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ABSTRACT

Cloud computing has become popular in recent years. Companies such as Amazon
and Microsoft host large datacenters of networked machines available for users to
rent. These users are varied: from individual researchers to large companies. Their
workloads range from short, resource-intensive jobs to long-running user-facing ser-
vices.

As cloud environments become more heavily used, provisioning the underlying
network becomes more important. Previous approaches to deal with this problem
involve changing the network infrastructure, for instance by imposing a particular
topology [34] or creating a new routing protocol [27]. While these techniques are
interesting and successful in their own right, we ask a different question: How can
we improve cloud networks without changing the network itself? This question is
motivated by two desires: first, that customers be able to improve their applica-
tion’s performance without necessarily involving the provider, and second, that our
techniques be immediately applicable to today’s cloud networks.

This dissertation presents an end-to-end system, Cicada, which improves appli-
cation performance on cloud networks. Cicada tackles two problems: how to model
and predict an application’s workload, and how to place applications on machines in
the network.

Cicada can be used by either cloud providers or customers. When used by a
cloud provider, Cicada enables the provider to offer certain network performance
guarantees to its customers. These guarantees give customers the confidence to use
cloud resources when building their own user-facing applications (as there is no
longer a risk of the cloud under-provisioning for the customer’s network needs), and
allow providers to better utilize their network. When used by customers, Cicada
enables customers to satisfy their own objectives, such as minimizing the completion
time of their application. To do this, Cicada exploits variation in the underlying cloud
network touse the fastest pathsmost frequently. This requires an extension toCicada,
called Choreo, which performs quick, accurate, client-side measurement.

We evaluate Cicada using data we collected from HP Cloud, a deployed network
with real users. Cicada’s workload prediction algorithm outperforms the existing
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state-of-the-art [20] by up to 90%. Its placementmethod reduces application comple-
tion timebyanaverageof22%–43%(maximumimprovement: 79%)whenapplications
arrive in real-time, and doubles inter-rack utilization in certain datacenter topologies.
These results and others herein corroborate our thesis that application performance
canbe improved incloudnetworkswithoutmakinganychanges to thenetwork itself.

Dissertation Supervisor: Hari Balakrishnan
Title: Professor

4



To my parents

∗ ∗ ∗

She remembered the night of the ball atWhiteAcre, in 1808, when the Italian
astronomer had arranged the guests into a tableau vivant of the heavens,
and had conducted them into a splendid dance. Her father—the sun, the
center of it all—had called out across the universe, “Give the girl a place!”
and had encouraged Alma to run. For the first time in her life, it occurred
to her that it must have been he, Henry, who had thrust the torch into her
hand that night, entrusting her as a Promethean comet across the lawn, and
across the wide open world. Nobody else would have had the authority to
entrust a child with fire. Nobody else would have bestowed upon Alma the
right to have a place.

Elizabeth Gilbert, “The Signature of All Things”
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Ousterhout have always cheerfully come along when I insisted that we have a “lab
outing”. Keith Winstein has at times been more excited about my research than
anyone. Sheila Marian and Mary McDavitt have made my road through grad school
much, much easier. I do not know how I would’ve handled the logistical aspects of
MIT without Sheila.

∗ ∗ ∗

I have a variety of friends outside of grad school to thank. JP Dickerson has been
my teammate for almost ten years, and I still struggle tomake any life decisionwithout
him (in fact, he is currently six timezones away, and I wish he was here to help me
write this section). Alan Mislove has bought me countless lunches throughout grad
school, as well as a plane ticket once, which remains one of the nicest things anyone
has ever done for me.1 Kristen Eaton helped me remember that life exists outside
of grad school, and as far as I’m concerned, every Wednesday is still Anything Can
HappenWednesday.

∗ ∗ ∗

Saving the best for last, my parents. I have always been pretty fond of my parents,
recognized that I am lucky to have them, and been proud to be influenced by them.
However, as I’ve moved away from home, I’ve spent a lot of time describing the town
where I grew up. In doing so, I realized just how rare it was to have parents who
prioritized education, who were willing to let their daughter go on to study math,
and who were so open to what has been, compared to many of my classmates, an
“alternative” life path. I am so, so, lucky. Everything that I ever dreamed I could do
as a child has happened because of them, and I do not make a single decision without
hoping that it makes them proud.

∗ ∗ ∗

Finally, Greggory Isaacson came into my life at exactly the right time, and the
pleasure, the privilege, has been mine.

1He also spent many hours helping me select a font for this thesis, and he loves a good footnote.
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Chapter 1

Introduction

Cloud computing has risen in popularity in recent years. To that end, it has become
somewhat of a nebulous term. Many users use “the cloud” with no understanding of
the types of machines they have access to, where those machines are, etc. We begin
this thesis by defining cloud computing much more precisely.

Much like distributed computing, in cloud computing applications run over mul-
tiple computers connected by a network. This network is often a datacenter network,
which typically implies a tree-like topology, low latencies, and high line rates (non-
tree-like topologies have been proposed in [5] and [90]). Each physical machine in
the network is home to many virtual machines. Figure 1-1 depicts this environment;
we discuss it in more detail in §2.2.1.

hypervisor
virtual machines (VMs)

individual physical machine

racks of 
physical 

machines

network
switches

Figure 1-1: A typical datacenter network.

Cloud computing is a unique example of distributed computing due to the type of
users involved. Typically, a cloud is managed and owned by one entity; usually a large
company such as Amazon or Google. The cloud is used by many diverse customers:
from students running code on a handful of virtual machines, to large companies such
asNetflixorNASAdeploying their servicesacross thousandsofcloudmachines [17, 18].
These users benefit from the cloud by not having tomanage—or even purchase—their
own physical resources.

Cloud computing environments can be divided into two types: private clouds and
public clouds. The work in this dissertation applies to both types. In private clouds,
the provider and customers are typically associated with the same organization, and
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as a result, have some shared goals. Typically, there is also no monetary exchange
from the individual customers to the cloud provider.1 Many companies run their
own private clouds, which are used by different—and largely independent—groups
within the company; here, the company (or its IT staff) is the provider, and the
company’s employees are the customers. Similarly, universities often provide this
type of service to their faculty and students; here, the provider is the university, the
faculty and students are the customers. In contrast, in public clouds, the cloud is
owned by one provider and used bymany customers who need not be associated with
that provider (beyond using their public cloud service). Customers pay the provider
to rent machines, usually by the hour. Examples of public clouds include Amazon
EC2 [11], Google Compute Engine [33], HP Cloud [42], Rackspace [77], andWindows
Azure [95].

1.1 The Problem

As with any popular service, cloud computing is subject to problems, many of which
were outlined by researchers at Berkeley in 2009 [16]. Unfortunately, customers feel
the brunt of many of these issues. For example, applications do not always run as
quickly as customers would like. In the case of public clouds, customers pay per
machine, but do not understand their applications well enough to know how many
machines or how much inter-machine bandwidth to request. Traffic from other
customers can affect how much bandwidth is available for a customer to use, which
makes the high link speeds of cloud networks much less enticing (§6.4.2).

These particular problems are exacerbated for network-intensive applications.
These applications transfer lots of data within the cloud network, and are typically
network-bottlenecked rather than CPU- ormemory-bottlenecked. Examples include
Hadoop jobs [36], analytic database workloads, storage/backup services [8], and sci-
entific or numerical computations.2 Such applications operate across dozens of ma-
chines [86], and are deployed on both public clouds as well as enterprise datacenters.

Our insight is that these problems are caused partly because the customers’ needs
are unknown to the provider, and often to the customer herself. In particular, the
customer usually does not know how much bandwidth her application requires, or
has at best a very coarse idea (“Nomore than 10GBperhour”). This lack of knowledge
can lead to customers over-provisioning and paying for bandwidth that they do not
need, or under-provisioning and seeing performance suffer. Moreover, even if the
customer does know the needs of her application, the provider gives her no way to
express those needs beyond making requests for additional machines.

∗ ∗ ∗
1For consistency, throughout this dissertation we use the term “customers” even when speaking

about private clouds, despite the lack of payment.
2http://aws.amazon.com/hpc-applications
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Wewill show in this thesis that by imbuing the cloudcustomerwith theknowledge
of her application’s traffic demands, and potentially passing that information on to the
provider, application performance can improve in a variety of ways: fromminimizing
application completion time, to allowing the provider to offer bandwidth guarantees,
to improving network utilization. These improvements address common complaints
of today’s cloud customers.

1.2 Philosophy

Our philosophy in tackling the problem of improving cloud application performance
is that one can benefit fromknowingwhat is happening at the application level. Rather
than rely on solutions that require changes to routing or the topology itself, we design
solutions that can be implemented simply by knowingwhere the applicationwill send
traffic. As a result, all of the techniques in this dissertation can be readily deployed
todayoncloud infrastructures, andoffer improvementbothwithandwithoutprovider
involvement (Chapters 5 and 6, respectively).

As part of this philosophy, a significant portion of this dissertation focuses on net-
work measurement. In order to predict what an application is doing in the future, we
mustmeasurewhat it has done in the past. In order to intelligently place applications,
we must know what the underlying network is like; whether it is fast, stable, etc. We
believe that networkmeasurement can be done in a lightweight and fastmanner, so as
not to disrupt currently running applications, and that these measurements provide
data that can be used to improve application performance by lowering application
completion time, providing predictable guarantees, or improving network utilization.

In particular, we do not believe that it is necessary to have complete control over a
cloud network to improve application performance. Changes to the network topology
or the routing algorithms can be beneficial, but they are not the only option.

We also believe that one can improve application performance and benefit both
the customer and the cloud provider. For example, although reducing application
completion time results in a lower per-tenant or per-job profit for the provider, it
provides a significant competitive advantage, enables more work to be done on the
same infrastructure, and encourages the deployment of a greater number of jobs and
services.

1.3 Contents of Dissertation

This dissertation focuses on the design and analysis of Cicada, a system designed
to improve customers’ experience when running applications in the cloud.3 Cicada
solves two problems:

3Thanks to Dave Levin, Cicada is an acronym: Cicada Infers Cloud Application Demands Automati-
cally.
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1. How to model an application’s workload and make predictions about future
network demands.

2. How to place an application on the cloud given its predicted workload and the
current state of the network.

Both of these problems were motivated by our own measurement studies, and both
come with unique challenges.

1.3.1 Challenges

Thefirst problem—workloadprediction—ismotivatedbyourownmeasurement study
in §3.2. Using data from HP Cloud Services, we found that many cloud applications
exhibit both spatial and temporal variability. That this much variability exists means
that most customers cannot be expected to know the demands of their own applica-
tions. In order to solve the workload prediction problem, Cicada must overcome the
following challenges:

• Cicada must find a way to make predictions that take into account both spatial
and temporal variations in an application’s workload; most related work in
workload prediction only takes into account one of these types of variability.
Cicada should be able to make predictions both for average and peak demand
(defined precisely in §3.3.2), as different applications have different needs.

• Cicada must be able to detect when its predictions are likely to be incorrect.
If Cicada makes a series of incorrect predictions, customers will see decreased
performance (or increased cost) and lose faith in the system. It is better for
Cicada to classify an application as “unpredictable” than to consistently output
incorrect predictions.

• Cicada must be able to make predictions with a relatively small amount of
historical data. Though Cicada targets long-running applications, it’s unlikely
that customers will be willing to wait weeks for Cicada to make its first attempt
at improving their application’s performance.

The second problem—application placement—is also motivated by our own mea-
surement study (§6.3). In measuring TCP throughput on Amazon EC2, we found
that there was significant variation in the TCP throughput on the paths; throughputs
varied from 100Mbit/s to 1Gbit/s. An application that sends a large amount of traffic
over the slower pathswill seemuch poorer performance than a similar application us-
ing the faster paths. In order to solve the placement problem, Cicada must overcome
the following challenges:

• Placing an application on a cloud network requires a “snapshot” of the network;
e.g., knowledge of the TCP throughputs, topology, etc. Cicada must be able to
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obtain this snapshotquickly, accurately, andwith littleoverhead. This challenge
is of particular concern with Cicada is run by the customer, who does not have
easy access to such quantities.

• Oncethenetworkhasbeenmeasured,Cicadamustbeable toplaceanapplication
withina fairlyshortamountof time. IfCicadatakes too longtomakeaplacement,
the network conditions may have changed; the network snapshot that Cicada
used to determine the placement may no longer be valid.

In addition to these individual challenges, we would like Cicada to solve these
problems without making changes to the network infrastructure. In that way, our
solutions can be readily deployed on today’s cloud networks, and even deployed
without cooperation from the cloud provider.

1.3.2 Overview of Cicada

In Chapter 3, we describe Cicada’s workload prediction algorithm. Cicada is able to
make predictions for applications that vary over both space and time. It does not
require any input from the customer regarding an application’s bandwidth needs;
Cicada predicts these needs by observing network traffic, removing the need for
a customer to understand the intricate details of their application. We show that
Cicada can recognize which applications have predictable traffic patterns and make
accurate predictions for those applications using only a few hours of data.

In Chapter 4, we describe Cicada’s method for placing applications on the cloud.
Cicada’s placement algorithmexploits variations in cloud networks. Given a snapshot
of the current network state, Cicada determines on which machines it is best to place
different parts of an application. This placement can be used to satisfy a variety
of objectives: for instance, minimizing application completion time, enforcing fault
tolerance, andminimizingmonetary cost. We also find that by using these techniques,
the inter-rack network utilization in certain common datacenter topologies can be
more than doubled without under-allocating bandwidth to applications.

∗ ∗ ∗

The prediction and placement components of Cicada may be used by either the
cloud provider or the cloud customer. Chapter 5 presents an provider-centric ap-
plication of Cicada. Here, Cicada provides predictive guarantees for applications.
Predictive guarantees specify the amount of bandwidth an application will use in
some future time frame, and where that bandwidth will be needed. These guarantees
can be used by the cloud provider to offer bandwidth guarantees to customers, which
can improve predictability of application performance and lower costs [20, 96]. We
discuss additional details about this environment, including how the customer and
provider might interact to agree on the terms of the guarantee, and how network
access control might be performed.
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Chapter 6 presents a customer-centric application of Cicada. There, Cicada re-
quires no interaction from the provider, except the ability of a tenant to obtain a set of
machines and place tasks on them; everything else is done entirely on the client’s side.
Since Cicada requires a snapshot of the cloud network—something that is not readily
available to customers—we develop Choreo, a network measurement extension to
Cicada. In order to quickly measure network connections, Choreo uses packet trains,
which we findworkwell on public cloud networks (though previous work has shown
that it does not always work on the Internet [72, 75]). We also describe methods for
measuring cross traffic and for locating bottlenecks, which can be a concern in certain
cloud networks.

1.4 Contributions and Results

This dissertation makes both philosophical and technical contributions.

Philosophical contributions: Cicada demonstrates that knowledge of application-
level traffic patterns can improve performance, and that these traffic patterns can
be learned without any input from the customer. Traffic-pattern knowledge allows
providers to offer customers accurate bandwidth guarantees, improve network uti-
lization, and place applications more intelligently in order to minimize completion
time (among other objectives). The fact that Cicada can learn these patterns without
customer input makes it a realistic and general system, applicable to a wide range of
customers and applications.

Cicada does not require changes to application topology, nor does it require a
particular datacenter topology to work (though parts of its measurement framework
do require a datacenter topology, i.e., a hierarchical, tree-like topology; see §6.4). In
fact, althoughprovider involvement canbebeneficial, Cicada canbe runentirelywith-
outprovider involvement (Chapter6),making it applicable to today’s cloudcustomers.

Technical contributions: This dissertation makes technical contributions in the
areas of traffic prediction and network measurement.

• Cicada’s workload prediction algorithm outperforms a predicting algorithm
based on the existing state-of-the-art [20] for static placements by up to 90%,
in part because it takes into account both spatial and temporal variations in
an application’s traffic. Previous related work has not taken both types of
variations into account, or has only made predictions for a very specific type of
application [20, 37, 51, 68, 96]; Cicada can make predictions for a large class of
cloud applications. It can also predictwhen a prediction is likely to be incorrect,
and prediction parameters for Oktopus’ Virtual Oversubscribed Cluster (VOC)
model [20] nearly as well as a perfect oracle.

• Cicada’s placementmethod reduces the average completion timeof applications
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by 8%–14% (maximum improvement: 61%) when applications are placed all at
once, and 22%–43%(maximum improvement: 79%)when applications arrive in
real-time, compared toalternativeplacementmethodsonavarietyofworkloads.
Its placement method can also double inter-rack utilization in common data-
center topologies. Unlike relatedwork [7, 20, 27, 34, 38, 54, 63, 71], Cicadamakes
these improvements without making changes to the network infrastructure.

• Choreo, the network measurement extension to Cicada, is able to use packet
trains to estimate TCP throughput on ninety network paths within a just a few
minutes. As part of Choreo, we also develop new methods for estimating cross
traffic and locating bottlenecks within the network.

Through this dissertation, we use real measurement data collected from real
public clouds to test and verify our design. Cicada uses data collected fromHP Cloud
Services, Amazon EC2, and Rackspace. All of these cloud services were deployed
networks with real traffic from other users that we did not control. As a result, parts
of this dissertation make contributions to measurement studies of cloud networks:

• Using network traces from HP Cloud Services, we show that temporal and
spatial variability appear in cloud application traffic; this variability has not
previously been quantified for cloud networks, and has rarely been exploited in
related work prior to Cicada.

• We present measurements from Amazon EC2 and Rackspace indicating how
TCP throughput varies on today’s cloud networks, and how this quantity has
changed over the past few years.

∗ ∗ ∗

Looking toward the future, we believe that this dissertation makes significant
contributions towards cloud computing that will remain even as the cloud environ-
ment evolves. Cicada was designed around three principles: adapt to the network,
utilize application-layer information, and require no changes to the underlying infras-
tructure. We believe that these principles will remain applicable as cloud networks
change. For example, because Cicada starts by measuring the cloud network, we be-
lieve that it will provide improvement in the face of changes to networkmanagement,
rate-limits, etc. Because Cicada does not rely on a particular network infrastructure
(beyond there being a datacenter topology), it is likely to provide improvement as the
infrastructure changes.

Though today’s version of Cicadamay not be appropriate for cloud networks years
from now, we believe that the general approach of predicting application workloads,
measuring the network, and adapting to it will remain useful, and that future versions
of Cicada could be built under the same principles to adapt to future cloud networks.
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1.5 Outline of Dissertation

The remainder of this dissertation is divided into six chapters. Chapter 2describes the
cloud environment in more detail, places Cicada in a historical context, and describes
the dataset that we use throughout this dissertation. The main algorithms appear in
Chapters 3 and 4. Chapter 3 describes and evaluates Cicada’s prediction algorithm,
and includes the measurement study that motivated the need for such an algorithm.
Chapter 4 describes and evaluates Cicada’s placement algorithm.

Chapters 5 and 6 describe extensions to Cicada, which can be used depending on
whether the provider or the customer is deploying the system. Chapter 5 describe
how a provider can use Cicada to offer bandwidth guarantees to its customers, and
discusses the necessary interactions involved. Chapter 6 presents Choreo, a net-
work measurement system that allows a customer to perform all of Cicada’s network
measurements on its own.

We conclude this thesis in Chapter 7, where we discuss whether Cicada could be
extended to non-cloud networks, aswell as to future cloud networks. We also address
some potential criticisms of Cicada, such as whether providers are actually motivated
to use it.
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Chapter 2

Background

2.1 Definitions

Before proceeding, we define some terms that will be used throughout this disserta-
tion.

A cloud refers to a group of networked machines controlled by a single entity,
which are then used by the public; this type of environment is sometimes referred
to as Infrastructure-as-a-Service, or IaaS. The entity controlling the machines is the
provider. A customer is an entity using the cloud. There are two types of clouds:
private and public. In private clouds, the provider and customers are associatedwith
the same organization; for example, in the case of a company providing a cloud for
its employees. These clouds are used by diverse teams within the organization. In
contrast, customers of public clouds have no affiliation with the provider, beyond
using their public cloud service. Examples of public clouds include Amazon EC2 [11],
Rackspace [77], andWindows Azure [95].

In private clouds, there is typically no monetary exchange between the individual
customers and the providers, as the customer and providers are employed by the same
organization. Inpublic clouds, however, customerspay theprovider to rentmachines,
usually by the hour. The work in this dissertation applies to both private and public
clouds; for consistency, we use the terms “provider” and “customer” throughout,
despite the lack of payment in private clouds.

As is common in industry [70], we make an intentional difference between cus-
tomer and tenant. We define a tenant as a collection of virtual machines that com-
municate with each other. This definition implies that a single customer may be
responsible for multiple tenants.

Weusethetermapplication torefer toaparticular typeofsoftware(e.g.,Hadoop[36]).
When a tenant runs an instance of that software, we refer to it as the tenant’s work-
load. A tenant may runmultiple applications at once, although it is not uncommon to
have a tenant running a single application.
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Figure 2-1: A typical datacenter network.

2.2 The Public Cloud Environment

In addition to being under the control of a single administrator, today’s public
clouds are typically characterized by three features: the network topology and
speeds/latencies, the compute environment, and how customers interact with the
cloud.

2.2.1 Networking and Computing

The underlying network in most public clouds is a type of datacenter network. These
networks are hierarchical, as shown in Figure 2-1. They begin with racks of physical
machines, connected by top-of-rack switches. Traffic that exits the rack goes to
the next layer—the aggregate layer—and possibly through the core layer. Higher
layers generally have fewer switches than lower layers, and the connections between
machines at higher layers have higher line rates (see [27] for more details). Higher
layers require higher rates as they will potentially transport more traffic than the
lower layers. For example, a top-of-rack switch is only responsible for traffic in and
out of one rack of machines. Aggregate switches are responsible for traffic in and out
of an entire cluster of racks, and core switches are responsible for traffic in and out of
multiple clusters of racks.

The layers in a datacenter network can be connected by one of many tree-like
topologies. For instance, fat-tree networks [57], or specific types of Clos networks [6].
Unlike pure trees, these networks allow for multiple paths between a source and
destination; hence, there can be multiple “best paths”. Public clouds often use Equal-
CostMulti-Path routing (ECMP) to determinewhich path to take [2]. To avoid packet
reordering, ECMP usually results in a particular flow remaining on the same path for
its lifetime, unless there are failures [41].

In addition to this particular type of topology, datacenter networks oftenhavehigh
line rates, very low round-trip times, and are built with a fairly homogeneous set of
equipment [8]. Forexample, asof2013, Facebook’sdatacenternetworkwasconnected
with 10G, 40G, 80G, and 160G links [32]; as of this writing, typical datacenter latencies
are on the order of hundreds or even tens of microseconds [9, 10]. Higher layers
are often oversubscribed, implying that the maximum amount of traffic that could be
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routed through a switch is more than network topology is capable of carrying. This is
rarely a problem, as the entire network capacity is rarely used concurrently.

In public clouds, each physical machine employees virtualization to host multiple
virtual machines. It is these virtual machines on which customers run applications.

2.2.2 Virtual Machine Migration

Occasionally, virtual machines in a cloud network will need to be migrated from
one physical machine to another. Migration is particularly relevant to Cicada, as
part of Cicada’s architecture placing virtual machines and potentially updating their
placement (Chapter 4).

In this dissertation, our model is one where virtual machines reside on physical
servers, and any large dataset is available to all VMs via a separate storage facility,
such as Amazon S3 [13]. Migrating a virtual machine, then, requires migrating its
virtual memory and any local data. Typically, virtual machines can be migrated via
“livemigration”, which causes only a few seconds of downtime for theVM[92]. §4.4.2
discusses the impact of migration on Cicada.

2.2.3 Customer Interaction

A customer’s interaction with a public cloud starts by requesting a set of virtual
machines, often termed instances. Currently, the customer can select the computa-
tional, storage, andmemory capabilities of these machines, but has little to no control
over the networking capabilities between their VMs. At best, they can select more
computationally powerful machines, which typically results in a higher maximum
achieved-throughput, but there is no guarantee about how much bandwidth the cus-
tomer will receive.

Once the customer has requested these instances, the cloud provider will launch
the VMs; once they are up and running, the customer is able to log in to them. The
customer may be under the illusion that they have been given their own separate
physical machines, and that the connections between those machines are unaffected
by any other traffic. In reality, the connections between a customer’s virtualmachines
can be affected by many things in the cloud provider’s network; for instance, cross
traffic from other users, and shared bottlenecks on the network. We elaborate on
these issues in Chapter 6.

2.3 Context of This Dissertation

In 2009, researchers Berkeley set out ten challenges for cloud computing, two of
which—data transferbottlenecksandperformanceunpredictability—dealt specifically
with network performance [16, 15]. Muchwork in this area has focused on approaches
to these problems that require a certain amount of control over the network: either
the ability to use a specific topology [34], or the ability to make routing decisions [27].

27



Theymay also assume that the cloud customers arrive knowing quite a bit about their
application. For example, the techniques in Greenberg et al. [34] require a particular
datacenter topology to improve network performance; Ballani et al. [20] assume that
the customers know the network needs of their applications before running them on
the network.

Cicada offers a complementary approach. We aim to improve application perfor-
mance by using information about the underlying network and traffic patterns, but
without making changes to the network. We are particularly concerned with how
individual applications perform, and not with more network-specific metrics such as
the presence (or lack) of hotspots.

2.3.1 Assumptions

Cicada relies on a few assumptions about the datacenter network and the applications
running on it. Cicada targets a particular type of application: long-running, network-
intensive applications that require more than a few virtual machines. Due to the
nature of Cicada’s design, in particular its prediction algorithm, applications that
transfer very little data, run for only a few minutes, or use only two or three VMs
will experience little improvement; see §3.5 for more details. Moreover, Cicada has
been evaluated on a dataset that we believe represents “typical” cloud applications
(see §2.5.7); we cannot speak to its performance on more general applications.

Cicada’s placement component relies on the assumption that a customer can
launch virtual machines in the cloud network, and choose what parts of their ap-
plications to place on which of those virtual machines. Alternatively, if Cicada is
run entirely by the provider, it relies on the assumption that the provider can place
virtual machines anywhere in its own network. Both of these assumptions are true of
virtually all cloud networks today.

Most of Cicada’s functionality does not rely on any assumptions about the dat-
acenter network itself. However, parts of Choreo (Chapter 6), Cicada’s network
measurement extension, requires two: that the underlying topology be some type of
datacenter topology (i.e., ahierarchical, tree-like topology), and that thereberelatively
high line rates (in order to measure the network quickly). Furthermore, customers
using Cicada will see the most benefit from its placement algorithm when there is a
large disparity in the achieved TCP throughputs on paths, as we see in today’s cloud
networks (§6.3).

In Chapter 7, we discuss how Cicada might perform if some of these assumptions
were removed (for instance, if Cicadawere used on non-cloud networks, or on amore
general set of applications).
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Figure 2-2: Cicada’s architecture.

2.4 Cicada’s Architecture

Cicada’s high-level architecture is detailed in Figure 2-2. It divides into two sections:
prediction and placement.

2.4.1 Traffic Prediction

Cicada predicts application traffic patterns in order to help providers and customers
better estimate an application’s network needs. It makes predictions for both average
demands—the total amount of data an application will need to transfer over some
future time interval—as well as peak demands—the maximum amount of data an
applicationwill need to transfer over a small time interval; see §3.3.2 for amoreprecise
definition of mean and peak demands. In the context of today’s cloud networks, this
goal puts Cicada a step beyond research that assumes customers already know these
patterns beforehand [20, 56].

To put Cicada’s predictive approach in an historical context, it resembles some
types of ISP traffic engineering, which ISPs deploy in practice. Traffic engineering
uses estimates of traffic tomapflows or aggregates to paths in a network, and attempts
to predict the amount of traffic that links in a network will carry. However, Cicada
tackles a slightly different problem than many traffic engineering schemes. These
schemes try to estimate true traffic matrices from noisy measurements [85, 97], such
as link-load data. Cicada, on the other hand knows the exact trafficmatrices observed
in past epochs; its problem is to predict a future traffic matrix.

There is some work on traffic engineering schemes that attempt to predict future
demands. On ISP networks, COPE [94] describes a strategy that predicts the best
routing over a space of traffic predictions, made up of the convex hull of previous
traffic matrices. It is not a traffic-prediction scheme per se, but we draw inspiration
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from this work in Chapter 3.
Cicada also uses its predictions for a different purpose than traffic engineering:

to place virtual machines or tasks (Chapter 4), or to offer bandwidth guarantees to
tenants (Chapter 5).

We discuss prior work related specific to Cicada’s prediction algorithm in Chap-
ter 3.

2.4.2 Virtual Machine Placement

Cicada’s placement componentdealswithhow toplace an application’s components—
its tasks—on the cloud network. This problem is closely related to the problem of
virtual machine placement (in fact, in the case where there is one task per virtual
machine, the problems are identical).

The problem of virtual machine placement is as follows: given a network of M
machines, eachmachinehavingaCPUconstraint representing theamountof available
CPU (this problem could easily be extended to include CPU and RAM), and each pair
of machines having a network constraint representing themeasured TCP throughput
between themachines (we choose to concentrate onTCP traffic sincemost datacenter
traffic uses TCP [8]).

A tenant wants to run a set of k applications on this network; they may all be
known up front, or they may come in sequence. Each application Ai uses Ji virtual
machines (VMs), which need to be placed on theM physicalmachines in the network.
More than oneVM is allowed on eachmachine, so long as theCPUconstraints are still
satisfied. Each VM has a CPU demand, representing the amount of CPU needed by
that VM to complete its computations (this demand is typically given by the customer,
and may be expressed, for example, as the number of cores a VM requires). Each
pair of VMs has a network demand, representing the amount of data that will be
transferred between them (demands can be asymmetric; i → j may have a different
value than j → i). The goal is to place the k applications on the M machines so
as to satisfy some objective—for example, to minimize the application completion
time—while also satisfying the per-machine CPU constraints

Previous papers on network virtualization and optimization for cloud computing
systems and datacenters address one of two problems: how to choose paths between
fixed machines, or how to choose machines given a fixed network. Cicada’s traffic
placement mechanism falls into the second category, as work in the first generally
assumes a level of control over the network that we do not assume in this dissertation.

How to Choose Paths

Given a fixed network, there are many ways to choose paths in the network to route
from one machine to another. Many datacenters choose paths with load balancing in
mind. A popularmethodmentioned earlier is Equal-CostMulti-Path forwarding [27],
where a flow’s path is selected based on a hash of various header fields. VL2 [34]
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uses Valiant Load Balancing on a Clos network to select routes. Hedera [7] designed
a dynamic flow scheduling system, which can move flows in a network to efficiently
utilize all network resources. Other approaches to load balancing in datacenters
include software-defined networking, as in [38].

Other schemes, such as NetShare [54], focus on choosing routes for performance
isolation, ensuring that network resources are shared among tenants based on some
weight function. All of these systems differ from Cicada in that they have control,
at a minimum, of the routing protocol in the network. Cicada aims to improve
performancewithout changing routing protocols.

How to Choose Machines

Now we turn our attention to the following problem: Given a large network of ma-
chines, how do we pick which machines to run a particular workload on? Here
we assume that the routes between machines are fixed. Oktopus [20] uses a virtual
topology to place tenant VMs such that they meet bandwidth and oversubscription
requirements. This system must be deployed by providers, but offers more stable
workload completion times (the goal of Oktopus is to improve the accuracy of pre-
dictedcompletion times, rather than to focusonfindinganoptimalplacement). Unlike
Oktopus, Cicada need not be deployed by providers. However, if it is, Cicada can be
used to provide bandwidth guarantees that aremore accurate than those derived from
Oktopus, decreasing the median error by 90% (see §3.5 and Chapter 5).

Researchers have also designed an algorithm to place VMs on physical machines
with the goal ofminimizing the number of physicalmachines usedwhile alsomeeting
theVMs’ requirements forCPU,memory, andbandwidth [63]. In thisproposal, it isnot
clear whether virtual machines are allowed to transfer data tomultiple machines, nor
is it clear how itwould operate in general; the only simulation is done on an extremely
small topology with a highly structured workload. Purlieus [71] reduces MapReduce
job execution times by placing Map/Reduce nodes in a locality-aware manner. This
method requires information about the network topology, whichmay not be available
to Cicada. Even in the case where network topology information is available, Cicada
can provide improvement for a much more general case of applications, not just
MapReduce jobs.

The largestdifferencebetweenCicadaand theseworks is thatwepresentnetwork-
aware placement schemes that run with no changes to the network, assuming no
detailed, a priori knowledge of the topology is assumed, and not introducing a new
routing protocol. In fact, as we show in Chapter 6, Cicada may even be run entirely
by customers, without provider assistance. In addition to making no changes to the
network, Cicada infers application demands automatically, without any input from
the customer.

Our ideaofnetwork-awareplacement is incontrast toworkloadplacementsystems
that only take CPU constraints into account [3, 76]. These systems generally attempt
to load balance across machines or minimize the number of physical machines used.
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Additionally, Cicada operates in real-time; other work [51] measures traffic for weeks
before making a placement.

2.5 Dataset

In order to understand and evaluate both of the main problems in this dissertation—
workloadprediction and applicationplacement—weneed access to networkmeasure-
ments from cloud networks. We must understand how the traffic patterns of cloud
application workloads vary in order to make predictions about them, and we must
understand how cloud networks vary in order to place applications on them. Fur-
thermore, to properly evaluate Cicada, we need to test its prediction and placement
on real applications under real network conditions.

Despite the importance of datacenter networks, the research community has had
scant access to measurements, particularly of VM-to-VM traffic matrices in IaaS
clouds. We are interested in obtaining this type of data for two reasons:

1. Cicada’s prediction methodmakes predictions for individual VM pairs (or even
individual “task” pairs; see §3.3.2), in order to exploit spatial and temporal
variability between VMs. For this reason, we need VM-to-VM traffic matrices;
aggregated data will not suffice.

2. We’re interested inVM-to-VMtrafficmatrices from IaaS clouds aswe speculate
that these type of clouds may contain a different mix of long-running, network-
intensive applications than other cloud or datacenter environments, in part due
to the large number of independent customers that use these clouds, and the
typical cloud use cases (e.g., MapReduce jobs, scientific computing, etc.). The
applications running of IaaS cloudsmayhave characteristics that amore general
set of applications does not.

It’s possible that this assumption is incorrect; maybe cloud applications exhibit
the same workload characteristics as some more general class of applications.
Even so, we would still need a dataset of IaaS-cloud applications in order to
prove that.

Thesemeasurementscanbedifficult for researchers toobtaindue to thechallenges
of gathering large-scalemeasurements, the privacy and security risks created by these
data sets, and the proprietary value that providers place on understanding what goes
on in their networks. We know of no published measurement studies on IaaS traffic
matrices (except perhaps [21], discussed below).

Prior studies on datacenter networks have detected temporal and spatial vari-
ability. Benson et al. [22] analyzed link-level SNMP logs from nineteen datacenters,
finding “temporal and spatial variations in link loads and losses.” These, we believe,
were not cloud (IaaS) networks per se (they may have been SaaS/PaaS datacenters),
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Figure 2-3: Collection of the HPCS dataset.

although their applications may be similar to those of cloud tenants. Benson et al. [21]
gathered SNMP statistics for ten datacenters and packet traces from a few switches in
four datacenters. They describe several of these as “cloud data centers,” but it is un-
clear whether they are actually IaaS networks. They report that “diurnal patterns [in
link utilization] exist in all [ten] data centers,” and that “time-of-day and day-of-week
variation exists inmany of the data centers,” especially in the cores of these networks.

Greenberg et al. [34] report onSNMPandNetFlowdata froma “large cloud service
provider.” We believe this, too, is not an IaaS provider. They report a distinct lack of
short-term predictability for traffic matrices, but do not say whether this datacenter
experiences diurnal variations. Kandula et al. [49] found considerable short-term
spatial variation in a 1500-server data-mining cluster, but did not investigate whether
this variation is predictable. Bodík et al. [24] also found spatial variation in inter-
service traffic in a datacenter, as a result of the fact that machines responsible for
different services did not typically communicate with one another.

2.5.1 The HPCS dataset

Throughout this dissertation, we use a dataset collected fromHPCloud Services. We
collected sFlow [88] data from HP Cloud Services, which we refer to as the HPCS
dataset. Figure 2-3 shows our dataset collection process, which we detail below.

2.5.2 sFlow Data

Collecting sFlow data requires having sFlow-enabled switches in a network, as the
data is gathered from the switches themselves. To achieve scalability, sFlow uses
packet sampling; each switch sends the sampled data to a specified host. The data
comesasaseriesof sFlowdatagrams. Thesedatagramscontain informationpertaining
to the type of sampling done, as well as one or more samples. The samples contain
standard packet trace fields, such as source IP, source MAC, etc.

In our implementation, our sFlow-enabled switches randomly sampled one out of
every 1000 packets, and sent the sFlow datagrams to a single centralized server. For
each sample, the server recorded the following:
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• Timestamp of the sample

• Source IP address

• Destination IP address

• Number of bytes transferred from the source to the destination in this sample

For privacy reasons, we kept no information pertaining to the packet payload.

2.5.3 Dataset Size

Our dataset consists of about six months of samples from 71 Top-of-Rack (ToR)
switches. Each ToR switch connects to either 48 servers via 1GbE NICs, or sixteen
servers via 10GbE NICs. In total, the data represents about 1360 servers, spanning
several availability zones (portions of a datacenter that are isolated from failures in
other parts of the samedatacenter). This dataset differs from those in previouswork—
such as [21, 22, 34]—in that it captures VM-to-VM traffic patterns. It does not include
any information aboutwhat types of applicationswere running (e.g.,MapReduce jobs,
webservers, etc.), as that information is not available from the packet headers that we
captured.

Due to the amount of storage we had available, we aggregate the sFlow data over
five-minute intervals, to one datapoint of the form 〈timestamp, source IP, destination
IP, number of bytes transferred from source to destination〉 every five minutes. We
keep only the data where both the source and destination are private IPs of virtual
machines, and thus all our datapoints represent trafficwithin the datacenter. Making
predictions about traffic traveling outside the datacenter or between datacenters may
be a more challenging task, in part due to the additional cross traffic and lower line
speeds available in parts of the Internet. We do not address this challenge in this
work. For privacy reasons, after this processing, we store a deterministic hash of the
IP, rather than the IP itself.

Under the agreement by which we obtained this data, we are unable to reveal
information such as the total number of tenants, the number of VMs per tenant, or the
growth rates for these values.

2.5.4 Dataset Limitations

Because sFlow samples packets, it cannot provide perfect information regarding how
many bytes were sent between a source and a destination; it may entirely miss flows
from sources that send very little data. However, we do not believe that missing these
small flows has any effect on Cicada’s overall performance. After all, if sourcesA and
B communicate rarely, they will not suffer from being placed on a particularly slow
path.

Note that because sFlow samples packets, not flows, if A and B send more than
one thousand packets between them, it is highly likely that at least one sample will be
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generated; it does not matter ifA andB send that traffic as many small flows or a few
large flows.

During data collection, the physical network was generally over-provisioned.
Hence, our measurements reflect the actual offered loads at the virtual interfaces
of the tenant VMs. Some of the smaller VMs were output-rate-limited at their virtual
interfaces by HPCS; we do not know these rate-limits.

Because the HPCS dataset samples come from the ToR switches, they do not
include any traffic between pairs of VMs when both are on the same server. We
believe that we still get samples from most VM pairs, because, in the measured
configuration (OpenStack Diablo), VMs are placed on servers uniformly at random.
Assuming such placement on n servers, the expected number of unordered pairs of k
VMs sharing n servers is 1

n

(
k
2

)
. There are

(
k
2

)
possible unordered pairs among k VMs,

so the probability that any VM-pair shares the same server is 1
n
(k2)/(k2) = 1

n . With
n = 1360, the probability that we will miss any given VM-pair’s traffic is less than
.001%.

For privacy reasons, our dataset does not include information associating VMs
with tenants or applications. Instead, we define tenants by using the connected
components of the full traffic matrix, which is in line with the OpenStack definition
of tenants.

2.5.5 Correcting Potential Over-sampling

Some of the paths in the HPCS dataset are over-sampled. If A and B are VMs on the
same ToR switch S1, traffic onA B will only be sampled at S1. But if VMC resides
on a different ToR S2, traffic on A  C will be sampled at both S1 and S2, twice as
often asA B.

We correct this problembynotingwhich switcheswe see for eachVM-pair (sFlow
samples are tagged with the ToR’s own address). If we see two switches on a path,
we know that this flow has been oversampled, so we scale those measurements down
by a factor of two.

2.5.6 Dataset Usage

Weuse theHPCS dataset throughout this dissertation. First, in Chapter 3, we use it to
motivate the need for a prediction algorithm that captures spatial and temporal vari-
ability, by showing that the cloud applications captured in the HPCS dataset exhibit
both types of variability. Then, we use it to evaluate Cicada’s prediction algorithm,
showing that on the applications in our dataset, Cicada outperforms the existing state-
of-the-art. Finally,weuse theHPCSdataset to evaluateCicada’s placement algorithm,
showing that it improves application completion time on the applications represented
in this dataset.

One featurewhich is not captured in theHPCSdataset is a distribution of achieved
TCP throughputs on today’s cloud networks. We collect an additional dataset in
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Chapter 6 to determine this quantity, whichweuse in evaluatingChoreo, an extension
to Cicada which allows a customer to perform their own network measurements.

2.5.7 Dataset Generality

We believe that our dataset describes a fairly general set of cloud applications. We
collected traces from real users on an actual IaaS-cloud; this is in contrast to work
that uses simulated data [63] or data from different types of datacenter networks [22,
24, 34, 49].

However, at the time of data collection, HP Cloud Services was likely not being
used as heavily as more well-established public clouds (e.g., Amazon EC2). For that
reason, we believe that our dataset may not capture as many user-facing applications
as a dataset from a different cloud would. In an attempt to correct for this possible
omission, we simulate various user-facing applications in §3.5.4, showing that Cicada
also performs well on those.
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Chapter 3

Predicting Application Traffic Patterns

3.1 Introduction

The first of Cicada’s two major components, as shown in Figure 2-2, is its traffic
prediction module. Cicada makes predictions about how much traffic a tenant’s
virtual machines will send to each other, and exploits predictable inhomogeneity in
traffic demands to create options for better task placement. Most existing systems for
improving application performance in the cloud assume that tenants already know
their application’s requirements [20, 56]. These systems require tenants to explicitly
specify bandwidth requirements, or to request a specific set of network resources.

But do cloud customers really know their network requirements? Application
bandwidth demands can be complex and time-varying, and not all application owners
accurately know their bandwidth demands. A tenant’s lack of accurate knowledge
about its future bandwidth demands can lead to over- or under-provisioning. We show
in this dissertation that increasing the level of detail known about these demands
can lead to more accurate bandwidth guarantees (Chapter 5) and better placements
(Chapter 4).

In this chapter, using the HPCS dataset (§2.5), we demonstrate that tenant band-
widthdemandscanbe time-varyingandspatially inhomogeneous. Weshow,however,
that they can also be predicted, based on automated inference from their previous his-
tory. This result suggests that it is difficult for tenants to determine their applications’
bandwidth requirements without a sophisticated prediction mechanism such as Ci-
cada.

Cicada’s traffic predictions support time-varying and space-varying demands.
Prior approaches to prediction typically offer predictions that are static in at least
one of those respects, but these approaches do not capture general cloud applica-
tions. For example, we expect temporal variation for user-facing applications with
diurnally-varying workloads, and spatial variation in VM-to-VM traffic for applica-
tions such as three-tier services, as shown in Figure 3-1. Additionally, Cicada can
make both long-term (on the order of hours) and short-term (on the order ofminutes)
predictions.
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web tier application tier database tier

three-tier service 
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= communication

Figure 3-1: A simple three-tier architecture. The web tier contains three machines;
the application anddatabase tiers each contain one. Communication only flows across
adjacent tiers. The resulting trafficmatrix reflects this, showing that not all machine-
pairs communicate the same amount.

Recent research has addressed these issues in part. For example, Oktopus [20]
supports a limited form of spatial variation; Proteus [96] supports a limited form of
temporal-variation prediction. But no prior work, to our knowledge, has offered a
comprehensive framework for cloud customers and providers to make predictions
about applications with time-varying and space-varying traffic demands.

Our primary contributions in this chapter are Cicada’s prediction algorithm, and
a trace-based analyses of the motivation for, and utility of, our approach. We answer
the following questions:

1. Do real applications exhibit traffic variability? We show that they do, using
network traces fromHPCloudServices, and thus justify theneed forpredictions
based on temporal and spatial variability in application traffic. Although such
variability is not surprising, it has not previously been quantified for cloud
networks. Cicada’s prediction algorithm is designedwith this type of variability
in mind.

2. How does Cicada predict network demands? We describe Cicada’s prediction
algorithm. The algorithm treats certain previously observed traffic matrices as
“experts” [40] and computes a weighted linear combination of the experts as
the prediction. The weights are computed automatically using online learning.

3. How well does Cicada predict network demands? Using our network traces,
we show that the median prediction errors of the algorithm are 90% lower
than a prediction algorithm based on Oktopus’ Virtual Oversubscribed Cluster
(VOC) [20] (this model is a hierarchical hose model; see §3.4 for a detailed
description). Moreover, our algorithm can often predict when the prediction is
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Figure 3-2: Spatial variation in the HPCS dataset.

likely to be wrong. It also predicts parameters for the VOCmodel nearly as well
as a perfect oracle.

InChapter4,we showhowCicadauses thesepredictions toplacevirtualmachines
in the cloud (via its placement module, also shown in Figure 2-2). In Chapter 5, we
show how a provider can turn these predictions into bandwidth guarantees for its
customers.

3.2 Understanding Existing Traffic Patterns

As mentioned earlier, Cicada is designed to make predictions for applications that
exhibit both spatial and temporal variability. Before building Cicada, however, we
must determine whether cloud applications exhibit both of these types of variability.
If they do, existing approaches (e.g., VOC-style allocations [20], or static, all-to-all
traffic matrices) will not suffice; there is no existing work that captures both spatial
and temporal variability of general cloud applications.

In this section, using the dataset described in §2.5, we analyze the spatial and
temporal variability of its tenants’ traffic.

3.2.1 Spatial Variability

To quantify spatial variability, we compare the observed tenants to an ideal, static,
all-to-all tenant. This tenant is ideal as it is the easiest to make predictions for: every
intra-tenantconnectionsends thesameamountofdataataconstant rate. LetFij be the
fraction of this tenant’s traffic sent fromVMi toVMj . For the “ideal” all-to-all tenant,
the distribution of these F values has a standard deviation of zero, because every VM
sends the same amount of data to every other VM. As another example, consider a
bimodal tenant with some pairs that never converse and others that converse equally.
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Figure 3-3: Temporal variation in the HPCS dataset.

Let k = n/2. Each VM communicates with 1/k VMs, and sends 1/k of its traffic, hence
half of the F values are 1/k; the other half are zero.

For each tenant in the HPCS dataset, we calculate the distribution of its F values,
and plot the coefficient of variation (standard deviation over mean) in Figure 3-2.
The median cov value is 1.732, which suggests nontrivial overall spatial variation (for
contrast, note that the cov of our ideal tenant is zero, and the cov of our bimodal tenant
will be one1).

Some VMs communicate much more than others: in this data, one tenant with
cov > 10 has eight VMs, with a few pairs that send modest amounts of data, and
all other pairs sending little to no data. These results suggest that a uniform, all-to-
all model is insufficient for making traffic predictions; given the high cov values in
Figure 3-2, a less strict but not entirely general model such as VOC [20] may not be
sufficient either (see §3.4 for a detailed description of this model).

3.2.2 Temporal Variability

To quantify temporal variability, we first pick a time intervalH . For each consecutive
non-overlapping interval of H hours, we calculate the sum of the total number of
bytes sent between each pair p of VMs. This gives us a distribution Tp of these totals.
We then compute the coefficient of variation for this distribution, covp. The temporal
variation for a tenant is the weighted sum of these values, where the weight for covp
is the total amount of data sent between the pair p. This scaling reflects the notion
that tenants where only one small flow changes over time are less temporally-variable
than those where one large flow changes over time.

For each tenant in theHPCSdataset, we calculate its temporal variation value, and
plot theCDF inFigure 3-3. Like the spatial variationgraph, Figure 3-3 shows thatmost

1For the bimodal tenant, µ = 1/2k and σ =
√

1/n
∑n

i=1(
1/2k)2 = 1/2k. So cov = 1.

40



tenants have high temporal variability. This variability decreases as we increase the
time intervalH , but we see variability at all time scales. Tenants with high temporal
variation are typically ones that transfer little to no data for long stretches of time,
interspersed with short bursts of activity.

The results so far indicate that typical cloud tenants may not fit a rigid model. In
particular, Figure 3-3 shows that most tenants exhibit significant temporal variation.
Thus, static models cannot accurately represent the traffic patterns of the tenants in
the HPCS dataset.

3.3 Cicada’s Traffic PredictionMethod

3.3.1 Related Work

Much work has been done on estimating traffic matrices from noisy measurements
such as link-load data [85, 97]. In these scenarios, approaches such as Kalman filters
and HiddenMarkov Models—which try to estimate true values from noisy samples—
are appropriate. Cicada, however, knows the exact traffic matrices observed in past
epochs (an epoch is H-hours long; typically one hour); its problem is to predict a
future traffic matrix.

To the best of our knowledge, there is little work in this area, especially in the
context of cloud computing. On ISP networks, COPE [94] describes a strategy that
predicts the best routing over a space of traffic predictions, made up of the convex hull
of previous traffic matrices. It is not a traffic prediction scheme per se, but we draw
inspiration from this work, and base our prediction algorithm around computing a
“best” convex combination of previous traffic matrices as our future estimate.

The Proteus system [96] profiles specific MapReduce jobs at a fine time scale, to
exploit the predictable phased behavior of these jobs. It supports a “temporally inter-
leavedvirtual cluster”model, inwhichmultipleMapReduce jobs are scheduled so that
their network-intensivephasesdonot interferewith eachother. Proteus assumesuni-
formall-to-all hose-model bandwidth requirementsduringnetwork-intensivephases,
although each such phase can run at a different predicted bandwidth (see §3.3.2 for
a description of hose-model requirements). Unlike Cicada, it does not generalize to
a broad range of enterprise applications. Similarly, [1] was also developed to profile
Hadoop jobs, anddoesnotgeneralize to theapplicationswithwhichweareconcerned.

Other recentworkhas focusedonmaking trafficpredictions toproduce short-term
(ten-minute) guarantees for video streaming applications [68]. Thisworkuses a factor
model, whichmodels traffic demands as being driven by somenumber of uncorrelated
underlying factors. The factors are found by using principal-component analysis on
the video traffic, and the components are modeled using a seasonal ARIMA model.
Although this work considers VM-to-VMpredictions, it is not clear that the approach
generalizes to long-term (more than ten minutes into the future) predictions, or to
applications beyond video streaming.
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3.3.2 Prediction Model

As stated, Cicada’s prediction take into account both spatial and temporal variations
in bandwidth demand. Cicada has the ability to predict both average traffic demands
as well as peak traffic demands. Average demand predictions predict the mean band-
width that an applicationwill needover aperiodofH hours. Peakdemandpredictions
predict the maximum bandwidth expected during any averaging interval δ during a
given time interval H . If δ = H , a peak prediction is equivalent to the average
prediction. For many applications, we expect δ � H .

Cicada’s prediction algorithm takes, as input, a time series of previously observed
trafficmatrices,M1, . . . ,Mn. Thesematrices are collected at equally-spaced intervals
at times in the past. Each matrix represents the aggregated data for one H-hour
interval, and data is collected continuously. That is, assuming that data collection
begins at time t0, matrixM1 represents the aggregated data from t0 to t0 +H ; matrix
M2 represents the aggregated data from t0+H to t0+2 ·H ; matrixMi represents the
aggregated data from t0 + (i− 1) ·H to t0 + i·.

The rows and columns of the matrix represent an application’s tasks. We use
“tasks” as an intuitive term: a task may map to a collection of processes in an appli-
cation, for instance a map or reduce task during a MapReduce job. Alternatively, one
could consider the group of processes that runs on a single virtual machine to be one
task, in which case our prediction algorithm is making VM-to-VMpredictions, rather
than more fine-grained task-to-task predictions. This is the case in our evaluation
(§3.5).

An entry in row i and column j specifies the number of bytes that task (or VM) i
sent to task (or VM) j in the corresponding epoch (for predicting average demand) or
themaximumobservedover a δ-length interval (forpeakdemand). Cicada’s algorithm
produces M̂n+1, the prediction for epoch n+ 1.

Pipe and Hose Models

As described, Cicada’s predictions conform to a pipe model. A pipe-model prediction
is one where a separate prediction is made between each task pair; for k tasks, there
are k · (k− 1) predictions. A pipe model contrasts to a hose model, where a prediction
is made for each task to the set of all other tasks; for k tasks, there are k predictions.
These terms were originally applied by Duffield et al. to resource management in
VPNs [30].

Cicada can output hose model predictions in addition to pipe-model predictions
simplybychangingthe inputmatricesM1, . . . ,Mn. Tooutputhose-modelpredictions,
we use input matrices that represent the hose bandwidth. In this case, each matrix is
a 1× nmatrix, and entry i corresponds to the total number of bytes sent from task i.

42



3.3.3 Cicada’s Expert-Tracking Algorithm

Cicada’s algorithm usesHerbster andWarmuth’s “tracking the best expert” idea [40],
which has been successfully adapted before in wireless power-saving and energy
reduction contexts [29, 64]. To predict the traffic matrix for epoch n + 1, we use all
previously observed traffic matrices,M1, . . . ,Mn (later, we show that matrices from
the distant past can be pruned away without affecting accuracy). Algorithm 1 gives
the pseudocode for this algorithm.

Each of these previously observed matrices acts as an “expert,” recommending
thatMi is the best predictor, M̂n+1, for epoch n + 1. The algorithm computes M̂n+1

as a weighted linear combination of these matrices:

M̂n+1 =

n∑
i=1

wi(n) ·Mi

wherewi(n)denotes theweight given toMiwhenmaking a prediction for epochn+1,
with

∑n
i=1wi(n) = 1.

The algorithm learns the weights online; there is no notion of training vs. testing
data. At each step, it updates the weights according to the following rule:

wi(n+ 1) =
1

Zn+1
· wi(n) · e−L(i,n)

where L(i, n) denotes the loss of expert i in epoch n and Zn+1 normalizes the distri-
bution so that the weights sum to unity. In keeping with [40], we use the term loss to
mean the discrepancy (or error) between expert i and the true outcome.

We use the relative Euclidean `2-norm betweenMi andMn as the loss functionL.
Treating both thesematrices as vectors, ~Mi and ~Mn respectively, the relative `2-norm
error is

L(i, n) = E`2 =
‖ ~Mi − ~Mn‖
‖ ~Mn‖

.

That is, the norm of the individual errors over the Euclidean norm of the observed
data (the square-root of the sum of the squares of the components of the vector).

At each step, a new weight must be added to the set of weights; there are n − 1
weights used to predict M̂n, but n used to predict M̂n+1. To do this, we insert a small
weight to the beginning of theweight vector (see line 4 of Algorithm 1). This insertion
has the effect of shifting all of the other weights: w0 becomes w1, w1 becomes w2,
etc. To understand why this process is appropriate, consider an alternate negative
indexing for theweights: wn = w−1;wn−1 = w−2; . . . ;w1 = w−n. With this indexing,
w−1 represents theweight given to themost recentmatrix,w−2 represents theweight
given to the second-most recent matrix, etc. Our insertion adds a new weight for the
nth-most recentmatrix. Thismatrixwas not presentwhen predicting M̂n (therewere
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Algorithm 1 Cicada’s expert-tracking algorithm
Input: M1, . . . ,Mn, the previous observed matrices
1: W = {wi}, the series of n− 1 current weights (used to calculate M̂n)
2: for wi ∈W do
3: wi = wi · e−L(i,n)
4: W = {min(wi) · .5}+W
5: Z =

∑n
i wi

6: for wi ∈W do
7: wi = wi/Z
8: M̂n+1 =

∑n
i=1wi ·Mi

Output: M̂n+1, the prediction matrix for all task pairs

onlyn+1 previousmatrices at that time), and so deserves a small weight as its “expert
opinion” has not yet been tested.

Note that this algorithm can predict both average demand as well as peak de-
mand. The only difference is the input matrices: for average demand, the matrices
M1, . . . ,Mn represent the total amount of data in each epoch, while for peak demand,
they represent the maximum over a δ-length interval.
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Figure 3-4: Averageweights producedbyCicada’s prediction algorithm. These values
represent the average of the final weight values over each application in the HPCS
dataset.
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Intuition

Our intuitionwhenapproaching theproblemofpredicting traffic is that the trafficma-
trixMn should dependmost heavily on themost recent trafficmatrices (Mn−1,Mn−2,
etc.), as well as on traffic matrices from similar time periods on previous days
(Mn−24,Mn−48, etc.).

If our intuitionwere correct, Cicada’s prediction algorithmwill naturally result in
higher weights for these matrices. After making the predictions for each application
in our dataset, we took the weights for each application, and calculated the average
weight values over our entire dataset. These average weights, using the negative
indexing discussed above, are plotted in Figure 3-4 (the x axis is limited to the two
most recentdaysofdata). The twelvemost recenthoursof trafficareweightedheavily,
and there is also a spike at 24 hours earlier. Weights are vanishingly small prior to 24
hours earlier. In particular, we looked for a spike at the 7-day offset, expecting that
some user-facing applications have weekly variations, but found none. This result
indicates that, at least in our dataset, one does not need weeks’ worth of data to make
reliable predictions; a much smaller amount of data suffices.

3.3.4 Alternate Prediction Algorithms

We tested Cicada’s prediction algorithm against two other algorithms: a machine
learning algorithm based on linear regression, and a simple exponentially-weighted
moving average (EWMA). Though neitherworked aswell as Cicada’s expert-tracking
algorithm, we describe both of them here to illuminate why the expert-tracking
algorithm doeswork well.

Though Cicada’s prediction scheme is similar in spirit to ISP traffic engineering,
we do not explicitly compare it to any traffic engineering work. The closest related
work, COPE [94], actually solves a different problem than Cicada: to predict the
best routing over a particular space of traffic predictions; namely, the convex hull of
previous observed trafficmatrices. InCOPE, there is no notion ofwhich trafficmatrix
in the space is the best prediction, but rather a notion ofwhich routingwould perform
the best over this space.

Linear Regression-based Algorithm

Algorithm 2 provides pseudocode of the first alternate prediction algorithm. At a
high level, a prediction between tasks i and j is made by finding “relevant” historical
data between i and j, finding the function f that best maps a previous epoch’s data
to the next epoch’s, and using f to make a prediction for the current time. In the
case of average-demand predictions, this prediction is the number of bytes it expects
will be transferred between these two tasks in the next time period; in the case of
peak-demand predictions, it is an estimate of the peak bandwidth in the next hour.
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Algorithm 2 An alternate, linear regression-based prediction algorithm, for one time
epoch and mean-demand predictions
1: for 〈i, j〉 ∈ task pairs do
2: Fc = 〈current time of day, current hour〉.
3: Hc = historical data on path i j under conditions similar to those in Fc.
4: f = result of linear regression on the data in Hc. f is the best linear mapping

from the number of bytes in one epoch to the number of bytes in the next epoch,
of the data inHc.

5: b = number of bytes sent from i to j in the past hour
6: Mij = f(b)

Output: M , the prediction matrix for all task pairs

Finding feature vectors: F is the set of features that describe the network condi-
tions. We used F = {hour of day, day of week}. Line 2 of Algorithm 2 gets the values
of F at the current time.

Finding similar conditions: Line 3 of Algorithm 2 finds the most relevant histori-
cal data to predict the amount of traffic that i will send to j in the next epoch. But
what data is “relevant”? Given FC , we consider the relevant historical data to be data
from this task pair, under similar conditions as in FC ; i.e., similar in time-of-day and
day-of-week.

To determine similarity, we first group all data between i and j by hour. For each
hour h′, we get a distribution of points, all collected from i to j within the hour h′

(but perhaps on different days of the week). We are interested in the distribution d of
data from the tuple 〈i, j, h〉, and how it compares to each of the other distributions d′.
For each d′, we run a Mann-Whitney U-test between d′ and d (similar to the method
in [59] for comparing road-traffic delay distributions). If the p-value of this test is
above a particular threshold,2 we consider the two distributions to be similar. We
return data from every 〈i, j, hour〉 tuple such that its distribution d′ was similar to d.

Finding f : Lines 4–6 of Algorithm 2 determine a function f and use it to make a
prediction for tasks i and j. This function captures the notion that the number of
bytes that i will transfer to j in the next epoch should be related to two things: the
number of bytes b that i transferred to j in the previous epoch, and the current net-
work conditions (in some cases, it could also be related to the number of bytes that
i received from other tasks; we do not model this). HC contains data under similar
network conditions as the current ones, but does not necessarily contain data from
task pairs that transferred b bytes in the previous epoch. For this reason, instead
of making a decision tree out of the data in HC as in [59], we use linear regression
to calculate the linear function f that best maps the number of bytes a task pair

2In our implementation, we use a threshold value of p = .75.
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transferred in the previous epoch to the number of bytes the same pair transferred
in the next epoch. Once we have calculated f , the algorithm can make a prediction
for 〈i, j〉. Sincef is calculatedonaper-task-pair basis, it accounts for spatial variation.

Extending this algorithm to predict peak demand: To extend this algorithm to pre-
dict peak demand, we have f map from the maximum number of bytes transferred
in a δ-second period in the previous epoch to a prediction for the next epoch. We
found that this approach worked better than an approach where f maps the standard
deviation of a pair’s bandwidth in one epoch to the next, and uses µ + k ∗ σ as an
estimate for the peak bandwidth (where k is a small positive constant).

Exponentially-weighted Moving Average Algorithm

We also tested Cicada’s prediction algorithm against a simple exponentially-weight
moving average (EWMA) algorithm. Here,

M̂n+1 = α ·Mn + (1− α) · M̂n

= α ·Mn + α(1− α) ·Mn−1 + α(1− α)2 ·Mn−2 + . . .+ α(1− α)n−1 ·M1

In the terminology of the expert-tracking algorithm, this is equivalent to

M̂n+1 =
n∑
i=1

wi(n) ·Mi,

where

wi(n) = α(1− α)n−i

We used α = .488, which corresponds to the α value that best fits the graph in
Figure 3-4.

Comparison

In Section §3.5.4, we present a detailed evaluation of Cicada’s expert-tracking algo-
rithm against the two alternative prediction algorithms. Here, we give a high-level
comparison of the three.

All threealgorithmscapture the intuition that thepreviousepochof trafficdictates,
in large part, the next epoch of traffic. As shown in Figure 3-4, the expert-tracking
algorithm assigns the largest weight to matrixMn when predicting M̂n+1. By defini-
tion, the EWMA algorithm assigns the highest weight toMn. The linear-regression
algorithm predictions M̂n+1 as a function ofMn.

Expert-tracking vs. EWMA: The expert-tracking and EWMA algorithm both as-
sign weights to previous matrices, but the EWMA algorithm is less flexible. It only
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allows for a particular decreasing relationship betweenwi(n) andwi−1(n); the expert-
tracking algorithm lets the weights be independent, modulo the constraint that they
all sum to 1. This independence permits the spike seen in Figure 3-4.

Expert-tracking vs. linear-regression: Via its notion of “similar conditions”, the linear-
regression algorithm allows for the possibility that other epochs besides the most
recent may substantially influence the prediction of M̂n+1. A key difference is that
the expert-tracking algorithm updates its weights based on prediction errors, and so
tries to correct past mistakes. The linear-regression algorithm does no such thing; its
notion of similarity is defined a priori, and is not updated.

3.4 Comparing Cicada to VOC

Evaluating any prediction algorithm can be challenging; as we must expect that pre-
dictions will be imperfect at times, it does not make sense to compare our predictions
only against an oracle. Instead, we also compare Cicada against the current state-of-
the-art in terms of predicting cloud traffic demands.

Though there has been little to no work on making predictions for cloud traffic
(see §2.4.1), we believe that the VOC model [20] represents the state of the art in
spatially-varying cloud-bandwidth reservations; hence, our trace-based evaluation
of Cicada, uses a VOC-style system as the baseline. In [20], the authors use VOCs
to make bandwidth reservations for tenants, allowing different levels of bandwidth
betweendifferentgroupsofVMs. Althoughtheir systemwasnotdevelopedformaking
bandwidth predictions, we can interpret its bandwidth reservations as predictions of
the amount of bandwidth that will be used between different virtual machines.

We compare a VOC-style system to Cicada, finding that Cicada can accurately
predict the parameters for a VOC-style system.

3.4.1 VOC-Model

Oktopus allows tenants to make bandwidth reservations among a set of virtual ma-
chines. Their implementation utilizes “virtual networks”. These virtual networks
present various virtual network abstractions to the tenants, but allow the provider to
use any topology. For example, consider Figure 3-5(a), where theN virtual machines
are connected via a “virtual switch”. From a tenant’s point of view, the N machines
have amaximum sending rate ofN ·B in general, but a maximum rate ofB if they are
all sending to the same virtualmachine; just as if theywere all connected to one switch
with B-rate links. From the provider’s point of view, however, the virtual machines
need not be physically connected in thisway; the providermay usewhatever topology
he likes to enforce this abstraction.

Tomake themost basic reservation, the tenant starts by supplying twoparameters:

1. N , the number of virtual machines required
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(a) Oktopus’ virtual cluster model.
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(b) Oktopus’ virtual oversubscribed cluster model.

2. B, the amount of bandwidth to be reserved between a virtual machine and the
“virtual switch” connecting it to the other machines

Figure 3-5(a) displays this type of reservation. The authors note that this abstrac-
tion does not reflect many application traffic patterns (citing [37] and [61]), and that
instead, a “virtual oversubscribed cluster” (VOC) model is more appropriate. This
model allows groups of virtual machines, with oversubscribed communication be-
tween them, as depicted in Figure 3-5(b). The VOC model requires two additional
parameters:

1. S, the size of each group of virtual machines

2. O, the oversubscription factor (between any pair of groups, VOCprovides band-
widthB/O)

VOC is designed to reflect not only what the authors believe to be a typical ap-
plication structure—lots of communication within small groups of virtual machines,
but not a lot of communication across groups—but also a typical physical datacenter
topology, where Top-of-Rack (ToR) switches have high capacity, but the aggregation
layer that connects the ToRs is oversubscribed.

3.4.2 VOC-style Predictions

Oktopus itself is designed to place the VMs on the network such that their VOC
reservations are met; it is not designed to make future predictions about applications.
However, we can easily extend the VOCmodel to output predictions.

To do so, we interpret the B and B/O bandwidths as hose-model predictions
(see §3.3.2): VOC predicts that a VM in a particular group will use bandwidth B to
send to VMs within its cluster, and groups will use bandwidth B/O to send to other
groups. These predictions are not pipe-model predictions, as is our preferred model
for Cicada, but we are still able to compare the accuracy of the two systems on a
tenant-by-tenant basis.

The VOC model is fairly rigid, enforcing groups of the same size, and the same
bandwidth reservations throughout. In §3.4.4, we extend its model, to allow for a
fairer comparison to Cicada.
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Figure 3-5: AnexamplewhereVOC is inefficient. Because the virtualmachineswithin
the group do not send similar amounts of data, more bandwidth is reserved than is
used.

3.4.3 Inefficiencies of VOC

The Oktopus paper [20] showed that the VOC model gives providers more flexibility
than a clique abstraction, which provides a static, uniform bandwidth between all
pairs of VMs. However, we give an example to illustrate how even theVOCmodel can
limit provider flexibility for certain applications, due to over-allocating bandwidth
both within groups and across groups.

Consider a group of three VMs as in Figure 3-5. Suppose that VM1 sends 20 units
total to VM2 and VM3. Because of this, B must be at least 20 for each VM in the
group. However, if VM2 and VM3 send fewer than 20 units total, this value of B
will over-allocate bandwidth. In practical terms, if each VM is on a distinct server,
the VOCmodel requires allocating 20 units of each server’s NIC output bandwidth to
this tenant, even though VM2 and VM3 only need two NIC-output units. A similar
pattern can exist across groups, where one group requires more total bandwidth than
the others.

VOC’s over-allocation of bandwidth in these scenarios stems from an assumption
that VMs within a group behave similarly (sending the same amount of data to the
rest of the group), as well as a corresponding assumption across groups.

3.4.4 VOC Parameter Selection

In order to compare Cicada and VOC, we need to know what the appropriate values
for B, N , S, and O are. Oktopus assumes that the tenants will provide these input
parameters. Except in thecaseofN—the totalnumberofvirtualmachines—webelieve
this is a large assumption. Cicada’s prediction module was motivated by the fact that
customers often do not know their application’s bandwidth demands; although VOC
presents a coarser model, we do not expect customers to know the appropriate VOC
parameters either.

To that end, we designed a heuristic, detailed below, to determine the appropriate
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input parameters given a particular application. Additionally, we allow for the possi-
bility of variably-sized groups, an extension which is mentioned in [20] (§3.2) but not
detailed. Our heuristic outputs the following:

• B, the amount of bandwidth available within a cluster

• O, the oversubscription factor

• {Gi}, a set of groups. Rather than requiringN/S groups of size S, we allow for
a variable number of groups, each of which can be a different size. We believe
that this will allow VOC to adapt to application patterns that do not fit into its
strict original form.

Our heuristic works by starting with an initial configuration of groups, with each
VM is in its own group. The heuristic merges the groups that have the highest
bandwidth between them for a new configuration, and iterates on this configuration
in the same manner, until the new configuration has more wasted bandwidth than
the previous configuration. We define “wasted bandwidth” as bandwidth that VOC
reserved for the tenant, but was not used by the application (we can determine what
bandwidth was used by an application based on its measurement data).

Finding B andO for a particular configuration is easy, since Cicada collects mea-
surement data. Our heuristic selects the B and O that minimize wasted bandwidth
while never under-allocating a path. B, then, is the maximum of any hose within one
group, andO is the maximum of any hose across groups, given the previous historical
data.

3.5 Evaluation

WeevaluatedCicada’s predictionmethod on theHPCS dataset, described in §2.5. We
tested two hypotheses: first, that Cicada can determine when one of its predictions
is reliable or not, and second, that Cicada can accurately predict a tenant’s future
bandwidth requirements. Overall, we found that the reliability ofCicada’s predictions
was correlated with the size of a tenant and the frequency of under-predictions, and
that Cicada’s predictions were accurate for both average and peak traffic, and that
Cicada’s predictions were more accurate than predictions based on VOC, decreasing
the relative per-tenant error by 90% in both the average-bandwidth case and the
peak-bandwidth case.

As described in §3.3, Cicada’s prediction algorithm can make fine-grained pre-
dictions for an application’s tasks. Due to the nature of our dataset (§2.5), in this
evaluation, we consider all processes running on one virtual machine to constitute
one task. For clarity, we use the term “virtual machine” (or VM) throughout this
evaluation, rather than “task”.
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Algorithm 3 VOC parameter selection.
1: groupsp = list of groups, initialized to one group per VM
2: Gv = groupsp // last valid configuration
3: while True do
4: G′ = mergeLargestClusters(groupsp)
5: if G′ = groupsp then
6: break
7: B,O, w = getParamsAndWastedBandwidth(G)
8: if O < 1 then
9: // indicates an invalid configuration
10: groupsp = G′

11: continue
12: Bv ,Ov , wv = getParamsAndWastedBandwidth(Gv)
13: if w > wv then
14: break
15: else
16: groupsp = Gv = G′

17: B,O = findParameters(Gv)
Output: B,O,Gv

We observed very little evidence of VM flexing in our dataset (where the number
of a tenant’s VMs changes over time). Flexing would typically manifest as over-
prediction errors (making predictions for VMpairs that used to exist, but no longer do
because of flexing). To eliminate this mistake, we eliminated any predictions where
the ground truth data was zero, but found that it did not appreciably change the
results. For this reason, we do not present separate results in this section, and simply
report the results over all of the data.

3.5.1 Quantifying Prediction Accuracy

To quantify the accuracy of a prediction, we compare the predicted values to the
ground truth values, using the relative `2-norm error. For two vectors ~Mi and ~Mn,
the relative `2-norm error is

L(i, n) = E`2 =
‖ ~Mi − ~Mn‖
‖ ~Mn‖

.

That is, the norm of the individual errors over the Euclidean norm of the observed
data (the square-root of the sum of the squares of the components of the vector). To
obtain ~Mi, ~Mn, we simply treat our application demand matrices as vectors. This
error was also described in §3.3.3.

ForCicada, the prediction and ground-truth vectors are of lengthN2−N , because
Cicada makes predictions between each pair of distinct VMs. In a VOC-style system,
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Figure 3-6: Relative error vs. history

there are fewer predictions: one prediction for each of the N VMs to the other VMs
in its group, and one prediction for each group to the other groups. Regardless of the
number of total predictions, we get one error value per tenant, per time interval.

In addition to the relative `2-normerror,wealsopresent theper-tenant relative er-
ror. Thismetric is simply the sum of the prediction errors divided by the total amount
of ground-truth data. Unlike the relative `2-norm error, this metric discriminates be-
tween over-prediction and under-prediction, since the latter can be more disruptive
to application performance. Because it does not use vector norms, the per-tenant
relative error makes it easier for us to see if either system has substantially under-
predicted for a tenant. However, it is possible that under- and over-prediction errors
for different VM pairs could cancel out in the relative error; this type of cancellation
does not happen in the relative `2-norm error.

3.5.2 Determining Whether Predictions Are Reliable

In our dataset, we found that Cicada could not reliably make a correct prediction for
tenantswith fewVMs. In all of the results that follow,weeliminate tenantswith fewer
than fiveVMs. This elimination is in linewith the fact that Cicada ismeant for tenants
with network-heavy workloads. It is possible that on other datasets, the precise
number of tenants below which Cicada cannot reliably make predictions will differ.
Additionally, for tenants that started out with a series of under-predictions, Cicada’s
prediction algorithm rarely recovered. For this reason, we also consider tenants with
more than fifteen under-predictions to be unreliable, and do not continue making
predictions for them (we do, however, include results from all predictions for that
tenant up to that point).

Interestingly, we found that Cicada could often make accurate predictions even
with very little historical data. Figure 3-6 shows the relative per-tenant error as a
function of the amount of historical data. Though there is a clear correlation between
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Figure 3-7: Prediction errors for average demand. For average demand, straightfor-
wardmath shows thatCicada’s hose-model andpipe-model relative errorswill always
be identical; see below.

relative error and the amount of historical data, it is not necessary to havemany hours
of data in order to make accurate predictions.

3.5.3 Prediction Errors for Cicada’s Expert-Tracking Algorithm

To compare the accuracy of Cicada and a VOC-style model, we make predictions for
one-hour intervals. We allow both types of predictions to change over time; that is,
the VOC configuration for a particular hour need not be the same as the configuration
in the next hour. This is an extension from the original Oktopus paper [20], and
improves VOC’s performance in our comparison.

We evaluate the VOC-style model using both predicted parameters and “oracle-
generated” parameters (i.e., with perfect hindsight). For the oracle parameters, we
determine theVOC clusters for a prediction interval using the ground-truth data from
that interval. This method allows us to select the absolute best values forB andO for
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that interval, as well as the best configuration. Thus, any “error” in the VOC-oracle
results comes from the constraints of themodel itself, rather than from an error in the
predictions.

Average-demand Predictions

Figure 3-7 shows the results for average-demand prediction. Straightforward math
shows that the relative errors for the pipe- and hose-model predictions are exactly
the same:

Let p̂(i j)be thepipe-model predicteddemandbetweenVMi andVMj ,
and let p(i j) be the ground-truthdemandbetweenVMi andVMj . The
relative error for all of the VMs in the network is∑

i∈VMs

∑
j∈VMs

p̂(i, j)− p(i, j)
p(i, j)

Now, let ĥ(i) be Cicada’s hose-model predicted demand out of i, and let
h(i)be theground-truthdemandoutof i. Cicada’shose-modelpredictions
(see §3.3.2 are equivalent to

ĥ(i) =
∑

j∈VMs

p̂(i, j)

h(i) =
∑

j∈VMs

p(i, j).

The relative error for the hose-model, then, is

∑
i∈VMs

ĥ(i)− h(i)
h(i)

=
∑

i∈VMs

(∑
j∈VMs p̂(i, j)−

∑
j∈VMs p(i, j)∑

j∈VMs p(i, j)

)

=
∑

i∈VMs

∑
j∈VMs

p̂(i, j)− p(i, j)
p(i, j)

,

which is equivalent to thepipe-model relativeerror. This samecalculation
does not apply for peak errors. Here, a hose-model prediction is a sum
of pipe-model predictions; with peak error, a hose-model prediction is a
maximum of pipe-model predictions.

Both Cicadamodels have lower error than either VOCmodel; Cicada’s pipemodel
decreases the error by 90% compared to the VOC oracle model (comparison against
the predictive VOCmodel, as well as between VOC and Cicada’s hose model, yields a
similar improvement). The `2-norm error decreases by 71%. The errors of the VOC
model using predictions closely track those from the VOC-oracle model, indicating
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that Cicada’s prediction algorithm can generate accurate predictions for a system
using VOC. This result indicates that it is the lack of expressiveness in VOC’s model
that prevents it frommaking as accurate predictions as Cicada.

In terms of per-tenant relative error, Cicada occasionally under-predicts, whereas
neither VOC model does. Under-prediction could be worse than over-prediction, as
it means that an application’s performance could be reduced. The effect of under-
provisioning can be lessened by scaling predictions by an additive or multiplicative
factor, though this risks over-prediction. In the results presentedhere,wehave scaled
the predictions by 1.25×. In addition to lessening the effects of under-provisioning,
this scaling also allows the bank-of-experts algorithm to make a prediction that is
greater than any of the previous matrices. We were unable to determine a systematic
way to remove the remaining under-predictions, but speculate that altering the loss
function to penalize under-prediction more heavily than over-predictions may help;
we leave this to future work.

Peak-demand Predictions

Because our data collection samples samples over five-minute intervals, for our peak-
demand evaluation, we use δ ≥ 300 seconds. Real applications might require guaran-
tees with δ < 1 second; an implementation of Cicada can support these small δ values
(§5.4).

Figure 3-8 compares peak predictions for δ = 5 minutes (also scaled by 1.25x
as above). As with the average-demand predictions, Cicada’s prediction errors are
generally lower, decreasing themedian error again by 90% from theVOCoraclemodel
(the median `2-norm error decreases by 80%). As before, Cicada does under-predict
more frequently than either VOC model, but overall, the results for peak-demand
predictions show that Cicada performs well even for non-average-case traffic.
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Figure 3-8: Prediction errors for peak demand.

3.5.4 Prediction Errors for Alternate Algorithms

EWMA-based Algorithm

On our dataset, the EWMA algorithm (detailed in §3.3.4, with results in Figures 3-
9 and 3-10) performed comparably to the experts-tracking algorithm once we in-
creased each prediction by a small multiplicative constant (1.25) to decrease the
under-prediction (median errors for average demand: .24 (relative) and .47 (`2); for
peak demand: .25 (relative) and .50 (`2). This result was somewhat surprising, as
Cicada’s expert-tracking algorithm is more sophisticated than an EWMA. However,
given that the resulting weights of the experts-tracking algorithm (Figure 3-4) are
(to first order) exponentially decreasing, it makes sense that the EWMA algorithm
should perform similarly on our data. Still, there are two weaknesses of the EWMA
algorithm compared to the expert-tracking algorithm:

Tuningα: The EWMA requires a single parameter, α, to determine howmuchweight
to give to new samples. In our evaluations, we chose α based on the results of the
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expert-tracking algorithm. How hard is it to select α in general?
To answer this question, we evaluated the EWMA algorithmwith randomly sam-

pled values for α. On our dataset, the EWMA algorithm is fairly robust, but not
perfect; its relative and `2 errors increased with α <≈ .1 and α >≈ .9. For other
datasets, these values may change. In all cases, there is some tuning involved in using
EWMA-based algorithm.
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Figure 3-9: Prediction errors for average-demand using the EWMA algorithm.
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Figure 3-10: Prediction errors for peak-demand using the EWMA algorithm.

Handling Diurnal Applications: One application that an EWMA will not perform
as well on is a heavily diurnal application. Here, the most recent is typically not the
best predictor; rather, the matrix from 24 hours ago is.

Asmentioned in §2.5.7, we believe that our datasetmay not have a large number of
user-facingapplications,whicharea typeofapplications thatexhibit strongdiurnality.
To test Cicada’s performance on these types of applications, we simulated 14 days of
data with a strong diurnal pattern, where the traffic demands followed a sinusoidal
curve throughout the day (with random jitter added). We tested average demand
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Figure 3-11: Weights produced by Cicada’s expert-tracking algorithm when run on
a strongly diurnal application. The algorithm assigns almost all of the weight to the
datapoint 24 hours earlier.

predictions.
In this experiment, the median `2 and relative errors of the EWMA algorithm

remained at roughly the same values as before (.46 and .23, respectively), whereas
the median `2 error of the expert-tracking error was much better (.29 compared to
.46; the relative error remained the same). This result remained consistent across a
variety of different sinusoids.

The reason the expert-tracking algorithm performs better in this case is shown in
Figure 3-11. Here, we show the weights of the expert-tracking algorithm after testing
it on a diurnal application. As expected, the algorithm assigns almost all of the weight
to the datapoint 24 hours earlier. The EWMA algorithm cannot adapt to this traffic
pattern.

Linear-Regression Algorithm

Using the linear regression-based algorithm (detailed in §3.3.4; results in Figure 3-12),
under-prediction for average demand occurred most frequently in tenants with little
relevant historical data (|HC | < 6000). The amount of under-prediction could be
decreased bymultiplying each prediction for such tenants by a small constant k ≤ 1.2,
without causing any tenants to be substantially over-predicted. Using larger constants
leads to even less under-prediction, but increases the chance of over-prediction in
some cases.

The prediction error for the average demand case is comparable to the error in
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Figure 3-12: Prediction errors for average demand using the linear regression-based
algorithm.

Cicada’s experts-tracking algorithm (Figure 3-7).
For peak demand predictions (Figure 3-13), we found that without reducing the

maximum predictions by a multiplicative constant they had a tendency to severely
over-predict the peak demand; a scale factor of 0.2 improved accuracy. Increasing
each prediction by a small additive constant improved the under-prediction errors,
much like multiplying by a constant did in the average demand case. However, Ci-
cada’s peak predictionswith the linear regression algorithmare quite bad. Wediscuss
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Figure 3-13: Prediction errors for peak demand using the linear regression-based
algorithm.

the reason for this below, in addition to pointing out a second weakness of the linear-
regression algorithm.

Correcting Errors: The expert-tracking algorithm updates its weights in response
to errors in previous prediction. The linear-regression algorithm does no such thing;
it has an a priori notion of “similarity”, and this is not updated. We believe this to be
a possible reason why the peak predictions are bad: the a priori notion of similarity
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Figure 3-14: The speed of Cicada’s prediction algorithm vs. the amount of history
available. As theamountofhistorygrows, sodoes the timeit takes tomakeaprediction.
In all but one case, Cicada takes fewer than 10milliseconds to make a prediction.

that the linear-regression algorithm has does not work well for predicting peak-
demand, and the algorithm has no way to correct its mistakes. It is possible that the
performance of this algorithm would improve with online-updating of the similarity
constraints, but thisbringsus toa secondweaknessof the linear-regressionalgorithm.

Performance: The linear-regression algorithm performed orders of magnitude more
slowly than the expert-tracking (and EWMA-based) algorithm(s), as it requires going
through all of the past data to find the similar data. Due to restricted access to the
dataset, wewere unable to test the linear-regression algorithm using a pruned history
(one that used only themost recent 48 hours of data, e.g.), but we note that the expert-
tracking and EWMA algorithms had no trouble utilizing the entire past history of an
application.

3.5.5 Speed of Predictions

Cicada is able to make a prediction using the expert-tracking algorithm very quickly.
The amount of time it takes to make a prediction is affected predominantly by the
amount of history used.

Figure 3-14 plots the mean prediction speed against the amount of history used.
In all cases, the mean prediction speed is fewer than 10 milliseconds in all but one
case (fewer than 25milliseconds in all cases), and in the majority of cases, fewer than
5 milliseconds. Should tenants run longer than those in our dataset—i.e., have more
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thanhundreds of hours of history—thehistory could be pruned. In our dataset, Cicada
is able to make accurate predictions for applications using only 48 hours of history
(see Figure 3-6).

Due to the restrictions on our dataset, we are unable to publish specific results as
to how the size of the tenant affects the prediction speed. However, we found tenant
size to have a smaller effect on prediction speed than the amount of history did.

3.5.6 Summary

To summarize, Cicada’s expert-tracking prediction algorithm outperforms predic-
tions generated from a VOC model. Cicada’s predictions decreased the relative per-
tenant error by 90% in both the average-demand case and the peak-demand case
compared to the VOC-based algorithm.

We believe Cicada’s expert-tracking algorithm performs well for the following
reasons:

• It allows for a large amount of spatial- and temporal-variability. Systems such
as VOC do not.

• It takes into account an appropriate amount of past history; simply using the
most recent datapoint tomake a prediction performed poorly (this is equivalent
to anEWMAalgorithmwithα = 1, and theEWMAalgorithmperformedpoorly
for α > .9).

• It corrects pastmistakes viaupdates to theweights basedon the relative `2-norm
error.

• It handles a general case of applications, adapting well to diurnal applications,
because the weights are not fixed beforehand.

Furthermore,Cicada’salgorithmrequiresnoparameter tuning, andmakespredictions
quickly (no more than ten milliseconds in almost all cases).

Though Cicada’s prediction algorithm performs well on our dataset and against
alternative algorithms, we make no claim that it is the best prediction algorithm.
Rather, we have shown that accurate traffic prediction is possible and worthwhile in
the context of cloud computing.

3.6 Conclusion

This chapter described the design and evaluation of Cicada’s traffic prediction al-
gorithm. As discussed in §3.5, Cicada’s expert-tracking prediction algorithm is able
to make fine-grained temporally- and spatially-varying predictions and to handle a
general case of applications. Using traces from HP Cloud Services (§2.5), we showed
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that Cicada accurately predicts tenant bandwidth needs when compared to a variety
of alternative algorithms.

Perhaps more importantly than the algorithm itself, we have shown that fine-
grained workload prediction is possible for cloud applications. Existing systems
assume that the customer understands an application’s traffic pattern beforehand;
we believe that customers typically have no understanding of their application’s de-
mands. Cicada now makes it feasible for cloud systems to understand and adapt to
the workload patterns of their applications.

Tothatend, therestof thisdissertationshowshowCicada’spredictionscanbeused
to improve application performance. Chapter 4 details an application placement al-
gorithm thatminimizes application completion time. Chapter 5 shows howproviders
can turn Cicada’s predictions into bandwidth guarantees for their customers, which
can improve customer’s performance (by guaranteeing them the bandwidth they
need rather than risking an under-provisioned network) and encourage companies
that need to meet their own SLAs to utilize cloud services.
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Chapter 4

Application Placement

4.1 Introduction

In the previous chapter, we discussed how to predict an application’s traffic demands.
This chapter focuses onwhat we can dowith an application once we know that infor-
mation. Specifically,weare interested inplacingapplicationsoncloudnetworks. This
placement can be done either by the cloud provider, to place applications anywhere
in an availability zone, or by a customer, to place applications on her own virtual
machines in the cloud (in Chapter 6, we discuss the additions that Cicada needs for a
full customer-run deployment).

∗ ∗ ∗

The placement of applications in a public cloud is particularly important with the
advent of network-intensive applications. The performance of such applications de-
pends not just on computational and disk resources, but also on the network resources
between the machines on which they are deployed. Previous research [20, 34] has
shown that the datacenter network is the limiting factor for many applications. For
example, the VL2 paper reports that “the demand for bandwidth between servers in-
side a datacenter is growing faster than the demand for bandwidth to external hosts,”
and that “thenetwork is abottleneck to computation”with top-of-rack (ToR) switches
frequently experiencing uplink utilizations above 80% [34].

Much previous work has focused on better ways to design datacenter networks
to avoid hot spots and bottlenecks. In this chapter, we take a different approach
and ask the converse question: given a network architecture, what is the impact of a
network-aware task placement method on end-to-end performance (e.g., application
completion time)? Our hypothesis is that by measuring the inter-node throughputs
and bottlenecks in a datacenter network, and by understanding an application’s data
transfer characteristics (for instance, via the traffic prediction method in Chapter 3),
it is possible to improve the performance of a mix of applications.

A concrete context for our work is a tenant with a set of network-intensive cloud
applications. To run these applications, a tenant requests a set of virtual machine
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(VM) instances from the cloud provider; to contain costs, the tenant is thrifty about
how many VMs or instances it requests. When it gets access to the VMs, the tenant
now has a decision to make: how should the different applications be placed on these
VMs to maximize their performance? A common tenant goal is to minimize the run-
time of the application. An alternative context is a cloud provider aiming to place
tenant applications across a single availability zone (or even an entire datacenter) so
as to improve network utilization.

For network-intensive applications, an ideal solution for placement is to map
an application’s tasks to the VMs taking into consideration the inter-task network
demands as well as the inter-VM network capacities. As in the previous chapter,
we use “tasks” as an intuitive term: a task may map to a collection of processes in
an application, for instance a map or reduce task during a MapReduce job. As a
simple example, suppose an application has three tasks, S,A, and B, where A and B
communicate often with S, but not much with each other. If we are given three VMs
(in general on different physical machines) and measure the network throughputs
between them to be different—say, two of them were higher than the third—then the
best solution would be to place S on the VMwith the highest network throughput to
the other two VMs. By not taking the performance of the underlying network into
account, applications can end up sending large amounts of data across slow paths,
while faster, more reliable paths remain under-utilized. Our goal is to build on this
insight and develop a scalable system that works well on current public clouds.

∗ ∗ ∗

This chapter makes two contributions. The first is the design of Cicada’s sec-
ondmodule for network-aware application placement, depicted earlier in Figure 2-2,
which tenants can use to place a mix of applications on a cloud infrastructure. This
module utilizes three sub-systems: a component to profile the data transfer char-
acteristics of an application (described in Chapter 3), a low-overhead measurement
component to obtain inter-VM network throughputs (described in this chapter, and
also Chapter 6), and an algorithm to map application tasks to VMs in order to satisfy
a particular objective that is affected by the underlying network.

These sub-systems must overcome four challenges: first, inter-VM throughputs
are not constant [22]; second, cloud providers often use a “hose model” to control the
maximum output rate from any VM; third, any practical measurement or profiling
method must not introduce much extra traffic; and fourth, placing a subset of tasks
changes thenetwork throughput available for subsequent tasks. Moreover, anoptimal
placement method given the achieved network throughputs and application profile is
computationally intractable, so any practical approach can only be approximate. To
the best of our knowledge, the problem of matching compute tasks to nodes while
taking inter-VM network properties into account has not received prior attention.

The second contribution of this chapter is an evaluation of how well Cicada per-
forms compared to other placement methods that do not consider network through-
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puts or inter-task communication patterns. We collect network performance data
from Amazon’s EC2 and Rackspace, and use the application profiles obtained from
HP Cloud Services (§2.5), to evaluate Cicada. For the specific goal of minimizing
application run-time, we find that Cicada can reduce the average running time of ap-
plications by 8%–14% (maximum improvement: 61%) when applications are placed
all at once, and 22%–43% (maximum improvement: 79%) when applications arrive
in real-time, compared to alternative placement methods on a variety of workloads.
These results validate our hypothesis that taskmapping using networkmeasurements
and application communication profiles are worthwhile in practice.

4.2 Application PlacementMethod

4.2.1 Problem Statement

To place an application, Cicada requires two inputs: a description of the current
network state, and a description of the application’s future workload. For now, we
focus on placing a single application; the placement of a sequence of applications
follows naturally (§4.2.6).

4.2.2 Describing the Current Network State

To describe the existing network ofM machines, Cicada uses two matrices:

1. CM×1, the CPU constraint vector. Cm is the CPU resource available onmachine
m. In our formulation, Cm = the number of cores on machinem.

2. RM×M , the network constraint matrix. Rmn is the throughput that one connec-
tion on the path fromMachinem to n achieves (this connectionmay exist in the
presence of other, background connections).

In cloud networks, C can easily be obtained when the virtual machines are launched
(virtually all clouds have an option to launch machines with a user-defined level of
computing power). R is more difficult to obtain; it requires Cicada to measure the
network. The process of measuring is different depending on whether a customer or
a provider is running Cicada.

Provider-centric Measurement

It is not too difficult for a provider tomeasure throughput on its owncloudnetwork, in
part because the provider can use passive measurements. For example, the provider
can enable tools such as sFlow [88] or NetFlow [66] on the routers inside the datacen-
ter, which collect statistics about traffic usage. In fact, we collected the dataset that
we use in this work using sFlow (§2.5).
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Alternatively, the provider can collect measurements through the hypervisors of
the virtual machines. This type of measurement can provide more detailed statistics
(e.g., sFlow typically subsamples packets; hypervisor-level measurement need not) as
well as probe the upper bound on path capacity (passive measurements give a lower
bound).

Customer-centric Measurement

If a customer is running Cicada alone (i.e., without any assistance from the provider),
its measurement methodology must necessarily be different than the provider’s mea-
surement methodology. For one, customers do not have access to the switches in
the cloud datacenter, nor to the hypervisors. In fact, a customer can only hope to
measure the network throughput between its own virtualmachines (for a customer to
use Cicada, we assume that once its tenants have access to a set of machines, they can
specify which machine(s) they want to run a particular portion of their application
on).

In order to get a snapshot of the network, the customer must activelymeasure the
network, i.e., introduce traffic into it. Passivemeasurementwill not suffice, in general,
because the customer needs to determine the maximum possible TCP throughput on
the path, rather than just the observed throughput of their data. Sending a lot of
measurement traffic can affect the measurements themselves, slow down systems
already running on the network, and in the case of public clouds, possibly incur
monetary cost to the customer. Additionally, customers must be able to infer from
their measurements the behavior of the other tenants on the cloud network, who are
unknown to them. This inference is necessary because the traffic from other tenants
can appreciably affect the customer’s traffic (§6.4.2).

Doing this type of measurement in a scalable, accurate, and fast manner is a
complicated task. We describe a system, Choreo, for doing just this in Chapter 6.

4.2.3 Describing the Application’s Workload

In this chapter, we consider an application to be a collection of tasks. To describe the
J tasks, Cicada uses two matrices:

3. CRJ , the CPU demand vector. CRj is the CPU demand for task j, i.e., the
number of cores required for task j.

4. BJ×J , the network demand matrix. Bij is the amount of data task i needs to
transfer to task j.

Notice that to specify the transfer that occurs between any two tasks, Cicada uses
the amount of data that needs to be transferred, rather than the amount of network
bandwidthneededas in [8, 20, 63]. Wehavechosen this formulationbecausenetwork-
intensive batch applications generally do not need to sustain a transfer at a particular
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rate. AssumingVM v1 has data to send toVM v2, v1will send it as fast as its connection
to v2 allows. Hence, what matters is the amount of data, and not the speed of the
transfer in a particular placement. Though existing work [19] for pricing datacenters
advocates for specifying bandwidth, we believe specifying the total amount of data is
more appropriate for optimizing application completion time.

Cicada obtains these application-workload matrices using the techniques de-
scribed in the previous chapter (Chapter 3). In the terminology of that chapter, a
task corresponds to the set of processes that the application ran on one virtual ma-
chine. To describe an entire application in one matrix, Cicada can simply sum up the
time series of matrices generated in the previous chapter. That is,

B =
n∑
i=1

Mi

Optionally, Cicada can keep the time series of matrices, and update its placement
every epoch; we discuss this further in §4.4.3. For now, we will assume that B is a
description of the entire behavior of the application.

4.2.4 Placing Applications Using ILPs

To place applications, the fourmatrices described in the previous sections are used as
an input to an integer linear program (ILP). Before describing this program, we need
one more matrix:

5. XJ×M , the task assignment matrix. Xjm = 1 if task j is placed on machinem,
and 0 otherwise.

In the end,X will tell us which tasks to place on which machine.
Before we describe the ILP itself, wemust first decide what objective function we

want to optimize. What does it mean to improve application in the cloud? To have
the application run as fast as possible? To minimize monetary cost? In fact, Cicada
can operate with both of these objective functions, and others; Cicada can place
applications to satisfy any goal that can be formulated as an optimization problem.

In this section, we describe the ILP for minimizing application completion time.
Appendix A gives ILPs for other goals.

ILP for Minimizing Completion Time

We can model the particular problem of minimizing application completion time
as a quadratic optimization problem. In our formulation, we assume that there is
no unknown cross-traffic in the network. We show in §6.5.2 that this assumption
generally holds in the Amazon EC2 and Rackspace networks, and also discuss how
we could change our formulation if the assumption were not true.
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A placement of the J tasks onto theM machines is anX such that:

M∑
m=1

Xjm = 1,∀j ∈ [1, J ]

That is, each task must be placed on exactly one machine. In addition, the placement
of tasks on each machine must obey CPU constraints, i.e.,

J∑
j=1

CRj ·Xjm ≤ Cm, ∀m ∈ [1,M ]

Given aparticular placement of tasks,weneed to calculate how long an application
runningwith this placementwill take to complete. By definition, this completion time
is equal to the time taken to complete the longest-running flow.

Let f1, . . . , fk be a set of flows that share a bottleneck link `with rateR. The flows
transmit b1 ≤, . . . ,≤ bk bytes of data, respectively. The amount of data traversing link
` is then

i=k∑
i=1

bi

Because there is no cross traffic (by our assumption), the total amount of time these
flows take is

i=k∑
i=1

bi/R.

The total completion time for the workload placement, then, is

max
i=k∑
i=1

bi/R

over all sets of flows that share a bottleneck link. Cicada’s goal is to minimize that
time over all possible placements.

To formulate this objective so that it can be solved by quadratic program solvers,
we need to express it using matrices. In particular, we need a way to define whether
twoflowswill shareabottleneck link. LetS beanM2×M2matrixsuch thatSmn,ab = 1
if the pathm  n shares a bottleneck link with path a  b. LetDmn be theM ×M
matrix expressing the amount of data to be transferred between machines m and n
(D = XTBX). Finally, let

Emn =

m′=M,n′=M∑
m′=1,n′=1

Dm′n′ × Smn,m′n′ .
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Emn expresses the amount of data traveling onm n’s bottleneck link. Note that
the rate of that path is, by definition,Rmn. Our objective, then, is

min max
m,n

Emn/Rmn

such that all CPU constraints are still satisfied.
In §6.5, we show that VMs in both EC2 and Rackspace cloud follow a hose model:

the outgoing rate for each VM is limited by a certain threshold. We can model this
type of rate-limiting with the following:

Smi,mj = 1;m 6= i,m 6= j.

If the incoming connection was also rate-limited, we would add

Sim,jm = 1; (m 6= i,m 6= j).

What happens if a tenant does not know the physical topology of the network,
i.e., does not know the correct values for S? First of all, this case will only happen if
Cicada is run entirely by the customer; the cloud provider will surely know the values
for S. Second, the customer can in fact infer values for S; we show this in §6.4.3.

Nevertheless, ifS isunknown,Cicadaassumes thateveryentry inS is zero, i.e., that
there are no shared bottlenecks in the network (effectively, this S models a network
with unique paths between every pair of machines). If this value is incorrect, i.e.,
there are certain paths that share bottlenecks, our formulationwill likely calculate the
workload completion time incorrectly. However, we show in §4.3 that in practice,
significant performance gains can still be seen without knowledge of S.

It turns out that our problemcanbe converted into a linear programmingproblem.
Foreachquadratic terminaboveconstraints,Xim·Xjn, i < j,wedefineanewvariable,
zimjn (i < j forcesXim ·Xjn andXjn ·Xim to be equal). Now theproblem is as follows:

minimize: z
subject to:

z −
∑J

i=1

∑J
j=1

Bij ·zimjn

Rmn
≥ 0 ∀m,n ∈ [1,M ]

Cm −
∑J

i=1CRi ·Xim ≥ 0 ∀m ∈ [1,M ]∑M
m=1Xim = 1 ∀ i ∈ [1, J ]

zimjn −Xim ≤ 0, and zimjn −Xjn ≤ 0 ∀ i, j ∈ [1, J ]∑
n,m

∑J
j=i+1 zimjn +

∑
n,m

∑i−1
j=1 zjnim = J − 1 ∀ i ∈ [1, J ]

z ≥ 0
binaries:

Xim, zimjn (i < j, i, j ∈ [1, J ],m,n ∈ [1,M ])
The constraints serve the following purposes, in order: To force z to represent

the maximum amount of data transferred between two machines, to make sure the
computationcapabilityofanymachine isnotexceeded, tomakesureeachtask isplaced
on exactly one machine, to force zimjn ≤ Xim ·Xjn, and to force zimjn ≤ Xim ·Xjn.
The resulting program can be solved using a solver such as CPLEX [28].
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Figure 4-1: An example topology where the greedy network-aware placement is sub-
optimal. Because the greedy placement algorithm first places tasks J1 and J2 on the
path with rate 10, it must also use the path with rate 1 to place J1 and J3. The optimal
placement avoids this path by placing J1 and J2 on the path with rate 9.

4.2.5 Placing Applications Using Heuristics

In practice, we found that ILPs sometimes took a very long time to solve (on the
order of tens ofminutes to hours), hampering our ability to place applications quickly.
Moreover, the larger the number of machines in the network and the number of tasks
in the application, the longer the mathematical optimization will take.

To cope with this challenge, Cicada can use heuristics instead. We present the
heuristic for minimizing application completion time below. In our experiments, the
heuristic takes only milliseconds to run; see §4.3.4.

Greedy Heuristic for Minimizing Application Completion Time

To minimize application completion time, Cicada uses Algorithm 4. This algorithm
works by trying to place the pairs of tasks that transfer the most data on the fastest
paths. Because intra-machine links are modeled as paths with (essentially) infinite
rate, the algorithm captures the heuristic of placing pairs of transferring tasks on the
same machines. Though not guaranteed to result in a globally optimal placement
(see Figure 4-1), this method scales better to larger topologies. We compared our
greedy algorithm to the optimal algorithm on a subset of our applications, and found
that the median completion time with the greedy algorithm was only 4% more than
the completion time with the optimal algorithm (see §4.3.2 for a more thorough
description of this experiment).

Although Cicada can support any goal that can be formulated as an ILP, it is
not clear whether every goal has a corresponding greedy heuristic, as minimizing
completion time does.
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Algorithm 4 Greedy Network-aware Placement
1: transfers = a list of 〈i, j, b〉 tuples, ordered in descending order of rates, b. 〈i, j, b〉

means Task i transfers b bytes to Task j.
2: for 〈i, j, b〉 in transfers do
3: if i has already been placed on machine k then
4: P = set of paths k  N ∀ nodesN
5: if j has already been placed on machine ` then
6: P = set of pathsM  ` ∀ nodesM
7: if neither i nor j have been placed then
8: P = set of pathsM  N ∀ nodesM and ∀ nodesN
9: for pathm n in P do
10: if placing i onm or j on nwould exceed the CPU constraints ofm or n then
11: Removem n from P
12: for pathm n in P do
13: rate(m,n) = the rate that the transfer from i to j would see if placed on

m  n. This rate takes into account all other task pairs already placed on
m  n for a “pipe” model, or all other connections out of m for a “hose”
model. (See §4.4.2 for an evaluation of the effect of network variability on
Cicada’s placements.)

14: Place i and j on pathm n ∈ P such that rate(m,n) is maximized.

4.2.6 Handling Multiple Applications

A tenant may not know all of the applications it needs to run ahead of time, or may
want to start some applications after others have begun. To run a new application
while existing ones are running, Cicada re-measures the network, and places its
tasks as it would normally (presumably there is more variation in the network in
this case, because existing applications create cross traffic). It is possible, however,
that placing applications in sequence in this manner will result in a sub-optimal
placement compared to knowing their demands all at once. For that reason, every T
minutes, Cicada re-evaluates its placement of the existing applications, and updates
the placement accordingly. T can be chosen to reflect the cost of updating; for
instance, if an update causes a virtual machine to be migrated, T may reflect the
length of downtime of the virtual machine. If migration is cheap, T should be smaller.
This re-evaluation also allows Cicada to react to major changes in the network.

The actual migration of a task could be done in at least two different ways.

• Migrating at the application level. Certain applications may be able to send
control messages assigning a task to a new virtual machine (as an example,
consider a MapReduce master assigning a map task to a new machine). This
typeofmigrationwouldhave lowoverhead, but is very specific to theapplication
involved, and may not be possible in all cases.
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• Migrating thevirtualmachineonwhich the task isplaced. This typeofmigration
is much more general, but may cause an unacceptable amount of overhead if
done frequently.

§4.4.2 gives a sense of how frequently placement updating may occur on the Amazon
EC2 network, and how the overhead of migration may affect an application.

4.3 Application Placement Evaluation

Thefirst goal of our evaluation is to show thatCicada does indeed improve application
completion times compared to other placement algorithms. Additionally, we also
show that this same placement algorithm can be used in a second context: to improve
network utilization within the datacenter.

4.3.1 Improving Application Completion Time

We evaluate Cicada’s placement algorithm in two different scenarios. First, a case
where a tenantwants to runmultiple applications all at once, and second, a casewhere
a tenantwants to runmultiple applications, the entire sequence ofwhich is not known
up front. In each case, we compare Cicada’s placement to three alternate existing
placement algorithms: random, round-robin, and minimum-machines (we evaluate
Cicada’s placement against the optimal placement on a smaller set of applications in
§4.3.2).

Random Placement

Tasks are assigned to randomVMs. This assignmentmakes sure that CPU constraints
are satisfied, but does not take the network into account. This type of placement acts
as a baseline for comparison.

Round-robin Placement

This algorithm assigns tasks in a round-robin order to VMs; a particular task is
assigned to the nextmachine in the list that has enough available CPU. As before, CPU
constraints are satisfied, but the network is not taken into account. This placement
is similar to one that tries to load balance, and minimize the amount of CPU used on
any particular VM.

Minimum-machines Placement

This algorithm attempts tominimize the number of machines used. If possible (given
CPU constraints), a task will be placed onto a VM that is already used by another
task; a new VM will be used only when no existing machine has enough available
CPU. This algorithm may be of interest to cloud customers who aim to save money;
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in many clouds, the fewer machines a customer uses, the lower the cost (at, perhaps,
the expense of longer-running applications).

4.3.2 Dataset and Experimental Set-up

To evaluate Cicada’s placement algorithm, we ran experiments on Amazon EC2, as
this allowed us to run our own traffic on top of unknown (and real) background traffic.
Our evaluation utilizes Cicada’s customer-centric measurement module, Choreo, to
measure EC2 topologies; see Chapter 6 for a description and evaluation of Choreo.

In each experiment, we measure an EC2 topology using Choreo, and then place
an application or sequence of applications on that topology. The applications are
composed from the ground truth traffic matrices in the HPCS dataset, not Cicada’s
predicted traffic matrices, as we seek to evaluate our placement algorithm alone (see
§4.4 for a complete end-to-end evaluation).

For each application, we know the observed start time on the cloud as well as its
traffic matrix. From this data, we can accurately model sequences of applications.
We model each component of an application as using between 0.5 and 4 CPU cores,
and each cloud machine as having four available cores (the actual CPU data is not
available from our dataset).

Once the applications are placed, we transfer data as specified by the placement
algorithm and the traffic matrix. Note that these experiments transfer real traffic on
EC2; we do not merely calculate what the application completion time would have
been based on the measured network, placement, and traffic matrix. Thus, these
experiments are susceptible to any changes in the network, as well as the effects of
any cross traffic.

All Applications at Once

Forourfirst setofexperiments,wemodeleda tenantwithmultipleapplications,whose
network demands (amount of data transferred between tasks) are known a priori.
We randomly chose between one and three applications and made one combined
application out of them, combining each application’s traffic demandmatrix and CPU
vector in the obviousway. Then,weplaced this combined application and ran it, using
each of the four placement algorithms in turn. Our CDFs do not explicitly account
for measurement time, because it is the same (approximately three minutes for a ten-
node topology) regardless of the length of an application’s run. We note that Cicada is
not meant for short-lived applications where the three-minute time-to-measure will
exceed any reductions in the completion time from Cicada.

Figure 4-2(a) shows the results from this experiment. Each line in the CDF
compares Cicada to one of the alternate placement algorithms. The x-axis plots the
relative speed-up, defined as the amount of time that Cicada saved (or added) to the
completion time of an application. For instance, if an application took five hours with
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(a) All applications at once
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(b) Applications arriving in sequence

Figure 4-2: Relative speed-up for applications using Cicada vs. alternate placement
algorithms.

the random placement algorithm, and four hours using Cicada, the relative speed-up
would be (5− 4)/5 = 20%.

From Figure 4-2(a), we can see that in roughly 70% of the applications, Cicada
improves performance, with improvements as large as 60%. The mean improvement
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over other approaches in all cases is between 8% and 14%, while the median im-
provement is between 7% and 15%; restricted to the 70% of applications that show
improvement, these values rise to 20%–27% (mean) and 13%–28% (median). In the
other 30% of applications, Cicada reduces performance; in these cases, the median
slow-down is (only) between 8% and 13%.

These numbers imply that, if we could predict the types of applications where
Cicada typically provides improvement, it would improve performance by roughly
13%–28%. We leave this type of prediction to future work.

Applications in Sequence

For our second set of experiments, we modeled a tenant wishing to run multiple
applications whose demands are not all known a priori. Instead, the applications
arrive one-by-one, and are placed as they arrive. We randomly chose between two
and four applications and ordered them by their observed start times. We placed the
applications in sequence according to these start times. Applications may overlap in
time in this scenario.

Because multiple applications arrive in sequence, it does not make sense to mea-
sure the entire sequence’s completion time. Instead, we determine the total running
time of each application, and compare the sum of these running times for each place-
ment algorithm.

Figure 4-2(b) shows the results from this experiment. As in Figure 4-2(a), each
curve in the CDF compares Cicada to one of our alternate placement algorithms. We
see similar results as in Figure 4-2(a), in that for most applications, Cicada provides
an improvement over all other placement schemes. With sequences of applications,
we see an improvement in 85%−−90% of all applications, with amaximum observed
improvement of 79%. Over all applications, themean improvement ranges from 22%–
43%; themedian from 19%–51%across different alternative algorithms. Restricted to
the applications that show improvement, the mean rises slightly to 26%–47% and the
median to 23%–53%. For the applications whose performance degraded, the median
slow-down was only 10%.

Ingeneral,Cicadaperformsbetterwhenapplicationsarrive insequence thanwhen
all demands are known up front and applications can be placed at once. This result is
likely due to the fact that applications arriving in sequence allows us to spread their
network demands out more, as some of the transfers from earlier applications may
have finished by the time later applications are placed. Placing multiple applications
at once will use more network resources than placing the applications as they arrive,
in general.

In cases where an in-sequence placement seems to be going poorly, however,
Cicada can re-evaluate its placement during a run, and migrate applications if the
tenant deems that worthwhile. However, we can see from Figure 4-2(b) that even
without this behavior, Cicada’s relative performance improvement over the other
schemes when constrained to no re-evaluations is significant.
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Effects of Traffic Magnitude

In the previous results, we made no distinction between Cicada’s performance on
differently-sized applications. Since Cicada is meant for large network-intensive
applications, itwould be problematic if Cicada’s performance improvement decreases
as applications send more traffic.

To study this, we perform the same experiment as in Figure 4-2 on a subset of our
applications, but divide the applications into two types: those that send a very large
amount of traffic, and those that send a moderate amount of traffic. The applications
in the large set send at least an order of magnitude more traffic than those in the
moderate set. (due to the restrictions of our dataset, we are not permitted to divulge
information about the precise total amount of traffic in any application).
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(a) Cicada vs. minimum-machines placement.
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(b) Cicada vs. round robin placement.
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(c) Cicada vs. random placement.

Figure 4-3: Cicada’s performance improvement compared to the three alternative
placements, divided into large and moderate applications. Cicada’s performance im-
provement is comparable for large applications when compared to moderate applica-
tions, indicating that large, network-intensive applications arewell-served by Cicada.
(This experiment was done after that in Figure 4-2, and so the results are not exactly
the same, as the network almost certainly changed between the two experiments.)
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Overall, Cicada performed comparably for large and moderate applications. Fig-
ure 4-3 shows the results when Cicada is compared to each of the three placements.
ThemostdramaticchangecomeswhenCicada is compared to theminimum-machines
placement: Cicada’s median performance improvement is 7% for large applications
and 2%formoderate applications in this case (themean improvements are 6%and 1%,
respectively). Theminimum-machines placement utilizes many of the same network
paths; since it is using fewer machines, it has fewer available paths. As traffic in an
application increases, its performance should decrease, as shown.

Compared to a round-robin placement, Cicada’s median improvement is 9% for
large applications and 6% for moderate applications (mean: 9% for large, 9% for
moderate); compared to a random placement, Cicada’s median improvement is 11%
for large applications and 10% for moderate applications (mean: 8% for large, 8%
for moderate). More traffic in an application has less of an effect on these types of
placements, since they effectively spread data out across the network. Thus, Cicada
doesn’t see as much improvement for large applications over moderate applications
in these scenarios.

Cicada vs. Optimal Placement

Evaluating Cicada’s placement against the optimal placement is difficult due to the
computational complexity of the optimal ILP. In simulation, we observed that it
often took multiple hours to determine the optimal placement for applications in our
dataset, and even longer for applications with random traffic patterns (those took as
long as eight hours). With these times, network conditionsmay change before the ILP
is solved, which means that the proposed “optimal” placement is no longer optimal.

However, we can get a sense of how well Cicada performs against the optimal
placement in cases where the ILP can be solved quickly. We limited ourselves to
applications whose ILP could be solved in under five minutes, and compared the
completion time of the application using the optimal placement to using Cicada’s
placement. Figure 4-4 shows the results.

First, there are some applications that complete faster using Cicada’s placement
time rather than the optimal placement time. Even thoughwe chose applications that
had an ILP that could be quickly solved, the network may still have changed in that
time (Cicada’s placement algorithm, on the other hand, takes only a fewmilliseconds;
see §4.3.4).

For the applications where Cicada’s placement performs worse compared to the
optimal placement, themedian slow-down is 23% (mean: 28%). Over all applications,
Cicada’s median slow-down is 4% (mean: 11%).

Again, due to the time it takes to solve the ILP, it is difficult to do a full comparison
between Cicada’s placement and the optimal placement. But this fact speaks to a
benefit of Cicada’s placement: even though the completion time of the application
may be greater using Cicada, the total time to calculate the placement and then run
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Figure 4-4: Relative speed-up of Cicada’s placement vs. the optimal placement. The
times when Cicada performs better are likely due to changes in the network.

the application will often be shorter using Cicada, because its placement algorithm is
so much faster (§4.3.4).

4.3.3 Improving Network Utilization

We designed Cicada—and, in particular, its placement algorithm—with the goal of
satisfying various customer objectives, such as minimizing application completion
time. Becauseourpredictionmethodcanoutputpipe-modelpredictions (i.e., different
predictions for each pair of virtual machines), Cicada is able to make a more precise
placement than systems that do not; for example, VOC (see §3.4 as well as [20]).

As a result, we have found that Cicada’s placement algorithmhas the pleasant side
effect of also improving network utilization. By that, we mean that Cicada wastes
less bandwidth than other models. We define “wasted bandwidth” as the bandwidth
that is predicted for a tenant but not used by the tenant; in some scenarios, this
bandwidth may actually be guaranteed to or reserved for the tenant (see Chapter 5).
Wasted bandwidth is a proxy for estimating how much money a customer would
save—methods that waste less bandwidth will likely save the customers money—but
allows us to avoid defining a particular cost model.

In cloud networks, it is important to specify between wasted intra-rack and inter-
rack bandwidth, as it is not clear that cloud providers treat wasted intra-rack and
inter-rack bandwidth equally. Inter-rack bandwidthmay costmore, and even if intra-
rack bandwidth is free, over-allocating network resources on one rack can prevent
other tenants from being placed on the same rack (due to a presumed lack of network
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resources).

Dataset and Experimental Set-up

We compare Cicada’s placement algorithm (Algorithm 4) to the VOC placement
algorithm detailed in [20], which tries to place clusters on the smallest subtree that
will contain them. This algorithm is similar in spirit to Cicada’s algorithm; Cicada’s
algorithm tries to place the most-used VM pairs on the highest-bandwidth paths,
which in a typical datacenter corresponds to placing them on the same rack, and then
the same subtree. However, since Cicada uses fine-grained, pipe-model predictions,
it has the ability to allocate more flexibly; VMs that do not transfer much data to one
another neednot beplacedon the same subtree, even if they belong to the same tenant.

We compare Cicada’s placement algorithm against VOC’s, on a simulated physical
infrastructure with 71 racks with 16 servers each, 10 VM slots per server, 10G links
between servers and ToRs, and (10G/Op) Gbit/s inter-rack links, where Op > 1 is
the physical oversubscription factor (this infrastructure resembles the one on which
we collected our own dataset; see 2.5.3). For each algorithm, we select a random
tenant, and use the ground truth data to determine this tenant’s bandwidth needs for
a random hour of its activity, and place its VMs. We repeat this process until 99%
of the VM slots are filled. Using the ground-truth data allows us to compare the
placement algorithms explicitly, without conflating this comparison with prediction
errors. To get a sense ofwhatwouldhappenwithmore network-intensive tenants, we
also evaluated scenarioswhere eachVM-pair’s relative bandwidth usewasmultiplied
by a constant bandwidth factor (1×, 25×, or 250×).

Results

Figure 4-5 shows how the available inter-rack bandwidth—what remains unallocated
after the VMs are placed—varies with Op, the physical oversubscription factor. In
all cases, Cicada’s placement algorithm leaves more inter-rack bandwidth available.
When Op is greater than two, both algorithms perform comparably, since this is
a constrained environment with little bandwidth available overall. However, with
lower over-subscription factors, Cicada’s algorithm leaves more than twice as much
bandwidth available, suggesting that it uses network resourcesmore efficiently in this
setting.

Over-provisioning reduces the value of our improved placement, but it does not
necessarily remove the need for better predictions or placements. Even on an over-
provisioned network, a tenant whose reserved bandwidth is too low for its needs may
suffer if its VM placement is unlucky. A “full bisection bandwidth” network is only
that under optimal routing; bad routing decisions or bad placement can still waste
bandwidth.
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Figure 4-5: Inter-rack bandwidth available after placing applications (note that the
x axis is roughly log-scale). Solid lines represent Cicada’s placement, dotted lines
represent VOC’s placement.

4.3.4 Scalability

Cicada’s placement algorithm takes only milliseconds to run. On applications in our
dataset, running on Amazon EC2, a placement never took more than three millisec-
onds, though the time to calculate theplacement grewas thenumber of tasks grew. To
push the limits of scale, we simulated random network conditions, where the number
of machines varied from 10 to 100, and random applications, where the number of
tasks varied from 2 to 500. In every configuration, Cicada was able to calculate a
placement in under 1.64 seconds (in fact, it took our simulationmore time to generate
the random conditions than it did to calculate the placement).

End-to-end, the time it takes to place an applicationwill be dominated by the time
it takes to do the measurement, not the time it takes to do make a prediction or do a
placement. See §6.5.4 for a discussion of the scalability of client-side measurement,
and §3.5.5 for a discussion of the scalability of predicting application workloads.

4.3.5 Elasticity

One benefit of public clouds is that they allow users to launch new machines on
demand, and often automatically (via a CPU-based threshold, e.g., “launch a new VM
if 70% of my current VMs are using over 80% of their CPU capabilities”). Cicada does
not address the problem of whether it would be better to launch additional VMs to
improve application performance rather than placing the VMs in a particular way.
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Even with additional VMs to handle load, Cicada would still be useful to determine
how to place (or migrate) the application to best take advantage of the new collection
of VMs.

4.4 End-to-end Evaluation

In this section, we present an end-to-end evaluation of Cicada, studying the effect of
its predictions on its placement decisions, and the expected frequency of placement
updates.

4.4.1 Determining Placement with Predictions

To determine how Cicada’s predictions affect its placement, rather than using the
ground truth trafficmatrices from theHPCS dataset as we did in the previous section,
we use Cicada’s predictions for each application. Since it is possible for Cicada’s
predictions to have errors (see §4.3), this evaluation will illustrate whether Cicada
can still improve application completion time despite these errors.
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Figure4-6: Relative speed-up for applicationsusingCicada, alongwith its predictions,
vs. alternate placement algorithms.

Figure 4-6 shows the affects on application completion time when using Cicada’s
predictions instead of the ground-truth data as in Figure 4-2. Here, Cicada provides
improvement for roughly 55%–75% of applications. The median improvement is
11%–18% over all applications, and 25%–26% restricted to the set of applications that
Cicada improves. These are comparable to the numbers reported in §4.3.
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To further understand the impact of Cicada’s predictions on its placement, we
performed an additional experiment. For each application A, we placed an applica-
tion with Cicada once using its ground truth data, and once using its predicted data
(measuring the network before each placement, and randomizing whether we used
the ground-truth data first or the predicted data). We then get two completion times:
Ag , the completion time when using the ground-truth data to determine the place-
ment, and Ap, the completion time when using the predicted data to determine the
placement. If Cicada’s predictions hinder A’s performance, then Ap will be greater
thanAg .
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Figure 4-7: Change in completion time between using Cicada’s predictions to place
an application and using ground truth data to place an application.

Figure 4-7 shows a CDF of the differences between Ag and Ap. 53% of the time,
Cicada’s predictions result in a decrease in completion time. This result may be due
to changes in the network between the two placements of the application. During the
47% of the time when the predictions increase completion time, the median increase
is 17%. There is, however, a relatively long tail (not pictured); the maximum increase
is 126%.

We believe that most of the differences between Ag and Ap are due to network
conditions changing. This interpretation is supported by the fact that Figure 4-7
is relatively symmetric about x = 0. To that end, it seems that even if Cicada’s
predictions are slightly incorrect, its placement will still improve completion time.
This result is encouraging, with respect to Cicada’s use as an end-to-end system. It is
also understandable: to obtain a correct placement, it is more important that Cicada
predict the correct relationship between the amount of data sent between task pairs,
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rather than the exact value. For instance, suppose tasks i and j transmit themost data
within an application: 100GB. Cicada’s placement algorithm will try to place i and j
on the fastest path in the network. As long as Cicada’s predictions correctly indicate
that i and j transfer more data than any other task pair, the placement algorithm will
still place them on the fastest path; whether Cicada actually predicts 100GB correctly
is immaterial.

Note, though, that it is still worthwhile for Cicada to make accurate predictions,
as they can lead to better performance guarantees; see Chapter 5.

4.4.2 Frequency of Placement Updates

We are also interested in determining how frequently the placement of an application
should be updated. After a change in the network, or a change in the application’s
workload, the original placement may no longer be optimal. In this section, we study
how both of these types of changes affect the frequency of task migration.

To evaluate the frequency of migration, our general approach is to compare the
original placement of an application, p0, with some new placement p, calculated at a
later time. As a result, p should be a more accurate placement than p0.

Rather than calculate the number of migrations between p and p0, we calculate
the completion time of the application at time t using both of those placements, and
calculate how much p0 improves completion time. We choose this method to avoid
cases where the migrated tasks had little affect on the overall completion time (and
thus could’ve been avoided); for example, migrations that caused only short network
transfers to change paths, or migrations that moved network transfers to new paths
where they would achieve similar throughput as on their original path.

Effect of Network Variability

To determine how network variability affects the frequency of migration, we per-
formed the following experiment. We collected measurements of network stability
on two different 20-VM networks in Amazon EC2. These measurements consist of
the TCP throughput measured every five minutes for one hour, on every path in the
network.

For each application in our dataset, we calculate its placement on one of these
networks every five minutes for an hour; we refer to the placement at time 0 as the
original placement, p0. The application’s workload matrix remains constant, but the
network-ratematrixwill change as a result of variability in the network. We compare
the completion time of each new placement pi to p0.

Figure 4-8 shows a CDF of the changes in completion time. From this figure, we
see that network variability has very little effect on the placement, changing the total
completion time by no more than 5% in virtually every case (the maximum value,
not pictured, is 15.6%). This result is consistent with the network stability results in
§6.5.1), and indicates that onEC2, networkvariabilitydoesnot affect applications in an
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Figure 4-8: Percent change in completion time when measuring the network only
once vs. every five minutes.

appreciableway. Thus, applicationswill not need tomigrate prohibitively frequently,
if at all, due to changes in the network.

Effect of Application Variability

Although network variability may have little effect on task migration, the applica-
tion’s workload can. Here, we examine how much Cicada’s placement changes as an
application progresses.

For each application in our dataset, we calculated its ground-truth traffic matrix
for each hour of its runtime; we refer to these matrices asM0,M1, and so on. These
trafficmatrices reflect the variation in an application’s traffic each hour. We calculate
the total completion time of the application under two scenarios:

1. Allowing a different placement for each Mi. This is equivalent to re-running
Cicada’s placement method every hour.

2. Allowing a single placement p for allMi’s, where p is calculated withM0. This
is equivalent to running Cicada’s placement method once with an hour’s worth
of history, and never running it again.

Figure 4-9 shows the percent increase in completion time when only running
Cicada’s placement method once vs. every hour (item 2 above). The majority of
applications saw no increase in completion time; the maximum increase was 10.8%.
This indicates that on our dataset, many applications could be placed once and never
migrated. Others would benefit from being migrated every hour.

87



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12

C
D

F

Percent Increase in Completion Time

Figure 4-9: Percent increase in completion time when running Cicada’s placement
algorithm only once vs. every hour.

Asdiscussed in§4.2.6,migrating tasksmaycauseaconcerningamountofoverhead,
particular if task migration involves virtual machine migration. However, recent
work [92] suggests that virtual machine migrations take on the order of one minute,
from start to finish, with only a few seconds of downtime (during the rest of the
time, services experienced degraded performance but were not inaccessible). These
VMs had up to two virtual CPUs and had up to 2GB of memory, which is comparable
to the types of VMs used in today’s clouds (although the amount of virtual memory
available is growing) [12]. As such, we believe that migrating virtual machines on an
hourly basis is reasonable. It is possible that the migration will transfer more data
over an already-congested path. We believe this effect will be negligible on the types
of applications Cicada targets, namely long-running applications. With applications
that run for many hours or days, and placements that do not need to be updated more
than once per hour, having migrations occur for one minute per hour is reasonable.

Note that these migration results apply to our dataset and the Amazon EC2 net-
work. It is possible that other applications may need to be migrated more frequently.
Cicada has the ability to migrate virtual machines with any frequency; since it con-
tinually collects measurements and makes predictions, it can continually update an
application’s placement. Cicada can also take the cost of migration into account; see
§4.2.6. Our results indicate that applications do not need to be migrated frequently,
but this is a statement about our dataset, not about Cicada’s inherent capabilities.
Both Cicada’s prediction and placement algorithms take only milliseconds to run (see
§3.5.5 and §4.3.4, respectively), and so don’t prohibit frequent migration.
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4.4.3 Cicada with Multiple Customers

Our evaluation has focused primarily on how Cicada performs when used by a single
customer (with the exception of §4.3.3, which assumes that every application in the
network is using Cicada’s placement algorithm). In general, we believe that Cicada
would succeed in the case of multiple customers, because its placement algorithm
begins with measurement, either via the provider or the customer (see §4.2.2). As
a result, Cicada would be able to place each application with the knowledge of how
the network was being affected by the other Cicada customers. How this approach
compares tousing a centralizedCicada controller toorchestrate all customers remains
to be seen.

4.5 Conclusion

In this chapter, we motivated the need for network-aware application placement on
cloud computing infrastructures. As applications become more network-intensive,
they canbecomebottleneckedby thenetwork, even inwell-provisioned clouds. With-
out a network-aware system for placing workloads, poor paths can be chosen while
faster, more reliable paths go unused. By placing applications with the goal of mini-
mizing the total completion time, Cicada is able to improve application-level perfor-
mance. Cicada’s placement also tends to place tasks that transfer large amount of data
on the same machines if possible, avoiding any network transmission time, as well as
avoiding slow paths in the network.

Our experiments on Amazon EC2 showed that Cicada improves application com-
pletion time by an average of 8%–14% (maximum improvement: 61%) when applica-
tions are placed all at once, and 22%–43% (maximum improvement: 79%) when they
arrive in real-time, compared to alternative placement schemes studied on realistic
workloads.

We also note that tenants may be interested in adding other requirements to their
workload; some of the tasks could be specified as “latency-constrained”, or certain
tasks could be specified as being placed “far apart” for fault tolerance purposes. We
believe that all of these types of constraints are reasonable and would be beneficial to
tenants. Moreover, they can be formulated as part of our optimization problem, as
shown in Appendix A.
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Chapter 5

Provider-centric Cicada: Bandwidth Guarantees

5.1 Introduction

Until now,wehave viewedCicada as an end-to-end system that either the customer or
the provider can use. In this chapter, we detail a specific use-case for Cicada beyond
placing applications: providing bandwidth guarantees. This use-case requires the
provider, not the customer, to run Cicada, as providers are in the position of offering
bandwidth guarantees to their customers.

Bandwidth guarantees are simply a guarantee on the amount of bandwidth that
an application will have available to it. These guarantees are of particular interest in
public clouds, such as those offered by Amazon, HP, Google, Microsoft, and others,
as they are being used not just by small companies, but also by large enterprises.
Fordistributed applications involving significantnetwork inter-node communication,
such as in [20], [81], and [82], current cloud systems fail to offer even basic network
performance guarantees; this inhibits cloud use by enterprises that must provide
service-level agreements (SLAs). Moreover, having accurate bandwidth guarantees
canpreventover-provisioning, thus loweringcostsandimprovingresourceutilization,
and under-provisioning, thus improving application performance bymaking sure that
adequate bandwidth is allocated to tenants.

In this chapter, we showhow to use Cicada’s predictions fromChapter 3 as a basis
for predictive guarantees, a new abstraction for bandwidth guarantees in cloud net-
works. A predictive guarantee improves application-performance predictability for
network-intensive applications, in terms of expected throughput, transfer completion
time, or packet latency.

Because predictive guarantees are based on Cicada’s predictionmodule, they pro-
vide a better abstraction than prior approaches, for three reasons. First, the predictive
guarantee abstraction is simpler for the tenant, because the provider automatically
predicts a suitable guarantee and presents it to the tenant.

Second, the predictive guarantee abstraction supports time-varying and space-
varying demands. Prior approaches typically offer bandwidth guarantees that are
static in at least one of those respects, but these approaches do not capture general
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Figure 5-1: Cicada’s architecture for providing bandwidth guarantees.

cloud applications (see §3.2).
Third, the predictive guarantee abstraction easily supports fine-grained guaran-

tees. By generating guarantees automatically, rather than requiring the tenant to spec-
ify them, we can feasibly support a different guarantee on each VM-to-VM directed
path, and for relatively short time intervals. Fine-grained guarantees are potentially
more efficient than coarser-grained guarantees, because they allow the provider to
pack more tenants into the same infrastructure.

Figure 5-2 depicts Cicada’s architecture, when it is used to provide bandwidth
guarantees. This figure is the same as Cicada’s original architecture (Figure 2-2), with
the addition of hypervisor-enforced rate-limits, and the option to offer guarantees to
the customer (additionally, changing application placement has become optional).

In this chapter,wedescribe the interactionbetweenacloudcustomerandapredic-
tive guarantees-offering provider. Because offering bandwidth guarantees requires
enforcing rate-limits, we also present implementation results that indicate that the
necessary rate-limiting can be done scalably.

5.2 RelatedWork

Cicada’s predictive guarantees are related in spirit to Internet QoS research, which
involves making reservations for specific types of traffic. QoS on the Internet was a
vibrant research area formany years, with architectures such as IntServ developed for
end-to-end guarantees. End-to-end InternetQoShas seen little practical deployment,
in part becausemost Internet paths involvemultiple providers, making the economics
and payment structure of any end-to-end guaranteed QoS scheme difficult. In con-
trast, a cloud network is run by a single operator, and inherently has a mechanism to
bill its customers.

Another drawback of proposals such as IntServ is that they force the application,
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or end point, to make explicit reservations and to specify traffic characteristics. For
all but the simplest of applications, this task is challenging, and many application
developers or operators have little idea what their traffic looks like over time. Cicada
resolves this issue through its use of predictions.

5.2.1 Determining Guarantees

Recent research has proposed various forms of cloud network guarantees. Oktopus
supports a two-stage“virtual oversubscribedcluster” (VOC)model [20] (also see§3.4),
intended to match a typical application pattern in which clusters of VMs require high
intra-cluster bandwidth and lower inter-cluster bandwidth. VOC is a hierarchical
generalization of the hose model [30]; the standard hose model, as used in MPLS,
specifies for each node its total ingress and egress bandwidths. The finer-grained
pipe model specifies bandwidth values between each pair of VMs. Cicada’s predictive
guarantees can support any of these models (see Chapter 3).

The Proteus system [96] profiles specific MapReduce jobs at a fine time scale, to
exploit the predictable phased behavior of these jobs. It supports a “temporally inter-
leavedvirtual cluster”model, inwhichmultipleMapReduce jobs are scheduled so that
their network-intensivephasesdonot interferewith eachother. Proteus assumesuni-
formall-to-all hose-model bandwidth requirementsduringnetwork-intensivephases,
although each such phase can run at a different predicted bandwidth. Unlike Cicada,
it does not generalize to a broad range of enterprise applications.

Other recent work has focused on making traffic predictions to produce short-
term (ten-minute) guarantees for video streaming applications [68]. Although this
work considers VM-to-VM guarantees, it is not clear that the approach generalizes to
long-term guarantees, or to applications beyond video streaming.

Hajjat et al. [37] describe a technique to decide which application components to
place in a cloud datacenter, for hybrid enterprises where some components remain in
a private datacenter. Their technique tries tominimize the traffic between the private
and cloud datacenters, and hence recognizes that inter-component traffic demands
are spatially non-uniform. In contrast to Cicada, they do not consider time-varying
trafficnorhowtopredict it, and they focusprimarily on theconsequencesofwide-area
traffic, rather than intra-datacenter traffic.

Incontrast to theaboverelatedwork, andtheworkonenforcingguarantees thatwe
detail below, Cicada provides a method for determining an application’s workload—
andwhat guarantees it needs—ahead of time. Cicada is appropriate for a general class
of cloud applications (not just MapReduce or video-streaming applications), and can
provide long-term guarantees.

5.2.2 Enforcing Guarantees and Fairness

Cicada does not focus on the problem of enforcing guarantees. This problem can be
solved with any of the following systems.
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• SecondNet [35], which supports either pipe-model or hose-model guarantees
(their “type-0” and “type-1” services, respectively), and focuses on how to place
VMs such that the guarantees are satisfied.

• Distributed Rate Limiting [79], which supports a tenant-aggregate limit (similar
to a hose model), and focuses on enforcing a limit at multiple sites, rather than
within one cloud datacenter.

• GateKeeper [84], which provides a pure hose-model guarantee (with the option
of allowing additional best-effort bandwidth) and focuses on protecting each
VM’s input-bandwidth guarantee against adversarial best-effort traffic.

• NetShare [55], which focuses on how to provide enforcement mechanisms for
cloud network guarantees.

• ElasticSwitch [74] and EyeQ [48], which provide work-conserving, hose-model
guarantees. ElasticSwitch is implemented entirely in the hypervisor and re-
quires no special topology, while EyeQ uses ECN-enabled switches to enforce
guarantees in topologies with congestion-free cores.

Cicada also does not focus on the tradeoff between guarantees and fairness, as in
FairCloud [73], which develops mechanisms to support various points in the tradeoff
space. Though the issues of enforcing guarantees and fairness would arise for a
provider using Cicada’s predictive guarantees, they can be addressed with any of the
techniques above.

5.3 Provider/Customer Interactions

The goal of using Cicada as a means to offer bandwidth guarantees is to free tenants
from choosing between under-provisioning for peak periods, or over-paying for un-
used bandwidth. For example, suppose that a given tenant’s network workload has a
ratio of 10:1 between its peak hourly periods and its weekly average. With constant
network bandwidth guarantees, the tenant could either request a guarantee equal to
its peak needs, and thus overpay, on average, by 10:1, or request a guarantee closer
to its average needs, which would substantially under-provision its peaks. Predictive
guarantees permit a provider and customer to agree on a guarantee that varies in time
and/or space. The customer can get the network service that its tenants need at a good
price, while the provider can avoid allocating unneeded bandwidth and can amortize
its infrastructure across more tenants.

5.3.1 Architecture Overview

Though we have detailed Cicada’s architecture in previous chapters, we briefly de-
scribe it again here, so that we can place predictive guarantees in the appropriate
context.
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Cicada has several components, corresponding to the steps in Figure 5-2. After
determiningwhether to admit a tenant—takingCPU,memory, and network resources
into account—and making an initial placement (steps 1 and 2), Cicada measures the
tenant’s traffic (step 3), and delivers a time series of traffic matrices to a logically
centralizedcontroller (seeChapters4and6). Thecontrolleruses thesemeasurements
to predict future bandwidth requirements (step 4; see Chapter 3).

In the context of this chapter, in most cases, Cicada converts a bandwidth pre-
diction into an offered guarantee for some future interval. Customers may choose
to accept or reject Cicada’s predictive guarantees (step 5). The customer might also
propose its own guarantee, for which the provider can offer a price. Because Cicada
collects measurement data continually, it can make new predictions and offer new
guarantees throughout the lifetime of the tenant.

Cicada interacts with other aspects of the provider’s infrastructure and control
system. The provider needs to rate-limit the tenant’s traffic to ensure that no tenant
undermines the guarantees sold to other customers. We distinguish between guar-
antees and limits. If the provider’s limit is larger than the corresponding guarantee,
tenants can exploit best-effort bandwidth beyond their guarantees.

A provider may wish to place and perhaps migrate VMs based on their associ-
ated bandwidth guarantees, to improve network utilization (step 5a). We describe a
method for doing so in Chapter 4 (§4.3.3). The provider could also migrate VMs to
increase the number of guarantees that the network can support [31].

5.3.2 Assumptions

As Cicada’s predictions require at least an hour or two of data before they become
useful, we assume that the customer’s application is a long-running one (this is an
assumption across all of Cicada, not just as it is applied to bandwidth guarantees).

Any shared resource that provides guarantees must include an admission control
mechanism, to avoid making infeasible guarantees. We assume that Cicada will in-
corporate network admission control using an existing mechanism, such as [20], [47],
or [53]. We also assume that the cloud provider has a method to enforce guarantees,
such as those in §5.2.2. Existing cloud stacks do admission control for CPU andmem-
ory resources, and previous cloud-related work has incorporated network-admission
control [20].

5.3.3 Measurement Collection

Cicada collects a time series of traffic matrices for each tenant. As discussed in
§4.2.2, one could do this passively, by collecting NetFlow or sFlow data at switches
within the network, or by using an agent that runs in the hypervisor of each machine
and using heuristics to map VMs to tenants. However, switch-based measurements
create several challenges, including correctly ascribing VMs to the correct tenant.
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Our design collects VM-pair traffic measurements, using an agent that runs on each
compute server (see §5.4), and periodically reports these to the controller.

Wewould like to base predictions on offered load, but when the provider imposes
rate-limits, we risk underestimating peak loads that exceed those limits, and thus
under-predicting future traffic. We observe that we can detect when a VM’s traffic is
rate-limited (see §5.4.3), so these underestimates can be detected, too, although not
precisely quantified. Currently, Cicada does not account for this potential error.

5.3.4 Prediction Model

Cicada determines a predictive guarantee for a tenant using the prediction algorithm
detailed in Chapter 3. We include a high-level overview of Cicada’s prediction model
here, but refer the reader to Chapter 3 for more detailed information.

Cicada’s goal is to predict the bandwidth guarantee that best matches a tenant’s
future needs, taking into account both spatial and temporal variations in bandwidth
demand. Some applications, such as backup or database ingestion, require bulk
bandwidth—that is, they need guarantees that the average bandwidth over a period
of H hours will meet their needs. Other applications, such as user-facing systems,
require guarantees for peak bandwidth over much shorter intervals. Thus, Cicada’s
predictions describe themaximumbandwidth expectedduring any averaging interval
δ during a given time interval H . If δ = H , the prediction is for the bandwidth
requirement averaged overH hours, but for an interactive application, δmight be just
a few milliseconds.

Note, of course, that the predictive guarantees offered byCicada are limited by any
caps set by the provider; thus, a proposed guarantee might be lower than suggested
by the prediction algorithm.

Converting Predictions to Guarantees

A predictive guarantee entails some risk of either under-provisioning or over-pro-
visioning. Different tenants will have different tolerances for these risks, typically
expressed as a percentile (e.g., the tenant wants sufficient bandwidth for 99.99%
of the 10-second intervals). Cicada uses the results of the prediction to determine
whether it can issue reliable predictive guarantees for a tenant; if not, it does not
propose such a guarantee.

5.3.5 Recovering from Faulty Predictions

Cicada’s prediction algorithm may make faulty predictions because of inherent lim-
itations or insufficient prior information. Because Cicada continually collects mea-
surements, it can detect when its current guarantee is inappropriate for the tenant’s
current network load. Cicada does this detection by checking for packet drops; see
§5.4.1.
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When Cicada detects a faulty prediction, it can take one of many actions: stick to
the existing guarantee, propose a new guarantee, upgrade the tenant to a higher, more
expensive guarantee, etc. How and whether to upgrade guarantees, as well as what
to do if Cicada over-predicts, is a pricing-policy decision, and outside our scope. We
note, however, that typical System Level Agreements (SLAs) include penalty clauses,
inwhich the provider agrees to remit some or all of the customer’s payment if the SLA
is not met. A Cicada-based provider could bear some fraction of the cost of upgrading
a guarantee before it ends.1

We also note that a Cicada-based provider must maintain the trust of its cus-
tomers: it cannot regularly under-predict bandwidth demands, or else tenants will
have insufficient guarantees and their own revenues may suffer; it also cannot reg-
ularly over-predict demands, or else customers will be over-charged and take their
business elsewhere. The results in §3.5 focus on evaluating the quality of Cicada’s
predictions, including its decisionwhether a tenant’s demands are in fact predictable.

5.4 Implementation

rate limiter

hypervisor

physical machines

prediction engine

openstack
controller

centralized controller

traffic data

new rate limits

Figure 5-2: Cicada’s implementation. Rate-limiters run in the hypervisor of every
physical machine, and communicate with a centralized controller.

We have implemented a provider-centric version of Cicada as part of the Open-
Stack [69] framework. Figure 5-2 details the implementation, which has two com-
ponents: rate-limiters, which run in the hypervisor of every physical machine, and a
controller that runs somewhere in the datacenter. We envision that Cicada extends
the OpenStack API to allow the tenant’s application to automatically negotiate its
network guarantees, rather than requiring human interaction. A typical settingmight
be “Accept all of Cicada’s guarantees as long as my bill does not exceed D dollars,”
or “Accept all of Cicada’s guarantees, but add a buffer of 10Mbit/s to each VM-pair’s

1The provider might need to rate-limit its discounting, as there is now incentive for tenants to shape
their bandwidth usage to trick the provider into offering a low-cost guarantee, then to increase their
traffic in order to obtain the upgraded guarantee at a discount.
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allocated bandwidth” (if the customer anticipates some amount of unpredictable traf-
fic).

5.4.1 Server Agents

On each server, Cicada uses an agent process to collect traffic measurements and to
manage the enforcement of rate-limits. The agent is a Python script, which manages
the Linux tcmodule in the hypervisor. Cicada’s agent uses tc both to count packets
and bytes for each VM-pair with a sender on the server, and, via the the HTB queu-
ing discipline, to limit the traffic sent on each pair in accordance with the current
guarantee-based allocation. This type of collection is more fine-grained than sFlow,
and tc also allows us to detect, but not precisely quantify, traffic demands in excess of
the rate-limit, by counting packet drops. This technique is similar to the mechanism
ElasticSwitch [74] uses to increase bandwidth guarantees when the initial guarantee
is too low, and could also be used for this purpose in Cicada if needed.

Theagentreceivesmessages fromthecontroller thatprovidea listof rate-limits, for
the 〈src, dst〉 pairs where src resides on that server. It also aggregates counter values
for those pairs, and periodically reports them to the controller. To avoid overloading
the controller, the reporting period P is larger than the peak-measurement period δ.

5.4.2 Centralized Controller

The centralized controller is divided into two components. The prediction engine
receives and stores the data about the tenants from each server agent. Once a pre-
diction is made and approved by the tenant, the rate controller uses the OpenStack
API to determine which VMs reside on which physical server, and communicates the
relevant rates to each rate-limiter. At this point, Cicada could also use its placement
algorithm (Algorithm 4) to determine whether any VMs should be migrated, and mi-
grate them via the OpenStack API. Since Cicada makes long-term traffic predictions,
this migrationwould be done at long timescales, mitigating the overhead of migrating
VMs.

5.4.3 Scalability

While our current controller implementation is centralized, it does not need to be.
SinceCicadamakes predictions about applications individually, the prediction engine
can be spread across multiple controllers, as long as all of the data for a particular
application is accessible by the controller assigned to that application.

Scalability of Pipe-model Rate-limiting

Cicada’s use of pipe-model rate-limiting—that is, one rate-limiter for each VM-pair,
at the source hypervisor—could potentially create scaling problems. Some prior work
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Figure 5-3: Effect of rate-limiters on CPU utilization. We were able to run up to 4096
rate-limiters without significantly effecting on CPU performance.

has also used pipe-model rate-limiting; for example, while Oktopus implements hose-
model guarantees, it enforces these using “per-destination-VM rate-limiters” [20].
EyeQ [48] and ElasticSwitch [74] behave similarly.

Existing studies show that pipe-model rate-limiting does scale; see, for instance,
SENIC [78] and FasTrak [65]. In addition to these studies, we also performed our own
testing of Cicada’s rate-limiting.

We tested the scalability of the tc rate-limiters used in our implementation on
a pair of 12-core Xeon X5650 (2.67GHz) servers running Linux 3.2.0-23, with 10
Gbit/s NICs. We used netperf to measure sender-side CPU utilization for 60-second
TCP transfers under various rate-limits, while varying the number of sender-side
rate-limiters. (Only one TCP stream was active at any time.)

Fig. 5-3 shows mean results for eleven trials. Each curve corresponds to a rate-
limit; we marked cases where the achieved bandwidth was under 90% of the target
limit. On this hardware, we could run many low-bandwidth limiters without much
effect on CPU performance. When we used more than about 128 high-bandwidth
limiters, both CPU utilization and TCP throughput suffered, but it is unlikely that a
real system would allow both a 10 Gbit/s flow and lots of smaller flows on the same
server. Given our results here, and those in related work [65, 78], we conclude that
pipe-model rate-limiting does indeed scale.

5.5 Conclusion

This chapter described a provider could use Cicada as ameans for offering bandwidth
guarantees to itsclients. Weintroducedpredictiveguarantees, aguaranteeabstraction
based on Cicada’s workload predictions. Predictive guarantees allow a provider to
offer fine-grained, temporally- and spatially-varying guarantees without requiring
the clients to specify their demands explicitly. In Chapter 4, we showed how the
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fine-grained structure of these types of guarantees can be used by a cloud provider
to improve network utilization in certain datacenter topologies; in this chapter, we
focused on the interactions between the provider and customer, describing how the
twomight come to termsonanagreement for a bandwidth guarantee. Wealso showed
that an implementation of provider-centric Cicada, including a mechanism to limit
rates (and enforce the predictive guarantees), scalable.
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Chapter 6

Customer-centric Cicada: Client-side
Measurement

6.1 Introduction

To complement the previous chapter, we now turn away from viewing Cicada as it
might be implemented and used by a provider to viewing it as it might be used by a
customer. In this chapter, we discuss the necessary additions that allow Cicada to
be run entirely by a customer. That is, for both its prediction and placement to be
performed by the customer, without the provider knowing anything about Cicada.

In Chapter 4, we saw how Cicada uses a description of an application’s workload,
combinedwith a snapshot of the network, to place applications on the cloud network.
Providers can easily retrieve snapshots of their network, via passive measurements
from switches or hypervisors. Cloud customers, however, do not have control over
the network; they cannot observe any traffic other than their own, and can only see
their traffic at endpoints (i.e., they cannot observe their traffic in the middle of the
network). One option might be for cloud providers to export certain API functions
to allow clients to get somemeasurement information directly, i.e., without having to
activelymeasure themselves. However, there still may be some information about the
network that only cloud providers have access to; for instance, the complete physical
topology, and detailed information about the cross traffic of other users. Additionally,
cloud providersmay not want to allow customers access to all of this information (the
layout of their entire physical topology, in particular).

Thus, to estimate these quantities, customers must perform their own (active)
measurements. In this chapter, we describe a method for doing so. Specifically, we
are interested in determining how the achievable TCP throughput in public clouds
changes, if at all, and how to best measure these changes so that Cicada can take
advantage of them using its placement algorithm.

This chapter discusses the development of a network-measurement system, called
Choreo, which Cicada can use to obtain its network measurements should they not
be available via othermeans. Figure 6-1 shows howChoreo fits into Cicada’s architec-
ture. Choreo uses low-overheadmeasurements to obtain inter-VMTCP throughputs.
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Figure 6-1: Cicada’s architecture with the addition of Choreo.

These rates are not constant [22], and are influenced by background traffic from other
tenants. Moreover, cloud providers often use a “hosemodel” to control themaximum
output rate from any VM.

We collect network performance data from Amazon’s EC2 and Rackspace to
evaluate Choreo. We find that it is possible to use packet trains to estimate TCP
throughput within a few minutes for ninety VM pairs, and also develop methods for
estimating cross traffic and locating bottleneckswithin thenetwork. As a side effect of
our experiments evaluatingChoreo’s accuracy, we also present results indicating how
the achievable TCP throughput for a connection varies on today’s cloud networks,
and how this quantity has changed over the past few years.

6.2 RelatedWork

In accordance with the popularity of datacenters, there have been many recent mea-
surement studies in this environment [21, 22, 58]. These studies corroborate the as-
sumptions in this chapter, for example the typical datacenter topology used in §6.4.3.
However, these studies are not focused on the performance of the network and how
it varies, which can affect the performance of network-intensive applications. There
have been a few efforts to understand the network performance of Amazon EC2 [67],
though only at a very small scale.

In [26], Butler conducts measurement for network performances for five major
cloud providers, focusing on the throughputs when cloud users upload/download
files from outside the cloud, while Choreo focuses on measuring the achievable TCP
throughputs between VMs inside the cloud. CloudTalk [80] measures EC2 topology
to help optimize latency sensitive applications such as web search. As we show
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in §6.5.2, the topology information, i.e, hop-count from traceroute, has no strong
correlation with achieved TCP throughput. Thus, compared to CloudTalk, Choreo’s
measurement techniquesaremorehelpful tobigdataapplicationswhoseperformance
depends more on throughput instead of latency. Schad, et al [87] measured network
throughput between Amazon EC2 instances using iperf. They observed similar
throughput variation results as ours in both US and European zones. Wang, et al [93]
measured TCP/UDP throughput between VMs in EC2. Similarly, they observed
spatial variation in both Small and Medium instances, and they observed temporal
variation over a 150-hour period, which is a much larger time scale thanwe discussed
in this chapter.

We borrow the basis of many of our measurement techniques from existing tech-
niques, such as the early work by Bolot [25] and Jain [46] on packet trains. Further
related work in this area [72, 75] has indicated that packet trains are not always
an accurate measure of path throughput due to their susceptibility to cross traffic.
Packet trains are also similar to the “history-based” methods in He et al. [39], but
requires significantly less data (He’smethod requires 10−−20TCP transfers tomake
a throughput prediction on a path). We did not consider methods that estimate the
available bandwidth of a path [43, 44], as that is not equivalent to the achievable TCP
throughput [45].

6.3 Understanding Today’s Cloud Networks

Choreo measures the network path between each pair of VMs to infer the potential
TCP throughput between them. When we started this project in 2012, we found that
the achievable TCP throughput between the virtual machines obtained on Amazon’s
EC2 was highly variable, as shown in Figure 6-2. In 2013, however, we observed a
significant change in how EC2 manages their internal network.

Tomeasure achievable TCP throughput (in 2013), we used 19 10-instance topolo-
gies made up of medium Amazon EC2 instances, and 4 10-instance topologies made
up of 8-GByte Rackspace instances. For each of the paths in a given topology, we
measured the achievable TCP throughput on the path by running netperf for 10
seconds. This method gives us 1710 data points in total across the 19 topologies for
EC2, and 360 data points for Rackspace. Figure 6-3 shows a CDF of the throughputs
we observed on the instances in both networks. In EC2 (Figure 6-3(a)), although
the CDF shows a large range of spatial variability, with throughputs ranging from
296Mbit/s to 4405Mbit/s, most paths (roughly 80%) have throughputs between 900
Mbit/s and 1100 Mbit/s (the mean throughput is 957 Mbit/s and the median is 929
Mbit/s). Not shown on the CDF are 18 paths that had extremely high throughput
(near 4Gbit/s). We believe that most of these paths were on the same physical server
(see §6.5.2). Because all of these measurements were taken at roughly the same time,
we can conclude that the variability in 20% of the paths is not strictly a function of the
time of day.
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Figure 6-2: TCP throughput measurements on Amazon EC2 taken roughly one year
ago, in May, 2012. Each line represents data from a different availability zone in the
US East datacenter. Path throughputs vary from as low as 100 Mbit/s to almost 1
Gbit/s.
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Figure 6-3: Achievable TCP throughput measured in May, 2013 on 1710 paths for
EC2 and 360 paths for Rackspace. We see some variation on EC2, but less than in
Figure 6-2. Rackspace exhibits almost no spatial variation in throughput.
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Another interesting featureofFigure6-3(a) is thedistinct knees around950Mbit/s
and 1100Mbit/s. We suspect that the knee around 950Mbit/s is due to rate-limiting,
with a rawpacket rate of 1000Mbit/s and a goodput of around 950Mbit/s (we confirm
our rate-limiting hypothesis in §6.5.3). The knee around 1100Mbit/s may be a result
of VMs placed on the same server but with a different (and perhaps older) server
architecture than the pairs that achieve a throughput of roughly 4 Gbit/s.

In Rackspace (Figure6-3(b)), there is very little spatial variation. In fact, every
path achieves a throughput of almost exactly 300 Mbit/s, which is the advertised
internal network rate-limit for the 8-GByte Rackspace instances.1 This implies that if
a tenant were placing a single application on the Rackspace network, there would be
virtually no variation for Choreo to exploit. However, Choreo is still effective in this
type of network when a tenant is placing multiple applications in sequence, as traffic
from existing applications causes variations in achieved TCP throughput (§4.3.2).

In all our experiments, we have found that both of these networks are rate-limited
and implement a hose model [30] to set a maximum outgoing rate for each VM.
Figures 6-3(a) and 6-3(b) give evidence for such rate-limiting, as the typical observed
throughput on a path remains close to a particular value for each network (1 Gbit/s
for EC2, 300Mbit/s for Rackspace). We develop techniques to confirm both of these
hypotheses in §6.4, and verify them on EC2 and Rackspace in §6.5.3.

Our approach to estimating achievable TCP throughput in these figures was to
use netperf, but this approach induces significant overhead for online use. Choreo
must also measure the network quickly, so that applications can be placed in a timely
manner. Moreover, if Choreo’s measurement phase takes too long, there is a chance
the network could change betweenmeasurement time and placement (we discuss the
temporal stability of public cloud networks in §6.5.1).

To overcome this issue, Choreo uses packet trains to measure achievable TCP
throughput. We discuss this method, as well as Choreo’s methods for assessing rate-
limits and bottlenecks, in §6.4. Briefly, packet trains allowChoreo to get a snapshot of
the networkwithin just a fewminutes for a ten-node topology, including the overhead
of sending measurements from each machine back to a centralized server.

6.4 Measurement Techniques

In order for Cicada to place an application on a set of virtual machines, Choreo must
measure three things. First, the achievable TCP throughput on each path, which tells
Choreowhat thepossible throughputofasingleconnectiononthatpath is. Second, the
amount of cross traffic in the network, which tells Choreo how multiple connections
on the same path will be affected by each other. For instance, if one connection gets
a throughput of 600Mbit/s on a path, it is possible that two connections on that path
will each see 300 Mbit/s—if they are the only connections on a path with link speed

1http://rackspace.com/cloud/servers/pricing
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of 600Mbit/s—or that they will each see 400Mbit/s—if there is one background TCP
connection on a path with a link speed of 1200 Mbit/s. Third, which paths share
bottlenecks, which tells Choreo how connections between different pairs of VMswill
be affected by each other. For instance, knowing that A  B shares a bottlenecks
with C  D informs Choreo’s estimated achievable throughput of a new connection
onA B when connections exist on C  D.

6.4.1 Measuring Pairwise Throughput

The first measurement that Choreo does is to estimate the pairwise achievable TCP
throughput between the cloud VMs, to understand what the throughput of a single
connection will be. Estimating the pairwise achievable TCP throughput between N
VMs by running bulk TCP transfers takes a long time for even modest values of N .
Packet trains, originally proposed in [46] and also used in [25], have been adapted
in various ways, but with only varying success over Internet paths [72, 75]. The
question is whethermore homogeneous and higher-rate cloud infrastructures permit
the method to be more successful.

Choreo sendsK bursts of P -byte UDP packets, each burst made up of a sequence
of B back-to-back packets.2 Bursts are separated by δ milliseconds to avoid causing
persistent congestion. This collection of K bursts is one packet train; to estimate
achievable throughput on a path, we send only one packet train on that path.3

At the receiver, Choreoobserves thekernel-level timestamps atwhich thefirst and
last packet of each burst biwas received using the SO_TIMESTAMPNS socket option, and
records this time difference, ti. If either the first or last packet of a burst is lost (which
we can determine via the sequence numbers we inserted into the UDP payload), we
adjust ti to take into accountwhat the timedifference should have been, by calculating
the average time it took to transfer one packet and adjusting for the number of packets
missing from the beginning or end of the burst. We also record the number of packets
received in each burst, ni ≤ B.

Using this data, we estimate the achievable TCP throughput as

P ·
∑K

i=1 ni∑K
i=1 ti

.

This throughput estimate is equivalent to estimating the throughput as

P (N−1)(1−`)
T ,

where N is the number of packets sent, ` is the packet loss rate, and T is the time
between the receipt of the first packet and the last packet. An alternative method for
estimating achievable TCP throughput is to use the formula

2In our experiments, “packet pairs”, in which only two packets are sent, were not very accurate on
any cloud environment, and so Choreo does not use that method.

3Weuse a slightly different terminology than Jain uses in [46]. Whatwe call a burst, Jain calls a train;
what we call a train is a sequence of Jain’s trains.
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Figure 6-4: ns-2 simulation topologies for our cross traffic method. The dashed lines
are bottlenecks where cross traffic will interfere.

MSS·C
RTT ·

√
`
,

whereC is the constant of proportionality, roughly
√

3/2 [60]. This formula, however,
is an upper-bound on the actual throughput, and departs from the true value when `
is small, and is not always useful in datacenter networks with low packet loss rates.
Our estimator combines these two expressions and estimates the throughput as:

min {P (N−1)(1−`)/T ,MSS·C/RTT ·
√
`}.

§6.5.1 evaluates this method on EC2 and Rackspace.

6.4.2 Estimating Cross Traffic

The second measurement that Choreo makes estimates cross traffic on the network,
in order to understand how multiple connections on the same path will be affected.
As part of this task, Choreo also needs to understand how the cross traffic on a path
varies over time; e.g., does the number of other connections on a path remain stable,
or does it vary significantly with time?

To estimate the “equivalent” number of concurrent bulk TCP connections along
a path between two VMs, we send one bulk TCP connection between two instances
(e.g., using netperf), run it for ten seconds, and log the timestamp of each receiving
packet at the receiver. This method allows us to measure the throughput of the
connection every ten milliseconds. Given the maximum path rate, the throughput of
our connection should indicatehowmanyother connections there are. For instance, if
the path rate is 1 Gbit/s, and our connection experiences a throughput of 250Mbit/s,
then there is the equivalent of three other bulk TCP connections on the path. In
general, if the path rate is c1, and our connection experiences a throughput of c2 ≤ c1,
then there are c = c1/c2 − 1 other bulk connections on the path. We measure the
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(a) Simulation results for c < 10 on a simple topology.
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(b) Simulation results for c ≥ 10 on a more realistic cloud topology.

Figure 6-5: ns-2 simulation results for our cross trafficmethod. We are able to quickly
and accurately determine the number of background connections, particularly for
small values of c, even when the number of background connections changes rapidly.

throughput frequently to account for the fact that background connectionsmay come
and go.

In this method, we have made a few assumptions: first, that we know the maxi-
mum rate of the path; second, that TCP divides the bottleneck rate equally between
bulk connections in cloud networks; and third, that the background connections are
backlogged, sending as fast as possible. In public clouds, it is not hard to obtain a
maximum link rate (e.g.., it is usually 1 Gbit/s today on EC2) using simple measure-
ments or because the provider advertises it (e.g., Rackspace). If the maximum rate is
unknown, however, thenwe can solve this problem by sending one connection on the
path, and then two connections; the change in the observed throughputs will allow us
to estimate c.

For the second assumption, we ran netperf on the EC2 network and observed
that when one connection achieved 1 Gbit/s of throughput (the maximum rate), the
rate did decrease by roughly 50% when we added a second connection. This result
is unsurprising, given the homogeneity of cloud networks, and the fact that both
connections were capable of sending at the maximum rate.

As for the third assumption, our method of estimating c also gives us a reasonable
estimate of how achievable throughput will be affected in many cases even when
the other connections are not backlogged. For instance, if there is one background
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connection on a 1Gbit/s link that has an offered load of only 100Mbit/s, ourmeasured
throughput will be 900Mbit/s, and our estimated throughput of two connections on
that link will be 450 Mbit/s. Although Choreo will incorrectly assume that there is
no background traffic, it will not be a problem in terms of achievable throughput
estimates until Choreo tries to place a significant number of connections on the path
(ten, in this example—enough todecrease the rateof the initial100Mbit/s connection).

The quantity c is an estimate of the cross traffic on the bottleneck link,measured in
terms of the equivalent number of concurrent bulk transport connections. We should
interpret the quantity c as a measure of load, not a measure of how many discrete
connections exist. A value of c that corresponds to there being one other connection
on the network simplymeans that there is load on the network equivalent to one TCP
connection with a continuously backlogged sender; the load itself could be the result
of multiple smaller connections.

To test this method, we used ns-2 simulations. First, we simulated a simple
topologywhere ten sender-receiver pairs share one1Gbit/s link, as shown inFigure6-
4(a). In this simulation, the pair S1  R1 serves as the foreground connection,
which transmits for ten seconds, and the rest (S2  R2, . . . , S10  R10) serve as
the background connections, and follow an ON-OFFmodel [4] whose transition time
follows an exponential distribution with µ = 5s. Figure 6-5(a) shows the actual
number of current flows and the estimated value using c. Here, c1 = 1Gbit/s. Second,
we simulated a more realistic cloud topology, shown in Figure 6-4(b). Figure 6-5(b)
shows the actual and estimated number of cross traffic flows. In this cloud topology,
the links shared by cross traffic are links between ToR switches and an aggregate
switch, A. Because these links have a rate of 10 Gbit/s each, compared to the 1
Gbit/s links between sender/receiver nodes and their ToR switches, the cross traffic
throughput will decrease only when more than ten flows transfer at the same time.
Thus, in Figure 6-5(b), the smallest estimated value is ten.

The difference in accuracy between Figure 6-5(a) and Figure 6-5(b) comes from
the possible throughputs when c is large. For instance, given a 1 Gbit/s link, if we
see a connection of 450Mbit/s, we can be relatively certain that there is one existing
background connection; the expected throughput was 500Mbit/s, and 450Mbit/s is
not far off. However, if we see a connection of 90 Mbit/s, multiple values of c (e.g.,
c = 10, c = 11) are plausible.

§6.5.2 describes the results of this method running on EC2 and Rackspace.

6.4.3 Locating Bottlenecks

Choreo’s final measurement determines what paths share bottlenecks, which it can
use to determine how connections on one path will be affected by connections on a
different path. There is a long-standing body of work on measuring Internet topolo-
gies [50, 89, 91]. Typically, these works use traceroute to gain some knowledge of
the topology, and then use various clever techniques to overcome the limitations of
traceroute. Datacenter topologies, however, are more manageable than the Inter-
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Figure 6-6: A typical datacenter network (also shown in Figure 2-1).

net topology; typically they have a structured, hierarchical form. In this section, we
explore how traceroutemeasurements combined with topological assumptions can
allow us to discover features of datacenter networks that we typically cannot discover
in the Internet at-large.

Typical Datacenter Topologies

AsexplainedinChapter2, datacenter topologiesareoftenmulti-rootedtrees (Figure2-
1, which we repeat here as Figure 6-6 for convenience). In these topologies, virtual
machines lie on physical machines, which connect to top-of-rack (ToR) switches.
These switches connect to aggregate switches above them, and core switches above
those. To route between virtual machines on the same physical machine, traffic need
travel only one hop. To route between two physical machines on the same rack, two
hops are needed: up to the ToR switch and back down. To route to a different rack in
Figure 6-6, either four or six hops are needed, depending on whether traffic needs to
go all the way to the core. In general, all paths in this type of topology should use an
even number of hops (or one hop). If we assume that a datacenter topology conforms
to this structure, inferring where machines are placed in the topology is easier; in
some sense, we can make the same measurements as traditional techniques, and “fit”
a multi-rooted tree onto it.

Locating Bottlenecks

With this knowledge of the topology, we turn our attention to determining whether
two paths share a bottleneck link, and where that bottleneck link occurs: at the link
to the ToR switch, the link from the ToR switch to the aggregate layer, or the link
to the core layer. One way to determine whether two paths share a bottleneck is by
sending traffic on both paths concurrently. To determinewhether pathA B shares
a bottleneck with C  D, we send netperf traffic on both paths concurrently. If the
achieved throughput onA B decreases significantly compared to its original value,
we infer thatA B shares a bottleneck with C  D.

We are interested in whether a connection from A  B will interfere with one
from C  D. We note the following rules:
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1. If the bottleneck is on the link out of the ToR switch, the two connections will
interfere if either of the following occur:

(a) they come from the same source, i.e., A’s physical machine is the same as
C ’s.

(b) A and C are on the same rack, and neitherB norD is on that rack.

2. If the bottleneck is on the link out of the aggregate layer and into the core, the
two connections will potentially interfere if they both originate from the same
subtree andmust leave it, i.e., ifA andC are on the same subtree, and neitherB
norD is also located on that subtree. Note that even in this case, the connections
maynot interfere;A Bmaynot get routed through the sameaggregate switch
as C  D.

These rules allow Choreo to estimate bottlenecks more efficiently than a brute
forcemethod that measures all pairs of paths. Because we can cluster VMs by rack, in
many cases, Choreo can generalize one measurement to the entire rack of machines.
For instance, if there is a bottleneck link on theToR switch out of rackR, then any two
connections out of that rack will share a bottleneck; Choreo does not need tomeasure
each of those connections separately.

Choreo’s bottleneck-finding technique can also determine what type of rate-
limiting a cloud provider may be imposing. For instance, if the datacenter uses a
hose model, and rate-limits the hose out of each source, our algorithm will discover
bottlenecks at the end-points—indicating rate-limiting—and that the sum of the con-
nections out of a particular source remains constant—indicating a hose model.

§6.5.3 evaluates this method on EC2 and Rackspace.

6.4.4 Exploring the Network with Additional VMs

All of Choreo’s techniques involve measuring the paths between the virtual machines
that the customer already owns. As such, there may be better paths in the network
that it does not have access to. A possible extension to Choreo is to allow Choreo to
launch additional VMs, to “explore” other paths on the network.

There is certainly a trade-off here: additional VMs cost extra money, and the
benefit that they bring may not be significant (e.g., the additional VMs may not find
any better paths in the network that the ones Choreo already knew about). We
believe that this trade-off can bemade precise with the following knowledge: the cost
of launching an additional VM, and a distribution (or appropriate distribution) of TCP
throughput in the network, similar to Figure 6-3(a)). Then tenants can judgewhether
their current VMs have atypically poor paths, in which case they may be willing to
launch additional VMs in order to find new ones.
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6.5 Evaluation

Weevaluated the techniques described in the previous section on EC2 andRackspace
to validate the techniques and measure how these two cloud networks perform.

6.5.1 Packet Train Accuracy and Temporal Stability

The packet train method from §6.4.1 is parameterized by the packet size, P , the
number of bursts, K , and the length of each burst, B. To tune these parameters,
we compared the accuracy of various packet sizes, burst lengths, and number of
bursts, against the achieved throughputs measured with netperf on 90 paths in
EC2 and Rackspace (we use the netperf throughputs as the “ground truth” for this
experiment). Each path gives us one datapoint (one netperf measurement and one
packet train estimate). Figure 6-7 displays the accuracy of estimating achievable TCP
throughput via packet trains averaged over all paths, for a packet size of 1472 bytes
and a time δ of 1 millisecond.

Ingeneral,we see fromFigure6-7 that the accuracy improveswith theburst length
and number of bursts, as expected. Beyond a point, however, the accuracy does not
improve (diminishing returns). We found that 10 bursts of 200 packets works well
on EC2, with only 9% error, and sending 10 bursts of 2000 packets worked well on
Rackspace, with only 4% error (this configuration also works well on EC2). In our
measurements, an individual train takes less than one second to send, compared to the
ten seconds used by netperf (in our experiments, we found that using netperf for a
shorter amount of time did not produce a stable throughput estimate). To measure
a network of ten VMs (i.e., 90 VM pairs) takes less than fifteen seconds in our imple-
mentation, including the overhead of setting up and tearing down tenants/servers for
measurement, and transferring throughput data to a centralized server (see §6.5.4).

Because the best packet train parameters for EC2 and Rackspace differ, before
using a cloud network, a tenant should calibrate their packet train parameters using
an approach similar to the one proposed above. This phase takes longer than running
only packet trains, but needs to be done much less frequently (possibly only once,
although if a provider changes its network infrastructure, the trains likely should be
re-calibrated). We discuss how the parameters effect scalability in §6.5.4.

AlthoughChoreo can get an accurate snapshot of thenetworkquickly usingpacket
trains, such a snapshot will not be useful if the network changes rapidly, i.e., has low
temporal stability. In this case, Choreo will have trouble choosing the “best” VMs
on which to place tasks. To measure temporal stability, we used 258 distinct paths
in Amazon EC2, and 90 in Rackspace. On each of these paths, we continuously
measured the achieved TCP throughput of 10-second netperf transfers for a period
of 30minutes, giving us one throughput sample every ten seconds for each path.

Weanalyzetemporal throughputstabilitybydetermininghowwellaTCPthrough-
put measurement from τ minutes ago predicts the current throughput. Given the
current throughput measurement, λc, and the throughput τ minutes ago, λc−τ , Fig-
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Figure 6-7: Percent error for packet trainmeasurements using different burst lengths
and sizes. EC2 displays a consistently low error rate over all configurations, while
Rackspace’s error rate improves dramatically once the burst length is at least 2000.

ure 6-8 plots a CDF of the magnitude of the relative error, i.e., |λc − λc−τ |/λc, for
various values of τ (1, 5, 10, and 30 minutes). In EC2, for every value of τ , at least
95% of the paths have 6% error or less; the median error varies between .4% and .5%,
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while the mean varies between 1.4% and 3%. As suspected from Figure 6-3(b), the
error in Rackspace is even lower: at least 95% of the paths have 0.62% error or less;
the median varies between 0.18% and 0.27%, while the mean varies between 0.27%
and 0.39%.
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Figure 6-8: Percent error when a measurement from τ minutes ago is used to predict
the current path throughput.
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Figure 6-9: Comparison of path length with achievable throughput. Path length is
not entirely correlated with throughput, as evidenced by the eight-hop paths with
throughput over 2500Mbit/s.

Thus, we find that although some path throughputs vary spatially, they exhibit
good temporal stability. Hence, Choreo canmeasurepath throughputs infrequently to
gather useful results formaking decisions about application placement. The temporal
stability result is somewhat surprising because EC2 and Rackspace are popular cloud
infrastructures, and onewould expect significant amounts of cross traffic. In the next
section, we measure the amount of cross traffic on these networks, finding that it is
small. We then explore the locations of the bottlenecks, finding that the hose model
provides a good explanation of the currently observed network performance on EC2
and Rackspace.

6.5.2 Cross Traffic

We first return to a result from §6.3, shown in Figure 6-3(a). Initially, we expected
that achievable path throughputwould be correlatedwith path length, in part because
it should correlate with physical topology: the longer the paths, the more likely they
are traversing the middle of the network, and thus cross traffic there would be to
interfere and lower the throughput.

Figure 6-9 plots the various path lengths observed over a collection of 1710 paths
in EC2; these are the same paths that we used in §6.3. The first thing to note from
this figure is that the path lengths are only in the set {1, 2, 4, 6, 8}. These lengths are
consistent with a multi-rooted tree topology. Second, many of the paths are more
than one or two hops, indicating that a significant number of VMs are not located on
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the same rack. In the Rackspace network (not shown in the picture), we saw paths of
only one or four hops. Because the achievable throughputs in the Rackspace network
are all approximately 300 Mbit/s, there is no correlation with path length. It is also
curious that we do not see paths of any other lengths (e.g., two); we suspect that
Rackspace’s traceroute results may hide certain aspects of their topology, possibly
via packet encapsulation, although we cannot confirm that.

From Figure 6-9, we see that there is little correlation between path length and
achievable throughput. In general, we find that the pairs with the highest achievable
throughput are one hop apart, an unsurprising result as wewould expect the highest-
throughput pairs to be on the same physical machine. However, there are four
high-throughput paths that are six or eight hops away. Moreover, although we see
that the lower throughputs tend to be on longer paths, we also see that a “typical”
throughput close to 1Gbit/s appears on all path lengths. This result leads us to believe
that there is very little cross traffic that affects connections on the EC2 network, so
we did not run our cross traffic algorithm from §6.4.2 on it; instead, we turned our
attention towards locating bottlenecks, speculating that the bottlenecks may be at the
source. This resultwould imply thatChoreo can determine howmultiple connections
on one path are affected by each other simply by knowing the achievable throughput
of that path.

6.5.3 Bottleneck Locations and Cross Traffic

From Figure 6-9, we hypothesized that Amazon rate-limits at the source, and that
cross traffic in the middle of the network has very little effect on connections (and
thus the bottleneck link is the first hop). To test this hypothesis, we ran Choreo’s
bottleneck-finding algorithm from §6.4.3. We ran an experiment on twenty pairs of
connections between four distinct VMs, and twenty pairs of connections from the
same source. We found that concurrent connections among four unique endpoints
never interferedwith each other, while concurrent connections from the same source
always did. This result indicates that EC2 bottlenecks occur on the first hops of the
paths. Figure 6-8 also supports this conclusion, as paths with little cross traffic tend
to be relatively stable over time.

We also hypothesized that rate-limiting at the sourcewas prevalent onRackspace,
since most path throughputs are so close to 300Mbit/s, and verified that connections
out of the same source always interfered. These results imply that connections placed
on a particular path are affected by other connections out of the source, not just other
connections on the path. However, they are not affected by connections emanating
from a different source.

6.5.4 Scalability

Choreo’s throughput measurements take fewer than fifteen seconds on a ten-VM
topology. Using packet trains rather than longer-lived TCP connections (e.g., as
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would be sent by netperf) is the main feature that decreases Choreo’s measurement
time, but we were able to decrease measurement time further by doing the following:

• Maintaining persistent SSH connections to the measurement VMs. This de-
creases the overhead of connecting and closing a connection.

• Keeping themeasurement server insideof the cloud (this resulted inonly a slight
performance improvement; it took around fifteen seconds longer to measure a
ten-VM topology using a measurement server outside of the cloud).

• Choosing the correct parameters for the packet trains.

In Figure 6-7, we showed that on EC2, Choreo’s packet trains were accurate for a
large range of numbers of bursts and burst lengths. However, the smaller the values
of these two parameters, the less time measurements take.

Figure6.5.4presents thetimeit takesChoreotomeasureann-VM(n ∈ {10, 20, 50, 100})
using a burst length of 400 packets and varying burst sizes; each of these parameter
configurations had relative error less than 10% (see Figure 6-7). When Choreo per-
forms its measurements sequentially, the measurement time scales with O(n2), as it
must measure each pair, and only one pair at a time. The impact of sending fewer
bursts becomes apparent as n grows; we see almost a three-fold increase between
sending 10 bursts and 50 bursts when n = 100.

For up to 50 VMs, Choreo is capable of measuring the entire topology in fewer
than twenty minutes. Today’s tenants are typically much not larger than this [20].
Moreover, basedon the stability of theEC2network (Figure6-8), this is a short enough
time period that the measurements are still accurate. However, customers may not
want to wait twenty minutes before their application can be placed. One option is
to run Choreo continuously, so that measurements are ready when an application
arrives. Another option is to run the measurements in parallel.

Figure 6.5.4 also plots the same results from parallel measurements. In this
case, measurements scale with O(n), not O(n2), and even a 100-VM topology only
takes around twenty minutes to measure. However, there is a concern when doing
activemeasurements in parallel: measurement trafficmay interfere, and the resulting
measurements will not reflect the true values.

Figure 6.5.4 plots the relative error of packet trains when run in parallel (the same
type of figure as in Figure 6-7). In our implementation, we start each train at roughly,
but not exactly, the same time (we allow up to .1 seconds of time between the start of
trains), as we found that this improved accuracy.

For many parameter configurations, the relative error is unacceptable; near 50%
as the amount of traffic grows. However, for some configurations where each train
sends very little traffic (e.g., twenty bursts of 200 packets each), the accuracy is near
10%, which is comparable to the accuracy of sequential packet trains. This result
comes from the fact that with less traffic per train, it is less likely that trains interfere.
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Figure 6-11:

We hesitate to recommend using parallel trains on today’s clouds. For today’s
tenants, which typically do not require hundreds of VMs [20], sequential trains are
fast and accurate across many configurations; parallel trains are also fast, but are
accurate for only a few of our tested configurations. As tenants grow larger, it may be
worth exploring parallel trains in more depth.

6.5.5 Discussion

In summary, these results suggest that the EC2 and Rackspace networks are both
rate-limited and use the hose model. Rackspace has very little spatial variability
in throughput; EC2 has some, but the overwhelming majority of paths see similar
throughputs near 1 Gbit/s.

Despite this lack of a lot of natural variation in the two public cloud networks,
Cicada is still able to exploit variation that comes with a tenant running multiple
applications at once (see §4.3), and to avoid the few paths in EC2 that do see low
throughput. Moreover, paths on these networks are temporally stable, indicating that
Choreo does not need to update itsmeasurements very frequently to take into account
high-variance paths.

We also note that cloud networks can change over time. In fact, our results from
Figure 6-2 indicated a larger range of spatial variation. For that reason, we believe
that Choreo’s measurement techniques are worthwhile beyond simply measuring a
tenant’s own applications, because higher network variation could appear in other
cloud networks, or in EC2 and Rackspace in the future.

One piece of future work is studying how the accuracy of Choreo’s measurements
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trades off with how much Cicada can improve application performance. Though
Choreo’s measurement phase does not require much overhead, it is possible that
Cicada would still be able to improve performance with even less accurate measure-
ments. For instance, if Choreo’s measurements were only 75% accurate, as opposed
to approximately 90% accurate (as in §6.5.1), would the performance improvement
also fall by 15%, or only by a few percent?

6.6 Conclusion

In this chapter, we studied the extensions that Cicada requires in order to be run
without any provider assistance. We developed Choreo, a network-measurement
module that allowscustomers tomeasure thenetworkbetween their virtualmachines.
Choreo allows customers to get their own “network snapshot”, which Cicada then
uses as input to its placement algorithm (Algorithm 4).

Choreo lets customersmeasure public cloud networks quickly and accurately. We
found that packet trains could be used tomeasure public cloud networks, with amean
error of only 9%onEC2, and amean error of 4%onRackspace. As shown inChapter 4,
Choreo’s measurements are accurate enough that applications see improvement over
existing placement methods.
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Chapter 7

Conclusion

In this dissertation, we presented a system, Cicada, aimed at solving the problem of
improving the performance of long-running, network-intensive cloud applications.
Cicada predicts application traffic patterns, and uses these to intelligently place the
applications on the cloud network. Cicada’s prediction and placement algorithms can
be used to improve application completion time and utilization (Chapter 4), lower
monetary cost, enforce fault tolerance (Appendix A), and a variety of other objectives.

Cicada can be used either by a cloud customer or a cloud provider. To enable
customer-only use, Cicada must be paired with its measurement module, Choreo,
which allows the customers to perform their own networkmeasurements (Chapter 6;
the measured values are already available to the provider). When run by a provider,
Cicada can be used to offer customer bandwidth guarantees (Chapter 5), which can
improve the predictability of cloud applications [20, 96], as well as encourage compa-
nies that have their own service contracts to uphold to use public clouds,

Using traces from real cloud networks, we showed that Cicada meets its goals.
Cicada can accurately predict traffic for most cloud applications (and recognize those
for which it cannot make prediction; §3.5), and it improves application completion
time and network utilization (§4.3). Choreo can quickly measure real cloud networks
with novel techniques (§6.5), allowing customers to runCicadawithout the provider’s
help.

7.1 Critiques

Why use application-level techniques rather than network-level ones?

Cicada does not impose a particular network topology, nor make any changes to the
routing algorithm as related work does [27, 34]. Our original motivation for using
application-level techniques was so that we could develop techniques that could be
used immediately—topology or routing changes often require hardware upgrades—
and often by the customer alone (the latter is particularly the case when Cicada is
paired with Choreo).
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However, we do not view this dissertation as a triumph of application-level tech-
niques over network-level ones. Application-level techniques are simply a different
approach. They have their benefits (particular with regards to ease of deployment),
but there is no reason for cloud providers or customers to make a decision between
application-level and network-level solutions; both can coexist.

Are providers really motivated to use Cicada?

We believe that providers will be motivated to allow customers to use Cicada, or to
use Cicada themselves.

For instance, if providers use Cicada to offer bandwidth guarantees, companies
that have their own service contracts to uphold are more likely to use the public
cloud services that these providers provide. As today’s clouds offer little in the way of
network QoS or SLAs to their customers, some companies avoid public clouds [23, 52,
62]. For better or for worse, accurate bandwidth guarantees also give the providers
means to charge their customers for internal bandwidth usage. As shown in §4.3.3,
Cicada also increases network utilization, another benefit for providers.

Cicada’s method of placing applications to minimizing application completion
time may face criticism from providers. As we showed in Chapter 4, Cicada can
appreciably decrease application completion times. At first glance, it may seem that
this decrease in application time results in a decrease in provider revenue: customers
do not need to rent machines for as long.

However, decreased application completion time means that providers can pack
more tenants onto the network. In most cloud pricing schemes, there is an up-front
payment to launch the machines, and then smaller payments over time to keep them
running. As a result, providers can make more money in a time period by renting
machines to many tenants than they do renting the same machines to fewer tenants.
Moreover, offering decreased completion time is a competitive advantage for cloud
providers, and may encourage customers to do more work on the cloud, leading to
increased revenue.

Providers may also object to customers using Choreo to obtain network measure-
ments, either because theyworry about activemeasurement techniques injecting a lot
of traffic into the network and affecting other tenants, or because they worry about
tenants inferring confidential aspects of their networks (e.g., topology). In response
to the first criticism, we note that Choreo was designed to send very little traffic on
the network (§6.4). Its measurement traffic should have little to no effect on other
tenants.

Regarding the second criticism, it is hard to deny that Choreo may learn things
about the network that providers would like to keep secret. But such is the nature
of any network measurement system. The network topology, e.g., is reflected in the
achieved throughput of various connections and how those throughputs change. If a
provider desires to keep this information entirely a secret, then he must change this
effect, and lose a lot of benefits of the topology itself.
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7.2 The Future

Can we apply these techniques to all applications on all public clouds?

Cicada was designed with long-running, network-intensive applications in mind.
Though it is a general framework, there are certain applications for which it likely
will not provide any improvement. For example, for applications that only need
a few minutes to run, the cost of Cicada’s measurement phase would cancel out
any improvement. Applications that have relatively uniform network-usage also
would not see much improvement from Cicada, because there is not a lot of room for
improvement. Here, because every pair of VMs sends roughly the same amount of
data, it does not help to put the “largest” pair on the fastest link. We observed this
traffic pattern in someMapReduce applications.

Interactiveapplicationsmaynotseemuchimprovement fromtheversionofCicada
described here, as the interactive phases would likely be difficult to model as they are
dependent on user activity. However, Cicada could re-evaluate its placement after
every interactive phase for some applications; as long as the phases could be correctly
identified, Cicada may be useful.

Cicada was tested on applications observed in HP Cloud Services, and tested
with experiments on Amazon EC2 and Rackspace. We believe that Cicada will offer
improvement on most other cloud networks, but not all. For instance, Cicada will
not offer a great deal of improvement in cloud environments with an abundance of
network bandwidth. After all, if the cloud provider can afford to give every pair
of tasks a dedicated path, for instance, there is not much need to optimize task
placement. Cicada will offer more improvement as cloud networks become more
utilized. Although we do not believe that today’s cloud networks are blessed with an
excess of network bandwidth, they also may not be as heavily utilized as they could
be; thus, Cicada may offer more more substantial improvements as cloud networks
evolve and become more heavily utilized.

Can we apply these techniques to other types of networks?

There is nothing stopping future researchers for using our techniques on more gen-
eral networks. Though proposed bandwidth guarantees are somewhat specific to
public clouds, the idea of predicting application traffic to improve network utiliza-
tion or application performance is not. Measuring networks and placing applications
intelligently also transcends public clouds. However, we do offer some caveats below:

• Cicada was tested on public cloud applications. Its techniques do not make
any assumptions about the nature of these applications, but they have not been
evaluated on every type of application. It is possible that Cicada’s prediction
algorithmmay not work on other applications, or would need to be modified.
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• Choreo’s measurement techniques work well in public cloud environments
partly due to the homogeneity and speeds of these networks. Some of its
techniques—notably, packet trains—will likely notwork as well on all networks,
and any assumptions it uses about the underlying network topologywill need to
be adjusted if a different network topology is used. However, if measurement
data can be obtained in other ways, and if the underlying network is stable (and
its topology at least somewhat known), it is likely that Choreo’s techniques (and
thus Cicada’s) could be used elsewhere.

Longevity of Cicada

Cloud networks are an evolving environment. The way providers manage their net-
work, including enforcing rate-limits, or migrating VMs, could change, and it is
difficult to predict how Cicada will be affected by these changes. However, be-
cause Cicada starts by measuring the cloud network, we believe that it could provide
improvement—or, at the very least, not be detrimental—in the face of some of these
changes. For example, if rate-limits are enforced, Cicada should be able to pick up
on that when it measures the links (either through provider-providedmeasurements,
or via Choreo). If VMs are migrated during an application’s run, Cicada will account
for that, as it measures periodically. Determining the correct frequency for these
measurements would likely require some fine-tuning.

Today’s version of Cicada may not be appropriate for cloud networks years from
now. But we believe that the general approach of predicting application workloads,
measuring the network, and adapting to it will remain useful, and that future versions
of Cicada could be built under the same principles to adapt to future cloud networks.
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Appendix A

ILPs for Expressing Additional Goals in Cicada

Our evaluation in Chapter 4 focused around the goal of minimizing an application’s
completion time. However, it is possible that an application may have other goals,
such as minimizing latency or increasing fault tolerance, or even goals unrelated to
the network, such as minimizing the monetary cost to the user. Users may also want
to imposemore constraints onCPUor storage systems. The basic principles of Cicada
can be extended to all of these types of goals. In fact, Cicada can support any goal that
can be formulated as an optimization problem. We give examples here.

Minimizing Latency

Rather than requiring a change to the optimization problem, minimizing latency
would require a change to Cicada’s network measurements. Instead of expressing
the network as a matrix of achieved TCP throughputs between virtual machines, we
would instead express it as the latency between machines.

It would be easy for Cicada to determine latency. This value is available to cloud
providers, or can be measured with pings via Choreo (this measurement could be
piggy-backedonto thepacket trainsChoreoalreadyuses tomeasureTCP throughput).

OnechallengeCicadawould face in this scenario ismakingsure its latencyestimate
is stable, but this can typically be done by sending repeated pings [14].

Fault Tolerance

In addition to theCPUconstraints already expressed in §4.2.2, a customer can express
her fault-tolerance constraints by stating the tasks that must be located on separate
physical machines, across datacenters, or multiple hops away (this fine placement-
granularity is not directly supported by most public clouds today, though techniques
exist for determining whether two virtual machines are placed on the same physical
server [83], and in some cases, IP addresses can be used to determine how close two
virtual machines are in the physical topology [80]). As a simple example, to prevent
two tasks i and j from being placed on the same machine m, we use the following
constraint:
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Xim +Xjm ≤ 1 ∀m ∈ [1,M ]

This constraint can easily be extended formultiple pairs of tasks that cannot be placed
on the same machine.

Minimizing Cost

The cost to run machines in a cloud network comes from launching VMs, keeping
the VMs up for a certain time period, and transferring data between VMs. Suppose
launching VMs costs Cl dollars per VM, running VMs costs Cc dollars per second
per CPU, and network transfers costs Ct dollars per byte. The total number of VMs
launched is n =

∑M
m=1 (

∏J
j=1Xjm). The total completion time for a particular

placement is t = maxm,n(Dmn/Rmn). The total amount of data transmitted between
VMs is:

d =
∑J,J

i=1,j=1

∑M
m=1BijXim(1−Xjm)

Here,Xim(1−Xjm) ensures thatweonly consider the data transmitted betweenVMs.
If two tasks are placed on the same VM, then there is only data exchange via disk I/O.
The problem now is to solve:

min(n · Cl + t · Cc + d · Ct)

while satisfying the above CPU constraint and the constraint that each task must be
placed on exactly one machine.
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