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Abstract. This paper presents a general discriminative dimensional-
ity reduction framework for multi-modal image-based classification in
medical imaging datasets. The major goal is to use all modalities si-
multaneously to transform very high dimensional image to a lower di-
mensional representation in a discriminative way. In addition to being
discriminative, the proposed approach has the advantage of being clini-
cally interpretable. We propose a framework based on regularized tensor
decomposition. We show that different variants of tensor factorization
imply various hypothesis about data. Inspired by the idea of multi-view
dimensionality reduction in machine learning community, two different
kinds of tensor decomposition and their implications are presented. We
have validated our method on a multi-modal longitudinal brain imaging
study. We compared this method with a publically available classifica-
tion software based on SVM that has shown state-of-the-art classification
rate in number of publications.
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1 Introduction

Recently, various structural (e.g. MRI, DTI, etc.) and functional (e.g. PET,
resting state fMRI, etc.) imaging modalities have been utilized to develop new
biomarkers for diagnosis. Multiple image modalities can provide a rich multi-
parametric signature that can be used to design more sensitive biomarkers [12],
[10], [14]. For example, while structural MR images provide sensitive measure-
ments for detection of atrophy in brain regions [8], FDG-PET1 can quantify
reduction of glucose metabolism in parietal lobes, the posterior cingulate, and
other brain regions [5]; combination of both modalities can be very instrumental
in early diagnosis of Alzheimer’s disease [7].

An immediate solution to exploit multiple modalities is to concatenate all
image modalities into a long vector, but learning a classifier that generalizes
well in such a high dimensional space is even harder than in the uni-modality

1 fluorodeoxyglucose positron emission tomography
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case because multi-modality datasets tend to be small. Therefore, dimensionality
reduction plays an even more important role here. Most existing studies extract
features from a few predefined areas [12]. Zhang et al. [14] suggested extracting
features from a few pre-defined regions of interest (ROIs) and combining them
into one kernel that then input to a kernel-SVM classifier. However, predefined
regions might not be optimal for diagnosis on the individual level, i.e. classifi-
cation of subjects into normal and abnormal groups. Ideally, whole image (e.g.
brain scan) should be viewed as a large dimensional observation and relevant
regions to the target variable of interest (class labels, here) should be derived
from such high dimensional observation. High-dimensional pattern classification
methods have been proposed for morphological analysis [6], [9] which aim to
capture multivariate nonlinear relationships in the data. A critical step under-
lying the success of such methods is effective feature extraction and selection,
i.e. dimensionality reduction. Batmanghelich et al. [2] used a constrained ma-
trix factorization framework for dimensionality reduction while simultaneously
being discriminative and representative; however, that method only works for
uni-modality cases. In this paper, we propose a method inspired by the multi-
view setting in the machine learning community [11], [1]. In the multi-view set-
ting, there are views (sometimes in a rather abstract sense) of the data which
co-occur, and there is a target variable of interest (class labels, here). The goal
is to implicitly learn the target via the relationship between different views [11].
Our approach extends [2] to tensor factorization framework to handle the multi-
modality case, but our formulation and optimization method is substantially
different.

One could concatenate all image modalities of a subject into long columns of
a matrix and simply apply [2] or a similar method. However, the advantage of
extending a regularized matrix factorization to a tensor factorization framework
is that because of the structure of a tensor, various factorizations can be pro-
posed, each of which imply different hypotheses about the data. In this paper,
we introduce two factorizations and explain their connotations. We derive the
factorization by solving a large scale optimization problem.

2 General Framework

The novel method proposed in this paper is based on an extension of a previ-
ously presented framework for uni-modality [3], which we briefly present here
for perspective. Similar to [2], the proposed method reduces the dimensionality
in a discriminative way while preserving the semantics of images; hence it is
clinically interpretable and produces good classification accuracy. We use regu-
larized matrix factorization formalism for dimensionality reduction. Regularized
matrix factorization decomposes a matrix into two or more matrices such that
the decomposition describes the matrix as accurately as possible. Such a decom-
position could be subjected to some constraints or priors. Let us assume columns
of X = [x1 · · ·xn · · ·xN ] represent observations (i.e. sample images that are vec-
torized), and B ∈ RD×K and C ∈ RK×N decompose the matrix such that
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X ≈ BC. K is the number of basis vectors, D is the number of voxels in images
andN is the number of samples. The columns of matrix B (called bk) can then be
viewed as basis vectors and the nth column of C (called cn) contains correspond-
ing loading coefficients or weights of the basis vectors for the nth observation.
The columns bk ∈ B and cn ∈ C are subjected to some constraints which define
the feasible sets B and C. We use variable yn ∈ {−1(abnormal), 1(healthy)} to
denote labels of the subjects.

An optimal basis vector (bk) operates as a region selector; therefore its entries
(bjk) must be either on (i.e. 1) or off (i.e. 0) (i.e. bjk ∈ {0, 1}). Since optimizing
integer values is computationally expensive, particularly for the large dimension-
ality characteristic of medical images, we relax this constraint to 0 ≤ bjk ≤ 1
which can be encoded mathematically by a combination of `∞ norm and non-
negativity (b ≥ 0). Assuming that only certain structures of an anatomy are
affected (e.g. atrophy of hippocampus in Alzheimer’s disease), we can impose
sparsity on the basis vectors which also make them more interpretable. The spar-
sity constraint can be enforced by an inequality constraint over the `1 norm of
the basis vectors. These two properties constitute the feasible set for the basis
vectors (B) as follows:

B := {b ∈ RD : b ≥ 0, ‖b‖∞ ≤ 1, ‖b‖1 ≤ λ3}

where the ratio of λ3/D encodes the ratio of sparsity of the basis vectors.
For the feasible set of coefficients (C), we only assume non-negativity (i.e.

C := {c : c ≥ 0}) because our images are non-negative but this is relaxable
based on the properties of a problem.

In order to find optimal B and C matrices, we define the following constrained
optimization problem:

min
B,C,w∈RK

λ1D(X;BC) + λ2

N∑
n=1

`(yn; f(xn;B,w)) + ‖w‖2

subject to: f(xn;B,w) = 〈BTxn,w〉
bk ∈ B, ci ∈ C (1)

The cost function of the optimization problem consists of two terms: 1) The
generative term (D(·; ·)) encourages the decomposition, BC, to be close to the
data matrix (X); both labeled and unlabeled data contribute to this term. 2)
The discriminative term (`(yn; f(xn,B,w))) is a loss function that encourages a
classifier f(·) to produce class labels that are consistent with available labels (y).
The classifier parametrized by w projects each image (xn) on the basis vectors
to produce new features (vn = BTxn) and produce a label. We use a linear
classifier, hence f(xn,B,w) = 〈BTxn,w〉. In this paper, we set D(X;BC) =
‖X − BC‖2F , where λ1 is a constant. For the loss function, we choose a hinge
squared loss function: `(y, ỹ) = (max{0, 1− yỹ})2, a common choice in Support
Vector Machine (SVM) literature [3].

There are three blocks in the optimization problem in Eq.(1): w,B, and C
which is only jointly convex. In other words, if any two pairs of blocks, are fixed,
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the problem is convex with respect to the remaining block. The optimization
scheme starts from a random initialization of blocks, fixes two blocks, optimizes
with respect to the remaining one, and repeats this process for each block. The
whole process is repeated till convergence. Optimization with respect to C and w
is not challenging but, due to the large-scale dimensionality of a medical image,
optimization with respect to B requires a specialized method (see [3] for details).

3 Extension to Multi-Modality

Unlike the uni-modality case, in which each voxel stores a scalar value, in the
multi-modality case, each voxel of an image is associated with an array of val-
ues. In Section 2, we stored the training data into a matrix (X); while in multi-
modality case, we need to structure the data into a tensor (X). In fact, in the
general framework (Section 2), the matrix f can be viewed as an order-2 tensor2

in which the first index (rows) enumerates voxels and the second index (columns)
enumerates subjects. We simply extend this matrix to an order-3 tensor in which
the third index (faces) enumerates modalities. One can simply concatenate all
image modalities of a subject into long columns of a matrix and simply apply [2]
or a similar method. However, the advantage of extending a regularized matrix
factorization to a tensor factorization framework is that various factorizations
can be proposed each of which implies different hypotheses about the data be-
cause of the structure of a tensor. In this paper, we introduce two factorizations
and explain their connotations (pictorially represented in Fig.1).

Fig. 1. The difference between the two proposed factorizations: multi-View(y) ver-
sus multi-View(X,y). There are V modalities stored in the data tensor (X); for
multi-View(y), we need to have V sets of basis vectors (B(1),...,B(V )) and correspond-
ing coefficients (C(1),...,C(V )), while for multi-View(X,y), there is one set of basis
vectors (B) shared across modalities.

2 The order of a tensor is the number of indices necessary to refer unambiguously to
an individual component of a tensor.
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Our method can be viewed as multi-view learning [11]. In the multi-view set-
ting, the goal is to implicitly learn about the target via the relationship between
different views [11]. Depending on how to define targets, we can have differ-
ent variations of the method. For example, if multiple modalities are different
frequencies in spectroscopy imaging, different features extracted from diffusion
tensor image (DTI), or time series in fMRI. One assumption could be that there
is one hidden variable (here basis vectors: B) that is shared across image modali-
ties and class labels. Therefore, both class labels (y) and data (X) are the targets;
we will refer to the method as multi-View(X,y).

Unlike multi-View(X,y), an alternative assumption could be that there is
no hidden variable shared across modalities, hence every modality has its own
basis vectors (B(v)), but projection on these basis vectors collaborate to predict
class labels. For example, different modalities may measure quantities on non-
overlapping regions of a brain (e.g. white matter and gray matter) each quanti-
fying complementary features about the class labels. We refer to this variation as
multi-View(y). This assumption is still different than applying the uni-modality
method separately because B(v)’s need to collaborate on the discriminative term.

The definitions of the generative term (D(·; ·)) and the classifier function
(f(·)) in Eq.(1) for tensor are changed accordingly to multi-View(X,y) and
multi-View(y) (depending on the assumptions on data):

multi-View(X,y): multi-View(y):

D(X;B,C) =
∑V

v=1 ‖X
v −BCv‖2F D(X;B,C) =

∑V
v=1 ‖X

v − BvCv‖2F
f(Xn;W,B) =

∑V
v=1 〈w

v,BTXv
n〉 f(Xn;W,B) =

∑V
v=1 〈w

v, (Bv)TXv
n〉

where X and C are tensors of order-3 holding respectively all images and coeffi-
cients of the basis vectors. Xv and Cv are order-2 tensors (i.e. matrix) holding
images and coefficients of vth modality respectively. Xn is a order-2 tensor hold-
ing all modalities of the nth subject and Xv

n is a order-1 tensor (i.e. vector)
holding only vth modality of the nth subject. V is the number of modalities
(views), 〈·, ·〉 and ‖ · ‖F indicate inner product and Frobenius norm respectively.
W is a matrix holding parameters of the classifier function and wv is its vth

column corresponding to the vth modality. Notice that in multi-View(y), the
generative term is separable for each modality but basis matrices (Bv’s) are cou-
pled together through the loss function (`(·, ·)) in Eq.(1); therefore, it is different
than applying the uni-modality algorithm (Section 2) separately and concate-
nating extracted features later for a classifier.

4 Experiments

We acquired a subset of images from a longitudinal brain imaging study for
validation of our method. The objective of this choice was to investigate the
longitudinal progression of changes in brain structure (MRI) and brain function
([15O]-water PET-CBF) in relation to cognitive change in cognitively normal
older adults. We used slopes of CVLT3 score over the follow-up period as a

3 California Verbal Learning Test [4]
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measure of cognitive function to subdivide the entire cohort into two groups:
top 20% (25 subjects) showing the highest cognitive stability (CN: cognitively
normal), and bottom 20% (25 subjects) showing the most pronounced cognitive
decline (CD: cognitively declining).

All T1-MR images used in this study were pre-processed according to [6] and
registered to a template. Two volumetric tissue density maps [13] were formed
for white matter (WM), gray matter (GM) regions. These maps quantify an
expansion (or contraction) to the tissue applied by the transformation to warp
the image to the template space.

Samples are divided into five folds and 4/5 of samples are used for training
basis vectors (an example of which is shown in Fig.2); projections on these basis
vectors are used as features and are fed to a SVM classifier.

Fig. 2. Two examples of the basis vectors shown in different cuts. Left:
Multi-View(X,y), Right: Multi-View(y) (γ∗ = 100; number of basis vectors is 60).

In uni-parametric dataset, the algorithm is relatively stable as long as λ’s
are chosen within reasonable ranges (see [3]). We set the parameters to the most
frequently chosen parameters used for a uni-modality case on a totally differ-
ent dataset. Numbers reported in Table 1 are produced using such parameters.
Nevertheless, we performed sensitivity analysis with respect to ratio of λ1/λ2
and number of basis vectors, K (see Fig.3). For notational brevity, we used γ∗

for ratio of λ1/λ2 we used for Table1. Different curves in Fig.3 denote differ-
ent ratios of λ1/λ2. As Multi-View(y) is relatively stable with respect to K
and different ratios, performance of Multi-View(X,y) improves as K increases.
Although parameters that are more inclined toward the unsupervised setting
(e.g. λ1/λ2 = 10γ∗) underperform settings that are excessively discriminative
(e.g. λ1/λ2 = 0.001γ∗), are more stable. Weak regularization imposed on the
excessively discriminative settings can explain this observation.

Table 1 reports the average classification rates on the left-out folds for dif-
ferent scenarios and methods. We used a publically available software, called
COMPARE [6], for comparison. The COMPARE method has been applied to many
problems and has been claimed to perform very well. Its variants, i.e. COMPARE
and m-COMPARE, are similar to Multi-View(y) and Multi-View(X,y) respec-
tively. For comparison, we have included Single-View results for each scenario
in which basis vectors are extracted independently and features are concatenated
and fed to the same procedure to find the best parameters for a classifier as the
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Fig. 3. Sensitivity Analysis: accuracy rates with respect to different number of basis
vectors (K) for various ratios of λ1/λ2. Left:Multi-View(y). Right: Multi-View(X,y).

multi-view methods. Since results shown in the table are column-wise compa-
rable, the highest values in the column are magnified with a bold font in each
column. In general, Multi-View(X,y) or its counterpart m-COMPARE perform bet-
ter. In all columns, at least one of the multi-view methods outperforms the single
view equivalent and the best performance is achieved by Multi-View(X,y).

Table 1. Comparison of classification accuracy rates for different scenarios and dif-
ferent methods on “cognitively normal” (NC) versus “cognitively declining” (CD)
subjects. Results are reported in the format: accuracy (sensitivity,specificity); with
γ∗ = 100; total number of basis vectors in each experiment is 60.

NC vs. CD

(WM,PET) (WM,GM) (GM,PET) (GM, WM, PET)

Multi-View(X,y) 0.82 (0.84,0.8) 0.76 (0.72,0.8) 0.84 (0.88,0.8) 0.94 (0.88,1.0)

Multi-View(y) 0.86 (0.84,0.88) 0.84 (0.8,0.88) 0.78 (0.8,0.76) 0.84 (0.84,0.84)

m-COMPARE 0.88 (0.8,0.96) 0.86 (0.88,0.84) 0.8 (0.8,0.8) 0.86 (0.84,0.88)

COMPARE 0.78 (0.68,0.88) 0.82 (0.76,0.88) 0.82 (0.84,0.8) 0.82 (0.76,0.88)

Single-View 0.84 (0.8,0.88) 0.84 (0.8,0.88) 0.82 (0.84,0.8) 0.8 (0.76,0.84)

5 Conclusion

We proposed a framework that exploits all modalities in a dataset simultane-
ously to reduce dimensionality in a discriminative yet interpretable way. Inspired
by multi-view learning, two variants of constrained tensor factorization are sug-
gested each of which implies different hypothesis about the data. We showed
that the algorithm is relatively robust with respect to choice of parameters and
achieves good classification results. Computational expense of the algorithm is
moderate and as future work, we plan to apply it to case for which number of
modalities is large (e.g. HARDI data or time series).
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