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Abstract. This paper presents a general and unifying optimization frame-
work for the problem of feature extraction and reduction for high-dimensional
pattern classification of medical images. Feature extraction is often an
ad hoc and case-specific task. Herein, we formulate it as a problem of
sparse decomposition of images into a basis that is desired to possess
several properties: 1) Sparsity and local spatial support, which usually
provides good generalization ability on new samples, and lends itself to
anatomically intuitive interpretations; 2) good discrimination ability, so
that projection of images onto the optimal basis yields discriminant fea-
tures to be used in a machine learning paradigm; 3) spatial smoothness
and contiguity of the estimated basis functions. Our method yields a
parts-based representation, which warranties that the image is decom-
posed into a number of positive regional projections. A non-negative ma-
trix factorization scheme is used, and a numerical solution with proven
convergence is used for solution. Results in classification of Alzheimers
patients from the ADNI study are presented.

1 Introduction

Voxel-based analysis (VBA) has been widely used in the medical imaging com-
munity. It typically consists of mapping image data to a standard template space,
and then applying voxel-wise linear statistical tests on a Jacobian determinant
[1], [2], transformation-residuals [3], or tissue density maps [4], [5] or directly on
voxel intensity (e.g. diffusion imaging [6]). It therefore identifies regions in which
two groups differ (e.g. patients and controls [2]), or regions in which other vari-
ables (e.g. disease severity [7]) correlate with imaging measurements. However,
this method has limited ability to identify complex population differences, be-
cause it does not take into account the multivariate relationships in data [8], [9].
Moreover, since typically no single anatomical region offers sufficient sensitivity
and specificity in identifying pathologies that span multiple anatomical regions,
it has very limited diagnostic power on an individual basis. In other words, val-
ues of voxels or ROIs showing significant group difference are not necessarily
good discriminants when one wants to classify individuals into groups.
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In order to overcome the limitations, high-dimensional pattern classification
methods have been proposed in the relatively recent literature [9–13], which
capture multi-variate nonlinear relationships in the data, and aim to achieve
high classification accuracy of individual scans. A fundamental difficulty in these
methods has been the availability of enough training samples, relative to the high
dimensionality of the data. A critical problem has therefore persisted in these
methods, namely how to optimally perform feature extraction and selection, i.e.
to find a parsimonious set of image features that best differentiate between two
or more groups, and which generalize well to new samples.

Feature reduction methods can be categorized into two general families: 1)
feature selection and 2) feature construction [14]. Feature selection methods (e.g.
SVM-RFE [15]) have two problems: first, they do not scale up for medical im-
ages; second, they do not consider domain knowledge (in our case: the fact that
data is coming from images) thus they may end up selecting a subset of fea-
tures which is not biologically interpretable. Another family of feature reduction
methods includes feature construction like PCA, LDA or other linear or non-
linear transformations. These methods can take into account domain knowledge
but they are challenged by two issues: first, constructed features do not have lo-
cal support, but are typically extracted from spatially extensive and overlapping
regions; moreover, they use both positive and negative weights, which render dif-
ficult anatomical interpretability. Finally, the number of basis vectors is usually
bounded by the number of samples, which is usually less than the dimensionality
of features.

In this paper, we propose a novel method which falls into the feature con-
struction category. Finding optimal linear construction can be viewed as finding
a linear transformation, i.e. basis matrix, which is to be estimated from data
according to some desired properties that are discussed next. 1) The basis must
be biologically meaningful: this means that a constructed basis vector should
correspond to contiguous anatomical regions preferably in areas which are bio-
logically related to a pathology of interest. Having local spatial support can be
viewed mathematically as sparsity of a basis vector in combining voxel values.
2) The basis must be discriminant: we are interested in finding features, i.e.
projection onto the basis, that construct spatial patterns that best differentiate
between groups, e.g. patients and controls. 3) The basis must be representative
of the data: in order to represent data, we derive a basis matrix with afore-
mentioned properties and corresponding loadings. Matrix factorization has been
adopted as a framework. Having simultaneously representative and parsimonious
representation of an image is usually referred to parts-based representation in
the literature. A specific variant of Matrix Factorization (MF) which is confined
to be nonnegative (NMF) has been shown experimentally [16], and under some
conditions mathematically [17], to yield parts-based representations of an im-
age. Since general NMF does not consider that underlying data is an image, we
have introduced a Markovian prior to address this issue. Furtheremore, we have
an extra prior to enforce sparsity (parts-based representation) of an image. 4)
Generalization: the proposed method is general and can be applied to a wide
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variety of problems and data sets without significant adjustments. In this paper,
we have formulated our problem as an optimization problem that seeks to satisfy
the four criteria above. Moreover, we proposed a novel numerical solution with
a proof of convergence to solve it. Unlike LDA and PCA, the number of basis
vectors are not confined with number of samples in our method thus we are able
to have more basis vectors than samples.

In the Methods section, we first discuss the idea of matrix factorization in
general and NMF in particular (Sect.2.1). In the subsequent sections, a likelihood
term (Sect.2.2) and proper regularization terms are introduced (Sect.2.3,2.4).
In Sect. 2.5, the final optimization problem is formed and a proper method is
suggested to solve it. In the Results section (Sect.3), we apply our method to the
problem of classification of Alzheimer’s disease patients and healthy controls.

2 Methods

2.1 General Formulation

Let’s assume that we collect data into a matrix, X ∈ IR+D×N , such that each
column xi represents one image. This can be done by lexicographical ordering
of voxels. D is number of voxels and N is number of samples. For this case, we
assume that xi’s reside in positive quadrant which is a reasonable assumption
for medical images. The goal is to decompose data matrix, X, into a positive
matrix, B, which is a matrix whose columns are constructed basis vectors, and
a loadings matrix , C, which holds corresponding loadings of the basis, namely
X ≈ BC. The elements of C will form the features extracted from the data via
projection on B; they will be subsequently used for classification. In the litera-
ture, this decomposition is called Non-Negative Matrix Factorization (NMF). It
is straightforward to verify that this is an ill-posed problem. Hence, a regulariza-
tion is necessary. We formulate the problem as a MAP (Maximum a Posteriori)
estimation problem as follows:

p(B,C|X) =
p(X|B,C)p(B,C)

p(X)
=
p(X|B,C)p(B)p(C)

p(X)
(1)

Here, we assumed that B and C are independent. Therefore, the MAP esti-
mation problem is formulated as an optimization problem as follows:

max
B,C

log p(B,C|X) ≡ max
B,C

log p(X|B,C) + log p(B) + log p(C) (2)

in which the first term on the right hand side is a likelihood term and the second
and third terms are priors for B and C respectively. Thus, we need to choose
proper priors and likelihood function according to our problem. In general, NMF
can be written as the following optimization problem:

min
B,C>0

D(X;BC) + α(B) + β(C) (3)

where D(X;BC) is a negative likelihood function and measures the goodness
of fit, and where the second (α(B)) and third (β(C)) terms form negative log
priors on B and C. Next, we discuss different choices for D(., .), α(.), and β(.).
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2.2 Likelihood Term: D(X;BC)

As it is discussed in [18], given a convex function ϕ : S ⊆ IR → IR, Bregman
divergence is a family of D(., .) functions which are defined as follows Dϕ :
S × int(S)→ IR+ :

Dϕ(x; y) := ϕ(x)− ϕ(y)− ϕ′(y)(x− y) (4)

where int(S) is the interior of set S. For cases in which x and y are matrices, it
can be augmented as summation over all elements of a matrix:

Dϕ(X;Y ) :=
∑
ij

Dϕ(xij , yij) (5)

In this paper, we used ϕ(x) = x log x which readily converts (5) to the KL-
Divergence:

Dϕ(X;BC) =
∑
ij

xij log
xij∑
k bikckj

−
∑
ij

xij +
∑
ijk

bikckj (6)

It is worth mentioning that other choices for ϕ are also possible (e.g. 1
2x

2) and
they yield other distance measures (e.g. Frobenius distance between matrices).

2.3 Regularizing the Basis: α(B)

The regularization term can be broken down into two terms according to respec-
tive criteria that will be discussed in more detail in this section:

α(B) = α1(B) + α2(B) (7)

In our implementation, each regularization term has a weighting term which
determines its contribution, however, we have omitted the weighting terms for
the sake of simplicity in the notation.

It is reasonable to assume that anatomical regions are expected to display
similar structural and functional characteristics, hence voxels should be grouped
together into regional features. As discussed in the Introduction, local support
and sparsity are two desirable properties which both can be achieved using the
following terms:

α1(B) = 1TBTB1, ‖bi‖1 = 1 (8)

In order to see why this regularization enforces part-based representation,
we should interpret it mathematically. Part-based representation means that
we do not want our basis vectors, bi, to have a lot of overlap with each other.
Considering the fact that the basis are positive (hence, bounded below), having
the least overlap could be translated to orthogonality. Mathematically speaking,
< bi, bj >≈ 0 if i 6= j which means that off-diagonal elements of BTB should be
minimized.
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It is also worth mentioning that it has been shown empirically [16] and under
some mild conditions mathematically [17] that NMF yields sparse basis. Nev-
ertheless, equality constraint in (8) in addition to the non-negativity constraint
enforces sparsity even further. This ends the justification of the terms introduced
in (8).

This is the first criterion for the prior over B and was mentioned earlier in
[19]; nevertheless this is not enough when one deals with image data. Diseases
typically affect anatomy and function in a somewhat continuous way. Therefore,
we would prefer that bi represents smooth and contiguous anatomical regions.
Although smoothing can be applied as post processing after optimization and
deriving B, it is preferable to add a smoothness penalty term to the prior of
B. Similar to [20], we exploit the widely used Markov Random Field (MRF)
model. In this model, voxels within a neighborhood interact with each other and
smoothness of an image is modeled as in the Gibbs distribution as follows:

p(I) =
1
Z

exp (−cα2(B)) ⇒ − log p(I) = cα2(B)− logZ (9)

where I is a vector made by concatenating image voxels (e.g. lexicographically)
and Z is a normalization constant called partition function and c is a constant.
α2(.) is a nonlinear energy function measuring non-smoothness of an image. For
basis matrix B, we can write α2(B) as follows:

α2(B) =
r∑
j=1

D∑
i=1

∑
l∈Ui

wilψ(bji − bjl, δ) (10)

where r is the number of basis vectors and D is dimensionality of the images and
Ui is a set containing the neighborhood indices of the i’th voxel and ψ(., δ) is a
potential function and δ is a free parameter and wkl are weighting factors. There
are plenty of choices for the potential function. We adopt a simple quadratic func-
tion that has all desired properties, including nonnegativity, strictly increasing,
unboundedness and more importantly convexity in addition to the fact that it
can be simply represented in a matrix form which will help us to derive an
appropriate auxiliary function:

ψ(x, δ) = (
x

δ
)2 (11)

Adding both terms, α1 and α2, for basis, total regularization penalty would
become:

α(B) = 1TBTB1 +
r∑
j=1

D∑
i=1

∑
l∈Ui

wilψ(bji − bjl, δ) (12)

2.4 Regularizing Coefficients: β(C)

In this section, we will discuss the regularization term for the coefficient matrix.
The main goal of these regularization terms is to boost bases that produce
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discriminant features, but also are found consistently across all training samples.
We decompose the regularization terms for the C matrix into two terms and
describe each one in detail:

β(C) = β1(C) + β2(C) (13)

In our implementation, each regularization term has a weighting term which
determines its contribution, however, we have omitted the weighting terms for
the sake of simplicity in the notation.

Given the basis matrix, B, the coefficient matrix, C represents new features.
If the final goal is classification, discriminative features are preferred. Similar to
[21], we use Fisher linear discriminative analysis which is the largest generalized
eigen value between within- and between- class matrices when cij coefficients are
considered as new features:

Si = 1
Ni

∑
k∈Ii

(ck − c̄i)(ck − c̄i)T
SW = 1

2 (S1 + S2) i = 1, 2
SB = 1

2 (c̄1 − c̄2)(c̄1 − c̄2)T
(14)

where Ii is a set containing indices of instances in the i’th class and and ck
is k’th column of matrix C and c̄i is the mean of new features over i’th class
(c̄i = 1/Ni

∑
k∈Ii

ck). Si is the within-class matrix for the i’th class and SB is
the between-class matrix. Here, we have assumed that we have two classes but
the formulation can be easily extended. We would like to maximize the largest
generalized eigen value between SB and SW , however there is no closed form
formulation for that. Instead, we use an approximation as follows [21]:

p(C) ∝ exp(β1(C)) ∝ exp (tr(SB))
exp (tr(SW )) ⇒ − log p(C) ∝ −β1(C) ∝ tr(SB)− tr(SW )

(15)
Trace of SW which is summation of eigen values approximately measures how
skewed the classes are, and trace of SB roughly evaluates how far apart the two
classes are. Hence, the more separable the classes are, the lower β1(C) is.

The second criterion for the C matrix is to seek bases which carry maximum
image energy. Total activity of retained components, i.e. total squared projection
coefficients summed over all training images, should be maximized [19]. Effec-
tively, this constraint favors bases that represent components that tend to be
present in all samples, and therefore reflect anatomically consistent regions that
are likely to generate new samples. Energy of each retained basis is measured by
the l2 norm of cTi in which cTi is the i’th row of matrix C:

β2(C) = −
∑
i

‖cTi ‖2 (16)

Adding up β1(.) and β2(.), yields the final regularization term on C matrix:

β(C) = β1(C) + β2(C) = tr(SW )− tr(SB)−
∑
i

‖cTi ‖2 (17)
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2.5 Optimization

We have derived all necessary terms and constraints to form an optimization
problem. Given the likelihood function, D(., .) in (6) and equations for regular-
ization functions on B and C, α(.) in (12) and β(.) in (17) and corresponding
constraints, the optimization problem is as follows:

min Dϕ(X;BC) + α(B) + β(C)
subject to ‖bi‖1 = 1

[B]ij , [C]ij ≥ 0
(18)

This formulation is not a convex optimization problem. Therefore, we seek a
local minimum. A typical strategy to solve this kind of problem is to fix a block
of parameters (e.g. C) and optimize other blocks (e.g. B) and alternate until
convergence. If C is fixed, optimization over B is a convex problem. Although
norm equality constraints for bi’s are not convex constraints in general, they
become linear constraints due to the non-negativity of B. However, by fixing B,
we do not have a convex optimization problem in C because in (17),

∑
i ‖ci‖2

(a convex term) has to be maximized, not minimized.
Due to the dimensionality of the problem, we use a first order method to

solve it. Similar to Lee et al. [16], we prefer a Multiplicative Update (MU).
Multiplicative methods have two advantages: first, if initialization starts inside
of a feasible set, as long as the current value of a variable is multiplied by a
positive value, the new value of that variable is also positive; hence maintaining
positivity constraints is trivial. Second, although MU is derived from gradient
descent, it has no parameter like the step size of gradient descent. This makes the
MU very easy to implement, except one has to make sure that in each iteration
the value of cost function decreases. A common approach for optimization in
NMF literature is to propose an auxiliary function.

Definition 1. Z(B, B̂) is called auxiliary function of cost function J(B), if it
satisfies the following conditions:

Z(B, B̂) ≥ J(B), Z(B,B) = J(B) (19)

In each iteration t, we optimize over the first parameter:

B(t+1) = arg min
B

Z(B,B(t)) (20)

By the definition of auxiliary function and minimum, we have J(B(t)) =
Z(B(t), B(t)) ≥ Z(B(t+1), B(t)) ≥ J(B(t+1)). This method was applied earlier
in Expectation Maximization [22] and widely used in NMF literature [16], [19],
etc. Due to the lack of space, we have omitted the closed form for our proposed
auxiliary function but the following theorems show update rules for B and C
variables.
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Theorem 1. The following equations are the multiplicative updates for B vari-
able:

bik = b̂ik
√

Tik

T ′
ik
,

Tik = 2(K−B̂)ik +
∑
j xij

ckj∑
k′ b̂ik′ck′j

, (K = Q(ΓT ))

T ′ik = Qik + 2(HB̂T )ki + 2(K+B̂)ik, (Q = 1D1TNC
T , H = Q(1r))

(21)

where B̂ denotes previous iteration of B variable and notation [.]+ ([.]−) indicates
positive (negative) part of a matrix. 1D denotes a vector of all ones with length
D. Q(.) is a squared function of the argument matrix defined as Q(A) = AAT .
We can introduce the new matrix Γ ∈ IR|U |D×D in which |U | is neighborhood
size and D is number of voxels. Γ is a matrix constituted of the following blocks:

ΓT = [ΓT1 , Γ
T
2 , ..., Γ

T
D ] where Γi ∈ R|U |×D

where [Γi]jl =
√

wil

δ if k = i and [Γi]jl = −
√

wil

δ if l ∈ Ui(j)
(22)

Proof. Derivation of auxiliary function and multiplicative updates are omitted
due to lack of space. For more information, please see our technical support. 3

Theorem 2. Following equations are multiplicative updates for C variable:

cik = ĉik
√

Tik

T ′
ik
,

Tik = 2(ĈΛ−T1 )ik + 2(ĈΛ+T
2 )ik + 2

∑
l (E

lĈ)ik +
∑
j xji

bjk∑
k′ bjk′ ĉk′i

,

T ′ik = 2(ĈΛ+T
1 )ki + 2(ĈΛ−T2 )ki +Mik, (M = 1N1TDB)

(23)

Here, N1 and N2 are numbers of samples for the first and the second classes
respectively and we have assumed that samples from the first class constitute the
first N1 columns of X, and El = ele

T
l in which el is l’th unit vector, Λ1 =

Q([(IN1 − 1
N1

11T ); 0]) +Q([0; (IN2 − 1
N2

11T )]) and IN1 is an identity matrix of
size N1 and Λ2 = Q([ 1

N1
IN1 ; −1

N2
IN2 ]) and Q(.) was described earlier.

Proof. Derivation of auxiliary function and multiplicative updates are omitted
due to lack of space. For more information, please see our technical support.

3 Results

We tested our approach on MR images of Alzheimer’s patients and healthy con-
trols from the ADNI study 4. The dataset we used for this paper included 60
Normal Control (NC) individuals, 60 individuals with Mild Cognitive Impair-
ment (MCI), and 56 Alzheimer’s (AD) disease, whose structural MR scans were
analyzed. The data sets included standard T1-weighted MR images acquired
sagittally using volumetric 3D MPRAGE with 1.25×1.25 mm in-plane spatial
3 http://www.4shared.com/file/81316860/e2be6088/TechSupport.html
4 http://www.loni.ucla.edu/ADNI/Data
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resolution and 1.2 mm thick sagittal slices (8 flip angle). Most of the images were
obtained using 1.5 T scanners, while a few were obtained using 3T scanners.

Images were pre-processed similar to other VBA studies; i.e. AC-PC align-
ment, skull-removal; and non-rigid registration with a standard coordinate sys-
tem using a non-rigid registration method [23]. Given deformation field for each
individual, a map quantifying the regional distribution of gray matter (GM) was
formed for each individual. The map quantifies an expansion (or contraction)
to the tissue applied by the transformation to transform the image from the
original space to the template space. Consequently, map values in the templates
space are directly proportional to the volume of the respective structures in the
original brain scan. Although this map can be formed for cerebral fluid (CSF),
white matter (WM), and GM, we only used maps corresponding to the GM
tissue type.

Ten images were chosen randomly from each group (AD, NC, and MCI) to
form the matrix X. Entries of B and C matrices were initialized randomly using
uniform random generator on the unit interval. After deriving the basis vectors,
columns of B, we can rank them. A ranked basis helps to interpret the result
by highlighting the most important features. To get robust results, we applied
four different feature ranking methods including: (1) SVM Attribute Selection
[15] ;(2) Information Gain Ranking [24] ; (3) Symmetrical Uncertainty [24] ; (4)
χ2 [24]; and then, found consensus (voting) on their results. Fig. 1 shows the
top three important basis vectors. Interestingly, the most representative basis
for group difference between the AD vs. NC groups is exactly localized at hip-
pocampus which is known to be affected by Alzheimer’s disease. Other areas are
also very localized in the areas that are either associated with memory or known
to be affected by AD.

In order to assess the separability of the new features, we used them for
classification. Weka [24] was used to find the best classification strategy in two
classification cases: AD vs NC and MCI vs NC. On average, the highest clas-
sification rates were obtained when a SVM classifier boosted by the Bagging
method is used for AD vs NC and a simple Logistic boosted by Adaboost out-
performed other methods for MCI vs NC. Fig. 2 shows the classification rates
for the different numbers of basis vectors. It shows the average correct classi-
fication rates for ten repetitions of 10-fold cross validations. Classifiers yielded
reasonable classification rates for AD vs NC and MCI vs NC cases It is worth
mentioning that we used only ten samples from each group (30 samples in total)
to build the B matrix. Nevertheless, classification rates are very robust with re-
spect to the changing number of the basis vectors. Besides the fact that there is
a narrow difference between definition of AD and MCI cases even for clinicians,
we speculate that we can boost this result significantly by using more samples
to build the B matrix and using the tissue densities of other tissue types (WM
and CSF).

We have also compared the features extracted by our method with features
extracted by projecting the data on the principal components (keeping all eigen
vectors). The average classification rate with PCA was around %79 but the
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Fig. 1. Three top ranked bases for r = 50 and λ = 103: (a) the top ranked
basis is localized in hippocampus (b) the second top ranked basis in localized in
inferior medial temporal cortex (c) and (d) shows the third top ranked basis being
localized in Precuneus and Occipito-parietal association cortex respectively

principal basis vectors were not sparse and hence hard to interpret. In addition,
without the Fisher term (15) classification rates droped below %80 although
basis vectors were sparse.

We also evaluated the effect of the MRF term introduced in Sect.2.3. As
expected, increasing the weight of the MRF term (here we called it λ) leads to
a smoother base. Fig.3 depicts the highest ranked basis image for three different
values of λ. From left to right, the base becomes smoother and the correct clas-
sification rate (for AD vs NC) decreases monotically but not significantly. Even-
tually in Fig.3(c), the MRF term dominates the other terms and oversmoothes
the image however λ was set to a very high value (≈ 104) to yield such result.
This figure shows that our method is robust with regard to choice of weight for
the MRF parameter.

4 Discussion

In this paper, we proposed a novel method based on the NMF framework. Our
method is able to produce bases which are simultaneously discriminative and
representative of group differences. Moreover, the sparsity of the estimated basis
is likely to lead to good generalization of new samples, and to better inter-
pretability of the results via locally-extracted features. The method produces
reasonable classification rates between AD patients and normal controls, as well
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Fig. 2. Comparison of percentages of correct classification rates for the two
classification cases when number of bases changes.

as between normal controls and MCI individuals We plan to improve our results
with the current dataset by amending implementation and using tissue density
of white matter and CSF. We also plan to apply our method on other datasets
and augment it for a vectorial dataset by extending our framework from matrix
factorization to tensor factorization.
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