit/s,
and our connection sees 250 Mbit/s of throughput, then there is
the equivalent of three other bulk TCP connections on the path. In
general, if the path rate is ¢, and our connection gets a throughput
of ¢, < ¢y, then there are ¢ = ¢1/c, — 1 other bulk connections on the
path. We measure the throughput frequently to account for the fact
that background connections may come and go.

In this method, we have made a few assumptions: first, that we
know the maximum rate of the path; second, that TCP divides the
bottleneck rate equally between bulk connections in cloud networks;
and third, that the background connections are backlogged, sending
as fast as possible. In public clouds, it is not hard to obtain a
maximum link rate (e.g.., it is usually 1 Gbit/s today on EC2) using
simple measurements or because the provider advertises it (e.g.,
Rackspace). If the maximum rate is unknown, however, then we
can solve this problem by sending one connection on the path, and
then two connections; the change in the throughputs will allow us
to estimate c.

For the second assumption, we ran netperf on the EC2 network
and observed that when one connection could obtain 1 Gbit/s of
bandwidth (the maximum rate), the rate did decrease by roughly 50%
when we added a second connection. This result is unsurprising,
given the homogeneity of cloud networks, and the fact that both
connections were capable of sending at the maximum rate.

As for the third assumption, our method of estimating c also gives
us a reasonable estimate of how throughput will be affected in many
cases even when the other connections are not backlogged. For
instance, if there is one background connection on a 1Gbit/s link
that has an offered load of only 100 Mbit/s, our measured throughput
will be 900 Mbit/s, and our estimated throughput of two connections
on that link will be 450 Mbit/s. Although Choreo will incorrectly
assume that there is no background traffic, it will not be a problem in
terms of throughput estimates until Choreo tries to place a significant



number of connections on the path (10, in this example—enough to
decrease the rate of the initial 100 Mbit/s connection).

The quantity c is an estimate of the cross traffic on the bottleneck
link, measured in terms of the equivalent number of concurrent bulk
transport connections. We should interpret the quantity ¢ as a mea-
sure of load, not a measure of how many discrete connections exist.
A value of ¢ that corresponds to there being one other connection on
the network simply means that there is load on the network equiva-
lent to one TCP connection with a continuously backlogged sender;
the load itself could be the result of multiple smaller connections.

To test this method, we used ns-2 simulations. First, we simulated
a simple topology where 10 sender-receiver pairs share one 1 Gbit/s
link, as shown in Figure 3(a). In this simulation, the pair S1 ~» R1
serves as the foreground connection, which transmits for 10 seconds,
and the rest (S2 ~» R2,..., S10 ~» R10) serve as the background
connections, and follow an ON-OFF model [2] whose transition
time follows an exponential distribution with y = 5s. Figure 4(a)
shows the actual number of current flows and the estimated value
using c. Here, ¢y = 1 Gbit/s. Second, we simulated a more realistic
cloud topology, shown in Figure 3(b). Figure 4(b) shows the actual
and estimated number of cross traffic flows. In this cloud topology,
the links shared by cross traffic are links between ToR switches and
an aggregate switch, A. Because these links have a rate of 10 Gbit/s
each, compared to the 1 Gbit/s links between sender/receiver nodes
and their ToR switches, the cross traffic throughput will decrease
only when more than 10 flows transfer at the same time. Thus, in
Figure 4(b), the smallest estimated value is 10.

The difference in accuracy between Figure 4(a) and Figure 4(b)
comes from the possible throughputs when c is large. For instance,
given a 1 Gbit/s link, if we see a connection of 450 Mbit/s, we can be
relatively certain that there is one existing background connection;
the expected throughput was 500 Mbit/s, and 450 Mbit/s is not far
off. However, if we see a connection of 90 Mbit/s, multiple values
of ¢ (e.g., c = 10,c = 11) are plausible.

Section 4.2 describes the results of this method running on EC2
and Rackspace.

3.3 Locating Bottlenecks

Choreo’s final measurement is to determine what paths share bot-
tlenecks, which it can use to determine how connections on one path
will be affected by connections on a different path. There is a long-
standing body of work on measuring Internet topologies [19, 33,
35]. Typically, these works use traceroute to gain some knowledge
of the topology, and then use various clever techniques to overcome
the limitations of traceroute. Datacenter topologies, however, are
more manageable than the Internet topology; typically they have
a structured, hierarchical form. In this section, we explore how
traceroute measurements combined with topological assumptions
can allow us to discover features of datacenter networks that we
typically cannot discover in the Internet at-large.

3.3.1 Typical Datacenter Topologies

Datacenter topologies are often multi-rooted trees, as shown in
Figure 5 and described in [9]. In these topologies, virtual ma-
chines lie on physical machines, which connect to top-of-rack (ToR)
switches. These switches connect to aggregate switches above them,
and core switches above those. To route between virtual machines
on the same physical machine, traffic need travel only one hop. To
route between two physical machines on the same rack, two hops are
needed: up to the ToR switch and back down. To route to a different
rack in Figure 5, either four or six hops are needed, depending on
whether traffic needs to go all the way to the core. In general, all
paths in this type of topology should use an even number of hops
(or one hop). If we assume that a datacenter topology conforms to
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Figure 5: Typical multi-tier datacenter topology.
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this structure, inferring where machines are placed in the topology
is easier; in some sense, we can make the same measurements as
traditional techniques, and “fit” a multi-rooted tree onto it.

3.3.2  Locating Bottlenecks

With this knowledge of the topology, we turn our attention to
determining whether two paths share a bottleneck link, and where
that bottleneck link occurs: at the link to the ToR switch, the link
from the ToR switch to the aggregate layer, or the link to the core
layer. One way to determine whether two paths share a bottleneck is
by sending traffic on both paths concurrently. To determine whether
path A ~+ B shares a bottleneck with C ~» D, we send netperf
traffic on both paths concurrently. If the throughput on A ~» B
decreases significantly compared to its original value, we say that
A ~> B shares a bottleneck with C ~» D.

We are interested in whether a connection from A ~» B will inter-
fere with one from C ~» D. We note the following rules:

1. If the bottleneck is on the link out of the ToR switch, the two
connections will interfere if either of the following occur:
(a) they come from the same source, i.e., A =C.

(b) A and C are on the same rack, and neither B nor D is on
that rack.

2. If the bottleneck is on the link out of the aggregate layer and
into the core, the two connections will potentially interfere
if they both originate from the same subtree and must leave
it, i.e., if A and C are on the same subtree, and neither B nor
D is also located on that subtree. Note that even in this case,
the connections may not interfere; A ~» B may not get routed
through the same aggregate switch as C ~ D.

These rules allow Choreo to estimate bottlenecks more efficiently
than a brute force method that measures all pairs of paths. Because
we can cluster VMs by rack, in many cases, Choreo can generalize
one measurement to the entire rack of machines. For instance, if
there is a bottleneck link on the ToR switch out of rack R, then any
two connections out of that rack will share a bottleneck; Choreo
does not need to measure each of those connections separately.

Choreo’s bottleneck-finding technique can also determine what
type of rate-limiting a cloud provider may be imposing. For in-
stance, if the datacenter uses a hose model, and rate-limits the hose
out of each source, our algorithm will discover bottlenecks at the
end-points—indicating rate-limiting—and that the sum of the con-
nections out of a particular source remains constant—indicating a
hose model.

Section 4.3 evaluates this method on EC2 and Rackspace.

4. MEASUREMENT RESULTS

We evaluated the techniques described in Section 3 on EC2 and
Rackspace to validate the techniques and measure how these two
cloud networks perform.



4.1 Packet Train Accuracy and Temporal Stability

The packet train method from Section 3.1 is parameterized by the
packet size, P, the number of bursts, K, and the length of each burst,
B. To tune these parameters, we compared the accuracy of various
packet sizes, burst lengths, and number of bursts, against the through-
puts estimated by netperf on 90 paths in EC2 and Rackspace
(we use the netperf throughputs as the “ground truth” for this
experiment). Each path gives us one datapoint (one netperf
measurement and one packet train estimate). Figure 6 displays
the accuracy of estimating throughputs via packet trains averaged
over all paths, for a packet size of 1472 bytes and a time 6 of 1
millisecond.

In general, we see from Figure 6 that the accuracy improves with
the burst length and number of bursts, as expected. Beyond a point,
however, the accuracy does not improve (diminishing returns). We
found that 10 bursts of 200 packets works well on EC2, with only
9% error, and sending 10 bursts of 2000 packets worked well on
Rackspace, with only 4% error (this configuration also works well
on EC2). In our measurements, an individual train takes less than
one second to send, compared to the ten seconds used by netperf
(in our experiments, we found that using netperf for a shorter
amount of time did not produce a stable throughput estimate). To
measure a network of ten VMs (i.e., 90 VM pairs) takes less than
three minutes in our implementation, including the overhead of
setting up and tearing down tenants/servers for measurement, and
transferring throughput data to a centralized server outside the cloud.

Because the best packet train parameters for EC2 and Rackspace
differ, before using a cloud network, a tenant should calibrate their
packet train parameters using an approach similar to the one pro-
posed above. This phase takes longer than running only packet
trains, but only needs to be done once.

Although Choreo can get an accurate snapshot of the network
quickly using packet trains, such a snapshot will not be useful if
the network changes rapidly, i.e., has low temporal stability. In
this case, Choreo will have trouble choosing the “best” VMs on
which to place tasks. To measure temporal stability, we used 258
distinct paths in Amazon EC2, and 90 in Rackspace. On each of
these paths, we continuously measured the throughput using 10-
second netperf transfers for a period of 30 minutes, giving us
one throughput sample every ten seconds for each path.

We analyze temporal throughput stability by determining how
well a TCP throughput measurement from 7 minutes ago predicts
the current throughput. Given the current throughput measurement,
Ac, and the throughput T minutes ago, A.— ¢, Figure 7 plots a CDF of
the magnitude of the relative error, i.e., [Ac — Ac—z|/Ac, for various
values of 7 (1, 5, 10, and 30 minutes). In EC2, for every value of
T, at least 95% of the paths have 6% error or less; the median error
varies between .4% and .5%, while the mean varies between 1.4%
and 3%. As suspected from Figure 2(b), the error in Rackspace is
even lower: at least 95% of the paths have 0.62% error or less; the
median varies between 0.18% and 0.27%, while the mean varies
between 0.27% and 0.39%.

Thus, we find that although some path throughputs vary spatially,
they exhibit good temporal stability. Hence, Choreo can measure
path throughputs infrequently to gather useful results for making
decisions about application placement. The temporal stability result
is somewhat surprising because EC2 and Rackspace are popular
cloud infrastructures, and one would expect significant amounts of
cross traffic. In the next section, we measure the amount of cross
traffic on these networks, finding that it is small. We then explore
the locations of the bottlenecks, finding that the hose model provides
a good explanation of the currently observed network performance
on EC2 and Rackspace.
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Figure 8: Comparison of path length with bandwidth. Path
length is not entirely correlated with throughput, as evidenced
by the eight-hop paths with throughput over 2500Mbit/s.

4.2 Cross Traffic

We first return to a result from Section 2.2, shown in Figure 2(a).
Initially, we expected that path throughput would be correlated
with path length, in part because it should correlate with physical
topology: the longer the paths, the more likely they are traversing
the middle of the network, and thus cross traffic there would be to
interfere and lower the throughput.

Figure 8§ plots the various path lengths observed over a collection
of 1710 paths in EC2; these are the same paths that we used in
Section 2.2. The first thing to note from this figure is that the path
lengths are only in the set {1,2,4,6,8}. These lengths are consistent
with a multi-rooted tree topology. Second, many of the paths are
more than one or two hops, indicating that a significant number of
VMs are not located on the same rack. In the Rackspace network
(not shown in the picture), we saw paths of only 1 or 4 hops. Because
the throughputs in the Rackspace network are all approximately 300
Mbits/s, there is no correlation with path length. It is also curious
that we do not see paths of any other lengths (e.g., 2); we suspect
that Rackspace’s traceroute results may hide certain aspects of their
topology, although we cannot confirm that.

From Figure 8, we see that there is little correlation between
path length and throughput. In general, we find that the highest
throughput pairs are one hop apart, an unsurprising result as we
would expect the highest-throughput pairs to be on the same physical
machine. However, there are four high-throughput paths that are
six or eight hops away. Moreover, although we see that the lower
throughputs tend to be on longer paths, we also see that a “typical”
throughput close to 1 Gbit/s appears on all path lengths. This result
leads us to believe that there is very little cross traffic that affects
connections on the EC2 network, so we did not run our cross traffic
algorithm from Section 3.2 on it; instead, we turned our attention
towards locating bottlenecks, speculating that the bottlenecks may
be at the source. This result would imply that Choreo can determine
how multiple connections on one path are affected by each other
simply by knowing the throughput of that path.

4.3 Bottleneck Locations and Cross Traffic

From Figure 8, we hypothesized that Amazon rate-limits at the
source, and that cross traffic in the middle of the network has very
little effect on connections (and thus the bottleneck link is the first
hop). To test this hypothesis, we ran Choreo’s bottleneck-finding al-
gorithm from Section 3.3. We ran an experiment on twenty pairs of
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Figure 6: Percent error for packet train measurements using different burst lengths and sizes. EC2 displays a consistently low error
rate over all configurations, while Rackspace’s error rate improves dramatically once the burst length is at least 2000.
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Figure 7: Percent error when a measurement from 7 minutes ago is used to predict the current path bandwidth.

connections between four distinct VMs, and twenty pairs of connec-
tions from the same source. We found that concurrent connections
among four unique endpoints never interfered with each other, while
concurrent connections from the same source always did. This result
indicates that EC2 bottlenecks occur on the first hops of the paths.
Figure 7 also supports this conclusion, as paths with little cross
traffic tend to be relatively stable over time.

We also hypothesized that rate-limiting at the source was preva-
lent on Rackspace, since most path throughputs are so close to
300Mbit/s. Additionally, we verified that connections out of the
same source always interfered. These results imply that connections
placed on a particular path are affected by other connections out of
the source, not just other connections on the path. However, they
are not affected by connections emanating from a different source.

4.4 Discussion

In summary, these results suggest that the EC2 and Rackspace
networks are both rate-limited and use the hose model. Rackspace
has very little spatial variability in throughput; EC2 has some, but
the overwhelming majority of paths see similar throughputs near

1Gbit/s.

Despite this lack of a lot of natural variation in the two public
cloud networks, Choreo is still able to exploit variation that comes
with a tenant running multiple applications at once (see Section 6.3),
and to avoid the few paths in EC2 that do see low throughput. More-
over, paths on these networks are temporally stable, indicating that
Choreo does not need to update its measurements very frequently to
take into account high-variance paths.

We also note that cloud networks can change over time. In fact,
our results from Figure 1 indicated a larger range of spatial variation.
For that reason, we believe that Choreo’s measurement techniques
are worthwhile beyond simply measuring a tenant’s own applica-
tions, because higher network variation could appear in other cloud
networks, or in EC2 and Rackspace in the future.

S. CHOREO’S PLACEMENT METHOD

Here, we discuss the placement of one application’s tasks; the
placement of a sequence of applications follows naturally. Our goal
is to minimize application completion time. This goal can be for-
mulated as an integer linear program (ILP), which we detail in the



Appendix. In practice, we found that this ILP occasionally took
a very long time to solve, hampering our ability to place applica-
tions quickly. Moreover, the larger the number of machines in the
network and the number of tasks in the application, the longer the
mathematical optimization will take.

As aresult, Choreo uses an alternate network-aware placement
algorithm, shown in Algorithm 1 below. This algorithm works
by trying to place the pairs of tasks that transfer the most data
on the fastest paths. Because intra-machine links are modeled as
paths with (essentially) infinite rate, the algorithm captures the
heuristic of placing pairs of transferring tasks on the same machines.
Though not guaranteed to result in a globally optimal placement
(see Figure 9), this method scales better to larger topologies. We
compared our greedy algorithm to the optimal algorithm on 111
different applications, and found that the median completion time
with the greedy algorithm was only 13% more than the completion
time with the optimal algorithm.

It is possible that an application may have other goals, such
as minimizing latency or increasing fault tolerance, or even goals
unrelated to the network, such as minimizing the monetary cost to
the user. Users may also want to impose more constraints on CPU
or storage systems. The basic principles of Choreo can be extended
to all of these types of goals; we refer readers to our technical report
on the subject [20]. In general, Choreo can support any goal that
can be expressed as an ILP (all of the previous examples can be); it
is not clear, though, whether every goal has a corresponding greedy
heuristic, as minimizing completion time does. We have also not
evaluated Choreo’s performance improvements for these additional
goals; we leave this to future work.

Algorithm 1 Greedy Network-aware Placement

1: transfers = alist of (i, j,b) tuples, ordered in descending order
of rates, b. (i, j,b) means Task i transfers b bytes to Task ;.

2: for (i, j,b) in transfers do

3 if 7 has already been placed on machine k then

4 P = set of paths k~» N V nodes N

5: if j has already been placed on machine ¢ then

6: P = set of paths M ~» ¢ ¥ nodes M

7 if neither i nor j have been placed then

8 P = set of paths M ~> N V nodes M and V nodes N

9 for path m ~> n in P do

0

—

if placing i on m or j on n would exceed the CPU con-
straints of m or n then

11: Remove m ~» n from P

12:  for path m~»nin P do

13: rate(m,n) = the rate that the transfer from i to j would see

if placed on m ~+ n. This rate takes into account all other
task pairs already placed on m ~» n for a “pipe” model, or
all other connections out of m for a “hose” model.
14:  Place i and j on path m ~» n € P such that rate(m,n) is
maximized.

6. EVALUATION

We evaluate two different scenarios with Choreo. First, a case
where a tenant wants to run multiple applications all at once, and
second, a case where a tenant wants to run multiple applications, the
entire sequence of which is not known up front. In each case, we
compare Choreo’s placement to three alternate existing placement
algorithms: Random, Round-robin, and Minimum Machines.

Random: Tasks are assigned to random VMs. This assignment
makes sure that CPU constraints are satisfied, but does not take the
network into account. This type of placement acts as a baseline for
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Figure 9: An example topology where the greedy network-
aware placement is sub-optimal. Because the greedy placement
algorithm first places tasks J; and J, on the path with rate 10,
it must also use the path with rate 1 to place J; and J3. The
optimal placement avoids this path by placing J; and J, on the
path with rate 9.

comparison.

Round-robin: This algorithm assigns tasks in a round-robin
order to VMs; a particular task is assigned to the next machine in the
list that has enough available CPU. As before, CPU constraints are
satisfied, but the network is not taken into account. This placement
is similar to one that tries to load balance, and minimize the amount
of CPU used on any particular VM.

Minimum Machines: This algorithm attempts to minimize the
number of machines used. If possible (given CPU constraints), a
task will be placed onto a VM that is already used by another task;
anew VM will be used only when no existing machine has enough
available CPU. This algorithm may be of interest to cloud customers
who aim to save money; the fewer machines they use, the lower the
cost (at, perhaps, the expense of longer-running applications).

6.1 Dataset and Experimental Set-up

To evaluate Choreo, we ran experiments on EC2. In each experi-
ment, we measure an EC2 topology, and then place an application
or sequence of applications on that topology. The applications are
composed from the real traffic matrices gathered using sFlow at the
ToR and aggregation switches in the HP Cloud network [15]. For
each application, we know the observed start time on the cloud as
well as its traffic matrix. From this data, we can accurately model
sequences of applications. We model each component of an appli-
cation as using between 0.5 and four CPU cores, and each cloud
machine as having four available cores (the actual CPU data was
not available in our dataset).

Once the applications are placed, we transfer data as specified
by the placement algorithm and the traffic matrix. Note that these
experiments transfer real traffic on EC2; we do not merely calculate
what the application completion time would have been based on
the measured network, placement, and traffic matrix. Thus, these
experiments are susceptible to any changes in the network, as well
as the effects of any cross traffic.

6.2 All Applications at Once

For our first set of experiments, we modeled a tenant with multiple
applications, whose network demands (amount of data transferred
between tasks) are known a priori. We randomly chose between
one and three applications and made one combined application out
of them, combining each application’s traffic demand matrix and
CPU vector in the obvious way. Then, we placed this combined
application and ran it, using each of the four placement algorithms
in turn. Our CDFs do not explicitly account for measurement time,
because it is the same (approximately three minutes for a ten-node
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Figure 10: Relative speed-up for applications using Choreo vs. alternate placement algorithms.

topology) regardless of the length of an application’s run. We note
that Choreo is not meant for short-lived applications where the
three-minute time-to-measure will exceed any reductions in the
completion time from Choreo.

Figure 10(a) shows the results from this experiment. Each line
in the CDF compares Choreo to one of the alternate placement
algorithms. The x-axis plots the relative speed-up, defined as the
amount of time that Choreo saved (or added) to the completion time
of an application. For instance, if an application took five hours with
the random placement algorithm, and four hours using Choreo, the
relative speed-up would be (5 —4)/5 =20%.

From Figure 10(a), we can see that in roughly 70% of the appli-
cations, Choreo improves performance, with improvements as large
as 60%. The mean improvement over other approaches in all cases
is between 8% and 14%, while the median improvement is between
7% and 15%; restricted to the 70% of applications that show im-
provement, these values rise to 20%—27% (mean) and 13%—-28%
(median). In the other 30% of applications, Choreo reduces perfor-
mance; in these cases, the median slow-down is (only) between 8%
and 13%.

These numbers imply that, if we could predict the types of ap-
plications where Choreo typically provides improvement, it would
improve performance by roughly 13%-28%. We leave this type of
prediction to future work.

6.3 Applications in Sequence

For our second set of experiments, we modeled a tenant wishing
to run multiple applications whose demands are not all known a
priori. Instead, the applications arrive one-by-one, and are placed as
they arrive. We randomly chose between two and four applications
and ordered them by their observed start times. We placed the
applications in sequence according to these start times. Applications
may overlap in time in this scenario.

Because multiple applications arrive in sequence, it does not make
sense to measure the entire sequence’s completion time. Instead, we
determine the total running time of each application, and compare
the sum of these running times for each placement algorithm.

Figure 10(b) shows the results from this experiment. As in Fig-
ure 10(a), each line in the CDF compares Choreo to one of our alter-
nate placement algorithms. We see similar results as in Figure 10(a),
in that for most applications, Choreo provides an improvement over
all other placement schemes. With sequences of applications, we see

an improvement in 85%—-90% of all applications, with a maximum
observed improvement of 79%. Over all applications, the mean
improvement ranges from 22%-43%; the median from 19%—-51%
across different alternative algorithms. Restricted to the applications
that show improvement, the mean rises slightly to 26%—47% and
the median to 23%-53%. For the applications whose performance
degraded, the median slow-down was only 10%.

In general, Choreo performs better when applications arrive in
sequence than when all demands are known up front and applications
can be placed at once. This result is likely due to the fact that
applications arriving in sequence allows us to spread their network
demands out more; placing multiple applications at once will use
more network resources than placing the applications as they arrive,
in general.

In cases where an in-sequence placement seems to be going
poorly, however, Choreo can re-evaluate its placement during a run,
and migrate applications if the tenant deems that worthwhile (as men-
tioned in Section 2.4). However, we can see from Figure 10(b) that
even without this behavior, Choreo’s relative performance improve-
ment over the other schemes when constrained to no re-evaluations
is significant.

7. DISCUSSION

Although Choreo can improve the completion time of many cloud
applications, it is not appropriate for every application nor for every
cloud environment. Here, we discuss some use-cases that are not
particularly well-served by Choreo, as well as how we expect Choreo
to fare as cloud networks evolve.

7.1 Limitations of Choreo

Choreo was designed with network-intensive applications in mind.
Though it is a general framework, there are certain applications for
which it likely will not provide any improvement. For example,
for applications that only need a few minutes to run, the cost of
Choreo’s measurement phase would cancel out any improvement.
Applications that have relatively uniform bandwidth-usage also
would not see much improvement from Choreo, because there is not
a lot of room for improvement. Here, because every pair of VMs
uses roughly the same amount of bandwidth, it does not help to put
the “largest” pair on the fastest link. We observed this traffic pattern
in some map-reduce applications.

Finally, interactive applications would probably not see much



improvement from Choreo, in part because the current version of
Choreo does not model how applications change over time. Even
if it did, the interactive phases would likely be difficult to model,
although Choreo could potentially re-evaluate its placement after
every interactive phase for some applications.

Choreo is also only appropriate for certain cloud environments.
For instance, Choreo will not offer a great deal of improvement in
cloud environments with an abundance of network bandwidth. After
all, if the cloud provider can afford to give every pair of tasks a
dedicated path, for instance, there is not much need to optimize task
placement. Choreo will offer more improvement as cloud networks
become more utilized. Although we do not believe that today’s
cloud networks are blessed with an excess of network bandwidth,
they also may not be as heavily utilized as they could be; thus,
Choreo may offer more more substantial improvements as cloud
networks evolve and become more heavily utilized.

7.2 Future Work

Currently, Choreo models an application with one traffic matrix
that captures the total number of bytes transferred between each task.
Notably, Choreo loses information about how an application changes
over time. Choreo could capture that information by modeling
applications as a time series of traffic matrices; this method will
naturally lead to a more complicated task placement algorithm.
A straw-man approach is to determine the “major” phases of an
application’s bandwidth usage, and use Choreo as-is at the beginning
of each phase. We leave an evaluation of this method, as well as a
more involved approach as future work.

We also leave a study of how Choreo performs with multiple
users as future work. In general, we believe that Choreo would
succeed in this case, because each user would measure the network
individually (and so would be able to place their application with
the knowledge of how the network was being affected by the other
Choreo users). How this approach compares to using a centralized
Choreo controller to orchestrate all users remains to be seen.

The final piece of future work is studying how the accuracy of
Choreo’s measurements trades off with its improvement. Though
Choreo’s measurement phase does not require much overhead (tak-
ing only three minutes to measure 90 VM-pairs), it is possible that
the system would still be able to improve performance with even less
accurate measurements. For instance, if Choreo’s measurements
were only 75% accurate, as opposed to approximately 90% accurate
(as in Section 4.1), would the performance improvement also fall by
15%, or only by a few percent?

7.3 Longevity of Choreo

Cloud networks are an evolving environment. The way providers
manage their network, including enforcing rate-limits, or migrating
VMs, could change, and it is difficult to predict how Choreo will
be affected by these changes. However, because Choreo starts
by measuring the cloud network, we believe that it could provide
improvement—or, at the very least, not be detrimental—in the face
of some of these changes. For example, if rate limits are enforced,
Choreo should be able to pick up on that when it explicitly measures
the links. If VMs are migrated during an application’s run, Choreo
will account for that, as it measures periodically. Determining the
correct frequency for these measurements would likely require some
fine-tuning.

Today’s cloud providers offer little in the way of network QoS
or SLAs to their customers. In the future, these types of guarantees
may become commonplace; a customer may be able to pay for
a particular level of bandwidth in their network. We believe that
Choreo could be complementary in this scenario, determining the
best placement for an application within the guaranteed network.

However, for some customers, Choreo may provide diminishing
returns; the provider’s SLA may be “good enough” on its own.

Today’s version of Choreo may not be appropriate for cloud
networks years from now. But we believe that the general approach
of measuring the network and adapting to it will remain useful,
and that future versions of Choreo could be built under the same
principles to adapt to future cloud networks.

8. RELATED WORK

We break related work into two sections: work related to improv-
ing various aspects of cloud performance, and work related to the
measurement of public cloud networks and datacenters.

8.1 Improving Cloud Performance

Previous papers on network virtualization and optimization for
cloud computing systems and datacenters address one of two prob-
lems: how to choose paths between fixed machines or how to choose
machines given a fixed network. Choreo falls into the second cate-
gory, as work in the first generally assumes a level of control over
the network that public cloud tenants do not have.

How to choose paths: Given a fixed network, there are many
ways to choose paths in the network to route from one machine
to another. Many datacenters choose paths with load balancing in
mind. A popular method is Equal-Cost Multi-Path forwarding [9],
where a flow’s path is selected based on a hash of various header
fields. VL2 [11] uses Valiant Load Balancing on a Clos network as
a means for selecting routes. Hedera [3] designed a dynamic flow
scheduling system, which can move flows in a network to efficiently
utilize all network resources. Other approaches to load balancing in
datacenters include software-defined networking, as in [13].

Other schemes, such as Seawall [34] and NetShare [21], focus
on choosing routes for performance isolation, ensuring that network
bandwidth is shared among tenants based on some weight function.
All of these systems differ from Choreo in that they have control,
at a minimum, of the routing protocol in the network. Tenants of
public cloud infrastructures do not have this type of control.

How to choose machines: Now we turn our attention to the fol-
lowing problem: Given a large network of machines, how do we
pick which machines to run a particular workload on? Here we
assume that the routes between machines are fixed. Oktopus [4]
uses a virtual topology to place tenant VMs such that they meet
bandwidth and oversubscription requirements. This system must
be deployed by cloud providers rather than tenants, but offers more
stable workload completion times (the goal of Oktopus is to improve
the accuracy of predicted completion times, rather than to focus on
finding an optimal placement). Researchers have also designed an
algorithm to place VMs on physical machines with the goal of mini-
mizing the number of physical machines used while also meeting the
VMs’ requirements for CPU, memory, and bandwidth [24]. Unlike
our work, they model network requirements as the percentage of
network I/O required, rather than amount of data to be transferred
between tasks, which limits the speed of a particular transfer even
if the network capacity is available. It is not clear whether virtual
machines are allowed to transfer data to multiple machines, nor is it
clear how this system would operate in general; the only simulation
is done on an extremely small topology with a highly structured
workload. Purlieus [26] reduces MapReduce job execution times by
placing Map/Reduce nodes in a locality-aware manner. This method
requires information about the network topology, which is usually
not provided by public cloud providers.

The largest difference between Choreo and these works is that
we present network-aware placement schemes that run with no
changes to the network; imposing no virtual topologies, assuming
no knowledge of the topology is assumed, and not introducing a new



routing protocol. Although there are features of Choreo that cloud
providers can take advantage of (such as incorporating network
topology knowledge), Choreo can be run entirely by tenants.

Our idea of network-aware placement is in contrast to workload
placement systems that only take CPU constraints into account [1,
29]. These systems generally attempt to load balance across ma-
chines or minimize the number of physical machines used.

8.2 Measurement

In accordance with the popularity of datacenters, there have been
many recent measurement studies in this environment [5, 6, 22].
These studies corroborate the assumptions in this paper, for example
the typical datacenter topology used in Section 3.3.1. However,
these studies are not focused on the performance of the network
and how it varies, which can affect the performance of network-
intensive applications. There have been a few efforts to understand
the network performance of Amazon EC2 [25], though only at a
very small scale.

In [8], Butler conducts measurement for network performances
for five major cloud providers, focusing on the throughputs when
cloud users upload/download files from outside the cloud, while
Choreo focuses on measuring the throughputs between VMs inside
the cloud. CloudTalk [30] measures EC2 topology to help optimize
latency sensitive applications such as web search. As we show in
Section 4.2, the topology information, i.e, hop-count from tracer-
oute, has no strong correlation with throughput. Thus, compared to
CloudTalk, Choreo’s throughput measurement techniques are more
helpful to big data applications whose performance depends more
on throughput instead of latency. Schad, et al [32] measured network
throughput between Amazon EC2 instances using iperf. They
observed similar throughput variation results as ours in both US and
European zones. Wang, et al [36] measured TCP/UDP throughput
between VMs in EC2. Similarly, they observed spatial variation
in both Small and Medium instances, and they observed temporal
variation over a 150-hour period, which is a much larger time scale
than we discussed in this paper.

We borrow the basis of many of our measurement techniques
from existing techniques, such as the early work by Bolot [7] and
Jain [18] on packet trains. Further related work in this area [27, 28]
has indicated that packet trains are not always an accurate measure
of path throughput due to their susceptibility to cross traffic. Packet
trains are also similar to the “history-based” methods in He, et
al [14], but requires significantly less data (He’s method requires
10-20 TCP transfers to make a throughput prediction on a path). We
did not consider methods that estimate the available bandwidth of a
path [16, 17], as that is not equivalent to the TCP throughput.

9. CONCLUSION

In this paper, we motivated the need for network-aware applica-
tion placement on cloud computing infrastructures. As applications
become more network-intensive, they can become bottlenecked by
the network, even in well-provisioned clouds. Without a network-
aware system for placing workloads, poor paths can be chosen while
faster, more reliable paths go unused. By placing applications with
the goal of minimizing the total completion time, Choreo is able to
improve application-level performance. Choreo’s placement also
tends to place tasks that transfer large amount of data on the same
machines if possible, avoiding any network transmission time, as
well as avoiding slow paths in the network.

Our experiments on Amazon EC2 showed that Choreo improves
application completion time by an average of 8%—14% (max im-
provement: 61%) when applications are placed all at once, and
22%-43% (max improvement: 79%) when they arrive in real-time,
compared to alternative placement schemes studied on realistic

workloads.

We also note that tenants may be interested in adding other re-
quirements to their workload; some of the tasks could be specified
as “latency-constrained”, or certain tasks could be specified as being
placed “far apart” for fault tolerance purposes. We believe that all
of these types of constraints are reasonable and would be benefi-
cial to tenants. Moreover, they can be formulated as part of our
optimization problem, as shown in [20].

In addition to our results from Choreo, we also developed and
tested techniques for measuring public cloud networks quickly and
accurately. We found that packet trains could be used to measure
public cloud networks, with a mean error of only 9% on EC2, and a
mean error of 4% on Rackspace. Choreo uses these measurements
to quickly place applications, and they are accurate enough that
applications see improvement over existing placement methods.
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APPENDIX

The problem of minimizing application completion time can be
modeled as a quadratic optimization problem. In our formulation,
we assume that there is no unknown cross-traffic in the network.
We show in Section 4.2 that this assumption generally holds in the
Amazon EC2 and Rackspace networks, and also discuss how we
could change our formulation if the assumption were not true.

To describe the existing network of M machines, we require two
matrices:

e Cuy«1, the CPU constraint vector. C,, is the CPU resource
available on machine m, i.e., the number of cores on the ma-
chine.

® Ry, the network constraint matrix. Ry, is the bulk TCP
throughput of the path from Machine m to n, assuming no one
else is sending traffic on the path.

To describe the J tasks:

e CRy, the CPU demand vector. CR; is the CPU demand for
Task j, i.e., the number of cores required for Task ;.

® By, the network demand matrix. B;; is the amount of data
Task i needs to transfer to Task j.

® Xyxm, the task assignment matrix. X, = 1 if Task j is placed
on Machine m, and 0 otherwise.

A placement of the J tasks onto the M machines is an X such that:
Ton—1 Xjm = 1,Yj € [1,J]

That is, each task must be placed on exactly one machine. In
addition, the placement of tasks on each machine must obey CPU
constraints, i.e.,

Y71 CR; - Xjm < C,¥m € [1,M]

Given a particular placement of tasks, we need to calculate how
long an application running with this placement will take to com-
plete. By definition, this completion time is equal to the time taken
to complete the longest-running flow.

Let f1,..., fx be a set of flows that share a bottleneck link ¢ with
rate R. The flows transmit b| <,..., < b, bytes of data, respectively.
The amount of data traversing link ¢ is then Zéz’l‘ b;. Since there is
no cross traffic (by our assumption), the total amount of time these
flows take is ij/l‘ bi/R. The total completion time for the workload
placement, then, is mafoik bi/R over all sets of flows that share
a bottleneck link. Choreo’s goal is to minimize that time over all
possible placements.

To formulate this objective so that it can be solved by quadratic
program solvers, we need to express it using matrices. In particular,
we need a way to define whether two flows will share a bottleneck
link. Let S be an M2 x M? matrix such that Smn.ap = 1 if the path
m ~ n shares a bottleneck link with path a~ b. Let Dy, be the M x
M matrix expressing the amount of data to be transferred between
machines m and n (D = XT BX). Let E,,, = ZZEI]V{,’S:IM D,y X
Smn,m’ n-

E,n expresses the amount of data traveling on m ~» n’s bottleneck
link. Note that the rate of that path is, by definition, R,;,,. Our
objective, then, is min max,y, , £m/R,,,, such that all CPU constraints
are still satisfied. In Section 4.4, we show that VMs in both EC2
and Rackspace cloud follow a hose model: the outgoing bandwidth
for each VM is limited by a certain threshold. We can model this
type of rate-limiting with the following: S, ; = 1 (m # i,m # j).

What happens if a tenant does not know the physical topology
of the network, i.e., does not know the correct values for S? In this
case, Choreo assumes that every entry in S is zero, i.e., there are



no shared bottlenecks in the network (effectively, this § models a
network with unique paths between every pair of machines). If this
value is incorrect, i.e., there are certain paths that share bottlenecks,
our formulation will likely calculate the workload completion time
incorrectly. However, we show in Section 6 that in practice, sig-
nificant performance gains can still be seen without knowledge of
S.

It turns out that our problem can be converted into a linear pro-
gramming problem. For each quadratic term in above constraints,
Xim*Xjn,1i < j, we define a new variable, zjy, (i < j forces Xy - X
and X, - X to be equal). Now the problem is as follows:

minimize: z
subject to:
Bij Zimjn
Z_Z,'J:1 Zf:l '}gnm" >0V mne[l,M]

Cn— Y CR; Xipy > 0V m € [1,M]
Y Xin=1Vie[l,J]
Zimjn —Xim <0, and Zimjn _AXjn <0Vi,je [17]]
Lonm Zl§:i+1 Zimjn + Lnm le_:ll Zjnim =J =1V i€ [1,J]
z>0
binaries:
Xim» Zimjn (0 < j. i,j € [1,J], m,n € [1,M])

The constraints serve the following purposes, in order: To force z
to represent the maximum amount of data transferred between two
machines, to make sure the computation capability of any machine
is not exceeded, to make sure each task is placed on exactly one
machine, to force zjmjn < Xim - Xjn, and to force zimjn < Xim - Xjn.



