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Abstract

We propose a generative model to distinguish normal
anatomical variations from abnormal deformations given
a group of images with normal and abnormal subjects.
We assume that abnormal subjects share common factors
which characterize the abnormality. These factors are
hard to discover due to large variance of normal anatom-
ical differences. Assuming that the deformation fields are
parametrized by their stationary velocity fields, these fac-
tors constitute a low-rank subspace (abnormal space) that
is corrupted by high variance normal anatomical differ-
ences. We assume that these normal anatomical varia-
tions are not correlated. We form an optimization problem
and propose an efficient iterative algorithm to recover the
low-rank subspace. The algorithm iterates between image
registration and the decomposition steps and hence can be
seen as a group-wise registration algorithm. We apply our
method on synthetic and real data and discover abnormal-
ity of the population that cannot be recovered by some of
the well-known matrix decompositions (e.g. Singular Value
Decomposition).

1. Introduction

One of the main objectives of computational anatomy
is to characterize abnormal deformation of brain anatomy.
A popular method is to normalize all subjects into a stan-
dard space by registering each image with a single, univer-
sal template [8], [2]. However after normalization all nor-
mal and abnormal variations vanish from the images and get
encoded in the deformation fields of the registration. There-
fore, feature extraction is required to recover this informa-
tion from deformation fields (e.g. determinant of Jacobian)

(14, 12].

Another category of methods are generative models. One
method is to represent the population by its mean. The mean
can be computed in an unbiased manner [13] or can be cho-
sen from the population [ 1]. A drawback of such methods
is that the whole population is represented by one template
and do not provide information on the subject level. Meth-
ods based on factorization of deformation fields can also be
seen as a generative models. Wang et al. [19] proposed
to apply Singular Value Decomposition (SVD) on initial
velocity field. One can project initial velocity vectors on
their principal eigen vectors however due to large variance
in brain anatomies, it is unclear that the projection can help
us to detect abnormality. Sabuncu et al. [17] proposed pop-
ulation analysis based on a mixture modeling of deforma-
tion fields (iCluster) that led to a group-wise registration.
Membership value of each subject to a cluster can provide
subject level information but clusters are not necessarily as-
sociated with abnormality.

The main objective of this paper is to build a generative
model that describes abnormal deformations of unhealthy
brains. One can consider the registration step as a genera-
tive process (let us call it P1) in which a normal template
image generates normal subjects image by random defor-
mation fields. However, the template is usually a repre-
sentative of a normal ensemble and it might not be a good
representation for an abnormal group. If we have another
generative process (let us call it P2) to produce abnormal
templates which is consistent with abnormality pattern of
the abnormal group, one can cascade the P2 model to the
P1 model and produce a subject that has both abnormal and
normal deformations.

Our approach is to decompose the transformation (¢;)
that maps a template domain (€27) to the ’th subject do-
main (£2;) into the normal deformation (¢;) and an abnor-
mal deformation (yp;). We assume that abnormal deforma-
tions share common factors while normal deformations are



approximately linearly independent. To derive this decom-
position, we borrowed a method proposed by Candes et al.
[4] in the context of Compressed Sensing and applied it
in the context of registration and population analysis. We
suggest an efficient optimization algorithm that iterates be-
tween a regularized warping and the decomposition.

In the sense of population analysis, our method is similar
to the iCluster [17] and can be seen as a clustering method.
However our objective is to describe a population contain-
ing normal and abnormal subjects by deriving templates de-
formed from an unbiased normal template to describe the
abnormal population.

The remainder of this paper is organized as follows: In
section 2, we describe our generative setting and form a
Maximum A Posterior (MAP) estimation to find the param-
eters of the model which leads to an optimization problem.
In section 3, we will suggest an efficient algorithm to solve
the optimization problem; and in section 4 the algorithm
will be evaluated on synthesis dataset and real dataset con-
sisting of normally aged and brain images with Alzheimer’s
disease.

2. Method
2.1. General Setting

One of the methods to investigate image deformation is
to study deformation fields that transform images to a com-
mon template as representatives of the population. Some
authors suggested to apply Singular Value Decomposition
(SVD) on the deformation fields to extract the most impor-
tant directions of changes. However, transformations are
diffeomorphic and constitute a manifold (also a Lie group
G), which, unlike a vector space, are not closed with respect
to operations like addition. Wang et al. [19] proposed to ap-
ply SVD on initial velocity fields of the deformation as the
algebra (g) of the Lie Group (G). However, if the main ob-
jective of a study is to characterize abnormal deformations
for population study, applying SVD directly on the velocity
fields may not be helpful because normal anatomical vari-
ations have a large variance which can overshadow abnor-
mal deformations. Hence, singular vectors are combination
of normal and abnormal variations. This situation is graphi-
cally represented in Fig. 1 and an example of applying SVD
on the velocity fields are discussed in Fig.6.

Our approach is to build a generative model based on a
decomposition of the transformation (¢;) that maps a tem-
plate domain (£27) to the i’th subject domain (£2;) into nor-
mal deformation (v;) and abnormal deformation (y;). In
this paper, similar to Wang et al. [19], we use velocity field
to parametrize a diffeomorphism but following Arsigny et
al. [l], we use stationary velocity fields to parametrize
a diffeomorphism. In our notation, ¢;, ¢;, and ; are
parametrized by stationary velocity fields v;, [;, and s; re-

Figure 1. In this figure: T is the template and I;’s are images.
Blue dots are abnormal and green dots are normal subjects. ¢;’s
are deformations that warp the template to the ¢’th subject and v);’s
are normal part of the deformations and ¢;’s are abnormal part of
the deformations. L is true subspace of velocities of abnormal
deformations and L is an estimation based on velocity of ¢;’s.
Since normal deformations have large variance, it predominates
the true estimation.

spectively.

We assume that normal anatomical differences are in-
dependent transformations (z);) from identity given that
the template image is unbiased mean of a normal group.
Statistically speaking, we assume that given the template
(T'), normal subjects are identically and independently dis-
tributed.

Unlike 1;, we assume that abnormal deformations (¢;’s)
are linearly correlated by common factors. These factors
are modes of abnormal variations within abnormal ensem-
ble. For example, in Alzheimer’s disease, hippocampus,
temporal lobe, and frontal lobe endure significant shrinkage
but extent of damage is different as the disease progresses.
In fact, to draw an abnormal sample, the template and com-
mon factors (b;’s) must be known. One can simply assume
that a velocity field of an abnormal deformation is a lin-
ear combination of abnormality factors (basis vectors) b;’s.
This model is graphically represented in Fig.2.

The main purpose of this paper is to recover the low-
rank space spanned by abnormal factors b;. One approach,
for example, is Monte-Carlo method to draw samples from
the graphical model shown in Fig.2 and estimate the pa-
rameters but due to size of our problem, it is not practical.
Another approach is to use Expectation Maximization (EM)
to derive parameters of the model. Instead, our model is a
Maximum A Posterior estimation (MAP) and it is based on
a recent paper by Candes et al. [4] that is one of the varia-
tions of Robust Principal Component Analysis. Under some
conditions discussed in [4], this method is able to recover
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Figure 2. Graphical model representing our probabilistic model
of the population. ¢; is abnormal deformation that is derived by
Lie group (G) Exponential (Exp(.)) of l; (p; = FExp(l;)). U
can be written as Zjil bjci; where b; are common factors (ba-
sis vectors) of abnormality and c;; is loading coefficients of b;
for the ’th subject. ¥ = Exp(s;) is normal deformation and
¢; = Exp(v;) is compositaion of these two transformations,
namely ¢; = 1; o ¢;; hence in our setting v; = l; + s;. Subject
images (I;’s) and the template image (71") are given. N is number
of subjects and K is number of basis vectors (common factors for
abnormality).

the low-rank space and corresponding corruptions (s;) ex-
actly. After deriving the low-rank space, b; and c;; can be
derive by any matrix decomposition (e.g. SVD).

To simplify our notation we introduce ® = [¢1 - - - dn],
S =1[si--sy, L =[l1-In],and V = [vg---vp].
Based on the graphical model in Fig.2, we can use MAP
estimation as follows:

p(ql'(V), S7 L|{Ii}i1\;17 T) X

p({]i}évzl |(I)(V)7 T)p(q)(V), S, L)

in which p(.) is a posterior density function of correspond-
ing variables. Since ¢; = Exp(v;), we will drop the depen-
dency on v; to simplify our notation.

To find (®*,L*,S*) that maximize the posterior prob-
ability, we can form an optimization as negative of loga-
rithm of posterior density, namely £(®, S, LI{;}Y,,T) =
- 1ng(¢'a Sa L|{Iz}£\£17 T):

(®*,L*,S )—argg}g?iﬁ(@,S,L|{[L}z:1,T)
- — AN
—argg}g}i[ logp({1;};=:(®,T) (la)
—logp(®,S,L)] (1b)

Formulation of the first Eqn.(la) comes from our noise
model in Fig.2. It can be basically viewed as image reg-
istration; we call it likelihood term which will be discussed
shortly. Eqn.(1b) is the decomposition step that is based on
[4] and will be discussed in section 2.3.

2.2. Likelihood Term

Assuming Gaussian noise on images, namely
p(Lil¢;, T) — T ~ N(0,0), we can write the likeli-
hood term simply as sum of squared differences of error in
matching:

DL}, T|®)= —logp({L:}iL,|®, T) 2

N
o Y (ITo¢7t = Lll3 + 11 0 és — TII3)
i=1

in which ||.||3 is sum of squared differences over a domain.
Since it is a generative model and we want to have forward
(Exp(v;)) and backward transformation Exp(—v;) to be
valid warpings, the second term in the summand is added
to symmetrize D(.,.). Similar approaches are proposed by
Christensen et at. [7] and Vercauteren et al. [18].

2.3. Decomposition Term

From here on, we assume that the velocity fields (v;’s)
and corresponding decomposition terms (I;,s;) are dis-
cretized into voxels, hence v;, [;, and s; are vectors namely
vi, l;, 85 € R which d is dimensionality (d = 2, 3) and
M is number of voxels of the images. We can decompose
prior over ¢;’s, P(®|T'), as follows:

—log P(®|T)xR(®(V))
=R(®(L,S)) « Rr(L) + ARs(S) (3)

in which R(.)’s are regularization functions for correspond-
ing variables and ) is relative weighting between different
regularizers. Each of the regularizer terms will be discussed
shortly.

Having the deformation fields parametrized by station-
ary velocity fields, we have already assumed that the veloc-
ity fields should not be too far from 0 € g. Following [4],
we choose ¢1-norm to encourage this property. More dis-
cussion on other choice of norm are beyond the scope of
this paper but this norm works well with the regularization
term we will use for L:

Rs(S) =Sl 4)

in which ||S||; is sum of the absolute values of elements of
the matrix S. It is known in statistical learning and opti-
mization context [ 10], [5] that ¢;-norm encourages sparsity
which might not be the case for s;’s, we handle this issue
by iteratively solving an optimization problem which will
be discussed later.

Having [; as a linear combination of b;’s (Fig.2) means
that it belongs to a low-rank sub-space however the rank of
L is not known a priori. One approach is to find a decom-
position (V = L + S) that minimizes the rank of L. It is



suggested and also natural to add the rank of L as a regular-
ization [9]. However, similar to £y-norm, rank of a matrix
has is a discrete quantity and it is challenging to optimize.
Recently, there has been some progress to address this issue
mostly in Compressed Sensing [3, 4] and optimization con-
text [9]. Similar to the relaxation of p-norm with ¢;-norm
([16]), it is suggested in literature (e.g. [9]) to relax rank
function with a matrix norm called nuclear-norm or (trace-
norm). Trace-norm is similar to £;-norm in spectral domain
of a matrix. If a matrix L € R™>*Y (N is number of sub-
jects, m = dM where d is dimensionality of images and M
is number of voxels of image), its nuclear norm is defined
as follows:

min {m,N}
Rr(L) = |[Lll, = trace(VLTL) = Y o7 (5)
i=1

in which VLTL denotes a matrix B such that BB = LTL
and o;’s are singular values of matrix L. Note that ma-
trix L does not need to be squared matrix. Nuclear-norm
encourages low-rank matrix similar to /;-norm that encour-
ages sparsity. Advantage of using this formulation rather
than optimizing with respect to basis vectors, b;’s, and cor-
responding loadings, c;;’s, is two-fold: 1) it is convex with
respect to parameter (L) while optimizing jointly with re-
spect to basis vectors (b;’s) and corresponding loading co-
efficients (c;;’s) is not a convex optimization problem, 2)
number of basis vectors, r, does not need to be known and
problem has one less parameter. Given Eqn.(4) and Eqn.(5)
regularization on velocity field can formulated as follows :

R(V) = Re(L) + ARs(S) =[[L]l + AllS]h

subject to: V=S+L (6)

Observe that as A decreases, Eqn.(6) favors a low rank solu-
tion (first term). Hence, one may concern about the choice
of A since it may arbitrarily bias the decomposition toward
or against low-rank term. However, as it is shown by Can-
des et al. [4], under some mild conditions on pattern of
sparsity of frue sparse matrix (Sg) and rank of true low-
rank matrix (L), it is enough to set A = \/ﬁ, then
minimizers of Eqn.(6) , (f;, S), are exact with probability
at least 1 — Bn 10 (3 is a constant). Thus, for all of the
experiments of this paper, we set A = ﬁ which d is di-
mensionality (d = 2,3) and M is number of pixels of the
images.

Algorithm 1 General Scheme
1. k<20
2: while not converged do
3t VR — argminy DH{LIY,, T|®(V))
4: (P, 8F+Y) — argming g ||L|l« + AS]1, st VEHL =
L+S
5: I;ﬁLl =1IFo @f+1, where <pf+1 = E:Ep(lf+1)
6: k—k+1
7: end while

3. Optimization

Assembling Eqn.(6,2), we have the following optimiza-
tion problem:

min - D(T, {l};,[®) + Ll + AlS[h

3y

subjectto:V =L+ S
¢i = Exp(v;) @)

Our approach to optimize Eqn.(7) is a block-wise optimiza-
tion method; namely we optimize with respect to blocks of
parameters and iterate between blocks until a convergence
criterion is met. For Eqn.(7), two sub-modules can be dis-
cerned: 1) warping step: optimizing with respect to ®(V),
2) decomposition step: optimizing with respect to (L, S)
jointly. We briefly summarize the algorithm in Algorithm1.
The warping step is almost similar to Vercauteren et al. [18]
except a simple regularization. Since in the decomposition
step ¢/1-norm is used for regularization of s;’s which encour-
ages sparsity and it might not be the case for normal defor-
mation, in the first iteration, part of »; may fall into ;.
Hence, we recover s; iteratively but as the iteration counter,
k, increases, k’th estimation of abnormal deformaion (@f)
should stay close to the previous estimation (gof_l); namely
k — oo, pF — goffl. We encourage it by a penalty term.

3.1. Warping Step

In this step, the following optimization problem must be
solved:

N
i D(T, {IF}N | |® k i3
m\}n ( ’{z zfll )+7 ;HU ||2
subject to:¢; = Exp(v;) )

where ||.||3 is £2-norm. The £5-norm is added because the
deformation () is already absorbed in I¥ and we expect
new solution to be as close to 0 € g as possible. v > 1
is a scalar value enforcing the v; — 0 as ¥Y* — oco. The
quadratic form does not significantly change the update
rules for the velocity term proposed in [18]; namely it adds
a linear term to the update rule of the backward term in [ 18]
and forward update rule and other parts of their algorithm



stay unchanged:

_ T - Iodilp) 5 Nrup) g
1712+ (4 + Z52) P (TR )
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where o;(p) = |T'(p) — IF o ¢(p)| is local estimate of noise
in p’th pixel of images and J* = —3(VI(IF o ¢(p)) +
VI'T) and u(p) is update for p’th pixel of velocity field.
For more detail refer to [18]. Observe that in the equation,
forward transformation (¢;) is regularized and since Eqn.(2)
is inverse consistent, the backward transformation (¢, bis
regularized implicitly by the procedure explained in [18].
Also notice that 8 can be optimized in a parallel manner.

3.2. Decomposition Step

The decomposition step involves solving the following
convex optimization problem:

min L.+ AlIS]

)

subjectto: VF*l =L 48§ (10)

This optimization problem can be reformulated as a
semidefinite program (SDP) [6] and can be treated as gen-
eral SDP problem and be solved by any off-the-shelf SDP
solver. However, most of the SDP solvers use interior
method that do not scale well for large matrices because
they rely on the second-order information of the objective
function. This is also the case for our problem. Computa-
tional complexity of the step direction using interior method
is O(m®) that renders it computationally prohibitive for
our cese. To overcome the scalability issue, we need to
use only the first order information and entirely harness
the special properties of Eqn.(10). This problem was ad-
dressed recently by Wright et al. [20]. Authors proposed
to use Augmented Lagrange Multiplier (ADM) to recover
corrupted low-rank matrices. They proposed very fast first
order method to solve Eqn.(10) for large matrices and they
successfully applied the algorithm for background model-
ing in video surveillance.
Following [20], augmented Lagrangian of Eq.(10) is:

AL.S,Y,u) = [Tl + S|
+ (Y, VF _L-8)
+ SV -L-s|E  ap

where Y and p are Lagrangian multipliers and (X,Y) =
tr(XYT) is trace of matrix multiplication between X and
Y (an inner product in a matrix space) and ||.|| 7 is Frobe-
nius norm.

The idea to optimize Eqn.(10) is as follows: for a given
Lagrange multipliers (Y, x), unconstrained Lagrangian
(Egqn. (11)) has a closed form solution for primal vari-
ables (L,S) using singular value decomposition (SVD)

Algorithm 2 Estimating low-rank and sparse velocity
fields: (L*,S*)
1 Yo =Y/ max (|[VE, [[VEH|o)
2:So=0;p00>0;p>1 k<0
3: while not converged do
4 (U, B, W) « svd(VF — Sy + 1 ' Yi)

5 Ljy U}—/";:l [E]WT

6: Skt1 ‘7:“]:1 [Vk+1 — Ly + M;lYk}

7 Yigr — Y+ pe(VF — Ly — Sgq)
8: k41 < PUK

9: k—k+1

10: end while

and soft-thresholding (Eqn.(12)); however, Lagrange mul-
tiplier should be chosen such that the equality constraint in
Eqn.(10) is satisfied; this leads to simple update rules for Y
and p. We iterate between these two steps until a conver-
gence criterion is satisfied. To achieve even more efficient
method, we used an Inexact Augmented Lagrangian Multi-
plier (IALM) proposed and explained in [15] that requires
one SVD steps per iteration which makes the algorithm very
efficient for large scale problems like ours. Due to space
limitation, detail of the algorithm is omitted and only gen-
eral scheme is provided in Algorithm2 in which svd(.) is
singular value decomposition and F(.) is soft-thresholding
function namely:

r—e if z>e¢€
Felel =<z +e if < —¢ (12)
0, otherwise

For more detail on Algorithm2 refer to [15].

4. Experiments

In order to evaluate the algorithm, two experiments are
conducted. In the first experiment, simple simulated im-
ages are created that satisfied the assumptions of the al-
gorithm. We will investigate how successfully the algo-
rithm can decompose the deformation into normal and ab-
normal deformations and factors out the normal deforma-
tions which are presumably due to normal variations be-
tween subjects. In the second experiment, we apply our
method on real anatomical MRI images of two groups of
brains: Alzheimer’s disease (AD) and normal control (NC).
To assess the performance of the method, we measure how
successfully we can differentiate between the groups with a
simple algorithm. In addition, we visualize group difference
by applying traditional voxel-based analysis and compare
areas appearing as group difference with those that have
been reported in the medical literature.
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Figure 3. Results of our decomposition method on simulated data (Right: Normal, Left: Abnormal). First Row: Original images (I;),
The second row: Forward transformation of the template (") with only abnormal part (L) of the velocity field (1" o go;l); the third row:
backward transformations of the original images (/;’s) with abnormal part of velocity fields (I; o ¢;). In fact ¢; compensates for abnormal
deformation in ¢’th and I; o ¢; shows how 7’th subject would have looked like if it had not had abnormality.

4.1. Simulated Data

Simulated images are divided into two groups: Normal
and Abnormal each consisting of 200 images. Normal im-
ages created by perturbing inward/outward the periphery of
an optimal template (7") that is a circle. This type of defor-
mations can happen in any place on the circle with random
magnitudes and they are considered as normal deformations
because they are not correlated (first row of right hand side
of Fig.3 shows some examples). Abnormal images undergo
two types of deformations, normal deformations which are
simulated in the same way as the normal group and abnor-
mal deformations that are correlated through three common
factors or basis vectors (b;’s in Fig.2). These basis vectors
resemble abnormal bulges in three places on the periphery
of the template (circle) . For each abnormal subject, loca-
tions on periphery of the template (2 out of 3) and magni-
tude of bulding are chosen randomly (some examples are
shown in the first row of Fig.3).

In this experiment, circle is used as the template that
is unbiased esimation of the normal population. The sec-
ond row of Fig.3 shows forward transformation of the tem-
plate (7") with only abnormal part (L) of the velocity fields,
To gp;l. We expect (; to capture perturbations of ¢’th sub-
ject up to the normal deformation. Since there is no ab-
normal deformations in a normal case, 7" o (pi_l is approx-
imately original template 7. For an abnormal case, there
exists abnormal deformation that can not be described by
1;’s. The third row of Fig.3 shows backward transforma-
tions of subjects. Due to absence of abnormality in the nor-
mal ensemble, I; o ; is approximately I; but for an abnor-
mal case backward transformation compensates abnormal
deformation and shows how a subject, I;, looks like before
abnormal deformation.

Notice that the algorithm is not aware of the class la-
bels (which subject is normal or abnormal) nevertheless it
is able to collect linearly correlated velocity fields into L
matrix successfully. We also tried small abnormal deforma-
tions that are not visually significant and the algorithm rea-
sonably recovers abnormalities. However, large abnormal
deformations are shown in Fig.3 for the sake of illustration.

4.2. Real Data

We applied the algorithm on a dataset of brain MR-
images consisting of two groups: 43 normally aged brains
as normal controls (NC) and 40 brain images diagnosed
with Alzheimer’s disease (AD). All images are skull-
removed and linearly aligned (affine registration) to a tem-
plate to eliminate major rotations or displacements. We
used the method proposed by Avants et al. [2] on the nor-
mal ensemble to build an unbiased template of the normal
group.

Fig.4 shows two examples from the AD group and one
example from the NC group and application of correspond-
ing abnormal deformation fields on the template image. For
a normal case, we expect almost no abnormal deformation
hence '~ T o (pi_l because we have assumed that normal
cases are not correlated and consequently corresponding /;’s
are small or zero. For a AD case, Top; ! presumably shows
corresponding abnormal deformation on the template and
I; o ; presumably compensates for abnormal deformation
but keeps normal anatomical differences intact.

Traditionally in voxel-based analysis, t-test is applied on
features extracted from deformation field (e.g. determinant
of Jacobian of a deformation field) to extract local expan-
sion or shrinkage of tissue [12]. Although it is possible to
apply similar method for this dataset or combine a feature



Figure 5. Applying t-test between AD and NC group: the gray matter of the template is deformed by abnormal part of the deformations
Tonm o p; 1. The figure shows areas of statistically significant difference (p < 0.005) on different sagitall cuts. Underlay image is the
anatomical template and the overlay image is t-value shown for p < 0.005.

Alzheimer's subjects

Normal subject

Figure 4. Two examples of Alzheimer’s cases and one example
of normal cases are shown. The first row shows a slice of orig-
inal images. The second row shows application of ¢; on I; that
compensate abnormality in the subjects (similar to Fig.3). In fact,
it shows how the cases would have looked like, if they had not
had abnormality. In normal cases, there is almost no change. The
third row shows deformation of the template with abnormal de-
formation (similar to the second row in Fig.3). the last row is
original unbiased template in the same slice. In the normal case
T~Toyp, ! but in the abnormal cases, they show correspond-
ing deformations of the subjects on the template image. Notice
changes in ventricle size.

extraction scheme with our method, we keep the feature ex-
traction as simple as possible and simply apply t-test be-

tween groups on the template deformed by the abnormal
deformations of each subject T" o ;" 1 If the generative
model extracted abnormal information in ¢;’s, we should
be able to find areas of difference that is consistent with
medical literature only by comparing 7" o <pi_1 between two
groups. Fig.5, shows areas of difference that are statistically
significant (p < 0.005) for gray matter (GM); for example
Hippocampuse is revealed as one of the areas undergoing
significant shrinkage between the NC and the AD groups. It
is also frequently reported in medical literature. Notice that
no explicit information from deformation field (e.g. deter-
minant of Jacobian) is used, nevertheless 1" o %—1 ’s suffices
to detect the group difference.

We also evaluated our method in term of classification
rate. We applied simple linear Support Vector Machine
(SVM) classifier with ¢;-norm regularization on gray mat-
terof T'o gpi_l; although extracted features are simply binary
image of GM mask of the template under abnormal defor-
mation, 84.3% of subjects are classified correctly in 10-fold
cross validation. Similar operation were applied on white
matter (WM) and ventricle (VN) tissue types and classifica-
tion rates were 81.9% and 81.9% respectively. Notice that
only simple binary tissue types (for GM, WM, or VN) are
used and no complicated feature extraction is applied to im-
prove the classification rate; yet it is possible to boost the
performance via other features (e.g. Jacobian of deforma-
tion field).

In order to compare singular vectors of L with those of
original velocity fields, we plotted accumulated sum of sin-
gular values of L and V for 83 eigen vectors. Since number
of subjects are less than the dimensionality, number of non-
zero singular values are at most number of subjects which is
83. Fig.6 shows that effective rank of L is almost 40 which
is equal to the number of AD subjects but normalized accu-
mulated sum of singular values of V grows almost linearly
meaning that adding a new subject almost adds new rank to
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Figure 6. This figure compares compactness of singular values of
L with that of V. The red dashed-line shows accumulated sum
of singular values for L normalized with |L||. and the blue line
shows the same quantity for V. Notice that although the algorithm
is not aware of subject labels (AD/NC), the effective rank of L
is almost number of AD subjects (40 subjects). The second row
shows that ¢; does not deform the template for a normal subject
as expected but an estimation based on L with similar rank as L
does not serve this purpose.

V. We also visually compare ¢; and reconstruction of ¢;
(we call it éi)on a normal subject. The number of singular
vectors used to reconstruct le is the same as effective rank
of L. While ¢; keeps the template almost unchanged for
a normal subject (as expected), qAbl tries to make the tem-
plate similar to the subject. This visual comparison shows
the unique role of ¢;-norm in Eqn.10 in modeling normal
deformation.

5. Discussion

In this paper, we assumed that the velocity fields of nor-
mal subjects have high variance but uncorrelated while ab-
normal subjects are correlated throgh common factors (low-
rank subspace) of abnormality. We proposed a decomposi-
tion that is able to discover this subspace from such hight
variance. It might not be very realistic to assume that there
is no subspace shared between subjects of the normal group.
This idea will be addressed in the future by introducing a
low-rank term for normal ensemble and adding smarter pri-
ors for abnormal group to confine search space of the low-
rank term for the abnormal ensemble. However, even such
simple assumption as ours can recover the subspace of ab-

normality relatively well.

We also aware that elements of time invariant velocity
fields cannot generate all elements of the Lie group G but
numerical results show that it is a reasonable approximation
for our application plus it keeps our computation efficient
and tractable.
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