

Tools for End-User Creation and Customization of Interfaces for

Information Management Tasks

by

KARUN BAKSHI

B.S. Electrical Engineering

University of Maryland, College Park, 1996

B.S. Computer Science

University of Maryland, College Park, 1997

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND

COMPUTER SCIENCE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING AND COMPUTER

SCIENCE

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2004

© 2004 Massachusetts Institute of Technology

All rights reserved

Signature of Author...

Department of Electrical Engineering and Computer Science

March 15, 2006

Certified by ...

David R. Karger

Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by ..

Arthur C. Smith

Chairman, Department Committee on Graduate Students

Tools for End-User Creation and Customization of Interfaces for Information

Management Tasks

by

KARUN BAKSHI

Submitted to the Department of Electrical Engineering and Computer Science

on March 15, 2006

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering and Computer Science

Abstract

Information based tasks rely on software applications that allow users to interact with

information in some pre-defined manner deemed appropriate by the application developer

or information/content provider. Whereas such an approach facilitates one way of

working with the information, it does not (and cannot) take into account the unique needs

of the user, e.g., the particular content of interest given the specific task being performed

and expertise of the user, information visualization and interaction preferences of the

user, etc. As a result, users must perform additional overhead information management

activities in working with the software tools in order to accomplish their particular tasks.

In this thesis, we advocate breaking the “rigidity” of such applications by allowing users

to create and customize their own task-oriented interfaces (information spaces) that

aggregate and present task-specific information and tools on the same screen.

In developing a system that allows users to tailor an information space in a manner that

suits their particular task and preferences, we recognize a set of desirable properties it

must have, and the need for it to provide the user customization control over three

primary aspects of information in their information space: content, presentation and

manipulation. Haystack, a generalized information management system, encompasses

many of the desirable properties at the system level and also provides many of the

building blocks that are required to give users greater customization control. We thus

approach our ultimate goal of enabling users to build and configure a personalized task-

oriented interface by providing them with tools situated in Haystack that allow

manipulating various primitives that control the three aspects of information spaces. A

discussion of the design and implementation of each of the tools is provided.

The above solution allows users to develop information spaces that better match their

unique conception of the task and eliminate much of the overhead resulting from “rigid”

information management tools, resulting in productivity gains in recurring or long-

running tasks.

Thesis Supervisor: David R. Karger

Title: Associate Professor of Electrical Engineering and Computer Science

Acknowledgements

This goal has been a long time coming, and I have many people (and beings) to thank for

their patience and support.

First and foremost, I would like to thank Professor Karger for giving me the freedom to

choose a topic and his guidance in developing the idea.

Thank you God, for the opportunity to complete this goal, in this fashion. I never

dreamed this would happen.

Thank you also to my parents and brother for their patience, support, encouragement and

inspiration not just for this academic achievement, but in all my endeavors over the years.

I cannot repay it.

Thank you also to all my teachers and friends over the years who invested time and

patience in helping me get this far. In particular, thank you to Prof. Sidiropoulos who had

faith in me and told me to “take it [GRE] again” so I could do better.

Thank you to all my friends in Haystack, who have helped me along in this program.

Thanks Dave for always answering my questions, always fixing bugs promptly (with a

smile, no less!) and ensuring the road was clear for me to make progress. I owe you.

Thanks also to Dennis for answering many questions on Haystack’s current design and

implementation.

Thanks to the MIT CSAIL Oxygen Project and the Simile Project for their funding in

conducting this research.

Finally, I am sure I’ve missed some people. So, thank you as well for helping me achieve

this goal.

 6

 7

Table of Contents

Chapter 1 Introduction ... 13

1.1 Use Cases .. 14

1.1.1 Managing a Software Project .. 14

1.1.2 Catching Up On News... 15

1.2 Current Nature of Information Management Solutions 16

1.2.1 Fixed Structure and Granularity of Information 16

1.2.1.1 Relevant Subset Specification... 16

1.2.1.2 Aggregation Specification... 17

1.2.2 Fixed Presentation of Information... 17

1.2.2.1 High Level Layout Specification .. 18

1.2.2.2 Aspect and Aspect View Specification ... 18

1.2.3 Fixed Operations on Information .. 19

1.3 Problem Definition.. 19

1.3.1 Problem Scope... 21

1.4 Thesis Outline ... 21

Chapter 2 Related Work... 23

2.1 Task-based Information Spaces .. 23

2.1.1 Taskmaster .. 24

2.1.2 Kubi Software ... 25

2.2 User Configurable Information Spaces ... 27

2.2.1 Implicit Configuration... 28

2.2.1.1 Web Montage .. 28

2.2.1.2 Personal Information Geographies.. 28

2.2.1.3 Microsoft Office Suite... 29

2.2.2 Explicit Configuration... 30

2.2.2.1 E-Mail Filtering... 30

2.2.2.2 SHriMP.. 31

2.2.2.3 Toolglass and Magic Lenses ... 31

2.2.2.4 QuickSpace.. 32

2.2.2.5 Web Browsers ... 32

2.2.2.6 Microsoft Office Suite... 34

2.3 User Creatable Information Spaces... 34

2.3.1 WWW Portals and News Sites.. 35

2.3.2 Virtual Desktops.. 36

2.3.3 User-Defined Database Views .. 37

2.3.3.1 Web Content Collection.. 38

2.4 Conclusion... 40

Chapter 3 Architecture... 41

3.1 Desirable Attributes... 41

3.2 Architecture... 42

3.2.1 Haystack .. 43

3.2.2 Context Customization Tools.. 45

3.2.3 Channel Manager .. 46

3.2.4 Information Space Designer.. 46

 8

3.2.5 Information View Designer... 46

3.2.6 Supporting Tools ... 46

Chapter 4 Channel Management.. 47

4.1 Techniques of Information Specification.. 47

4.2 Channels .. 48

4.3 Design.. 50

4.3.1 Channel Generation Infrastructure .. 50

4.3.1.1 Channel Ontology ... 51

4.3.1.2 Channel Definition Language ... 52

4.3.1.3 Channel Manager Agent.. 57

4.3.2 Channel Manager User Interface... 58

4.3.2.1 Ontology Browser ... 58

4.3.2.2 Channel Manager .. 60

4.3.2.3 Channel Viewer... 63

4.3.2.4 Set Transform Instance Viewer... 65

4.4 Implementation.. 66

4.4.1 Channel Manager Agent Implementation ... 66

4.4.2 Set Transforms and Condition Tests’ Implementation 67

4.4.3 Channel Manager Implementation .. 68

4.4.4 Supporting Tools’ Implementation ... 70

4.5 Conclusion... 71

Chapter 5 Information Spaces.. 72

5.1 Basic Capabilities.. 72

5.2 Design.. 73

5.2.1 Information Space ... 73

5.2.1.1 Underlying Ontologies .. 73

5.2.1.2 Information Space Designer View .. 74

5.2.1.3 Information Space Usage View... 79

5.2.2 Information Spaces Manager .. 81

5.3 Implementation.. 82

5.4 Conclusion... 84

Chapter 6 User Creatable Views.. 85

6.1 View Designers ... 85

6.2 Design.. 88

6.2.1 Underlying Ontologies .. 88

6.2.2 Metadata Lens View Part Designer View... 89

6.2.3 Metadata Lens View Part Usage View ... 90

6.2.4 Metadata Lens View Parts Manager ... 92

6.3 Implementation.. 93

6.4 Conclusion... 95

Chapter 7 Conclusion and Future Work .. 96

7.1 Contributions... 96

7.2 Future Work .. 97

7.2.1 Evaluation.. 97

7.2.2 New Avenues for Research ... 98

7.2.3 New Features for Current Implementation.. 99

 9

Appendix A – Available Set Transforms .. 101

Appendix B – Available Condition Tests ... 104

References ... 107

 10

List of Figures
Figure 1 Kubi Client User Interface.. 26

Figure 2 Microsoft Word Application in the Microsoft Office Suite of applications

customizes menus based on recent user actions.. 30

Figure 3 Microsoft Outlook Rules Wizard.. 31

Figure 4 Microsoft Office interface allowing users to customize the operations available

from toolbars ... 34

Figure 5 A sample customized MyYahoo! news portal.. 36

Figure 6 Screenshot of Ontology Browser .. 59

Figure 7 Screenshot of Channel Manager User Interface ... 61

Figure 8 Screenshot of Channel Viewer Tool... 64

Figure 9 Screenshot of Set Transform Instance Viewer Tool ... 66

Figure 10 Screenshot of Information Space Designer .. 75

Figure 11 Design view of the "My Info Space" Information Space 79

Figure 12 Usage view of the "My Info Space" Information Space................................... 80

Figure 13 Screenshot of Information Spaces Manager ... 82

Figure 14 Screenshot of Haystack showing various aspects of the entity Karun Bakshi . 87

Figure 15 A Metadata Lens View Part shown using the Designer View.......................... 90

Figure 16 An information space that allows the user to inspect three people using the

Friends View ... 91

Figure 17 Screenshot of Metadata Lens View Parts Manager .. 93

 11

List of Tables

Table 1 Available Set Transforms... 101

Table 2 Available Condition Tests.. 104

 12

 13

Chapter 1 Introduction

Advances in processing, storage and networking have made enormous amounts of

information accessible to people via the Internet (e.g., World Wide Web, e-mail, etc.).

Also, users can now rapidly create new information using sophisticated software

applications. Although a lot of information has become readily accessible and necessary

for daily work, the current infrastructure for managing information is ill-suited for

information-oriented activities.

The general information based task generally requires users to not only use diverse bits of

information obtained from these various sources, but many times also requires them to

use the same information in multiple tasks: the same information may need to be

visualized and used in different ways depending on the task. The primary means that

users have to manipulate the available information is software applications that generally

have a well defined domain of application, and hence only deal with information deemed

relevant to that particular domain. Inevitably, since there is no universal agreement on

what constitutes a domain, many applications overlap in their functionality. Furthermore,

the means of visualizing and interacting with information is also predetermined by the

application. Whereas applications may be designed to support a number of well known

tasks, they cannot be easily adapted to the user’s notion of a task which may be different

than that anticipated by the application developer. Accordingly, since the information is

not organized and presented in a manner that matches the task and user preferences, it

becomes difficult to use and users must expend additional time and effort in collecting

and extracting information relevant to the task at hand.

In this thesis, we outline a means for users to have greater control in defining how to

interact with information relevant for their tasks by providing appropriate tools that allow

them to create and customize information management interfaces.

 14

The remainder of this chapter is devoted to understanding some examples of the above

problems, and a closer look at what the underlying causes are. We then identify the

problem we wish to solve, followed by a discussion of a high level approach to its

solution.

1.1 Use Cases

We illustrate the above observations on information usability further by considering two

examples of information-oriented tasks. As demonstrated by these examples, a significant

divide exists between the user’s conception of information and task, and that of the

supporting information management solution. It is not always possible for the user to

impose her mental model onto the information in order to make it easy to assimilate and

use. As a result, she is forced to manually or mentally bridge this gap.

1.1.1 Managing a Software Project

Consider a software project manager who needs to manage the tasks her team does, as

well as the budget and schedule for the project. She might need various kinds of

information for the various tasks involved in managing the project, e.g., contact

information for team members, to-do list and assignment of action-items to individuals,

e-mails corresponding to the project, outstanding bug reports, a budget spreadsheet and a

schedule.

The current information management architecture supports the project manager’s tasks

through various applications modifying “their” data using proprietary formats. For

example, in order to react to a customer e-mail about a software bug, she must switch

from the e-mail client to the bug tracking software to enter a bug report. Then, she must

switch back to the e-mail client, recall which software developer would be best suited to

fixing the bug, look up his/her contact information, and send him/her a bug report

number. The project manager may also need to meet with the developer, and hence

negotiate a meeting time via e-mail, and update her personal calendar. After the meeting,

the project manager will need to switch to the scheduling application to update the project

schedule to reflect the time that will be consumed in fixing the bug. Another application

switch may be needed to update the developer’s outstanding tasks if the scheduling

software does not support to-do lists for team members. Finally, she must switch to the

spreadsheet software to update the budget on the project to take into account the

resources consumed by the bug fix.

As can be seen, a significant amount of user effort is spent in finding information,

mentally collating it and switching from application to application to perform various

subtasks, not to mention possibly re-entering it in various applications, thereby

duplicating data and potentially introducing a data integrity violation. In the ideal

scenario, the user would not be subjected to context switches as he/she reviewed the

project status or performed related tasks by having to go to different applications that

managed different aspects of the project.

 15

Thus, whereas the current information management infrastructure facilitates information

oriented tasks (by allowing it to be accessed and manipulated), it leaves room for

improvement in terms of ease of use from the user’s task perspective. Whereas, a single

application could be developed that included functionality for all project management

tasks, it would still not solve the problem:

• What if the project manager also wanted to use the new application’s

functionality, such as calendar and e-mail, outside of the project management

application, e.g., to see when her dentist’s appointment is, or to receive mail from

her spouse? Tracking such information in the project management application

would not make sense, and tracking it separately would require duplication of

stores as each application only maintains “its” data, thereby making it difficult to

have a consolidated personal calendar view.

• What if the project manager’s responsibilities changed, and he/she now had to

also track news about a competitor’s products? If this possibility had not been

foreseen by the application developer and captured in the new application, the

manager would have to return to “hopping” from the project management

application to the news tracking application.

• What if the project manager did not use all the functionality in the new enhanced

project management application? She would have to consciously and repetitively

ignore parts of the functionality and buttons and widgets that expose it.

Alternatively, she could be forced to use certain functionality unnecessarily: if the

only way to access bug reports view was based on specifying a bug severity level,

she may have to associate severities with bugs even though it was not required by

the company’s software process. Thus, there would be no way to customize her

view of the information.

We can conclude that building another “super” application does not resolve the problem.

1.1.2 Catching Up On News

Consider another example of a user interested in the task of catching up on the news.

Clearly, the notion of what does and does not constitute “news” is unique to the

individual. One person (e.g., an Indian immigrant from New Delhi) may be interested in

world headlines, business news, technology news, and New Delhi politics, whereas

another (e.g., a baseball fan residing in Maryland who happens to be a stock analyst for

the pharmaceutical industry) might be interested in Maryland state politics, baseball

news, and business and technology news from the pharmaceutical industry. Whereas, the

first person might be satisfied with CNN’s website for the first 3 items, it is unlikely that

he will get information on New Delhi politics from CNN. More than likely, he will need

to visit an Indian or Delhi-based newspaper’s website to get that kind of information. By

extension, we can view the general activity of getting information as one corresponding

to hunting and gathering; we must manually seek out what we need, since those providing

it do not (and presently cannot) cater to individual needs.

Had the problem been restricted to news personalization, it would have been considered

solved to some extent as evinced by the general purpose “information portals” such as

 16

Yahoo! that aggregate multiple information sources and provide a table of contents and

other options for managing and customizing the portal. In fact, in recognition of the

varying information needs of people, Yahoo! has different web sites for different

countries. Nevertheless, even for news, some problems remain:

• The user cannot aggregate information in case the content he is interested in is

spread across the various Yahoo! sites.

• The information may not be organized in a way the individual user sees it (i.e., his

world view), e.g., he may want to receive pharmaceutical industry news – both

business and technology related, rather than business news and technology news,

and having to sift it for information related to the pharmaceutical industry. The

news provider may not cater to individual industries or organize information in

such a manner as to easily allow the user to manually impose a different structure.

As a result, the level of customizability that is available to the user is limited.

• People’s information needs run deeper than conventional news. Even if CNN

allowed the user the complete flexibility to specify the subset of information

needed from the web site, clearly it cannot satisfy all of his needs, e.g., if he is

interested in the IEEE signal processing electronic magazine to stay abreast of

latest developments in the field as part of the “news” task, he still has to visit the

IEEE website and log in separately to access the content.

1.2 Current Nature of Information Management Solutions

We argue that the above problems in managing various aspects of information and tasks

fundamentally stem from the current static nature of information and the supporting tools;

In essence, information is “bottled up” by the application. Information producers have

most of the control over how information is packaged, presented and can be manipulated.

The information consumer whose productivity these decisions significantly affect has

little say in these decisions. We briefly discuss some of these decisions and the impact

they have.

1.2.1 Fixed Structure and Granularity of Information

The “pure” information that users require, devoid of its presentation, is perhaps the most

critical ingredient of the task that the user is attempting to accomplish. Yet, users lack

the ability to easily select what information to show and manipulate in a given context.

Much of this work is mentally done by the user by selectively remembering, revisiting,

focusing and ignoring information as appropriate. This method, however, does not scale

well in the face of growing corpora of information. We investigate the various

dimensions of this deficiency below.

1.2.1.1 Relevant Subset Specification

Clearly, not everyone is interested in all available information. Furthermore, at any given

time, a user is probably only interested in a further subset of items of general interest to

him/her depending on the task at hand. However, applications currently make it difficult

for a user to specify a subset of information of interest since the view of information has

been predefined, and is always completely populated. It might contain more information

than necessary, or the relevant information may be scattered across various views in the

 17

application. For example, in order to access information about all songs from a particular

artist, a user may visit the web site of the recording label that produces the artist’s

albums. However, instead of providing a listing of artists and their songs, the recording

label may provide information organized as albums it produced each year. For each

album, it also lists the artist as well as the songs. In this case, the user cannot impose a

structure on this information to aggregate and expose only the information of interest to

her. Instead, she must manually go through the information to select relevant

information. This process becomes problematic and inefficient when the corpus to be

accessed is large and the result set may be relatively very small, or when the same query

must be performed periodically. Part of the difficulty arises from the fact that in HTML-

based web sites (and in many other cases), the presentation is tied to the content, and

hence the semantics of the information are not exposed. In other cases, the information

may simply not be semantically tagged to support queries that extract only relevant

information.

Thus, the user cannot specify the subset of information of interest by specifying a

condition it must satisfy in order to be relevant; he/she is forced to view the entire corpus

even though the information set of current relevance is much smaller.

1.2.1.2 Aggregation Specification

Information is currently fragmented because of representation (e.g., different file formats)

or storage (e.g., different web sites), making it difficult to bridge gaps and place sets of

information adjacent (physically or logically) to each other. Thus, users cannot arbitrarily

aggregate or mix information from different sources, and co-locate it. The scenario

outlined earlier with the software project manager hopping several applications to access

information and operations is one example of this problem. Had the manager been able to

specify the necessary information required from various sources, she would have been

able to co-locate it to easily manage the project from a single UI. Furthermore, she could

easily respond to the challenge of additional tasks, such as tracking competitors’

products. Due to the fragmented nature, users are forced to collect information from one

tool, and enter it in another. Alternatively, if the same information is maintained by

multiple tools, the user must ensure that it is consistent across tools.

1.2.2 Fixed Presentation of Information

User control over information presentation is crucial, and in fact a significant portion of

the functionality in many applications is devoted to allowing users to modify the

presentation of the information in a manner consistent with how they want to manipulate

it. Generally, however, the subset of functionality available in this respect is limited to

that which is deemed useful by the application developer for the task at hand, leaving the

user unable to make these decisions based on personal preferences. Users should have

first class support (applicable to any information) for customization of information

presentation. We consider the problem of information presentation as consisting of two

parts: specification of high level layout and specification of the view of the aspect of

interest.

 18

1.2.2.1 High Level Layout Specification

Related to the problem of lacking the ability to aggregate arbitrary content, is the lack of

the ability to specify the layout of content. That this is a powerful and useful capability is

demonstrated by the ability of many modern software applications to allow docking of

content panes in different parts of the main application window. An example of such

capability would be the Microsoft Developer Studio software development platform

which allows docking of the compiler output pane, debug pane, source code browser, etc.

However, this capability is not supported uniformly in applications. Another example of

this capability resides in window managers that help users tile, cascade and otherwise

organize their windows in the available real estate. Thus, layout capability is not only

important in managing a set of related content within an application, but will also be

important for a priori, unrelated content that the user has juxtaposed and related for

his/her task.

1.2.2.2 Aspect and Aspect View Specification

Developing the previous idea of subset selection further, not everyone is interested in all

facets of the information being used. For example, in the case of contact information for

friends, even though the user may have information on the job title and place of work of a

friend, she may not be interested in seeing it listed in her address book; she may only

want the phone number and e-mail address listed. (Such a capability is currently allowed

in Microsoft Outlook.) Thus, the user may want to specify a particular aspect of the

underlying information to work with [21]. This idea can be employed for example to

keep information synchronized, where different parties view and/or modify different

aspects of the information, e.g., the software project manager can update the skill set

aspect of her team member, while the HR department may update the team member’s

employment status. Furthermore, shared information e.g., employee name may only be

modifiable by one, both or neither parties. Interestingly, the notion of aspects in this

sense is very similar to the notion of database views. However, aspects need not

necessarily be a subset of properties of the underlying entity. They can be some

computational closure on the entity, e.g., the age of the underlying entity based on its date

of birth and the current date, or the size of the underlying collection of items [21].

Currently, little information manipulated by users is amenable to this type of control. We

argue that the notion of aspects is sufficiently universal and should be available

uniformly across data stores.

Subset and aspect specification together can determine the content of the information, but

require a corresponding presentation specification to allow user interaction. Haystack

currently has the notion of classes of views based on view size that can be applied to

aspects as well [21]. However, as it stands currently in Haystack, all aspects are simple

collections of properties that show the value of the underlying property.

We take the ideas presented by Quan, one step further by advocating the need for

different styles of views for an aspect based on criteria other than size [21]. That is,

whereas, Quan has identified one axis of variation of views for aspects, i.e., size, we

suggest that the axes of type, and semantics of information are equally important, and

 19

other such axes may exist. For example, the items aspect of a list of coordinates may be

viewed as coordinate pairs, or drawn as a curve. Furthermore, users should have the

ability to select/create appropriate views for the aspect.

We posit that an extension of the document/view architecture used in software

application development should be available as presentation customization capability to

the user: any aspect can have multiple views as determined by the type and semantics of

the aspect. Users can be given control over these preferences via tools that understand the

semantics of the underlying aspect. Furthermore, for a given view, the user should have

control over the rendering preferences based on the presentation primitives used for that

view. For example, a view showing textual information should allow specifying font and

color preferences, and order and/or layout of the information, whereas a view showing

coordinate data rendered as curves should allow line style specifications such as color,

thickness, style, etc. Another example would be one where the tool for designing the

view provides particular widgets to interact with properties, e.g., a Boolean property can

be controlled via a check box (if it can be changed), a slider widget may make sense for

property having discrete values, or radio buttons may make sense if the property

semantics require only one value (from a set of valid values) can be specified.

Since content customization is not available uniformly to the user, the idea of view

specification of an aspect is missing to a large extent in current applications. Once again,

this capability is present in some applications, but only partially. For example, Microsoft

Outlook, in addition to allowing the user to select fields, allows the user to specify the

order of the fields and font/color preferences for contacts [9]. We argue that users should

have first class control over the presentation of an aspect, including its layout, rendering

and other appropriate preferences.

1.2.3 Fixed Operations on Information

Similar to the case in presentation, many decisions about operations associated with the

information are made by information producers: certain operations may only be available

in certain views, and users must thus adapt how they perform a task based on the fixed

views. Although there are exceptions to this (e.g., MS-Office), the user cannot add other

operations available elsewhere to a view, nor remove unused operations to reduce clutter

[8]. Furthermore, the application developer also generally decides which operations

should have which means of access, e.g., menu, toolbar, shortcut, etc. Thus, the user who

actually determines the task or the frequency of the operation invocation based on his/her

task has little say in this important decision.

1.3 Problem Definition

Based on the above discussion, we can conclude that information management tools that

the user needs to accomplish his tasks are rarely organized in a manner that matches how

the user thinks about the task and supporting information (either because of personal

preferences, task needs, etc.): the information is scattered across applications and is

presented as a one size fits all. Users are limited to how the information has been

packaged and their experience of it from the author’s vantage, rather than being able to

 20

impose their own world view on it; they are passive recipients of information rather than

active molders of it. As a result, users are forced to:

• manually collect information by opening various applications

• mentally select and associate items of interest, and reason with them, since they

cannot be juxtaposed

• Reenter the data elsewhere, acting as the glue between applications because they

do not understand each other’s native information format.

Productivity is lost as users are forced to work with the tools and not able to configure the

tools for the task at hand and their personal preferences.

Consequently, it makes sense for users to be able to aggregate the information needed for

the task into a single task-oriented interface in order to minimize the overhead associated

with preparing the information for the task. This capability becomes even more important

for tasks that are long-lived or recurring such that the user must access the relevant pieces

of information on multiple occasions.

What we have been arguing for is, in effect, task oriented interfaces. Current software

does not always match the task or the user’s current state-of-mind. Task-oriented user

interfaces (as opposed to functionally oriented interfaces that group related operations

and information irrespective of user tasks) recognize that information content,

presentation and manipulation control should be relevant to the task at hand. As a result

of recognizing this shift in UI design paradigms, researchers have attempted to study

common tasks in order to reformulate user interfaces to better correspond to the user

activities (some of which we discuss in the next chapter).

We take this idea one step further by advocating that a user should have the freedom to

define the task, and the ability to configure a set of content, presentation and

manipulation primitives required to create a corresponding task-oriented UI which

maintains up-to-date content that a user can return to. As a result, the user requires the

ability to perform such customization in a general manner, independent of the task,

domain, etc., since the user’s formulation of the task and supporting information and

operations is unique, based upon his/her personal preferences, conception of information,

skill level and other factors.

We define an Information Space as a user interface that serves as a single home

base/console/workspace that co-locates information and operations that are relevant and

related to each other somehow based on the user's view, and presents them in a way that

is easy for the user to work with. Thus, the problems we discussed above occur because

the user has no means of creating and working with an information space. Our goal then

becomes to find a way to break the application abstraction barrier, so that information can

flow freely into information spaces designed by users for their tasks.

 21

1.3.1 Problem Scope

The problem we pose above can be solved by developing appropriate tools for the user

that allow customizing which content is relevant to the task, how it should be presented,

and which operations are applicable. We posit that in order to provide such computational

support, the problems of fragmented information (due to storage location or

representation) need to be resolved, so that information can be modeled and treated in the

same way for use by the tools. Thus, it is critical that all information be rendered equal in

terms of representation and semantic specification.

The set of technologies corresponding to XML, the Semantic Web and Web Services

allow us to unify information in how it is represented and shared and render it amenable

to user customization. XML as a semantic markup technology removes the burden of

manually distilling a lot of information by rendering information machine processable

[1]. Furthermore, XML marked up information is stored as text, removing the problem

of proprietary formats. Thus, using XML, the problem of automation can be tackled, as

the semantics of information are rendered machine understandable. Widespread adoption

of web services, a means of exposing software functionality programmatically, should aid

in alleviating the segmented nature of information, and make it easier to federate stores

and aggregate information based on preferences [2]. Finally, the Semantic Web (metadata

annotated web content) will exploit XML and web services in exposing information

structure for machine processing, and allowing widespread programmatic access to it [3].

With these supporting technologies providing a common basis for all information, we can

begin to tackle the higher level problem: the domain independent tools and framework

required for user customization of context. The above mentioned technologies continue to

support us in this endeavor. For example, the semantic markup using XML exposes

information structure and can be used as labels to assist users in label-based queries that

can be quickly resolved over large corpora, thereby helping he user to selectively work

with information (“mold” the information).

Relying on the above technologies to solve the problem of information fragmentation, we

limit the scope of our problem to developing an information space customization

framework and supporting tools.

1.4 Thesis Outline

The rest of the thesis is organized as follows:

• Chapter 2 discusses related work in order to understand different solutions to the

problem we pose.

• Chapter 3 uses the knowledge gained from related work to come up with a set of

requirements and desirable features and outlines an architecture that satisfies these

needs. It also discusses the Haystack platform, how it helps us achieve our goal,

and capabilities in it that are currently missing.

• Chapters 4, 5 and 6 discuss the tools and framework that constitute a solution to

the above problem, and discuss the principles, concepts, design and

implementation behind each of the tools.

 22

• Chapter 7 concludes this thesis and discusses avenues for future research.

 23

Chapter 2 Related Work
In the previous chapter we identified a number of current weaknesses in the information

management tools, and motivated the need to increase the level of usability of

information from a user’s perspective. To this end, we advocated the use of information

spaces: task oriented interfaces that capture and appropriately present the information and

tools a user requires for an information related activity. Furthermore, we supported the

need for users to be able to define the task, and have appropriate control over customizing

the corresponding information context.

In this chapter, we examine previous related work that collectively points to this

conclusion and justifies the existence of the problem. Furthermore, we argue that in

situations where the problem of context customization may not have been explicitly

identified, the problems that have been uncovered are in fact symptomatic of this

underlying problem and could be solved by solving it. In the process of reviewing prior

art, we also inspect the solutions that have been employed in tackling it. As a result, we

obtain insights into designing a solution that allows general creation and customization of

interfaces for information-based tasks.

We organize the related work into three main sections that represent a logical progression

of thought; a spectrum capturing the shift in control from developer-defined to shared, to

user-defined (and developer exposed) information interfaces.

2.1 Task-based Information Spaces

In this section, we discuss two examples of previous work that have clearly identified the

need for a task-based interface that captures and co-locates appropriate resources when

faced with an information-based task. The first example below is a research project,

whereas the second one is a current commercial effort. Both examples are situated in e-

mail (the canonical information management task), and interestingly tackle the same

problem via different implementations, reinforcing our prior assertion that no perfect task

interface exists, and hence the power to create and customize it should be in the hands of

 24

the ultimate user. Nevertheless, they both seek to exploit the power of a task based

interface by providing a single, convenient interface that co-locates appropriate

information and tools.

Both examples below rely on the feature of e-mail as a receptacle of various kinds of

information, and provide information management functionality integrated into the mail

client. Since e-mail offers a generic information sharing medium and related software is

inevitably involved with some type of information management, we can safely consider

e-mail management as a proxy for the general information-based task. Thus, by extension

of the above argument, we assert that task-based interfaces are useful for information

management in general.

2.1.1 Taskmaster

Bellotti et al. argue that e-mail users feel “overwhelmed and daunted by the time it takes

to deal with all the work coming in through this medium.” [4] As a result, they argue, the

e-mail interface must be overhauled as it has been “co-opted … as a critical task

management resource” and “e-mail tool features have remained relatively static in recent

years, lagging behind users’ evolving practices.” They cite existing solutions to the

problem as merely addressing some subset of the problem or amassing uncoordinated

features. For example,

• Projects such as Re:Agent and MailCat only support with filing and

organizational aspects of e-mail/project management.

• The Microsoft Outlook e-mail client smears the project context across the inbox,

outbox and calendar which can all, only be viewed separately.

Hence, realizing that simply providing the ability to manage information does not imply

that managing information is easy, they advocate re-designing the e-mail interface for

project management by “embedding task-centric resources directly in the client.” As

such, they reach a conclusion similar to ours: unless the mismatch between users’

changing needs and task conceptualization and that of the tool is alleviated, users’

difficulties and feelings of overload will continue. Furthermore, the problem should be

rectified by a task-based interface that makes relevant resources easy to access “at a

glance, rather than scrolling around inspecting folders,” i.e., the current UI must evolve to

handle the evolving user tasks (from e-mail to project management).

The solution to the aforementioned problems, proposed by Bellotti, et al., is Taskmaster,

a Visual Basic add-on for the Microsoft Outlook client designed based on a field study of

the nature of task management activities in mail clients. Taskmaster primarily takes

advantage of the heuristic that items in the same e-mail thread generally correspond to the

same task, i.e. are the same thrask. Thus, (incoming, outgoing and draft) messages are

grouped into project context thrasks based on such message data. However, users are

allowed to adjust such automatic categorization by manual intervention. As a result,

users see lists of thrasks, and can select a thrask to see a list of associated items, one of

which can be previewed. Furthermore, realizing the first class status of other entities such

as attachments and web page links in the task of project management, it allocates a

(separate) thrask entry for each such items, thereby not only co-locating relevant content

 25

within the thrask collection, but also allowing more granular control over the project

context’s content. The attachments can be viewed in-place, without launching separate

applications. Finally, Taskmaster allows the user to view summary information computed

based on underlying data, e.g., nearest deadline for a thrask, contact information for

people involved in related messages, etc.

The Taskmaster system was evaluated by users in another study and found to be useful

on all three fronts. Certainly, the notion of creating a collection of related content is a

powerful one that minimizes searching for relevant content by users, thereby increasing

the usability of the information. Also, equality of content status bestows simplicity of

interaction with the information, and selecting an aspect for it simplifies assimilation of

information and reduces time spent on the task.

Although the ideas embodied by Taskmaster do increase usability of information from

the perspective of content customization, users have little control over the layout or other

presentational or manipulation capabilities. Even for content, the task is assumed to be a

single project generally captured by a message thread or messages sharing a subject; an

implicit assumption that that is the primary granularity of work that users will use. Thus,

it relies on heuristics based on well known user behaviors for its advantage. As a result,

it falls into the same kind of trap that the earlier e-mail interface faced: lack of flexibility.

Although the proposed task interface solves the problem at hand (managing individual

tasks), it would not work well if the user’s primary collection of interest had different

semantics, e.g., messages that were by anyone on the project team, who works for a

different company. In such a case, the user would need to manually create and maintain

the collection. Given one set of default semantics for collections, it is difficult to capture

sets of items into a context that share a different relationship. Furthermore, multiple sets

of related information cannot be related or viewed simultaneously. A similar argument

can be made for the ability to specify the computation on the information. Users are

limited in the types of content customization that are expressible.

2.1.2 Kubi Software

Collaboration software tends to exemplify task-based interfaces. The primary purpose of

such software is to allow a single point of access to aggregated content and tools with

respect to a common goal/project/task in order to minimize the context switch overhead

experienced by users when gathering the relevant information. Such tools rely on stores

that co-locate related information of pre-defined types, and provide some level of

integration with the user by notifying him/her via e-mail of changes to the collaborative

workspace/workflow information. A recent, more market driven, effort by Kubi

Software takes this idea one step further by attempting to create “collaborative email”;

collaborative project workspaces using the stores of popular e-mail clients (Outlook,

Lotus Notes) that employ the extant e-mail messaging substrate and thereby further

minimize the context switch overhead between the collaboration software and e-mail, for

people who “live in email.” Here, the fundamental motivation for the product is to co-

locate the event notification facility of the collaborative software (e-mail) with the other

capabilities and further simplifying the user’s task.

 26

Similar to Taskmaster, Kubi Software is pursuing a commercial effort to simplify project

management in e-mail [5]. Even though Kubi’s product, Kubi Client (see Figure 1),

tackles the same problem, it treats the problem as one of collaborative project

management in a business setting, as opposed to a single user’s project. Thus, it hides and

simplifies data replication. Nevertheless, from the perspective of any single e-mail user,

the problem is still one of supporting efficient project management by making the

relevant content and tools readily accessible.

Unlike Taskmaster, Kubi employs a different ontology for project information. The

primary abstraction is one of a project, which has associated contacts, discussion,

documents, events and tasks. This information is then co-located on the same canvas in

little portal-style windows, in order to provide a task oriented console for the project. A

screenshot of the Kubi user interface for MS-Outlook is provided below.

Figure 1 Kubi Client User Interface

Like Taskmaster, Kubi Software’s solution also tends towards a task based interface that

aggregates and displays relevant content and tools in a useful manner to the user.

Although Kubi attempts to solve the same problem as Taskmaster using a similar task

based approach that aggregates and presents relevant content to the user, its solution is

 27

significantly different; the data model and user interface share little in common.

Interestingly, however, it suffers from the same types of defects that Taskmaster suffers

from: the developer decides what is relevant and useful, i.e. developer imposed, single

task ontology and model.

A Kubi Software enhanced e-mail client provides only pre-packaged types of information

that can be used in fixed manners, thereby rendering the collaborative software usable in

a single, or perhaps several closely related domains. For example, the Kubi Software

solution is limited in the types of information that can be used in a project via folders:

contacts, discussion (threaded e-mail), documents (attached files), events (calendar), task

list (To-Do items), participants (contacts) and user-defined folders. Notably, all

information corresponds to the inherent types pre-defined in the Personal Information

Manager (PIM) like e-mail clients by a different vendor, albeit allowing dynamic

selection of actual folder contents based on metadata that defines project context. The

only way other information can be made available in the project context is if it is

packaged in an appropriate file that the user explicitly specifies in a user-defined folder.

Thus, Kubi Software’s solution provides limited content customization in the

collaborative task of team-based business projects; if a project required a blog or the real-

time stock price of a company to be a critical knowledge input to the project, it could not

be easily supported with the current project ontology since the underlying e-mail client

does not support these notions of information. The software vendor(s) would have to

make appropriate changes for this to be possible, and the user would have to wait for

someone to “develop” software for his/her needs.

Furthermore, Kubi Software’s presentation customizability is generally minimal: the UI

views used to render this information reuse existing views (supplied by the e-mail client)

in a fixed layout scheme. What if different people in the team want to have different

views corresponding to their role in the team, e.g., marketing executive vs. engineering

lead? Surely, these people would be more interested in certain aspects of the project’s

progress than in others.

2.2 User Configurable Information Spaces

It is not sufficient to simply present aggregated information and tools in a task-based

interface with appropriate presentation to the user. Due to personal preferences,

situational demands or varying task demands, users require the ability to further

configure their information environment with simple interaction. Thus, a superior

solution to the users’ task needs would be to allow interfaces that can be configured. In

this section, we discuss several examples of user configurability in information based

tasks drawn from various domains. Although not all examples we consider below are

comprehensive task-based interfaces that make all relevant resources for the activity

readily available, they all attempt to provide some level of task support for users’

information activities by providing appropriate customization and control over some

aspect of information content, presentation or manipulation. (In fact, we argue that they

solve problems that are symptomatic of the problem of context customization.) The

examples are organized into two categories: Implicit Configuration and Explicit

Configuration, and are discussed further below.

 28

2.2.1 Implicit Configuration

Implicitly configurable information spaces adapt to the needs of the user without

requiring manual specification by the user. Thus, they adapt based on user behavior to

better support the task. We discuss a few of these adaptive user interfaces here, while

realizing that a lot of work has been performed in this important area.

2.2.1.1 Web Montage

Inspired based on the observation that world wide web access generally follows repetitive

patterns, Web Montage is a system that was developed to aid the user in such “routine

web browsing” (the task of regularly viewing particular web content, e.g. news, online

documentation, comics) by making the most relevant information readily available during

routine web excursions [6]. It accomplished this by automatically building a new

personalized portal for the user based on his or her predicted context. Thus, if the user

was predicted to be in the “developing software” context, online documentation was

more likely to be available, as opposed to the “lunch” context, when news and comics

might be available. The user context, in turn, was predicted based on a user model relying

on various features extracted from web access logs including “time of day, the time since

last access, and the recent pattern of topics.”

Both the content and the layout of the portal were based on a prediction of the user’s

current context and the predicted value of previously accessed information or topics in

that context. As a result, the user would not have to go seek out the information using

fixed patterns of web access. Instead, Web Montage would aggregate and present the

most relevant information in the most relevant form. For example, if the information was

highly relevant, it would be coalesced into the montage directly. On the other hand, if it

was less useful, or the overhead of navigation was acceptable, then only a link would be

embedded. Of course, not all prior information was necessarily a candidate for inclusion,

nor did it need to have been previously accessed (e.g., it could be the same topic as

previously accessed content).

In some sense, by using a start page for the browser along with the Web Montage system

adapting the page to suit the task it felt the user was currently involved in (within the task

of browsing the web), the web browser appeared as an implicitly configurable

information context. As a result, the user implicitly adapted the web browser to the task

at hand: the user behavior was used to predict utility of content, as well as best

presentation and layout of the content.

2.2.1.2 Personal Information Geographies

For the task of researching and learning about a new topic over an extended period of

time by issuing multiple search engine queries, Bauer has proposed the use of an

“information map” to help not only aggregate relevant results from multiple, semantically

similar queries on a single map canvas (highlighting the importance of organizing some

knowledge with respect to other knowledge), but then also to allow its presentation to be

personalized as the user’s “sensemaking process” unfolds over time, by highlighting

‘mountains’ of information deemed relevant and diminishing areas of the map considered

unimportant [7]. Hence, this approach attempts to implicitly support both content and

 29

presentation customization for the user’s information space pertaining to the research

task. Furthermore, Bauer points to the need for a repeatable “reference frame” that a user

can return to over time when working on the same research task (an information space)

and the fact that it is the user’s use of information (i.e., task) that defines its reference

frame. As a result, we realize the need for presentation that is both session (i.e., is

updated based on previous manipulations or changes since previous interaction) as well

as person specific (i.e., the same information is presented differently based on how a

person interacts with it, e.g., different nodes in the information map are highlighted

differently based on how the user’s sensemaking process unfolded).

2.2.1.3 Microsoft Office Suite

Office document authoring software applications have evolved over the past decade and a

half to provide significant capabilities to their users. The additional functionality has

resulted in ever growing menus and toolbars placing a significant cognitive burden on

users to navigate and learn this complex maze of functionality. Depending on where they

are in the learning curve, users may only use a subset of the available functionality, or

prefer one way of accomplishing a goal even though multiple means of accomplishing it

are available. As a result, much of the remaining interface is useless as far as the user is

concerned, and just gets in the way. Realizing that this is an undesirable cognitive burden

on the users, these applications have incorporated adaptive features such that only what is

deemed relevant to the user is shown.

Microsoft Office is one such suite of software applications that present the user with

tremendous document authoring power [8]. In order to make the user experience in

accessing functionality simpler, it incorporates many “intelligent” features that support

the user in his task of editing an office document, presentation, spreadsheet, etc. by only

showing those operations that the user has used recently. For example, when a menu is

opened, the recently used operations are shown aggregated at the top, with an affordance

to view all items in the menu (see Figure 2). In this manner, users are not distracted by

menu options they presently do not need or understand. Similarly, given limited screen

real estate, toolbars available in the applications reconfigure themselves to ensure that the

items the user has used in the past will be visible, i.e., rather than always hiding the

rightmost items, they hide the ones the user has not used, in order to move items the user

has used to the left, thereby increasing their chance of remaining visible. As a result, the

applications “conform” to the user and the task at hand, aggregating relevant

functionality to effectively transform an application supporting multiple tasks to become

focused on supporting the user in his or her current task.

 30

Figure 2 Microsoft Word Application in the Microsoft Office Suite of applications customizes menus

based on recent user actions

2.2.2 Explicit Configuration

We define explicitly configurable information spaces as those that allow the user to

explicitly specify his or her preference about some aspect of predefined or pre-

implemented functionality in the information space, rather than deducing the preference

based on user behavior. Explicit configuration is widely available in applications, and is

indicative of the users’ need to personalize their interface to provide resources that better

support their task. We discuss work that can be characterized as allowing the user to

customize the content, presentation or manipulation afforded by the interface. In the

process, we understand how seemingly unrelated problems can be cast into the need for

context customization as well as ideas and techniques to employ in such a solution.

2.2.2.1 E-Mail Filtering

Most e-mail clients today feature some functionality to support automatic filing of

messages and/or spam filtering. Microsoft Outlook is one such mail client that supports

user-defined rules that trigger based on message arrival or message sending events [9]. A

user may define a rule (see Figure 3) to check a set of (conjunctive) conditions based on

message properties, and then perform one or more (conjunctive) actions based on

whether the message satisfies the condition clause. Among the possible actions, the user

can specify that the message be placed in a particular folder. As a result, the user is able

to create a collection of messages that are related to each other by virtue of the fact that

they satisfy a particular condition (the rule’s condition clause). Thus, the user is able to

customize the information content of a folder, and create a rudimentary context

containing related information each time he/she switches to view the folder.

 31

Figure 3 Microsoft Outlook Rules Wizard

2.2.2.2 SHriMP

SHriMP (Simple Hierarchical Multi-Perspective) Views is a research effort directed at

enhancing information visualization for large and hierarchical information spaces such as

software design, knowledge management and flow diagrams [10]. It makes available

tools to visualize information at various granularities within otherwise high resolution

information spaces, e.g., it provides animated zooming and panning capabilities to

“provide continuous orientation and contextual clues for the user” and to select

information of interest. In addition to controlling content, SHriMP goes one step further

by also allowing the user to determine which perspective he/she wants to use when

viewing the detailed information. That is, it allows the user to customize the presentation

of the information to the particular task at hand, e.g. viewing the source code for a class

versus its documentation. Furthermore, the user can change between views as necessary

with low context switch overhead.

2.2.2.3 Toolglass and Magic Lenses

A similar idea was embodied in the Toolglass and Magic Lenses See-Through Interface

developed at Xerox PARC that allowed the user to interactively change his/her view of

the information (space) by placing a see-through widget/lens on some underlying

information entity to “reveal hidden information, to enhance data of interest, or to

suppress distracting information” as needed for the low level manipulation task at hand

[11]. Such an interface allowed the user to easily customize the presentation of the

underlying information depending on the serendipitous change of operation he/she

 32

wanted to invoke or how he/she wanted to conceptualize the underlying information,

resulting in quicker, easier and less error prone task completion.

2.2.2.4 QuickSpace

Users evidently require control of not just additional relevant information, but also its

presentation in an information space to make effective use of it to complete their tasks.

Several research efforts have focused on providing users greater control along this axis of

their information space. One example of this is the QuickSpace project at the Georgia

Institute of Technology, which implements simple window management operations to

allow users to quickly allocate greater space to their primary operating window while

maintaining the overall layout of the desktop [12]. Interestingly, this solution is provided

in response to the problem of not being able to “efficiently display all of the information

available in …applications” on the desktop (all presumably opened to complete a task

requiring information distributed across application boundaries); another instance of the

need to aggregate relevant information. Furthermore, the solution attempts to do so while

avoiding disturbing the user context as partially captured in the relative locations of the

windows and their visible content, i.e., maintaining “information preservation.” Future

work recommended for the project includes other features that maximize the amount of

space dedicated to relevant content for the task at hand, while minimizing irrelevant

content; molding the physical space to conform to the relevant information.

2.2.2.5 Web Browsers

In certain cases, where the tool used to view information is third party and unaware of the

domain of the information, it is difficult for it to provide the right means of specifying

content of interest, i.e., it cannot provide powerful/useful query primitives since it is not

aware of the structure and semantics of the information (or the structure and semantics

are not regular). In such cases, the best the tool can provide is presentation

customizability to support individuality of tastes. Web browsers constitute one such

example. Web browsers may be familiar with the structure of the information they

present, but not the semantics thereof. In fact, HTML, the World Wide Web’s lingua

franca, was intended to capture semantics of the underlying documents. Nevertheless,

the semantics it captured related to document structure and were intimately related to

(and subsequently interpreted as) its presentation (e.g., tables, paragraphs, lists, etc.) not

semantic structure. Thus, current web browsers are in the rare category of software that

only understands presentation structure, not the semantic structure, of the information and

hence primarily supports presentation customization for the task at hand, i.e., browsing

information having unknown semantics. Examples of this type of software include

Internet Explorer and Netscape Navigator. Both browsers allow the user to specify fonts

and colors for text and hyperlinks, although only Netscape Navigator allows the user to

override the web page author’s presentation settings. Both browsers also allow the user

to open a hyperlink in a new window and hence co-locate (likely semantically related)

information. In addition, each browser supports additional presentation capabilities that

are not necessarily shared, e.g., coloring visited hyperlinks, smooth scrolling, playing

animations, etc.

 33

The browsers’ presentation capabilities are limited, apply uniformly and do so only at the

highest granularity (MIME type or a webpage). For example, a color specification for

hyperlinks applies to all hyperlinks on the web page, a specification to automatically

playing a sound or video clip applies to all clips, regardless of where or how they are

encountered and a user cannot specify that all names in the web page be shown in bold.

Presentation customizations that support individual viewing preferences and distinctions

at a level of granularity lower than a web page currently are not widely supported

because of lacking semantics (e.g., the browser does not know which pieces of text are

names). Browsers could be made capable of supporting other presentation

customizations, related to the semantics it does understand (e.g., paragraph, hyperlink

coloring, etc.), but those are mostly structural semantics, not domain semantics. Most of

these possibilities are not implemented, precisely because structural semantics do not

necessarily (in fact, rarely) correspond to domain semantics and hence users gain little by

being able to customize them. The majority of the presentation decisions in any web

page are made by the author since he/she best understands its semantics. Thus, lacking

semantics force end users to not only use and experience the information content as the

author conceived it rather than as they do, but also its presentation.

It is interesting to note that the failure of users to shape their information space and

experience due to lacking semantics is significant enough to spur major areas of research

in capturing or assigning additional semantics to the content on the World Wide Web.

Two efforts are notable in this respect: the Semantic Web and wrapper induction. The

Semantic Web seeks to allow authors to annotate information with metadata such that it

is rendered machine understandable in terms of domain semantics and not just structural

semantics, thereby allowing the browsing tool to offer the user greater control over the

content and presentation of the information (in addition to other benefits such as agent-

based automation) [3,13]. In wrapper induction, software or the end user associates

presentation and structure currently specified by the content provider on web pages as a

proxy for semantic structure which is used to infer additional underlying domain

semantics thereby enabling greater user control over both content and presentation. An

example of wrapper induction would be attempting to infer from a webpage listing

movies that all items in bold followed by a comma separated list correspond to a movie

title in bold, followed by principal actors in the movie, thereby allowing the user to

specify that only movie titles from the webpage are to be shown, and all other

information is to be suppressed [14].

Thus, we realize that an understanding of semantics is crucial to allow exposing

presentation customization functionality insofar as understanding them allows specifying

what the presentation specification applies to. However, specifying what a presentation

specification applies to is equivalent to specifying a subset of the content, and thus

reduces to the problem of content customization – a means of specifying content of

interest. Thus, information semantics are crucial to meeting our goal of allowing the user

to create and customize an information space by controlling both the content and

presentation of information.

 34

2.2.2.6 Microsoft Office Suite

Similar to the idea of implicitly modifying menu items and toolbars, the Microsoft Office

Suite of products also provides the user with the ability to explicitly configure various

aspects of the applications [8]. For example, users can create/manage their own toolbars

by specifying a set of most frequently used task-specific operations to aggregate that may

not otherwise be implicitly co-located since they reside on different menus or toolbars

(see Figure 4).

Figure 4 Microsoft Office interface allowing users to customize the operations available from

toolbars

Furthermore, the user can specify which toolbars to show at any given time. Finally,

users can save these (and other) preferences in document templates. As a result, starting

with a particular document template reconfigures the application to be task focused for

that type of document. For example, the user can specify which toolbar should be

available in a particular template by default, thereby placing the corresponding operations

within easy reach upon application start up.

2.3 User Creatable Information Spaces

Having surveyed previous work that supported the notion of developer specified task

centric interfaces as well as user configurable interfaces, we look at some information

spaces that combine the two ideas where the developer exposes primitives that a user

employs to create the context as he or she sees fit. Thus, the user is explicitly aware of a

creation phase for the information context requiring relatively complex interaction, which

is separate from a usage scenario. These examples acknowledge the need to give the user

 35

control of information context creation when he/she really is the best person to be

creating it.

2.3.1 WWW Portals and News Sites

Content portals on the World Wide Web and news organization web sites nowadays

provide a rich set of primitives that can be used to create personalized web pages that

allow the user to filter and/or aggregate the content provided by the underlying

organization(s). Many examples of such personalizable web pages are available, and we

discuss one of them here: the MyYahoo! portal (see Figure 5) [15].

Yahoo!, a popular news, information, communication and e-commerce web portal, offers

individuals the ability to configure the available information resources on the portal based

on their personal needs (see figure below). Thus, the user has the ability to specify the

content and presentation settings for MyYahoo!. Yahoo! offers modules of information

that can be selected and grouped together to create contexts of related (as the user sees it)

information or activities, e.g., a user defined personal information page consisting of

mail, calendar, address book, and weather. The user may also select from pre-configured

contexts roughly corresponding to newspaper sections that subscribe to certain modules

of information, e.g., Finance, Technology, Entertainment, Travel, Sports. Furthermore,

the user may specify parameters for the modules of information, e.g., which news sources

to get information from, which companies to track, which zip code to get weather for, etc.

Finally, each context can be configured to have a refresh rate, name, etc.

In addition to allowing user sophisticated control over information content and

organization, MyYahoo! also allows the user significant latitude in its layout and

presentation. For each context, the user may choose between a two (one narrow, one

wide) or three column (two narrow, one wide) layout. The user may specify the order of

the columns, the content of the columns, and the order of the contents of each column for

a given layout scheme. Finally, the user has the ability to specify the background

color/wallpaper, and the text font and color for the headings, sub-headings, text and

hyperlinks, etc. for the sections. Oddly, the user can also “detach” certain information

modules, so that another browser window showing just that module appears in order to

allow the user to select a link on the new window and have it appear in the original

window. However, this window management technique is not consistently available for

all information modules.

 36

Figure 5 A sample customized MyYahoo! news portal

2.3.2 Virtual Desktops

Given the application driven nature of information management today, users generally

have various applications open in order to access relevant content and presentation when

accomplishing a task. It is not difficult to imagine computer desktops as capturing the

notion of an information space that capture the content, tools and presentation aspects of

the task. Not surprisingly, previous work has attempted to define the granularity of a user

task at the desktop level, and shared a similar goal of allowing a user to be able to specify

the required information content, presentation and tools separately for each task.

Card et al. propose such a virtual desktop workspace interface based on a Rooms

abstraction [16]. Each room (or virtual desktop) corresponds to a separate user task

workspace and specifies which tools are open, as well as the layout and presentation of

their windows. Rooms may share windows, but the window presentation and/or location

may be specific to the room. Furthermore, rooms that capture common tools and

 37

information may be included in multiple other rooms to serve as common “control

panel[s]”. The rooms also support a type of tool clipboard that allows users to switch

between workspaces, while carrying their tools with them. Finally, just as tasks may

have subtasks, or other relationships to other tasks, rooms can capture these relationships

via the notion of Doors. A door allows a user to exit one workspace, in order to enter

another (either forward, or backwards). In order to support easy orientation and

navigation in such a connected environment, the system provides miniaturized

renderings/previews of workspaces for easy identification, as well as a means of

inspecting the graph connectivity of the rooms. Finally, rooms or subsets of rooms may

be saved, and shared with others.

The Rooms system is interesting in several respects. Some aspects of the system are

implicitly determined. For example, when a user moves or resizes windows in the course

of the task, these settings are captured automatically, i.e., the user need not be aware that

he/she is setting up the room. Nevertheless, other aspects such as included rooms or

connecting doors must be explicitly specified. Also, the ability to link tasks is powerful

as it allows easy access to related workspaces, thereby facilitating hierarchical task

subdivisions (or other task conceptualizations) that make it simpler to accomplish and

think about a complex task.

2.3.3 User-Defined Database Views

Database querying and view definition has been a long standing research area in

Computer Science. Earlier databases, primarily relational in nature, required database

administrators to be proficient in the database query language and appropriate schemas in

order to retrieve relevant information or set up pre-defined views for other users. With

the advent of the World Wide Web and other queryable multi-media repositories that

require direct user access, being able to shape the result set of information via a good

query/result interface has steadily gained more attention. Delaunay
MM

 (
MM

 stands for

multi-media), a querying framework for distributed, heterogeneous multi-media data

stores developed at the Worcester Polytechnic Institute, is one such attempt at allowing

user configurability in result viewing [17]. Delaunay
MM

 basically addresses the problem

we pose, i.e. how can a user customize his/her information space. Hence, it answers both

the questions of how to customize content (via query specification) and presentation (via

layout/presentation specification).

However, in considering the ability of users to customize content with Delaunay
MM

, it is

important to keep in mind that it is primarily a database querying tool. Thus, defining the

content of the information via a query is the task itself, not a step in achieving the task.

Hence, it may be argued that it is not representative of the types of information spaces we

wish to create, where specifying the content is one step in achieving the task, not the task

itself. Furthermore, given the nature of querying, the information space that is generally

created is transient (not returned to by the user), and hence probably not one a user would

want to invest significant time in specifying the presentation of. Thus, the information

spaces that generally result from its use are unlike the type of user-centered information

spaces we have been describing that allow the user to amortize the set-up time and come

back to become (re)situated in their context.

 38

Nevertheless, Delaunay
MM

 embodies some interesting ideas that we feel should be

explored since they provide inspiration for some of our work. First, like Yahoo!, it

acknowledges the need for an end-user to determine both the content and presentation of

information. Also, whereas the act of querying is not new, allowing untrained end-users

rather than database administrators to query complex relational data stores that use SQL

(Simple Query Language) without a priori knowledge of the underlying schema or query

language is indeed compelling, since it relates directly to our work of allowing users to

specify content for their information spaces in a similar situation. Furthermore, since the

queries can be saved and re-executed, and yield large result sets, the user may consider

reviewing the results as a long term research task and hence we may consider the result

set as a returnable context that he/she would spend time specifying the presentation of,

thereby justifying its discussion as it relates to our work for specifying presentation of

information by the end-user.

In order to query using Delaunay
MM

, the user must first specify the data store. The

system then dynamically queries the store for its underlying schema which is then

presented to the user so he/she can specify the select, from and where components of the

query. A similar abstraction is provided for querying the web via an object oriented data

model and conversion of the query to WebSQL. The query is then translated to the

appropriate SQL syntax and dispatched to the store. Although Delaunay
MM

 does not hide

the data model for the relational stores (i.e., the user must understand what select, from

and where mean) to avoid introducing implementation complexity, it does avoid the

intricacies of SQL syntax (especially different flavors thereof) and does not require

detailed knowledge of the schema. Such an approach yields significant progress in

simplifying the content customization for an end-user by creating a unified abstract data

model for the disparate data sources and simplifying the query specification.

Delaunay
MM

 also allows the user to specify the layout and format of the results of a query

by specifying a “virtual document” for the result set, and corresponding style sheets for

the pages of the document that bind to the query result. Users can customize the style

sheets by dragging and dropping type specific widgets (e.g., image, text block, audio and

video) that bind to particular components of particular queries, directed at a particular

store. All such widgets inherit from an icon widget that specifies the data binding,

physical location on the layout and the corresponding query. Users can then configure

not just the layout of the results, but also the low level presentation specifications on the

widgets, such as fonts for textual results. Finally, Delaunay
MM

 supports the use of

presentation templates as starting points for naïve users, while facilitating sophisticated

rules based layout functionality for advanced users. Thus, Delaunay
MM

supports an

intuitive and interactive UI for allowing the user to configure information presentation by

specifying overall layout as well as low level rendering specifications of particular

components (e.g., fonts, etc.).

2.3.3.1 Web Content Collection

The advent and rapid adoption of the World Wide Web as the single largest, publicly

accessible information store has led to an increasing realization that how users use

 39

information does not always match how information providers organize it (granularity of

information) or envisage its usage context (domain of application). Also, there is the

realization that information is widespread and incomplete at any single resource, and

hence a sophisticated user will require the ability to collate information from various

locations in pursuit of a single goal. Thus, many avenues of research have started to ask

the question, “How do we allow the user to collect and organize relevant information

(i.e., customize information content) for the task at hand while minimizing manual

overhead in related information management activities that dilute the time spent on the

task and result in unnecessary context switches?”

Hunter Gatherer is a recent system developed at the University of Toronto that targets

this question [18]. In particular, it simplifies the ability to capture parts of a web page

into a contextualized collection – a collection wherein all elements share something in

common with each other, as determined by the collection’s creator. Furthermore, it

allows the user to “preview” the contents of the collection by having them rendered in a

single webpage – a means to visually co-locate relevant information and in effect, allow

the user to impose his/her world view on the information and reify it according to his/her

needs. Some limited functionality in determining presentation in Hunter Gatherer resides

in the ability to change the order of elements in the collection, and hence their order in

the layout. Otherwise, the selected bits of information appear in their original rendering

(including the embedded link behavior) on the preview page. The success of the tool

(with field users insisting on using it after the 4 week field study ended) provides further

validation to the realization of the need to allow users to gather information from

disparate sources at an arbitrarily determined granularity to support a task not envisaged

by the original information publisher; in other words, to create and mold their

information space by customizing its content.

Hunter Gatherer contributes several key ideas as they relate to user information spaces.

First, it acknowledges that users require multiple distributed/disjoint bits of information

to accomplish a single task. Second, it realizes that information needs of users do not

necessarily match the granularity of the supply; that is, often times, users need multiple

bits of information and that they want to capture only a part of a web page where the

relevant content resides (e.g., capturing different parts of an academic conference website

such as deadlines, location, guidelines, etc., to create a conference paper submission

workspace). Also, Hunter Gatherer allows provides a simple UI for accomplishing the

aggregation task such that lay users (the World Wide Web’s user base) can use it as well.

Finally, Hunter Gatherer gives the user the ability to create a new context in which the

information that he/she has collected is situated. Currently existing bookmarking

functionality as a means of co-locating several related web pages in a folder only operates

at web page granularity, leaving the user to re-scan the page each time it is referred to, in

order to get the subset of content of interest. Alternatively, users can attempt to copy the

information, but then must spend additional time and attention labeling it, and/or saving

its URL for future reference to its original context.

 40

2.4 Conclusion

Having reviewed prior work in the area of interfaces oriented towards users’ tasks, we

can conclude that such interfaces that aggregate and co-locate relevant information and

tools are indeed useful. Collectively, the corpus of related work also argues that the user

generally requires some level of control over his or her information space. However, we

note that prior work tends to have one or more of the following problems:

1. The interface leverages domain specific insights and is generally inflexible when

created by a developer, i.e., the user cannot configure it.

2. The interface does not give complete control to the user over his/her information

context, i.e., only a few aspects of it are exposed to the user for configuration.

3. An interface that lets the user build his/her context generally provides primitives

geared for a particular domain and hence is not generally applicable.

What is needed is a set of context creation primitives that are applicable to information,

regardless of its domain such that users can rapidly create new contexts using information

from multiple domains. Combining these insights with the understanding that information

is increasingly amenable to machine processing in a general manner by virtue of

metadata markup, we argue that it is possible to design and develop a general solution

consisting of domain independent tools for creating and customizing all aspects of

information contexts.

 41

Chapter 3 Architecture
The previous chapter discussed several examples of prior efforts seen as attempts at

providing the user with an interface and content tailored (or tailorable) to her task. We

also identified several weaknesses in prior approaches. In this chapter, we draw upon this

survey to determine a set of desirable properties of a general solution to the problem of

context customization and the resulting functional requirements. We then propose an

architecture that fulfills these requirements, followed by a discussion of some of its

strengths and weaknesses.

3.1 Desirable Attributes

Based on the strengths and weaknesses of existing work, we propose that a general

solution to the problem of context customization should have the following desirable

properties:

1. Domain Independent – The user should be able to apply the solution to any

information in any domain; the ability to customize a task context should not be

limited based on the domain of the information, e.g., news. In other words, an

appropriate data model should be used so that information of any type can be

modeled.

2. Domain Interoperable – The user should be able to aggregate and co-locate

information from various domains.

3. User Editable – A lay user should be able to create the task context by having

control of appropriate domain independent primitives for specifying the content,

tools and presentation of the context. The user should be able to interact with the

context, independently of designing and creating it.

4. User Maintainable – The user should be able to “re-factor” an information

context by changing any of its aspects as the task evolves, e.g. including or

removing information, etc.

5. Persistent Returnable Habitat – A task-oriented information context should be

like a habitat for the user, to which she returns to find all necessary resources to

 42

handle the associated task. That is, the time the user invests in setting it up should

be amortized over the number of times she returns to it; it need not be re-

created/re-configured each time the task must be accomplished. Furthermore, the

context should be persistent, i.e., up-to-date, showing the latest relevant

information. As such, some level of automatic updating will be required.

6. Low Overhead Task Switching – We anticipate that the user will be involved in

multiple recurring tasks, and hence will create multiple contexts. Given that users

frequently switch between tasks for various reasons (a sub-task, interruption, etc.),

it should be easy for the user to switch to a new, related or sub-task [16].

7. Task Shareable/Synchronized Content – The user should be able to share

content across tasks, and it should remain synchronized (live) in all contexts, no

matter which contexts the updates take place in.

8. Extensible Framework – Whereas we may not be able to address all aspects of

user context customization, our initial solution should establish a framework to

support adding other aspects of the solution as they are identified. Also, the

solution should support domain specific extensions, on top of the domain

independent tools initially available.

9. Shareable Contexts – The user should be able to share a description of a context

that he/she has set up with another user, thereby resulting in further savings of

effort.

10. Semantic Web Interoperability – As metadata annotated information is crucial

to a successful solution to general information space customization and the

Semantic Web is anticipated to become a large repository of such content,

employing web services for information sharing, it should be easy to import

information from the Semantic Web.

3.2 Architecture

In this section, we propose a solution to the general problem of user information space

customization. Our challenge as developers is to provide usefully packaged functionality

that allows users to easily specify content, presentation and manipulation that can be

combined to create simple yet powerful contexts.

The primary focus of our solution is on an explicit means of information space

customization by the user. Although we have seen examples of implicit customization,

we avoid this approach in an initial solution for simplicity. Consequently, we also avoid

the problem of less expressive user customization that an implicit solution would entail;

the user would not be able to easily convey her known preferences and would instead

have to hope that the system learns them correctly and quickly.

Our architecture for an initial solution to the problem of information space customization

relies on building a set of tools on top of an existing information management

environment (Haystack) that provides many of the building blocks required for our

solution, in addition to encompassing many of the above desirable properties at the

system level. We first discuss what Haystack is, and what it provides in terms of building

blocks and desirable properties. We then discuss the set of tools that we seek to build on

 43

top of it to create a framework that will aid the user in customizing various aspects of her

information space.

3.2.1 Haystack

Haystack is a generic information management platform that provides a set of

cooperating technologies and tools supporting end-user browsing and application

development for the Semantic Web. It encompasses and makes available several key

ideas and components that support creating, visualizing and manipulating Semantic Web

content, which we describe further below [19].

1. RDF Data Model – At its core, Haystack employs a single data model consisting

of a semantic network expressed using the Resource Description Framework

(RDF), the standard for knowledge representation for the Semantic Web [3, 20].

A semantic network allows knowledge to be captured as a set of relationships

between entities and is commonly represented as a graph with nodes (entities) and

arcs (relationships).

2. Adenine – Haystack provides a domain-specific language (Adenine) for

simplifying expression, manipulation and querying of RDF data. Furthermore,

imperative Adenine code that manipulates the data can be compiled into

declarative data using a target, portable, runtime ontology akin to Java bytecodes,

thereby rendering a majority of the Haystack system declaratively specified.

Adenine serves as the lingua franca of the system, enabling communication

between (and implementation of) its various components via the generic

blackboard-like RDF store.

3. Haystack Services – Haystack has a service manager that can host services that

perform various tasks, including managing the RDF store, populating it, and

performing other manipulations and analyses on the information, e.g.,

categorization, summarization, extraction, learning, recommendation. In essence,

the service manager and the set of services it hosts comprise the component that

delivers on the promise of automation on the Semantic Web.

4. User Interface – Haystack provides a user interface framework (Ozone) that

provides interaction primitives and renders views of information entities. It

consists of the Slide Ontology, an extensible, HTML-like, ontology for content

layout and rendering that is used to create views of information entities. A view

for an entity is automatically selected by Haystack based on the entity’s type, and

the context of use (e.g., available UI real estate).

Furthermore, the framework supports context sensitive manipulation such as

context menus and drag-and-drop operations that are sensitive to the type of the

underlying information entity.

Finally, imperative code in Adenine can be exposed to and invoked by the user

via operations. Operations are parameterized Adenine methods that perform a

(pre-specified) task for the user using the specified parameters. Relying on

metadata annotations on the operations themselves, Haystack employs an

automated technique (UI Continuations) for collecting the parameters required for

 44

the operations from users. Also, operations may be curried, i.e., the user may

customize an operation by specifying values for certain parameters, but not all.

The resulting curried operation can be saved, and used as a template for applying

the operation in new contexts, that all share the same value for the saved

parameter.

Given our goal of creation of custom information spaces, whose content and nature of use

are determined by the user and unknown a priori, a general information environment that

allows working with a variety of information equally well is an ideal first step in

achieving that goal. Haystack constitutes such an information environment. It provides a

number of benefits which we discuss below, and supplies facilities for building additional

tools on a powerful substrate that the user can employ to specialize her information

space. Together, these features allow us to meet many of our objectives for general

information spaces outlined earlier and facilitate easily supporting others.

• Semantic Network Data Model – Due to its simple and generic data model, a

semantic network (and hence RDF) allows capturing a broad range of knowledge

from various domains simultaneously. Furthermore, although the Haystack data

model supports schemas, it does not necessarily enforce them, yielding a semi-

structured data model capable of easily accommodating and modeling exceptional

situations. Finally, the relationships captured by the semantic network provide a

rich set of metadata that the user can utilize to better specify information of

interest. This property of Haystack allows us to meet desirable attributes 1, 2 and

part of 3, as mentioned earlier.

• Declarative System Specification – All system components in Haystack are first

class; that is all of them can be manipulated in the same manner since they are just

data, captured in the RDF store. This allows a majority of the system (e.g.,

Adenine code, Ozone slide presentation, ontologies, operations, views, etc.) to be

represented in the same fashion as data, and hence renders them amenable to

similar user or programmatic manipulation. Furthermore, portions thereof can be

easily shared between users or updated via data transfers. Thus, properties 3, 4

and 9 above can be supported.

• RDF Store – Using RDF as the standard for representing data allows Haystack to

be compatible with the Semantic Web, thereby allowing information from the

Semantic Web to be directly imported into its store, without the need for data

translation. This property simplifies semantic web interoperability as mentioned

in property 10 above.

• Adenine – Haystack supplies a built in RDF manipulation language that also

provides query primitives. As a result, with appropriate UI support, the user can

easily manage the specification of content, as properties 3 and 4 above require.

• Agent Infrastructure – Haystack services provide a critical extension point to

facilitate automation of repetitive tasks. Also, they allow web services to be

written to collect relevant information (possibly from the Semantic Web) for

users. With this feature, Haystack makes it simpler to maintain content up to

date, and thereby support desirable property 5 above.

 45

• Blackboard Architecture – A blackboard style store architecture that allows

various computations to communicate by using a single store allows content to

remain synchronized across multiple accessing information spaces. As a result, it

becomes simpler to meet the requirement of keeping the content across contexts

synchronized and up to date as in 5 and 7 above.

• Browsing UI Paradigm – All information in Haystack is addressable, and can be

visualized using various views, depending on the context in which it appears.

Thus, Haystack’s user interface paradigm is based on browsing to various entities

(addresses), for which the UI infrastructure automatically selects a view to render.

This allows meeting property 6 mentioned earlier.

• Direct Manipulation – Pervasive use of context menus and drag and drop within

Haystack, provides a uniform user interface that increases usability across various

information spaces.

• View Architecture – The notion of context-sensitive, per-entity views is a

powerful one. As a result, Haystack provides the infrastructure for users to be able

to specify how to view and/or interact with content in particular situations,

thereby supporting properties 3, 4 above. Also, since views can be nested, they

can be reused in defining other views – a capability, if appropriately exposed,

would allow the user to control how to view a complex entity.

• Operations – Since operations can easily be curried (see section 5.2.1.2) and

associated with various widgets, the user has significant control over configuring

operations, as well as how they can be accessed (properties 3 and 4 above).

3.2.2 Context Customization Tools

As indicated by the description of the Haystack system and its benefits, many of the

features we desire in user contexts are completely supported at the system level in a

general information management environment like Haystack. Other features are present,

but only available to the developer. Since our goal is to allow users to have some level of

control over the specification of their information space, what is required is a means of

exposing capabilities to users that allow them to “author” their own information contexts.

Finally, the remaining features can be satisfied by developing the appropriate

infrastructure. Thus, our primary task becomes to address property 8 (extensible

framework).

Thus, we propose to provide the user with context customization control by providing the

requisite infrastructure and a set of tools in Haystack that expose relevant abilities to the

user. The set of tools we seek to provide should, in addition to providing the desirable

features and capabilities outlined in this chapter, also address the flaws in existing

information management solutions (as discussed in Chapter 1). The tools and

infrastructure primarily fall into four categories:

• A set of tools that provide the user with a means of selecting information of

interest, and the underlying infrastructure that keeps it current.

• A tool for visually aggregating and laying out selected information and operations

using particular views in order to design the task interface (information space).

• A tool for creating custom views for information.

 46

• Supporting tools required to work with the other tools.

3.2.3 Channel Manager

The Channel Manager is a tool that allows users to define channels of information; a

channel of information is simply a set of information the user considers useful and

comprises a collection of items related in some respect. The relationship between the

items can be articulated by specifying in closed form (via a query or computation).

Alternatively, the user may consider the items related in some manner that cannot be

expressed or captured through a query, and thus can explicitly specify the collection by

placing items in it. A channel of information is always maintained up-to-date by the

system and can supply content to the various portions in various information spaces.

This tool is described further in Chapter 4.

3.2.4 Information Space Designer

The Information Space Designer allows the user to specify space in a visual manner, by

defining a high level layout of information. The user can use this tool to determine what

is shown by specifying an information entity or channel (described below), as well as

how to view such information. Furthermore, the user may specify which set of operations

are to be made available in the context for particular entities. This tool allows the user to

specify information space level behavior and/or presentation information, such as a title

and description. Other context level customization should be made available to the user

through this tool (e.g., such as the wiring of preview windows to selections of particular

collections). The user may preview how the context will look and behave via the

dynamic preview at design time. This tool relies on integrating other components

specified by the user (e.g., channels and views) to yield the final user configured

information context. This tool is described further in Chapter 5.

3.2.5 Information View Designer

The Information View Designer allows the user to create a view for an information

entity. A view captures the layout and rendering preferences used to present a particular

entity. It serves a lot of the same functions as the Information Space Designer, but at a

lower granularity. The user designates the views designed here for use in the Information

Space Designer (as well as recursively, as explained later).

A simple domain independent view designer is implemented to allow the user to inspect

any property of any information object and to lay them out in two dimensions. Like the

information space designer, it allows the user to preview how the view will look and

behave. The Information View Designer is discussed further in Chapter 7.

3.2.6 Supporting Tools

The above tools require a set of supporting tools that supply additional functionality or

information for the user. They are discussed further in the various chapters related to

these main tools, as necessary.

 47

Chapter 4 Channel Management
The previous chapter outlined the basic architecture of our solution for user customizable

information spaces. In this chapter, we discuss the Channel Manager tool for Haystack

that addresses the issues surrounding one aspect thereof: content specification. We focus

here on describing the content of interest, and combine this capability later (Chapter 5)

with the notion of information space creation to understand how users can specify content

of interest within a particular information space.

4.1 Techniques of Information Specification

Fundamentally, user specification of information of interest may be segmented based on

the size of the information. The information of interest may either be a single entity, or a

collection of items. This criterion is easy to understand; many times, users are able to

specify particular information objects (singletons) of interest, e.g., the project manager’s

schedule. In other cases, users are more interested in “interesting” sets of information,

e.g., all people working on a particular project. (Of course, in a general sense, one may

conceptualize all information as consisting of collections, with singletons corresponding

to collections having a single item. Nevertheless, little is gained by enforcing this

ontological efficiency, and much is indeed lost in the additional complexity introduced by

an abstract treatment of content in this manner; a singleton is a sufficiently common

occurrence to warrant separation as a first class means of specifying content.)

In addition, information may also be segmented based on style of specification. This

second criterion distinguishes information the user is interested in based on whether it is

obtained by explicit specification (e.g., the entity corresponding to Karun Bakshi, David

Huynh, etc.) or implicitly specified based on a description of the information of interest

(e.g., people working on the Haystack project).

Single entities are often specified directly (as opposed to described, e.g., Karun’s

brother). (Indirect specification of content by describing it cannot necessarily guarantee a

single item matching the description as in the case of Karun’s brother. This is only

 48

possible if the schema enforces a unique value (e.g., John’s Mother). Since Haystack

supports a semistructured store that does not enforce schemas, in the general case, an

indirect specification results in a collection.) On the other hand, collections of items may

be specified explicitly by enumeration of the members, or implicitly via a description. It

is important that these notions of information specification be supported by any

environment seeking to allow the user greater control over his information space.

Haystack naturally supports the ability to explicitly specify items of interest (either single

entities or collections) by identification. We briefly discuss the notion and

implementation of identity/addressing in Haystack. In Haystack, all entities are referred

to via the same naming convention: Uniform Resource Identifiers (URIs), the standard

RDF naming mechanism which is natively available in Haystack. Thus, each addressable

entity, whether it comprises a single item, a collection of items, or each of the members

of a collection, has a unique URI. A URI is generally system generated, and meaningless

to a user. A user is expected to associate a human-readable title or label for the entity.

(Of course, a user is free to assign the same name to two nevertheless distinct entities.)

Henceforth, when we discuss information objects or entities and the ability of users to

refer to them, we assume the user specifies the entity via some means that allows the

system to unambiguously infer the corresponding unique URI being referred to (e.g.,

using drag and drop). Thus, Haystack makes it simple to explicitly refer to items since

every information object has a corresponding unique identifier.

In this chapter, we address user specification of collections of items since specifying a

single item generally does not amount to more than identifying an information object

explicitly (i.e., somehow identifying the exact URI of the object), and allows little

additional user customization or automation.

4.2 Channels

Although Haystack allows users to explicitly construct collections by enumerating their

members, what is missing is the capability for the user to describe the collection of

information of interest (specifying information implicitly). Defining a means for users to

implicitly specify collections would result in two distinct methods of specifying

collections: either completely explicitly specified or completely implicitly specified.

However, we realize that these alternatives are special cases of a single, more powerful

abstraction: collections that can be cooperatively maintained by the user and the system.

We coin the term Channel to refer to such an abstraction. With this abstraction, explicitly

specified collections only require user input, and implicit collections are computed solely

by the system. However, we retain the ability to let the user and the system to

cooperatively build a collection: parts of the collection can be specified directly, and

other parts can be computed.

We define a channel as consisting of a collection of information entities that satisfy

certain properties specified by the user using a set of description primitives (as opposed

to a collection whose members are explicitly specified by the user). A channel’s contents

are maintained automatically. The primitives used to define channels and the user

interface used to configure those primitives is the primary topic of the rest of this chapter.

 49

The notion of a persistent query of information is not entirely new. For example, RSS

feeds or blogs can be considered persistent and fixed queries resulting in a collection of

information related to a particular, predefined topic (controlled by the content provider)

that is always up-to-date [22]. Unlike RSS and blogs however, with channels users can

change/specify what constitutes the collection by changing the description primitives to

select a subset of the available content, i.e., they need not rely on the “packaged” RSS

feed or blog, but can rather choose a logical partition of the entire available content. E-

mail rules (e.g., MS-Outlook) and information portals like Yahoo! constitute a better

example of channels, where the user does have some level of control as to which set of

information is desired [9, 15].Thus, users can impose their world view on the information

corpus. However, these latter examples are situated in a particular domain (mail, news)

and the capability for selecting appropriate content is lacking for arbitrary information. In

contrast, channels in the context of a generalized information management tool (such as

Haystack) that can represent and maintain information from myriad domains can allow

users to aggregate otherwise scattered information into a single collection, thereby

minimizing the overhead of “hunting and gathering” to collect it.

Because a channel allows naming and manipulating a collection whose membership may

be unknown, it constitutes a flexible and abstract unit of content that can serve to supply

underlying content in various contexts. It can also be used as a primitive for

manipulation, e.g., using an algebra that combines information in useful ways. Channels

provide several additional benefits:

• The modularity of channels lets users define information properties in a virtual

manner ahead of time, without knowing what they will apply to. This is possible,

because the nature of the channel’s content is known a priori based on the

channel’s description. Thus, each individual item need not be annotated with

certain properties; the fact that an item has certain properties that allows it to be a

member of a channel, also allows it to (virtually) “inherit” the properties of the

channel dynamically, e.g., security. For example, a channel can be designated as

being secure and only accessible by certain users, without knowing the actual

members of the channel. This decision can be made because the description for

the channel indicates that it should consist of all items marked “Classified.” If an

item ceases to be marked “Classified,” it ceases to belong to this channel and thus

also ceases to have the corresponding security restrictions.

• Modularity also allows information channels to become reusable and redirectable.

They can be used in different contexts and redirected to different portions of the

UI (within, or outside an information space) where the corresponding subset of

information is useful. Or, the information corresponding to a channel may be

redirected to a different device altogether, e.g. if an employee becomes sick or

seeks to work from home, the channels appropriate to the work project can be

subscribed to from the home computer. In effect, channels allow us to irrigate our

tasks with the necessary information.

• Channels as an abstraction are also useful in hiding the distributed and segmented

nature of information by allowing aggregation of information from multiple

 50

stores. For example, the notion of viewing e-mails related to a particular topic

regardless of which e-mail account it may have arrived in is a powerful one.

• As an indicator of the current user task focus, channels allow an information

management platform a simple but useful technique to perform gate-keeping

actions by minimizing users’ interruption with events or information unrelated to

the current task. For example, a user working on a task requiring information

from a set of channels need not be interrupted by newly arrived (or created)

information that does not fall into any of the channels. When he/she switched to

the context that requires the channels that those items did fall into, he/she will

become aware of them.

• The persistent nature of channels ensures that they are always up-to-date, and thus

eliminates the need to manually review a potentially large and dynamic corpus of

information in order to appropriately organize it.

Channels are primarily a self-maintaining organizing mechanism for dynamic corpora of

information; they allow the user to impose his/her world view on an otherwise raw and

changing set of information by defining a set of persistent indices of relevant information

that are then maintained up-to-date by the system. (An alternative view of channel

definition is to view it as the act of defining a simple agent whose output is the collection

of interest.) Thus, given a store being modified by the user, agents and incoming

information, the user can create a stream of information that is important to him/her

independent of the source or creation method of the information. For example, channels

can be used to segment communication via e-mail, instant messaging and other content

delivery web services into a social channel, work channel, bills channel, news channel or

high-priority channel. As a result, the user can impose the semantics of “social” onto a

collection of information, regardless of whether it consists of IM, e-mail, or both.

Channels can also be used to maintain a list of to-do items which may include not just

those the user has specified, but perhaps also those that a supervisor has assigned.

Additionally, a channel may consist of a list of the people working on a project that is

automatically updated as the underlying information changes. Finally, a channel can be

the result of a combination of other channels: to-do items of all people working on a

project.

4.3 Design

In this section we discuss the design of the infrastructure that supports channels in

Haystack. It consists of two main components: infrastructure that computes and maintains

the channels, and a set of user interfaces that facilitates channels definition and viewing.

4.3.1 Channel Generation Infrastructure

The channel manager agent is responsible for keeping channels current. As a result, it

periodically updates all channels based on their descriptions. In this process, the channel

manager agent relies on the channel ontology (described below) and a simple, extensible

channel definition language that allows composing computational primitives into

descriptions of channels.

 51

4.3.1.1 Channel Ontology

The channel ontology describes the attributes a channel can have. A class named

channel:Channel is declared as a type to be used to annotate channels. In addition to the

title and description accompanying most entities in Haystack, channels have four main

properties: channel:active, channel:targetCollection,

channel:updateSpecification and channel:setTransformInstance (STI).

The channel:active attribute is a boolean valued property that allows toggling the

current status of the channel. If it is set to off, the channel is not kept current. The

channel:targetCollection attribute specifies the underlying collection that receives

the items that match the channel description. The channel:updateSpecification

property identifies an update specification object that in turn stipulates how and when the

channel is to be updated, e.g. fixed times, periodic, event driven, etc. This property is

currently not exposed to the user. Finally, the channel:setTransformInstance

property points to an item of type channel:SetTransformInstance that represents a

computation closure that specifies the description of the channel.

We digress here briefly to explain certain concepts in Haystack whose current

implementation significantly affected the design and implementation of Channels related

infrastructure. A computation closure captures the “instance of a method call”. For

example, a method that computes the maximum of two numbers, Max(n1, n2), can be

called with various parameters. In order to capture a particular call instance having

particular parameters, say 3 and 4.5, the computation closure would specify the method

being called (Max) as well as the values for the parameters (n1 = 3, n2 = 4.5). In

Haystack, methods that can be invoked by users (e.g., send e-mail) are called operations.

In order for the user to invoke them, he/she may need to specify certain parameters such

that the operation closure can be determined so that the operation can be invoked with

the specified parameters. In order to collect parameters from the user to create a closure,

Haystack uses the notion of a User Interface Continuation (UI Continuation). When a

user attempts to invoke an operation, a UI continuation is displayed to prompt the user for

the required arguments. Although, such a continuation may be specialized for the

operation, Haystack can also display a default UI continuation based on what it knows

about the nature of the parameters.

An object of type channel:SetTransformInstance represents a custom operation

closure that was created for two main reasons. First, and most importantly, the current

operation closure ontology requires closures to directly point to the values of the

parameters using the argument name as the predicate. As a result, the current operation

closure ontology does not allow annotating the arguments’ values in a closure as to how

they are to be interpreted – a capability we needed (as discussed with the topic of

argument vectorization later).

Second, the parameter collection user interface for operation closures in Haystack, UI

continuations, was too powerful in what it allowed users to accomplish, and thus was too

lax in what it allowed/expected from users. For example, it allowed users to specify

collections of values for a given argument, when the underlying operation’s semantics

 52

only understand a single value for an argument, thereby confusing the user as he/she is

unsure of exactly how many values are required, whether they need to be ordered, and

how they will be used. In addition, although UI continuations for operation closures not

only allow argument values to be created in place but also dragged and dropped, the

affordance on the UI is unclear as it directed users to “click here to add” for resource

arguments. Also, the user interface was not type safe, i.e. it allowed any resource to be

specified for a daml:ObjectProperty, when in reality, a resource of a particular type

was expected by the operation. Finally, the operation closure presented to the user was

uninitialized, thereby yielding an interface that came up blank for all parameters, when it

would make sense to have the values be some reasonable defaults. Due to these reasons,

the UI available for operation closures was lacking from a usability perspective.

An object of type channel:SetTransformInstance has two properties

channel:setTransform and channel:hasArguments. The first property specifies the

computational primitive of type channel:SetTransform (a subclass of adenine:Method

that only returns a set of RDF resources corresponding to information entities) that

generates a collection of items representing the channel contents. The second property

denotes a collection of named arguments to the primitive. (The term Set Transform is

meant to imply that some set(s) of information is (are) manipulated to yield another set.

Either the set(s) are explicitly specified as arguments, or the entire store(s) from which

information is being extracted constitute(s) the set being transformed.)

The arguments for a Set Transform Instance (STI) consist of two types,

channel:SetTransformActualResourceArgument and

channel:SetTransformActualLiteralArgument.

Both argument types have four properties: channel:argumentURI,

channel:argumentValue, channel:vectorizedArg and channel:vectorSource. The

first property points to the named parameter for the set transform, whereas the second one

captures the current value for the parameter to be used in the STI. The last two properties

allow specifying whether the argument is a collection (vector) of values that is supplied

by another object of type channel:SetTransformInstance. In retrospect, the distinction

between the two types of arguments is not strictly necessary, but differentiating between

resource and literal arguments at this high level made it simpler from an implementation

perspective to create appropriate views, without a complicated query that had to

determine the type of the argument (resource vs. literal) pointed to by

channel:argumentURI. Also, in retrospect, the distinction between

channel:argumentValue and channel:vectorSource could have been removed, and a

single predicate could be used to capture the value of the argument, which may be used

directly, or evaluated before use, based on the boolean channel:vectorizedArg

property.

4.3.1.2 Channel Definition Language

From the description above, it is clear that all channel descriptions are specified in terms

of a single type of building block: a set transform. All primitives are known as Set

Transforms since they are used to transform an initial corpus of information into

something interesting, i.e. a channel. Our goal from the onset was to have a robust

 53

architecture that facilitated extension by only having one type of abstraction. A set

transform is a simple computational abstraction that may take arguments, and always

produces a set of items. We chose not to return a bag of items that allows duplicates as it

would make the semantics of operations with returned items more complex than simple

set operations understood by most people. Also, we decided not to return ordered lists,

since that would also increase the user’s burden, as he/she would need to specify a means

of ordering the results for each set transform. An order for the items is also only

generally useful in specifying the display of information, not in the specification of the

information itself. Thus, in the interest of simplicity, we traded off the benefits of order,

and duplicate elements. Nevertheless, these capabilities are meaningful, and may be

added in the future.

The simple set transform abstraction makes it possible to extend the language of

primitives and add to the user’s toolkit for channel definition by annotating any

imperative code that satisfies the definition, i.e., code that always returns a set of items.

Also, allowing the results of set transforms to be re-directed as inputs to other set

transforms using the channel:vectorSource property in vectorized arguments makes it

possible to compose set transforms and increase the expressive power available to users.

Using the set transform abstraction, we defined a number of primitives that together

constitute the channel definition language. In designing the set of primitives, our

fundamental objective was to provide a few well chosen primitives that could form a

basis set that allowed the user to richly express the description for a channel. We

identified several categories of primitives that would achieve this objective. However, a

set of transforms that do not interact together have minimal expressive power for the user

and are of limited utility. Thus, several of the set transforms are provided specifically to

allow composing set transforms and/or channels. The categories are as follows:

• Set Operators – Set transforms that compute the set intersection, union and

difference of the collections resulting from the set transforms provided as

arguments. These operators are equivalent to AND, OR and NOT (with an

appropriately specified universal set to be used in set difference). These operators

facilitate a simple algebra for results from any set transform (including other set

operators) and are similarly closed over sets.

• Query Primitives – Set transforms that allow users to query RDF triples in order

to extract either the subject, predicate or object, given a fixed value for one of the

elements in the triple, and a condition on another element in the triple.

• Identity/Null Primitives – Set transforms that return an empty set (for creating

default instances of channels or default arguments to set operators), or wrap an

hs:Collection or channel’s elements. These primitives allow reuse of existing

channels or explicitly specified collections in creating other channels, i.e.

channels may be piped into other channels to derive new channels.

• Others – Set transforms that perform arbitrary computations to return a set of

items.

 54

Using these primitives, a channel is no longer limited to just be described by a simple set

transform (e.g., items of type person); rather, it can consist of a composition of several of

them that can be combined in various ways. An interesting combination of set transforms

is one that is a union of a computed channel and a fixed collection. The resulting channel

is one that is cooperatively maintained by the user and the system, where the system

allows the user to add items to the computed set. Similarly, a channel consisting of a

difference of a computed channel and a user specified collection simulates allowing the

user to veto certain results computed by the system. Finally, using both a union and

difference, users can manually mold the information computed by the system. Thus, the

set operators, along with the ability to wrap existing channels or collections and use them

as arguments, allow us to create various flavors of channels.

Although a detailed listing of the available set transforms is provided in Appendix A, we

delve into the set of query primitives here as they are all designed in a regular fashion,

mimicking the triples nature of RDF.

4.3.1.2.1 Query Primitives

All query primitives available to the user wrap a simple Adenine (native Haystack

language for RDF manipulation and querying) query consisting of three variables and

having the form ?subject ?predicate ?object [21]. The user is assisted in the query

building process by a tool that presents the structure of the information in the store – the

ontology browser (discussed later). The user can fix the value of one of the three

variables, specify a condition on the value of another variable, and the query returns the

values bound to the third variable for all matching triples. For example, if the subject is to

be returned by the query, than either the predicate or object must be fixed by the user.

Thus, a valid query would return a set of pairs. The specified condition is then applied to

the appropriate member of each pair, and if it is satisfied, the other member is added to

the result set. As a result, all query primitives require two arguments, the value for the

fixed variable, and the closure for the condition test to apply to values bound to the

conditioned variable.

Similar to the Set Transform Instance, which represents a computational closure of a

particular set transform, a condition test closure specifies the computational closure for a

user specified condition test. In fact, the closure has the same general structure as the set

transform instance. A condition test closure is a class named,

channel:ConditionTestClosure which has two properties, channel:conditionTest,

and channel:hasArguments. The first property points to objects of type,

channel:ConditionTest (a subclass of adenine:Method) which are adenine methods.

The second argument, like set transform instance, points to a collection of arguments, of

the same type that Set Transform Instances point to.

In the case of condition tests, we once again felt a need for a different type of closure

whose semantics could not be fulfilled by pre-existing classes of closures. As already

mentioned in the case of Set Transform Instances, we wanted to preserve the ability to

specify not one value for an argument, but several values, possibly the result of a

computation. For example, a future condition test might allow the user to test for

 55

equality with any of the members in a computed set of values (e.g., a channel), rather than

a single explicitly specified value. This was not possible with the current operation

closure class in Haystack, which only allows explicitly specifying a collection of values.

Also, the existing closure class had additional UI drawbacks mentioned above, which

could be mitigated to some extent by using the same types of underlying arguments (and

views) as set transform instances. However, although the argument types to the condition

test closure were the same as Set Transform Instances, we could not use the Set

Transform Instance closure class, as the semantics of Condition Tests were such that only

some, not all, of the arguments are collected from the user; the rest are supplied by the

results of the base adenine query using the fixed variable. These are compared to the user

specified values to compute a boolean return value indicating whether or not the

condition has been satisfied. In fact, Condition Test Closures represent an interesting new

type of closure, where the user and system cooperate to complete the task, and present an

avenue for future research, e.g. who specifies which arguments, whether this is a static

choice, or negotiable, etc. The set of condition tests that are currently implemented are

listed in Appendix B.

The query primitives were deliberately designed to be simple to work with, and as a

result, do not allow specifying complicated Adenine queries with multiple existentials

(variables) that are used for “joins” that allow traversing the RDF graph. An example of

such a query with multiple existentials would be ?x :brother ?y :name “Barney”.

Here, the return set of interest corresponds to ?x and the user must specify multiple

variables (?x, ?y) and condition on those variables (“has brother whose name is Barney”,

“has name Barney”). Although powerful, such a capability was primarily not made

available as it would probably be too complex for a user to work with (see below). Also,

in the general case, all variables being used to perform the join would require conditions

to be specified (assuming, the user does not want to always use an equality condition),

yielding a more complex user interface and underlying infrastructure for evaluating these

queries, for which we lacked implementation time.

Nevertheless, we avoided the concomitant loss of expressive power by incorporating the

concept of vectorization. By vectorizing an argument, the user may specify not one

value, or an explicit set of values, but a set transform instance that computes a set of

values (which can also wrap an explicitly specified collection if needed). As a result, the

user can specify that the values for the fixed argument of a query primitive are to be the

results from another query primitive, thereby simulating the notion of a join. For

example, in the above query, the user might create one query primitive

FirstQueryPrimitive consisting of the query corresponding to ?y :name “Barney”.

The user can then specify that another query consists of ?x :brother <Vectorized

Argument – VectorSource: FirstQueryPrimitive>. The last parameter in the second

query is specified as a vectorized argument, whose values are returned by

FirstQueryPrimitive. The set corresponding to FirstQueryPrimitive is dynamically

bound to the first query as would be done in the single expression above, and hence

performs the join.

 56

Finally, the resulting experience for the user should also be better as he/she incrementally

specifies the join and thus can build the expression in parts in a modular fashion and test

each part (using tools discussed in the UI section), without having to specify and debug

one large expression at one time – a much more complex undertaking. In effect, by

specifying sub-queries and piping their results into other queries one step at a time, the

user binds their results to each existential in the larger expression being built.

Compared to existing query languages, e.g., SQL and Adenine, it may be argued that

there exists no way for the user to specify a return set consisting of tuples. However, the

channel abstraction was meant to provide a single set of items, not tuples of items. Even

for a single set of items, one may ask why it is the case that users cannot select (project)

the properties of interest, and thus receive tuples of properties of the items rather than the

items themselves. Such an approach would return information without its context: for

example, the tuple <age, height> is meaningless to the user, unless he or she knows

whom it refers to. Thus, if the user wanted to later see a different set of properties, or see

properties based on the type of the underlying item (e.g., if it is a dog, show the hair color

also), he or she would not be able to since only one set of statically specified properties

had been specified. In general, much flexibility is lost in making the decision on which

properties are of interest at this stage. Finally, from our perspective, usability was

important, and forcing users to specify tuples during the querying phase seemed

unintuitive; users would more easily understand that after obtaining a set of entities

matching a particular set of criteria, they are allowed to choose which properties to show

for those entities, when designing/selecting a view for it.

The decision for our query model may seem arbitrary. Whereas it makes sense to only

return values bound to a single variable since the semantics of Set Transforms require

returning a set of items (not tuples), why can only one of the remaining two variables be

conditioned? Fundamentally, this design decision was driven by the fact that the

underlying database has impoverished support for conditions on queries. Specifically, the

only condition that can be applied is equality. For example, ?x :age “21”, returns all

items whose age exactly matches “21”. Thus, for example, one cannot express a query

that returns people whose age is greater than “21.” Of course, this would not be a

problem if there was an infrastructure in place for evaluating conditions on queries, and a

mechanism for adding condition primitives to the database to enhance the expressive

power of the query language. However, such support is currently lacking.

Thus, the conditions that set transforms support are evaluated after the query results are

returned from the database. As a result, unconditioned queries must be dispatched to the

database. If set transforms allowed conditions tests on both remaining variables (other

than the return value), then a completely unconditioned query would have to be

dispatched to the database, and the condition tests would need to be evaluated based on

the returned results. However, a completely unconditioned query of the form ?x ?y ?z

would return the entire database. Such an operation would be very expensive not just in

returning the data, but then also in applying the conditions to each of the triples. As a

result, we force the user to specify a value for at least one of the variables in the query, so

that the database can return a more tractable result set. Note however that there is no loss

 57

in expressive power, since the user can specify the two conditions using different queries,

and then combine the results.

In the process however, we enhance the query power available to the user as compared to

the Adenine expression evaluator alone. A set transform allows arbitrary conditions and

the user can more accurately specify the information of interest. For example, the user

can choose the condition in the first query primitive above to be that the name begins

with “B” rather than it be equal to “Barney.”

4.3.1.3 Channel Manager Agent

The channel manager agent behaves like an interpreter for the Channel Definition

Language; it periodically evaluates the top level set transform instance for the channel,

which may in turn invoke other transforms, and then places the results in the channel’s

target collection (replacing the earlier “out-of-date” collection). As a result, changes to

the store are not immediately reflected. In implementing the update method for channels,

we decided to poll the store periodically. This was primarily done to avoid the

performance degradation that would accompany an event based implementation; the store

dispatches lots of event since it is being used as a blackboard for communication between

all components in Haystack. In the future, perhaps we will allow the user to select for

each channel, its update preferences (periodic vs. event based). Currently, the update

specifications of channels are ignored (and thus not shown to the user).

We briefly discuss here the notion of vectorization. As was briefly discussed earlier,

vectorizing an argument to a set transform allows specifying a set transform whose result

supplies a collection of values (a vector) to the transform for that particular argument.

Thus, the transform is invoked multiple times, once for each argument value. Since the

user may arbitrarily vectorize any of the arguments, the channel manager must have well

defined semantics for handling multiple vectorized arguments. One approach would be to

assume that all vectors of arguments to a set transform are of the same size, and hence

constitute parallel arrays from which tuples of argument values may be removed and used

until the arrays have been consumed. This assumption however is not safe since the

vectors of argument values may not all be the same size. A safer approach (that we have

chosen to use) would be to perform a Cartesian product, and use the resulting tuples to

invoke the set transform multiple times.

A second decision that the channel manager agent must make is what to do with the

results of multiple invocations of the set transform with various arguments. Clearly,

some set operation would make sense. Again, to minimize the complexity of defining

channels, this decision is not exposed to the user, and the agent by default computes a

union of all the result sets which we felt would generally be the semantics the user would

want applied.

It may be argued that our earlier reasoning for not using existing operation closures no

longer applies as we are now allowing multiple values for arguments as well. However,

the current scenario is different from explicitly specifying a collection of values as

operation closures currently allow since the items in the collection are the result of

 58

computing a set transform. Also, the user is explicitly requesting vectorization, and is

aware of how various arguments will be combined. Accepting this argument, it may

further be suggested that all arguments to set transforms be set transforms, which happen

to wrap collections of single items if the corresponding arguments are to have single

values. However, we reject this design alternative, as it adds a significant amount of

overhead to the user for understanding this esoteric abstraction just for uniformity of

implementation. The associated negative impact on usability and simplicity in the

common case for the user may not be justifiable.

4.3.2 Channel Manager User Interface

Four primary user interface components are provided for the user to interact with

channels. These include: the ontology browser, the channel manager, the channel viewer,

and the set transform instance viewer. Each is discussed further below.

4.3.2.1 Ontology Browser

The ontology browser is a tool implemented in Haystack that allows users to explore the

set of ontologies that are currently declared in Haystack. The ontology browser is meant

to be used by users to understand the structure of information and learn more about the

classes and properties in Haystack, e.g., which classes are available to model information,

their associated properties, domain/range of properties, description, parent/subclasses of

classes and properties, comments, etc. Figure 6 shows a screenshot of the ontology

browser where the user is currently inspecting the Address class in the VCard Ontology.

The browser consists of three main panes: the ontology selection pane, the class/property

selection pane and the preview pane. Selecting an ontology of interest from the list on the

left populates the list in the right pane with corresponding classes and property defined by

the ontology. The preview pane then displays the information about the selected

ontology. Selecting a class or property from the list of ontology elements on the right

then populates the remainder of preview pane, showing information about the selected

item. Users can use drag items (classes or properties) from the Ontology Browser and

drop them on the right pane. These can later be used to specify parameters for queries in

the channel manager.

The ontology browser was designed to be an exploration tool that made it simple to

browse information structure in Haystack. Thus, instead of having a single collection of

all classes and properties, which would require a user to know the name of the class or

property, it allows the user to select an ontology to quickly narrow down the domain of

interest, and the corresponding items. Another important decision in this tool was

whether to just show two different collection views, one for ontologies, and another for

its elements, each having a separate preview pane. This alternative was rejected as it

would have reduced the amount of horizontal space available to the ontology elements’

preview pane, and thus required the user to scroll horizontally or vertically (if the

information were oriented vertically). Thus, the decision to have two collection views

would not have been space efficient. The current design allows the user to see everything

at one glance.

 59

Figure 6 Screenshot of Ontology Browser

Perhaps the most important design decision in the implementation of the Ontology

browser was whether the ontologies presented were statically declared or dynamically

generated. Unlike the Lore project at Stanford which presents the user with a dynamic

summary of the structure of the information in a semistructured database based on actual

 60

usage via DataGuides, we chose to implement a browser that presents only statically

declared (appropriately annotated by developers) ontologies [23]. As a result, our

browser does not capture undocumented use of classes and predicates. This was

primarily done for performance reasons, in order to avoid the overhead of regenerating

the DataGuide periodically. Unlike structured databases, schemas in semi-structured

stores can easily exceed the size of the actual content stored with the schema.

Nevertheless, since most ontologies are declared in Haystack, an ontology browser

presenting a static structure of information in Haystack was a satisfactory solution.

4.3.2.2 Channel Manager

The channel manager is the primary tool used to work with channels. It allows the user to

create, copy, delete and toggle channels on and off. It also allows the user to edit the

properties of any individual channel including the underlying set transform instance.

Figure 7 illustrates, the Channel Manager.

The channel manager consists of a standard collection view, showing the set of available

channels in the top portion, and a preview pane for the selected channel in the bottom

portion. It supports pervasive use of context menus and drag and drop to make

functionality available to users. Users may right click on the collection to add channels

by selecting the “Add new item” operation, as is possible in the Haystack collection view.

However, only channels can be added to the collection, as other types of items will be

removed from the underlying collection (see the Channel Manager Implementation

section for a full discussion). Also, the user may invoke the context menu on any channel

in the collection, and gain access to common channel management operations that allow,

copying, deleting, or toggling the underlying channel.

Any individual channel may be edited via the preview pane which is split into two main

sub-panes. The channel’s set transform instance can be edited in the right pane, and all

other channel properties are accessible via the left pane. Since STIs may be nested, the

right pane provides a collapsible interface for specifying the arguments for the set

transform instance. Like other operation closures, an expanded STI attempts to collect

arguments from the user. Resource arguments can only be specified by drag and drop,

whereas literal arguments may be entered via an edit box. Unlike current operation

closures, all resource arguments specified for set transforms support type-safe drag and

drop. That is, even though the closure user interface is general purpose and can be used

for any set transform, it adapts to the underlying set transform to enforce type safety of

the arguments. If the dragged item is not of the type expected by the set transform, the

drag and drop operation does not succeed. If the “Argument Vectorized?” checkbox is

checked, then the user must supply a set transform instance that computes the vector of

values to be used for that particular argument.

 61

Figure 7 Screenshot of Channel Manager User Interface

Of special note are the semantics for drag and drop for the two types of closures

discussed earlier. In Haystack, an operation closure is created when the user clicks on an

operation, and completes the resulting UI continuation that collects the requisite

parameters. In the case of set transform instances and condition test closures, the existing

means of creating a closure are not used (as previously discussed) and thus, some means

 62

must be specified to do so. In both cases, the default construction mechanism of channels

and set transform instances automatically create default closures where needed, e.g., a

new channel always has a null transform instance created. In order to specify a different

transform, users can drag any set transform to the target closure, and underlying closure

updates itself to become a default instance of that particular set transform. The same

means of specifying condition tests is used, e.g., all query primitives have a default

condition test closure, and the user may drag a new condition test to it. The system

handles creating default instances of new closures as needed, and thus need only worry

about configuring them.

Finally, as is visible from the figure above, condition tests, like set transform instances,

also collect arguments from users. However, condition test closures do not seek values

for all their arguments, as some are supplied by the system based on the results of queries

(as discussed in the Query Primitives section). (Also, the ability to vectorize arguments

for condition tests is currently not supported.)

Several design decisions were made to enhance usability of the channel manager. First,

default channels have been specified that produce collections of information useful in

specifying set transform instances when the user defines his/her own channel, e.g.,

classes, properties, condition tests, etc. The user may use the channel viewer tools, to

keep the information readily available when working with channel description. (The other

default channels are defined for supporting the implementation of various managers,

including the channel manager.) Also, all information objects used in defining the

channel, from channels down to condition test closures, are always auto created and

initialized with default values. Furthermore, the user interface, attempts to keep the

information valid at all times. For example, a channel is always initialized with a valid

null set transform instance that does not produce any results, a newly specified condition

test such as the numeric <= is initialized with a default comparator value of 0.0 and

replaces the previous condition test, etc. As a result, all information items are

immediately valid and useful, and the user need only focus on the subset of information

that is important. In the same spirit, the interface also provides a means for users to copy

channels, in order to avoid creating and configuring them from scratch. As a result, users

can leverage previous work, and only make incremental changes to define new channels.

Unlike the current Haystack philosophy, destruction is made available as an operation to

allow users to completely remove channel descriptions from the store (as opposed to

deletion of an item from a collection). This is done in order to avoid channels that the

user may have created that are of no use anymore, but that keep reappearing in the

channel manager even after deletion since they still are of type Channel. Thus, the user is

needlessly forced to contend with clutter in the channel manager. However, if a user

wants to create a channel template that is of no use by itself, but is to be used for copying

as a starting point for defining new channels, he/she can create a channel and disable it

The most important design decision made in the channel manager is that of the contents

of the right sub-pane of the preview pane: the interface for editing set transform

instances. Admittedly, an interface can quickly become complex if it attempts to collect

 63

parameters from a user, where the parameters themselves collect additional parameters.

The current user interface design for editing set transforms consists of nested arguments.

It allows collapsing some or all arguments thereby letting users focus on a particular

portion of the channel description, e.g., users can hide the arguments for one set

transform instance being used in a set union operation, so that more space can be

allocated to the other argument. Whereas this approach is better than a user interface

where both arguments to set union are always fully expanded, it is nevertheless lacking in

usability. A better design than nested set transforms would be a graph editing interface,

which intuitively highlights the ability of users to “pipe” channels into others. However,

including such an interface was a complex undertaking requiring significant custom

integration and possibly additional coding effort with existing graph editing tools to

enforce the desired interconnection semantics and user interaction. As a result, this design

alternative was not pursued in favor of a more functional design that could be completed

quickly.

Another design decision related to the set transform instance specification was that of the

query interface. Querying is anticipated to be used often in defining channels, and as a

result, would benefit from a more intuitive interface than the current STI specification

interface. Query interfaces have been well studied in the past, and many flavors are

possible. These range from very simple command line interfaces that allow users to

directly specify the query in the query language (e.g., SQL), to highly sophisticated and

correspondingly more usable natural language systems (e.g., START, PRECISE)

[24,25,26,]. A natural language interface, although powerful, would require significant

effort to implement and deploy in Haystack. Somewhere between these extremes lie

query-by-example (e.g., use of DataGuides for QBE in the Lore project, Filemaker Pro),

wizards (e.g., MS-Access) and query designer (e.g., MS-Access) interfaces [27,28,29].

Our current interface tends towards the lower end of the spectrum just above a command

line interface. Of these alternatives, query-by-example and wizards also seem sufficiently

complex (and limited in applicability i.e., best suited to conjunctive queries) such as to

merit a separate research project. However, a query designer interface to the set

transforms based implementation of the query primitives, would benefit the channel

manager’s usability without significantly impacting our current research goals. Users

would be able to intuitively specify a query rather than worry about selecting the right

primitive. This capability will be added in the future.

4.3.2.3 Channel Viewer

The Channel Viewer tool was developed to allow users to monitor the set of items in the

channel when it is not being used in an information space, without detailed information

on the items themselves in order to have a minimal UI footprint. Thus, for example, a

person may want to monitor any urgent e-mails that come from home, while working on

some task. The channel viewer tool always appears in the right pane of Haystack, and is

shown in Figure 8. In this case, it is monitoring the channel that keeps track of the

channels currently defined in the system.

 64

Figure 8 Screenshot of Channel Viewer Tool

The top of the tool specifies the channel being monitored, followed by a list of the

members in the channels. The bottom of the tool shows a description of the selected item

in the channel.

The user can simply drag any channel that needs to be monitored, and drop it on the

channel viewer. The channel viewer then shows the members in the channel, and

continues to keep them up-to-date. (Note, the channel is not copied.) The channel viewer

behaves like any other applet element in the right pane, i.e., it can be collapsed, removed,

etc.

We felt it important to develop the channel viewer for a number of reasons. When items

are currently dragged to the right pane, they are always rendered using a view part of type

ozone:AppletViewPart. However, in the case of channels, it is unclear whether the

channel’s properties are to be shown, or the items that have been computed to be its

members? Although multiple view parts could be developed, one showing the channel’s

properties, and the other its contents, the problem would not be solved since Haystack

non-deterministically selects from multiple view parts having the same view part class.

Also, in the case where multiple instances of something are to be examined, one at a

time, dragging each instance to the right pane overcrowds it since previous instances that

are of no use still linger in the pane. For example, if the user wishes to examine the

contents of Channel A, and then Channel B with no more use for Channel A, he would

first need to manually remove Channel A, and then add Channel B. He cannot replace

Channel A with Channel B. Finally, if the same item is added to the right pane multiple

 65

times, it is duplicated, and shown in the same view, again contributing to overcrowding,

with little additional benefit.

As a result, in a departure from current philosophy in Haystack, where items dragged to

the right pane in Haystack are rendered in a particular view, we chose to introduce a

different abstraction when developing the channel viewer: a tool. A tool has its own

ontology and type, and when added to the right pane, is rendered in its applet view. A

tool manages some content, and thus can control how to render the content. Another

important principle is that the underlying content can be changed, e.g. by drag and drop,

thereby removing the problem of overcrowding and lack of replacement semantics in the

right pane. Finally, a tool allows having state associated with it or can host multiple

pieces of information whose relationships determine the result that is produced and the

content that is rendered. For example, a tool that lets users examine how two people are

related would allow specifying any two people that can be dragged to the tool, and the

tool would then show which set of mutual acquaintances connect them.

4.3.2.4 Set Transform Instance Viewer

The set transform instance viewer is a prototyping tool that allows users to quickly see

what results a set transform instance will produce, when they are working with the

channel manager to create a new channel. This tool is especially useful when trying to

build a query, as the user can check to make sure the different portions of the query are

returning the results correctly. Figure 9 depicts the set transform instance viewer tool

showing a union of properties of various types (daml:ObjectProperty and

daml:DatatypeProperty).

The tool lists the set transform being computed at the top. The update button is provided

to allow the user to re-invoke the transform instance (after possibly having made some

changes to the store) to ensure that the appropriate results are being produced. Finally, the

bottom of the tool shows the set of items produced by invoking the transform instance.

As in the case of the channel viewer tool, the user can drag and drop a set transform

instance on the tool, and the tool copies the set transform closure, rendering the copy in

the tool independent of the one being used in the channel definition. (Although it would

be useful to use the same STI as the one being used in the channel, so that the user need

not drag and drop it each time, the STI is copied so that the user does not assume, that

reinvoking the set transform will also update the channel. Also, keeping the tools

independent allows channels to be deleted, without rendering the STI viewer tool

inconsistent.)

 66

Figure 9 Screenshot of Set Transform Instance Viewer Tool

4.4 Implementation

All code to support the above mentioned functionality was implemented in adenine, split

across two adenine files: schemata/InformationChannel.ad contains code for the channels

ontology, agent, and implementation of the set transforms and condition tests, and

ui/InformationChannelManager.ad contains code for all the UI tools (except the Ontology

Browser) discussed above. Below, we discuss the various components, and salient

aspects of their implementation.

4.4.1 Channel Manager Agent Implementation

The Channel Manger agent is implemented as an Adenine Service that is periodically

invoked by the Service Manager. Each time the agent runs, it queries for all channels, and

processes each one, updating the ones that are currently enabled.

A channel is updated by reifying a hs:Collection (the native Haystack collection

abstraction) and populating it. During each update cycle, the collection is only updated

with the deltas to the existing set of members: addition of new members, and removal of

members no longer satisfying the criteria (as opposed to removing all the old elements

and adding all the new elements). This is done in order to minimize disruption to the user

in case the channel is being watched by UI components.

 67

Since channels can be used to supply content to multiple other channels, a channel may

get updated multiple times: once for itself, and again when used in the context of

computing another channel. In order to avoid computing a channel multiple times during

the same agent update cycle, the agent employs a boolean flag to determine if a channel

has been updated in the current agent invocation. The agent toggles its own flag each

time it is invoked. As it processes each channel, if a channel has already been updated in

a given invocation (i.e., the channel’s update flag matches the agent’s flag), it is not

recomputed. (Each time a channel is processed by the agent, its flag is also toggled

regardless of whether or not it is enabled. Thus, there is no chance that a channel may

become enabled and not be updated on the very next update cycle.)

The Channel Manager agent can be viewed as an interpreter for the language consisting

of set transforms. Each time it is invoked, it takes the set transform instance for the

channel, and invokes it. As we already mentioned earlier, if the

channel:vectorizedArg flag for the argument is set to true, the argument (a set

transform instance specified by channel:vectorSource) is evaluated, i.e. the set

transform instance is invoked. Otherwise, the argument is passed directly on to the set

transform. We mentioned that vectorization of arguments is implemented by computing a

Cartesian Product of the values resulting from invoking the set transform instance with

the values of the other arguments. In order to minimize the memory overhead, this

Cartesian Product is never pre-computed to create a table of argument value tuples in

memory. Instead, each row of the table is computed by cycling through the indices of the

various collections of values for the arguments. Thus, the agent trades off additional time

for savings in memory.

The code for the channel manager agent is written in Adenine primarily because of speed

and flexibility during the development process; it was easy to quickly prototype and

evolve the framework for updating channels. However, having converged upon a better

understanding of what the agent’s tasks are, it seems a java implementation would be

better and would gain from improvements in execution speed since the process of

generating argument values for vectorized arguments is compute intensive. Also, an

object oriented approach would lead to a more modular implementation, with minimal re-

querying of agent metadata that could be stored in member variables.

4.4.2 Set Transforms and Condition Tests’ Implementation

Set Transforms and Condition Tests are very query intensive, and thus implemented as

Adenine methods; Adenine provides a compact means of expressing RDF queries and

accessing the store, thereby easing development effort. Below, we describe the

implementation of each class of set transforms.

The set transforms corresponding to set operations take two arguments, each argument

being a set transform instance (closure). The closures are executed, and the results are

then combined using the corresponding set operation, and returned.

Query set transforms consist of 3 sets of transforms, depending on whether the return

values are in the subject, predicate or object position. As described earlier, all query set

 68

transforms take 2 arguments, one corresponding to the value to be used to fix one of the

variables in the triple being queried, and the other corresponding to the condition closure

that the values corresponding to the non-returned variable will be bound to, and tested

against.

The dichotomy of resources and literals in RDF requires additional implementations of

queries since conditions are type sensitive. Thus, once a set transform has obtained a set

of pairs by querying with just the fixed variable, it must remove all those tuples that have

values corresponding to the conditioned variable that do not match the condition test’s

argument type. For example, if the query is to return all subjects having predicate :foo

and literals matching “bar”, then all tuples (?x ?y) that result from the query ?x :foo ?y

must be processed to remove those where ?y corresponds to a resource. A similar case

exists, if the fixed variable happens to be in the object position, rather than the predicate

position. In this case, query transforms are duplicated because the UI needs to construct

appropriate widgets based on the range of the parameters being collected. However, the

underlying implementation of the query is reused for both the literal and resource version.

As a result of the inflation of primitives, 4 primitives each are needed for queries

returning subjects and predicates. Two primitives are needed for queries returning objects

(channels can only consist of resources, and thus only resources in the object position are

returned).

The current set of conditions tests that have been implemented are binary relational

conditions, e.g. equal, greater, etc. All conditions have one free variable that is supplied

by the query that is performed; users supply the rest of the arguments. Condition tests are

performed by iterating through the values in the 2-tuple and binding the appropriate

member to the appropriate argument in the condition test closure. The condition test is

then invoked, which then returns a Boolean value corresponding to whether or not the

condition was satisfied.

The duplication problem resulting from the resource/literal dichotomy is repeated in the

case of condition tests; some conditions such as equality are duplicated since appropriate

UI elements need to be constructed to solicit appropriate values from the user. However,

even when soliciting just literal arguments from users, additional types within literals

(e.g., integer, string, and double) require further duplication of condition tests. A

language that supports various types (e.g., object, double, integer, string, etc.) on top of

the native RDF would be really useful here since these operator could then be overloaded

at the language level, and all these implementations that inflate, can collapse to a single

one.

4.4.3 Channel Manager Implementation

The UI development for the Channel Manager was also done in Adenine since it provides

the Slide ontology for creating GUIs in a simple, declarative fashion, and also because it

provides facilities for direct binding of UI elements to data, to create a live and

responsive UI using data sources.

 69

Using the View Architecture in Haystack, we have implemented two major views for

Channels that allow us to create the channel manager. The first view

(icm:ChannelInteractiveView) allows users to interact with the channel itself, to edit

its properties. The second view, (icm:ChannelInteractiveContentView) allows users

to work with the contents of the channel, i.e., the elements that have been computed to be

channel members. This view uses a collection view to show the collection of items

corresponding to the channel. Finally, one additional view part that overrides the default

title view part has been implemented to allow showing a channel’s enabled status.

Fundamentally, the channel manager is implemented by browsing to a channel

(“Channel’s Channel”) that maintains the list of all channels, and using the view part

class that implements the icm:ChannelInteractiveContentView. The other view of the

channel is then used in the preview pane, to allow users to edit the channel that has been

selected from the collection above.

We implemented several context menu and drag and drop operations that aggregate

functionality which together allows the channel manager to behave as the central console

for working with channels (hence the name). These operations are implemented as

appropriately annotated Adenine methods.

The context menu operations that are available from a channel include the ability to

toggle the channel’s active status, copying the channel and deleting the channel from the

store. The ability to create a channel is available by invoking the context menu on the

collection of channels, using the standard Haystack mechanism to add items to a

collection. Note however, since the collection underlying the channel manager is a

channel itself, items that are not channels will be removed the next time the Channel’s

Channel is updated.

The view part that implements the icm:ChannelInteractiveView employs standard

slide widgets for edit boxes and check boxes. It also embeds view containers for other

resource properties, e.g., the target collection, set transforms instances and condition test

closures. Custom views have been implemented for the latter two types of entities. In

implementing these two views, additional views for their arguments are also

implemented. Set transforms and condition leverage the view architecture in Haystack to

select the correct argument view part: a resource argument embeds a view container

showing the title of the resource, whereas a literal argument shows an edit box. A number

of utility UI components were implemented to selectively show/hide portions of

arguments (ui/utility.ad): if the argument is vectorized, the underlying

channel:vectorSource is shown, otherwise the channel:argumentValue is shown.

Drag and drop operations support various capabilities: dragging entities as values for

resource arguments, dragging a set transform or condition test (obtained from the

corresponding channels – see below) onto a set transform instance or condition test

closure to change the underlying target operation and re-initialize appropriate arguments.

Finally, although a user can drag a collection to be specified as the new target collection

for the channel, he/she should never have to do so (it is only provided for completeness).

 70

As mentioned earlier, all items created in the course of user interaction, e.g., channels, set

transform instances, and condition tests are initialized with properties set to default

values. This is done by implementing appropriate constructors for each of the types of

items, as well as other information objects they depend upon (e.g., arguments.). The

Haystack infrastructure has been augmented by adding a method

util:createDefaultEntity that creates an item of a particular type by calling a

constructor for that type, annotated with the construct:defaultConstructor property

set to true. Thus, we bypass the current Haystack creation mechanism that simply

annotates a resource with a type, title, creator and date, without initializing it with

appropriate property values. Resource properties of objects are constructed in a similar

manner, and fall back on the Haystack default construction mechanism if a default

constructor does not exist for items of the type expected by the property. Similarly,

util:createDefaultLiteral is invoked to create default literal values of particular

types, e.g., string, double, boolean, etc. Like the constructors, copy constructor and

destructor methods have also been implemented to support the corresponding operations.

We have declared a number of channels that appear by default when Haystack is started

consisting of entities of particular types. These channels can be used for constructing

other channels and include collections, classes, properties, set transforms and condition

tests. The hope is that users will create several instances of channel viewer tools in the

right pane, and drag these channels there for ready access when constructing a new

channel.

4.4.4 Supporting Tools’ Implementation

The implementation of the tools supporting the Channel Manager (Channel Viewer Tool,

Set Transform Instance Viewer Tool and Ontology Browser) is discussed in this section.

Both the viewer tools were implemented by creating a simple ontology for the tools,

instantiating items of those types (using the construction mechanism discussed above)

and adding them to the start pane collection (right hand pane). Since items in the right

pane are displayed using the ozone:AppletViewPart view part class, appropriate view

parts were implemented and annotated as being of type ozone:AppletViewPart.

The channel viewer tool has two properties, icm:channel (points to the channel being

viewed) and icm:channelItemFocus (points to the currently selected item in the

channel’s collection). A drag and drop operation is implemented that replaces the

underlying channel with a newly specified channel. The channel’s target collection is

displayed in the list view in the tool, followed by a description of the currently selected

item in the list. Although the haystack collection views could be used to visualize the

items in the channel, they would either provide too much power (e.g., a list of items with

preview pane), or not enough (e.g., a list of items that cannot be selected or scrolled if the

UI space available is limited). Thus, the simplest approach was to directly show the

members of the collection. Defining another collection view did not make sense, as the

semantics of the tool (just show a description of the selected item) would customize the

 71

implementation such that the new view for collections would probably not be used

anywhere else.

The set transform instance viewer tool also has two properties,

channel:setTransformInstance (points to the set transform instance whose results are

being viewed), icm:setTransformInstanceResults (points to a hs:Collection

containing the results of invoking the set transform instance). The collection pointed to

by the second predicate is local to the tool instance. A drag and drop operation allows

specifying a new set transform instance, whose description is copied, and pointed to by

the channel:setTransformInstance predicate. Clicking on the “Update” button,

invokes an adenine method that executes the set transform instance, and updates the

collection pointed to by icm:setTransformInstanceResults. This collection is

displayed in the list view on the tool. A haystack collection view was not reused for

reasons similar to those above.

The Ontology Browser is implemented as a slide in Adenine (ui/OntologyBrowser.ad). It

consists of two main portions, the top set of selector panes and the preview pane. The

left selector pane displaying a list of ontologies has a datasource that tracks which

element is currently selected. This list of classes and properties in the right selector pane

is queried based on the ontology specified by this datasource. The preview pane is also

split into two regions. The top region shows summary information about the currently

selected ontology (using the datasource specified above), and the bottom pane shows

information about the class or property selected in the right selector pane (also tracked by

a datasource). Appropriate view parts were implemented to show summary information

for ontologies, as well as detailed information on classes and properties.

4.5 Conclusion

In this chapter we have tackled the problem of weak (or lack of) control over content

specification (regardless of domain). We have accomplished this by building a set of

tools and adding to the Haystack infrastructure in a way that lets users express and

manipulate information of interest. The notion of channels allows users to work with a

unit of content in closed form, without listing the actual information entities. A set of

primitives allow users great flexibility in building channels, and thus in controlling which

subset of information entities in the store are of interest. Furthermore, an agent that

updates channels, allows the content to always remain current. Finally, a set of UI tools

allows users to build channels and view them. Together with the ability to identify single

items of interest by explicitly specifying them, we now have a means for users to specify

content in various different forms: single items vs. collections, and explicitly vs.

implicitly.

 72

Chapter 5 Information Spaces
In the previous chapter, we discussed the notion of channels as a unit of content that the

user can specify, and tools that support it in Haystack. Users can now specify information

of interest as either single items or collection both explicitly and implicitly. Next, we

require a means for users to be able to aggregate arbitrary content onto a single screen to

define an information space – a console of related information and tools pertinent to a

particular task. This chapter is devoted to understanding the infrastructure and tools

added to Haystack to address this need.

5.1 Basic Capabilities

Before discussing the detailed design and implementation of information spaces in

Haystack, we take a brief look at some of the basic capabilities such spaces should

support:

• Information Aggregation – The information space should allow aggregation of

various bits of information by allowing users to position them and allocate

appropriate space in various parts of the information space.

• Customize Information Space – Users should be able to customize not just what

is shown, and where it is shown, but also how it is shown, e.g. cosmetic attributes

such as color, borders, etc., as well the views used for information entities. Also,

users should be able to collect frequently used operations for tasks in information

spaces.

• Design and Usage Mode – An information space should support two modes: a

design mode that lets users customize the information space, and a usage mode

that allows them to work with it. Furthermore, users should be able to easily

switch modes, e.g., switching from usage mode to design mode to change some

customization attribute, and then back to usage mode.

• Collection of Information Spaces – Users should be able to create and manage a

collection of information spaces that correspond to their various tasks.

 73

Furthermore, they should be able to copy and modify existing spaces to quickly

create new ones.

• Persistent Information Spaces – Users should be able to return to information

spaces and see updated information.

5.2 Design

Support for information spaces in Haystack can be thought of as consisting of two

primary components: information spaces and their views, and an information spaces

manager. We discuss each in turn below.

5.2.1 Information Space

Any given information space in Haystack is supported by a set of interrelated objects,

their ontologies and their associated views. We first briefly consider the underlying

ontologies to see how they support the views. Then, we discuss the two views of

information spaces (corresponding to design mode and usage mode) and their related

design decisions.

5.2.1.1 Underlying Ontologies

Three ontologies underlie information spaces: Information Space Ontology, Two

Dimensional Layout Ontology and Information Portal Ontology.

The Information Space Ontology declares a class named is:InformationSpace, used to

specify the class type of information spaces. In addition to the title and description

associated with most entities in Haystack, the class has one other property:

is:informationSpaceLayout, which points to an entity with type

tdl:TwoDimensionalLayout, which captures the two dimensional layout of information

portals in the space. An information space can have a collection of information portals

laid out in some fashion, each one showing a particular entity or channel of information.

The tdl:TwoDimensionalLayout class is declared in the Two Dimensional Layout

Ontology and recursively captures the layout of items in two dimensions, by splitting the

space available to it among its children (also of type tdl:TwoDimensionalLayout). It

has three main properties: tdl:children, tdl:orientation, tdl:cellData. The

tdl:children property specifies a list of children of type tdl:TwoDimensionalLayout.

The tdl:orientation property specifies whether the children are to be grouped into

rows, or columns. A collection of nested layout entities yields a tree of items of type

tdl:TwoDimensionalLayout. Only the leaf nodes of this tree are rendered as “cells” for

the user. The remaining nodes are used to determine where to render the leaf nodes in the

corresponding sub-tree. Finally, tdl:cellData specifies the content of the cells, i.e. the

data that is to be laid out and managed by the leaf nodes. The cell data in the case of

information spaces are information portals having type ip:InformationPortal. Thus,

all non-leaf nodes have children, and a corresponding orientation. All leaf nodes have an

associated entity as the cell data, and no children.

 74

The two dimensional layout ontology was created to support a reusable, flexible layout

scheme that would not force the user into two dimensional grid, with a fixed set of rows

and columns. Thus, each node in the tree above can change the orientation for its

children, yielding maximum flexibility in layout of cells.

An information portal has a title property, in addition to the following three properties:

ip:informationPortalContentSpecification,

ip:informationPortalPresentationSpecification and

ip:informationPortalManipulationSpecification, pointing to entities of type

ip:InformationPortalContentSpecification,

ip:InformationPortalPresentationSpecification and

ip:InformationPortalManipulationSpecification respectively .(URIs are case

sensitive, and thus the same string in different cases may represent both the property

name, as well as the class name). These classes capture the content, presentation and

manipulation preferences of users. The class

ip:InformationPortalContentSpecification has two properties

(ip:underlyingContent, ip:showUnderlyingChannelContent), which capture the

underlying content, and if relevant, whether or not the channel’s contents are to be

shown. The class ip:InformationPortalPresentationSpecification has four

properties, ip:showBorder, ip:showTitle, ip:channelItemsScrollable,

ip:viewPartClassToUse. The first two properties allow the user to select whether or not

the portal is to be rendered with a border or title. The third property allows the user to

specify whether the list of items of a channel (if shown) should be scrollable. The user

may specify the view to use in displaying the underlying entity or all the entities in the

channel’s collection via the ip:viewPartClassToUse property. Finally, the

ip:InformationPortalManipulationSpecification has a single property,

ip:availableOperations that points to a list of operations the user would like to

associate, and have readily available, with the information portal.

5.2.1.2 Information Space Designer View

Information spaces can be designed by users via an interactive designer view (shown in

Figure 10) that allows users to customize various aspects of the space. A new space is

initialized with a single information portal.

The designer consists of two main sections: the top pane that allows editing the title, and

description, and the bottom pane, that allows users to control what will be available when

they are working with the information space.

The bottom pane consists of an information portal. An information portal allows users to

view some information entity, or collection of entities specified using a channel. The left

hand portion of the portal allows users to customize various properties of the portal. It

allows users to enter the title for the information portal. Below the title, the user may

customize the portal using three sub-panes corresponding to the content, presentation and

manipulation preferences for the portal. The right hand portion of the portal allows users

to further split the space occupied by the portal into additional portals using the various

buttons.

 75

The content portion of the portal pane allows users to specify which entity is to be shown

in that portal (underlying entity) using a drag and drop operation. Since any item can be

dragged to the content sub-pane, including channels, users must disambiguate whether

the channel itself is to be viewed, or the members that comprise its contents. This is

accomplished by checking the “Show Channel Content” check box appropriately, which

only becomes available if the underlying entity is a Channel.

The Presentation sub-pane allows users to specify how the portal, as well as its contents,

should look. Thus, using the appropriate check boxes, users may specify whether the

portal is to show a border and title when the user is in usage mode. The remaining

presentation attributes correspond to the underlying entity for the portal, and are

predicated on the type of the content being shown.

Figure 10 Screenshot of Information Space Designer

If it is the case that the members of a channel are being shown (i.e., the user has specified

a channel as the underlying information entity, and checked the “Show Channel

Contents”), then the “Channel Items Scrollable” check box becomes available and allows

users to specify that they want a layout for the channel collection that has a scrollbar.

 76

(Haystack also allows a layout showing a stacked set of items, which must be expanded

to show additional items.) Users may specify which view to use for the items in the

channel collection being displayed by the portal. This can be specified by dragging and

dropping a view from the list of views that Haystack deems are applicable. Since the

channel collection may be some (future unknown) heterogeneous mix of elements, the

list of views only consists of views available for daml:Thing.

If the portal is not showing the elements of a channel, then the “Channel Items

Scrollable” check box is not available. In this case, since the type of the underlying entity

is known, the list of views from which the user may select, consists of a union of all

views available for daml:Thing, as well as the views available for items having the same

type as the underlying entity.

The last sub-pane available to the user for customizing the portal allows her the ability to

specify a collection of operations she believes are useful to have handy when working

with the information in the portal. In Haystack, all operations have URIs and are first

class entities. That is, they are treated the same way as all other entities having a URI;

they dragged into the collection of relevant operations, just as any item in Haystack.

The right hand portion of the portal pane allows users to click on buttons labeled “Split

into Rows”, “Split into Columns” and “Delete Cell” to appropriately segment the space

into additional portals, or to remove portals. Any previous specifications for the portal

(e.g., underlying entity, presentation preferences, etc.) are lost during this operation. The

root portal (the single portal taking up the entire information space real estate) cannot be

deleted.

Several salient features of the current design are noteworthy. We expect users will create

information spaces containing several portals. One way users may reduce the resulting

clutter in the interface is to use the Haystack navigate facility, to navigate to the

underlying portal. All items that are navigated to are shown in the main Haystack pane.

Thus, the portal gets allocated the maximum amount of space allowed by Haystack. A

less drastic measure allows users to resize portals, or their sub-panes to focus on areas of

interest. In the process, other portals or sub-panes reduce their size appropriately to cede

space to the portion of the UI the user is interested in.

Since users are designing an information space, it would be useful for them to be able to

see how the final space looks and behaves when being used. This can be accomplished

by selecting the “Information Space Usage View” (see section 5.2.1.3) from the pull

down menu labeled “Change view” located below the information space title.

Another important feature of the current information space design allows users to

leverage a built-in capability in Haystack to specialize operations in order to customize

the manipulation capabilities of an information portal. In general, operations that the user

may invoke, may solicit him for values for arguments in order to carry it out (e.g., the

“send e-mail” operation requires a recipient and a message at the very least). Currying is

a technique in Haystack that allows users to specify some or all of the arguments, and

 77

save the resulting partially (or completely) specified operation closure as a new operation

that, when invoked, will ask the user for any remaining argument values. Thus, a user

may partially specify an operation that he feels will always require the same values for

some of the arguments, and save it as a new operation. For example, the user may

specify that the recipient for the “send e-mail” operation should always be “David

Karger,” and save this partial specification as a new “mail to David” operation. Thus,

when the new operation is invoked, it will only ask the user for the body of the message,

and always send the message to “David Karger.” This operation, like all other operations,

can then be associated with a particular information portal, for which the previously

specified arguments make sense (e.g., in customizing a software bug tracking portal, an

operation known as “notify the project manager” may be associated with the portal

showing the bugs, which will always send a message to “David Karger”). Thus, the user

may customize the manipulation capabilities of a portal by not just specifying which

operations should be available in a particular portal, but also by pre-initializing some of

its arguments with values corresponding to what makes sense in the context of the portal

or information space being designed.

Several important design decisions were made in constructing the information space

designer, and are discussed below.

Perhaps the most important design decision that affected the construction of information

spaces by users was how to allow users to allocate space to portals. Clearly, several

different methods of allocating space are possible. For example, automated layout of the

information could be done using various heuristics as well as preferences. Such a

mechanism could take into account not just the content to be shown, but also its view,

and then algorithmically develop an optimal allocation, based on the size of the views for

each of the information entities. However, such an approach would not be in the spirit of

allowing users control over their information space. Furthermore, we argue, that

“information visualization ergonomics”, i.e., the set of decisions that a user makes for

how to layout information based on frequency of use, order of use, relationship to each

other, etc. would suffer. As a result, following in the footsteps of Delaunay
MM

 and

Yahoo!, we chose to allow users to explicitly specify the layout of information [15,17].

Even if information layout is explicitly specified by users, various possibilities exist for

how users allocate the space. For example, users may associate information entities with

various arbitrary places on the underlying canvas, much as a person pins something to a

bulletin board. This approach has the benefit of allowing users to move the items’ relative

to each other, e.g., move one above the other, quite simply, without having to re-design

the space. However, this alternative has some drawbacks: space may be wasted between

items pinned to the board, and users must constantly resize or move elements to see their

contents, and possibly resize/move others to make space. Also, a bulletin board metaphor

makes more sense when a user needs to juxtapose information; when the relationship

between information is more important than the information itself.

Given our understanding of the portal creation task from Yahoo!, and the ideas espoused

by the QuickSpace project, it seemed that the goal of user controlled content layout was

 78

to allow users access to a canvas that is appropriately segmented and completely devoted

to showing the content of interest, with the user being able to specify the location of

items, and possibly their size directly or indirectly, e.g. by placing it in a narrow column

in the Yahoo! portal as opposed to the wide column [12, 15]. Such an approach allowed

users to allocate maximal space to the content of interest. Furthermore, it allowed the

space to adapt to a local change: if a user increases the amount of space for one item, the

space for other items automatically decreased without overlapping – an important feature

desired by users, as demonstrated by QuickSpace.

We hypothesized that once users have worked on a task several times, they have a good

understanding of what is needed, and what the optimal layout of information is, that

maximizes their efficiency. Thus, changes to the layout of an information space should be

rare, and hence the ability to move portals relative to each other will not be important in

the long run. The two properties above should be more important. The other important

consideration in our design was simplicity of creation of a new information space. As in

various other parts of our implementation, we chose to make things work immediately,

without requiring significant user configuration. In this case, users should quickly be able

to segment the entire space, rather than be forced to position and size an information

portal. Consequently, we designed our information spaces to capture the desirable

features of Yahoo! and QuickSpace, both in the Design view as well as Usage view.

The decision to only allow the user to split cells into two rows or columns was another

important design decision. Clearly, the underlying layout ontology could easily support

more powerful layouts, based on an arbitrary number of children, rather than the two

children semantics of the current splitting operations. However, we felt it was important

to keep the operation of segmenting the usable space as simple and efficient (“one-click”)

as possible. Since portals could be resized to create the look of a non-binary tree driven

layout, nothing was lost in terms of capability in segmenting the space.

Similar to other tools, another design decision was to only show the user those

customization tools that are relevant based on his/her current settings. Thus, the UI is

dynamic in that it shows and hides various UI components based on whether or not they

make sense in the current context, e.g., the “Show Channel Content” check box is not

visible if the underlying entity for the portal is not a channel.

One of the design decisions was made based partially on constraints due to current means

of development of UIs in Haystack, and partially on future functionality we would like to

support. The “Show Channel Content” check box is not strictly necessary. It is quite

possible to specify that the elements of a channel are to be shown by specifying an

appropriate view for the channel (e.g., icm:ChannelInteractiveContentView) that

lists the elements of the channel. If a preview pane that accompanies this view is not

desired, in favor of a simple list of items in the channel, then a new view for channels

could be made available to the user. However, use of views for channels in this case

creates two problems, and thus necessitates the check box. First, having a view for the

channel, that showed the items in the channel, would deprive the user of the ability to

specify how to show the individual items in the channel, since that would be statically

 79

specified by the developer of the view. Second, in the future, we would like to be able to

support “wiring” of the user interface, i.e. the ability to allow parts of the user interface to

control others, e.g. if one item in a collection is selected, a more detailed view of it

should appear in a different portion of the information space. Such functionality would

require the ability to expose for programmatic and user access, which item is currently

selected in the collection. Due to the way the view architecture has been designed in

Haystack, currently it is not possible to expose such properties of the view, i.e., a view

for a channel showing its members would not be able to expose the currently selected

item. Such functionality can only be exposed by directly using UI widgets to access the

collection, without a level of indirection imposed by a view that maintains such a

collection. Thus, if the check box is set to true, it allows the information space framework

to know to use the UI widget for showing collections directly, so that it’s “currently

selected item” property can be made available in the future.

5.2.1.3 Information Space Usage View

The Information Space Usage View is another view of an information space, and is

utilized to let users actually work with the information in the information space, rather

then specify their preferences. Figure 11 and Figure 12 depict both the design view and a

usage view of an information space.

Figure 11 Design view of the "My Info Space" Information Space

 80

Figure 12 Usage view of the "My Info Space" Information Space

The title of the information space is displayed at the top. As can be seen, the layout of

information in the usage view mimics that of the design view. Each portal is rendered

according to the specifications in the design view, with respect to showing borders, titles,

views, operations, etc. (If no underlying entity is specified, a default pane is shown that

informs the user of missing information.) Each portal consists of three main parts: the

title bar, the content pane, and the operations pane. The title bar shows the title of the

portal as specified by the user, if it is to be displayed. The space below the title bar is split

into a left and right pane. The left pane shows the contents of the portal according to the

view that was specified in the design mode. The right pane shows the operations the user

chose to make accessible.

As in the design mode, users can resize the various portals as needed. The entire user

interface of Haystack is constructed by nesting views of entities, and the information

presented in the information portals is no exception. Hence, in any information portal,

users can manipulate information as they would in any other part of Haystack; users have

access to context menus, and drag and drop capabilities, in addition to the affordances

provided by various UI widgets, e.g. text fields, check boxes, etc. Furthermore, users can

invoke the operations that they chose to make available in certain portals, by clicking on

the appropriate buttons.

 81

One particular design decision made in the development of the usage view for

information spaces and portals was the use of buttons in the right pane of a portal, to

show the operations the user had selected to be available in that context. It could be

argued that, in keeping with the Haystack philosophy of context sensitive operations,

these operations should have been added to the context menu of the items to which they

apply, perhaps in exclusion to any other operations.

We argue that such an approach would be detrimental to the user. Operations on context

menus are two or more clicks away. The user must first invoke the context menu, select

the right context (since there may be multiple underlying entities) and then navigate one

or more sub-menus before being able to access operations. This is fundamentally

antithetical to the reason why users want to co-locate relevant operations in the first

place: convenience of access. We argue that they should be “projected” onto the user by

being made visible in a prominent manner, in much the same way that MS-Word

“projects” frequently used operations via toolbars, or by hiding other operations from

menus.

Another design decision that was made in developing the information space usage view

was to arbitrarily select some styles for the information portal itself, e.g., a border width

of 1, a title bar at the top having a fixed color and font style, etc. One reason for this was

due to the fact, that Haystack currently implements graphics styles as a bag of properties,

inherited by the children of a view, as opposed to properties of objects such as text, lines,

etc. in the object-oriented sense. In fact, Haystack has no notion of objects of type text or

line that have properties of color, font or thickness. Thus, the graphics styles cannot

easily be made uniformly available without significant custom coding to collect these

properties, and use them appropriately for rendering. Also, were they to be made

available for portals, they would constitute a special case since the parents and

grandparents of portals would also need to support this capability for uniformity, as

would all views in Haystack. In order to support the functionality above, the UI rendering

engine would need to support a notion of interoperating objects with particular views, so

that users could specify the various properties of the objects. Alternatively, the user

interface engine would need to support a rendering pipeline that takes an object and

renders it with user-specified optional “decorations”, e.g., borders, titles, etc. Neither

possibility is currently supported by the Haystack UI rendering engine.

5.2.2 Information Spaces Manager

The Information Spaces Manager (shown below) is designed in the same manner as the

Channel Manager, and supports similar functionality for working with all information

spaces from a single user interface.

 82

Figure 13 Screenshot of Information Spaces Manager

An Information Spaces Channel is defined, and is viewed using the

icm:ChannelInteractiveContentView view for channels, which simply wraps a collection

view that is showing the current collection that underlies the channel. Thus, a collection

of information spaces are available, and can be previewed and interacted with using

either the design or usage view. Similar to the Channel Manager, various operations are

made available for information spaces via context menus. These operations include the

ability to add information spaces using the “Add new item” operation from the collection

context. Also, any given information space can be copied or deleted by right clicking on

it, and selecting the appropriate operation from the context menu.

5.3 Implementation

In this section, we discuss the implementation of both the design and usage information

space views. We forego discussing the Information Spaces Manager implementation as it

 83

is the same as the Channel Manager implementation. The relevant files consist of three

pairs of files corresponding to the three ontologies, and their views. These files are,

schemata/InformationSpace.ad, ui/InformationSpace.ad,

schemata/TwoDimensionalLayout.ad, ui/TwoDimensionalLayoutPart.ad,

schemata/InformationPortal.ad, ui/InformationPortal.ad.

Both the design and usage views for information spaces are implemented in a similar

fashion. In both views, the portals in the space are laid out in two dimensions, by

embedding a view (TwoDimensionalLayoutView) for the tdl:TwoDimensionalLayout

entity captured by the is:informationSpaceLayout predicate. Similar to information

spaces, information portals also implement two views, one for design mode, and one for

usage mode. The appropriate view to use for portals when laying them out is specified by

the information space by registering a context property for use by the

TwoDimensionalLayoutView.

The TwoDimensionalLayoutView serves as the layout engine and deserves further

elucidation. Given an entity of type tdl:TwoDimensionalLayout, it checks to see if the

entity has any children. If it has children, the entity is rendered by laying out its children

either in rows or columns, as specified by the orientation. If it does not have any children

(i.e., is a leaf node), the view to be used to render the cell is determined by the context

property that was registered by the information space. This view can either be a

TwoDimensionalLayoutCellEditorView or TwoDimensionalLayoutCellUsageView.

The former view consists of two portions: a left hand pane showing the cell data with an

editor view, and a right hand pane that allows users to edit the layout tree, by providing

buttons that allow further splitting or deleting the cell. The cell data is embedded in a

view container using a fixed view type that allows editing preferences for the information

to be laid out in two dimensions, i.e., it requires the cell data to implement an

editor/designer view. (In the discussion of the information space designer earlier, we

stated that each portal consisted of the title, and three sub-panes, as well as the buttons

for splitting and deleting the portal for simplicity of description; in reality, the buttons are

provided by the view for the underlying leaf node of the layout tree, which further

embeds the information portal in the left hand pane.)

The TwoDimensionalLayoutCellUsageView simply embeds the cell data in a view

container using a view that simply shows the information, as it is to be presented, i.e., it

requires the cell data to implement a usage view.

Since both a designer and usage view are available for them, information portals can be

rendered appropriately by the two dimensional layout manager, as dictated by whether

the information space hosting the layout manager is being shown in design or usage view.

We briefly discuss the implementation of the design view for information portals (since

the usage view is driven by the view the user chooses for the underlying entity). Simply,

the design view for an information portal, embeds three views corresponding to the

content, presentation and manipulation specifications (see ontologies) associated with the

 84

portal. In fact, the ontological separation of information portal properties into these three

categories was done not just to better organize the interface, but also because drag and

drop operations in Haystack are context sensitive. Since any item can be specified as the

underlying entity for an information portal, drag and drop directly onto an information

portal entity would have prevented use of drag and drop for other user operations, such as

specifying the desired view, or operations of interest. Thus, the use of three sets of

properties avoided this problem since they could be declared as separate drop targets,

rather than the single parent information portal. The content and presentation sub-panes

employ some reusable utility code for showing and hiding user interface components

based on a condition specified by a data source.

5.4 Conclusion

In this chapter, we have addressed the problem of giving users the ability to build a single

task based interface. As a result, we have provided tools in Haystack that users can

employ to segment a canvas into multiple portals that aggregate relevant information

(single entities or channels) for the task. Furthermore, users can also specify how to view

the information in the task interface by reusing views in their own contexts. Finally, users

may specify or customize operations that are relevant to the task such that they are

available in a convenient manner. Thus, users attain the ability to create a task interface

simply by aggregating the relevant resources in a personally useful manner.

 85

Chapter 6 User Creatable Views
In the previous chapter, we presented methods for users to control the content, the views

to display the content, as well as how the content was laid out. Even with this significant

control over the presentation of information, a critical component was missing: users

were required to re-use the views already created by developers. In customizing an

interface for a task, much can be gained in user efficiency by allowing him/her to directly

tailor the view of the information itself (rather than select from a set of views) to suit

personal preferences. In this chapter, we discuss this idea further, present a design pattern

to support it in various domains within Haystack, and discuss a simple capability we

developed to customize views of all entities, regardless of domain.

6.1 View Designers

When working with information, it is critical that users be able to customize views not

just in terms of cosmetic properties (e.g., color and font) or pre-determined/fixed,

domain-specific properties (e.g., sorted e-mails by sender) deemed to be useful by the

developer, but also by controlling which set of properties are accessible and how they can

be visualized and manipulated in conformance with the semantics of the underlying

information entity.

Not everyone is interested in all facets of the information being used. For example, in the

case of contact information for friends, even though the user may have information on the

job title and place of work of a friend, she may not be interested in seeing it listed in her

address book; she may only want the phone number and e-mail address listed. Thus, the

user may want to specify a particular facet of the underlying information to work with.

This idea can be employed, for example, to keep information synchronized, where

different parties view and/or modify different facets of the information in a manner

similar to database views, e.g., the software project manager can update just the skill set

of her team member, while the HR department may focus just on keeping the team

member’s employment status updated.

 86

Given the same information, not everyone manipulates it or visualizes it in the same way

either. For example, different employees in an enterprise may access the same

information, but only one may have the ability to modify it. Similarly, a person in the

accounting department may be interested in the spread sheet view of some sales figures,

whereas a higher level executive would prefer a chart based on this data.

The ideas regarding fine grained control over information properties and presentation

used in a view of the information are not new. For example, Microsoft Outlook allows

users to select fields of interest for items in the contacts list [9]. In addition, to allowing

the user to select fields, it allows the user to control the visualization by specifying the

order of the fields and font/color preferences for contacts. This could easily be extended

to making certain fields editable vs. read-only.

Similar notions exist in Haystack; Aspects are a means of inspecting an information

entity [21]. One type of aspect (metadata aspect) allows users to view a set of properties,

e.g., “All Properties” aspect, “Standard Properties” aspect, etc. (see Figure 14).

In fact, as Quan points out, the notion of aspects need not be restricted to a subset of

reified properties of the underlying information entity; they can be the result of any

computation on the entity, e.g. the age of the underlying entity based on its date of birth

and the current date, or the size of the underlying collection of items.

Related to the problem of customizing views of information is that of allowing non-

programmers to create user interfaces. Marquise is an example of a tool that allows users

to create user interfaces for graphical editors by “demonstration, without programming.”

[30] The Marquise tool “contains knowledge about palettes for creating and specifying

properties of objects, and about operations such as selecting, moving and deleting

objects” and hence constitutes a domain specific (applicable only to designing interfaces

for graphical editors) user interface designing tool. Marquise highlights the notion of

embedding domain knowledge into an interface builder tool, rather than the interface

itself.

In this chapter, we advocate giving users the power to create their own views, using

appropriate view designers that interpret the underlying information using various

semantics, and can expose appropriate primitives for creating views. Semantics can be

leveraged in various ways by view designers to allow creation of powerful views by

users, while preserving valid data. For example, a simple understanding of the properties

the user wishes to view/manipulate would allow the view designer to present appropriate

widgets, e.g. a checkbox for a Boolean property, a slider control for a property having a

fixed continuous range or enumerated values as valid values. Semantics used to interpret

information can also be used to allow designers to correspond to styles of views, e.g. a

list of numerical pairs can be interpreted as coordinates for a curve that is drawn. As a

result, different view designers can make available different types of rendering

preferences, e.g. text font vs. line thickness. Similarly, a list of genetic bases (Adenine,

Guanine, Thymine, Cytosine) can be interpreted appropriately by a designer, and allow

 87

the user to specify a preference of whether just the sequence, or its complement is also to

be rendered.

Figure 14 Screenshot of Haystack showing various aspects of the entity Karun Bakshi

 88

Since Haystack can represent information from arbitrary domains, it should support the

addition of new view designers. As a baseline however, it is important that Haystack

allow users to inspect arbitrary sets of properties of any entity, until a domain specific

designer becomes available. Thus, we developed a simple, generic view designer that

extends the power of metadata aspects in Haystack to users by allowing them to create

views (henceforth referred to as metadata lens views or view parts) that select and view

properties of interest from the underlying entity. Much like Magic Lenses, the user can

specify that the view be used to examine a particular entity; the view then exposes the

specified properties [11]. The only semantics the designer understands are that property

values can be either literals or resources. However, even this simple capability becomes

powerful, when combined with the power to reuse existing views in creating new views.

6.2 Design

The aforementioned user creatable views are designed analogously to information spaces.

They allow users to specify “portals” for properties of the underlying entity, lay them out

in two dimensions and stipulate various preferences for rendering them. Since the user

creates views, he/she must be able to inspect and manipulate them. Similar to information

spaces, the views themselves (and the property portals they embed) support two views: a

designer view that allows users to layout the property portals and specify preferences, and

a usage view that is rendered when the user has selected the view for examining some

entity. Unlike information spaces however, it is not possible to switch from design view

to usage view since the view needs to be applied to some information entity; unlike

information spaces, such an entity is not specified in a fixed manner. (Note, the design

and implementation of the metadata lens view part, and its designer and associated

infrastructure require a thorough understanding of the Haystack view/part architecture

and UI rendering ,which is beyond the scope of this document. Please consult [31] for

further details.)

Finally, like Information Spaces, a “Metadata Lens View Parts Manager” has been

implemented to allow users a convenient interface for creating and managing various

views. We discuss the supporting ontologies for this framework, followed by a discussion

of the user interfaces for the views (designer vs. usage) and the manager.

6.2.1 Underlying Ontologies

As in the case of information spaces, metadata lens views are implemented using three

primary ontologies: Metadata Lens View Part Ontology, Property Lens Ontology and the

Two Dimensional Layout Ontology. We do not discuss the Two Dimensional Layout

Ontology as it has already been covered in the previous chapter.

The mlvp:MetadataLensViewPart class is declared in the Metadata Lens View Part

Ontology, and is a subclass of ozone:ViewPart, i.e. it declares a particular type of view

part. (This class is analogous to the is:InformationSpace class.) It is with this type,

that all metadata lens views the user creates are annotated. In addition to supporting the

various properties that views in Haystack support as well as a user-specified title, this

class also has two additional properties: mlvp:metadataLensViewPartLayout, and

mlvp:metadataLensViewPartClass. The first property captures the two dimensional

 89

layout of the properties to be displayed. The second property points to a unique view part

class that the user can name, and which then becomes available for use in Haystack (e.g.,

in the information space designer to specify the view part class for the entity underlying

an information portal).

The Property Lens Ontology declares the pl:PropertyLens class. (This class is

analogous to the ip:InformationPortal class.) The view that the user creates, embeds a

set of property lenses that are to be applied to the underlying entity. Property Lenses

support five attributes: pl:property, pl:editable, pl:showTitle, pl:propertyTitle

and pl:viewPartClassToUse. The pl:property attribute points to the property that is

to be extracted for the underlying entity. The pl:editable attribute is only applicable if

the property that is to be examined has literal values, and specifies if the user would like

to be able to edit the property, or just view it. The pl:showTitle attribute controls

whether or not the title indicated by pl:propertyTitle is to be shown when the

property lens is rendered in its usage view. Note, pl:propertyTitle points to a copy of

the title of the property in order to allow users to change it in the context of the view

being created (for visualization purposes), without actually changing the title of the

property being inspected. As a result, the user has the flexibility to use a meaningful title

for the view, yet still retain the ontologically meaningful title of the property. Finally, the

pl:viewPartClassToUse property is only applicable if the property being examined

results in a resource. It provides the vehicle for reuse of existing views and specifies

which view part class to use in order to render the resource that results when the specified

property of the underlying entity is queried.

6.2.2 Metadata Lens View Part Designer View

The Metadata Lens View Part Designer View of mlvp:MetadataLensViewPart can be

used to design the view being created by laying out property lenses. A new metadata lens

view is initialized with a single property lens. The figure below shows the layout for the

designer.

Similar to Information spaces, the designer is split into two sections: the top pane lets the

user edit the title of the view and the associated view part class. The bottom pane allows

users to layout the various property lenses, using the same mechanism for editing the two

dimensional information portal layout described in Chapter 5.

Each of the property lenses allows all five attributes of property lenses to be edited. The

pl:property can be specified by using drag and drop to specify a property to inspect.

The pl:editable and pl:showTitle Boolean properties can be edited by the

corresponding checkboxes. The title to display for the property being inspected can also

be edited and defaults to its current title. Finally, the pl:viewPartClassToUse property

can be specified using drag and drop.

An important feature of the current interface is that a user is required to specify a title

(initially blank) for the view part class that is associated with the view that the user has

created. Albeit confusing, this distinction between the view part class and the view (also

known as a view part) is an artifact of the current Haystack view implementation

 90

infrastructure, since view part classes (rather than views) are specified when the user

wants to see some entity in a particular manner. Generally, the user will want both titles

to be the same for ease in remembering, and since the view part class (a concept

understood by Haystack) is used to refer to the view (a concept understood by the user)

when finding and creating a specified view in the Haystack implementation. However,

the interface does not ask for just a single title and update both, since the two titles are in

fact titles for distinct concepts (they cannot be used interchangeably).

Figure 15 A Metadata Lens View Part shown using the Designer View

A second feature to note about the current design interface for property lenses is that even

though pl:editable and pl:viewPartClassToUse may be deemed mutually exclusive

(pl:editable is applicable to literal values, and pl:viewPartClassToUse is applicable

to resource values), they are both available simultaneously for editing. This is done since

Haystack supports a semi-structured data model, where the declared ontologies are not

enforced, and hence there are no guarantees on the nature of the values of properties.

Furthermore, depending on the data model, some ontologies may actually model

properties as having either literal or resource values. Thus, the property lens collects the

relevant information “just in case", and applies the preferences dynamically, based on the

results of querying the property value.

6.2.3 Metadata Lens View Part Usage View

The Metadata Lens View Part Usage View is the view that is rendered when the view

part is being used to inspect the properties of some information entity. The figure below

shows an example of this view: an information space is used to show three people (Karun

 91

Bakshi, David Huynh and Vineet Sinha) that are mutual friends, using the Friends view

part that the user created above to see who is a friend of whom.

Figure 16 An information space that allows the user to inspect three people using the Friends View

As in the case of information spaces, the metadata lens view part lays out the usage views

of the embedded property lenses according to the specification of the two dimensional

layout. Each of the property lenses in turn shows a title for the property (if selected by the

user), followed by a list of values for the property. (Just as the ranges of properties are

not enforced in the semi-structured store, neither is the cardinality of the property. Thus,

we show multiple values if they exist, for completeness.) If the property was selected to

be editable (and is a literal), then the user is presented with an edit box; otherwise, just

the value of the literal is presented. If the value is a resource, the appropriate view part

class is used to display it.

In the view above, each person has a list of friends, but only single values for the other

properties. Notice, that the homepage for the person Karun Bakshi is displayed rather

than an editable URL. In this case, the URL that was given was a resource (not a literal).

Prior to looking for a view part locally, Haystack automatically tries to dereference all

resources that appear (based on some heuristic, e.g., begins with “http:…”) to be URLs

on the Web, when attempting to use an InteractiveViewPart to display the resource. In

 92

this case, it succeeds in finding and embedding it. Thus, the value of the same property is

dynamically displayed, based on whether it is a literal or a resource.

Several features of this view are noteworthy. First, the type of interaction for a property

with a resource value depends on the view selected to render it. Thus, for example, the

interaction with the friends depends on what the underlying view

(LineSummaryViewPart) supports for resources of type hs:Person. Also, since the

underlying layout engine is the same as information spaces, the resulting metadata lens

view supports resizing the lenses. However, we do not show borders between properties

to hide any notion of a resize handle.

6.2.4 Metadata Lens View Parts Manager

The Metadata Lens View Parts Manager is implemented in exactly the same manner as

the Channel and Information Space Manager, with the correct view for an appropriately

defined channel. Relevant operations are made available for creating, copying and

deleting metadata lens view parts, as with the other channels. The only difference is that

the preview pane only allows interacting with the view using its designer view since there

is no underlying information entity to which it can be applied. A screenshot of this user

interface is presented below.

 93

Figure 17 Screenshot of Metadata Lens View Parts Manager

6.3 Implementation

In this section, we discuss the implementation of the design and usage views of the

Metadata Lens View Parts. We do not discuss the implementation of the Metadata Lens

View Parts Manager as it is implemented in the same manner as previous such interfaces.

The implementation files for the Metadata Lens View Part class are

schemata/MetadataLensViewPart.ad and ui/MetadataLensViewPartDesigner.ad. The

implementation files for Property Lens are schemata/PropertyLens.ad and

ui/PropertyLens.ad.

 94

In order to understand how Metadata Lens View Part’s views are implemented, we

briefly examine a portion of the declaration for a new view of type

mlvp:MetadataLensViewPart below. (Note, identifiers without : below indicate

variables having a unique URI, which changes for each view part the user creates. The

other URIs remain the same for each view part.)

add {daml:Thing hs:classView :MetadataLensViewPartClassView}

add {newViewPart

 mlvp:metadataLensViewPartLayout viewLayout;

 mlvp:metadataLensViewPartClass metadataLensViewPartClass;

 dc:title "Untitled Metadata Lens View

Part";

 rdf:type ozone:Part;

 rdf:type ozone:ViewPart;

 rdf:type mlvp:MetadataLensViewPart;

 rdf:type metadataLensViewPartClass;

 ozone:viewDomain :MetadataLensViewPartClassView;

 ozone:partDataGenerator :presentMetadataLensViewPart;

}

Several attributes are noteworthy. First, all items (daml:Thing) are designated as having

class view :MetadataLensViewPartClassView, that the new view part implements (as the

ozone:viewDomain property indicates). Second, the view part has also been annotated as

being of a unique view part class type (metadataLensViewPartClass). These two

annotations are necessary for Haystack to locate this view part for any item that specifies

the unique view part class for rendering. Third, the new view part has been annotated as

being type mlvp:MetadataLensViewPart to indicate that it is a view part of a particular

type. Finally, the view part has attributes that are specific to the new type of view part

(mlvp:MetadataLensViewPart), e.g., mlvp:metadataLensViewPartLayout.

The designer view for the view part is implemented simply by taking the value of the

mlvp:metadataLensViewPartLayout property that points to an object of type

tdl:TwoDimensionalLayout, and viewing it with the TwoDimensionalLayoutView (as

explained in Chapter 5) that serves as a layout engine for the property lenses. The

property lenses themselves are viewed using their own design view by specifying the

desired view that is to be used by the two dimensional layout engine for its cell data as

TwoDimensionalLayoutCellEditorView.

The usage view that is created by the user (when the view part is being used to view the

properties of an underlying entity), is rendered by calling an adenine method that

generates the part data (UI widget description of the view), as specified by the

ozone:partDataGenerator property. This method also queries for the

mlvp:metadataLensViewPartLayout property of the view, and also invokes the two

dimensional layout engine, but specifies the TwoDimensionalLayoutCellUsageView for

the property lenses by registering an appropriate context property (see Chapter 5). In

 95

addition, the underlying entity to which this view is being applied (i.e., the entity whose

properties are being inspected) is also registered in the context so that the property lenses

can be applied to the right underlying entity.

The implementation of the usage view above can be used to model other view part

designers that may be created in the future. A new view part designer will in general

allow the user to create a particular type of view part that is a subclass of

ozone:ViewPart. Such a view part should have one or more properties to capture user

preferences for the view (in our case, this predicate was

mlvp:metadataLensViewPartLayout). Then, the view should be rendered by a view

container implemented that will invoke the method specified by

ozone:partDataGenerator (:presentMetadataLensViewPart in our case). This

method interprets the user preferences captured by the view, and translates them to part

data (UI widget descriptions) understood by Haystack. Finally, the designer should make

the appropriate annotations for the view part class and class views

(metadataLensViewPartClass and :MetadataLensViewPartClassView) to ensure that

the view part gets invoked in the right circumstances, i.e., for objects of the right type,

that want this particular view.

The Property Lens designer view is fairly straightforward, as it simply exposes all the

property lens properties for editing by the user. The Property Lens Usage view interprets

the user preferences for the property lens, and generates appropriate part data to show the

values of the property.

6.4 Conclusion

In this chapter we deliberated the need for users to be able to create, not just reuse, views

for a given information entity. Thus, we proposed the need for view designers that

understand the semantics of various types of information and expose relevant capabilities

for creating views. Given that Haystack’s data model can support various types of

information, it should support various types of view designers. As a result, we developed

a domain-independent, baseline view designer that lets users inspect any properties of an

information entity in Haystack, regardless of its domain and taking advantage of minimal

information semantics. Nevertheless, we recognized that more powerful views can be

designed by view designers that better understand the semantics of the underlying

information that the views they generate will be manipulating.

 96

Chapter 7 Conclusion and Future Work
Having considered the architecture and the design and implementation of tools required

for users to create and customize their own information spaces, this final chapter is

devoted to understanding some of the merits of our approach and the resulting

contributions, new ideas worth exploring in the future as well as areas deserving

additional improvement.

7.1 Contributions

Although we currently lack an evaluation of our system, and an understanding of its

efficacy in increasing user productivity in arbitrary information based tasks, we feel that

our work nevertheless contributes some important ideas.

The most important (and simplest) idea we highlight is the existence of a problem (and

thus, research topic) in the way user’s currently perform information based tasks; the

tasks are generally unique based on various factors, and require information from

arbitrary domains. As a result, traditional approaches to increasing user efficiency using

multiple applications or more user-friendly, task-centric, all-encompassing interfaces

built by developers will inherently be rigid and lacking in some respect from the user’s

perspective; users are different and tasks continuously change in manners developers

simply cannot foretell. Instead, we propose allowing users to build their own interfaces

for their tasks rather than be fettered by the constraints of information locked in

application specific islands, using various tools for creating customized task-based

interfaces: information spaces. As a result, we allow users to create their own

“applications,” tailored to a particular task.

In support of this approach, we developed the notion of Channels of information, a

general means of allowing the user to specify a persistent query/description of how to

compute a collection of information that is related in some manner. As a result, a channel

can be used as a unit of specifying content that can be “re-directed” into any/multiple

user created information spaces.

 97

We also proposed an architecture for a solution to the above problem that is open in that

it allows adding more components that enhance the toolkit available to users to customize

their interfaces. New query and computational primitives may be added to enhance the

expressive power available to the user in specifying channels via the Channel Manager.

Building on top of the Haystack philosophy of having multiple means of viewing an

information entity, we proposed the notion of view designers that understand the same

information using different semantics, and hence allow building views that interact with

that information in various ways (in addition to ones that are implemented by

developers). We also outlined a general design pattern for implementing other view

designers in Haystack. Developers may implement domain or type specific view

designers, which allow the user to create views that provide a better interaction and

visualization experience. For example, whereas the user may create a view to look at the

properties of appointments via the current generic view designer, a specialized view

designer for a calendar can allow the user to render appointments in a timeline format or

a week at-a-glance format.

Finally, Haystack already supports operations as first class entities, and hence additional

operations can be written and exposed to the user for availability in particular contexts.

7.2 Future Work

Our current system as it stands leaves plenty of room for future work, which we consider

in this section. For simplicity, we categorize the work into three categories: evaluation of

current system, new ideas for supporting information customization within the current

framework, new features that would make the current set of functionality more useful.

7.2.1 Evaluation

Since we have not evaluated our system, or any of our claims, a major portion of our

future work will focus on obtaining feedback on the relevance of our ideas and usability

of our implementation via a user study. Some of the questions that the user study should

seek to find answers to include:

• Is the idea of user creation and customization of information spaces compelling?

That is, do people actually have the problems we argued in our motivation? If so,

is the power they are given in this respect, worth the accompanying burden of

creating their own channels and information spaces? If not, why not? How can the

burden be minimized or alleviated. How useful are domain specific view

designers in this respect, or is the ability to select (rather than create) from a pre-

defined set of views sufficient?

• What are some of the use cases for information spaces that are important from

users’ perspective? Which features/ideas in our current implementation support

them? Which features are missing? Which features/ideas/abstractions need to be

modified to enhance usability?

• How did the individual design decisions for the various tools fare? For example,

does projection operations by creating buttons, rather than modifying the context

 98

menu with the user specified operations help, or is the accompanying loss of

uniformity disorienting to the user? Should users be able to resize information

portals, or simply collapse them to make more space for other parts of the

interface?

We are already aware of various improvements to the current implementation that are

required to enhance usability, before a user study can be conducted:

• The current means of piping the results from one set transform to another,

requires users to build the channel definition in reverse order: the final set

transform must be specified first, and its inputs can then be specified as being the

results of other set transforms. A graph editor that does not force this “tree-like”

declaration method and that allows users to link the results of set transforms to the

inputs of other set transforms in any order would be more intuitive.

• The current query interface is complex and requires users to remember individual

query primitives that can only perform one type of query, and specify arguments

for them. A query interface that provides an intuitive interface for multiple types

of queries, and maps the user specified information to the appropriate underlying

query primitives is more desirable.

• The names of various set transforms and primitives are cryptic, and should be

more user-friendly and descriptive.

• The current means of changing the layout of information spaces results in loss of

information portal preferences if they are split further. Also, within a given

layout, it is difficult to switch the locations of information portals. Users should

not have to do significant re-creation of the information space, just because the

layout has changed.

• Due to the way in which Haystack is implemented, users are forced to contend

with implementation complexities such as view part classes. The current Haystack

infrastructure should be changed to simplify and minimize the abstractions and

concepts the user must understand.

• In order to have a good use case for the user study, one or more domain specific

view designers or views may need to be created.

7.2.2 New Avenues for Research

In this section, we discuss new ideas that will enhance the power of users to customize

their information spaces.

• Channel Triggers – It would be useful for the user to specify certain actions that

are to be taken by the system, when items are added to or removed from the

channel.

• Dynamic Currying – The operations shown in an information portal should be

sensitive to the channel item currently selected; operations that are not relevant to

it should not be visible, and operations that require an argument type matching

that of the selected item should dynamically bind to it, as is done in context

menus.

 99

• Information Space Wiring – Information portals showing channel items should

expose the currently selected item, such that it can be used elsewhere in the

interface, e.g., a preview pane can be shared by the most recently selected item

from multiple channels. Thus, users should be able to “wire-up” their interface.

• Channel Learning – Haystack should be able to learn and generate the channel

description based on set transforms from a collection of items specified by the

user.

• Virtual Property Lenses – A new type of property lens that computes a property

value (rather than extracting it) would significantly enhance the power of views

users can create.

• Viewing Heterogeneous Channels – The items in a channel need not necessarily

be of the same type, e.g., “Messages from David Karger” may include instant

messages as well as e-mail. Users may want to see different types of information

using different types of views, and the current information portal implementation

would need to be enhanced to support this functionality.

• Reuse of Tools – The tools we developed for information spaces allow users to

bootstrap and can be used to actually create some of the tools themselves. For

example, information spaces can be used to create an Ontology Browser, and

property lenses can be used to actually implement the Design View of property

lenses themselves! These exercises should be performed to see where limitations

exist that do not allow such recreation of functionality, and what new abstractions

are needed to overcome them and further enhance the power available to users.

7.2.3 New Features for Current Implementation

The following feature enhancements would tremendously increase the usability of our

tools:

• Polished Information Space User Interface – The current user interface for

information spaces is not space efficient and forces significant user interaction.

For example, it requires the user to manually resize various information portals,

and does not allow hiding the pane showing the buttons for relevant operations. It

would be nice to be able to collapse portals and sub-panes with a single click.

Also, space is currently wasted by vertically placing the buttons that allow users

to split information portals in design mode. If they were horizontally laid out

(e.g., below the portal), users would have more space to work with the portals in

designer view.

• Pervasive Style Annotations – Currently, users cannot specify any style

specifications, e.g. background color, border widths, text fonts, etc. for any part of

their information space. Such a capability is provided by most applications, and

should be supported in Haystack as well.

• Channel Update Specifications – Users should be able to specify when

individual channels are updated.

• Additional Primitives – New set transforms that implement additional primitive

operations would increase the expressive power available to users in defining

channels. For example, a set transform that finds other items “similar” to a

specified item using machine learning would be incredibly useful. Similarly,

 100

additional condition tests, e.g., “starting with string xyz” or “having 2 or more

instances of a property” would also increase expressive power available to users.

• Reusable Component Library – Currently, the only means of reusing a portion

of another channel’s description (i.e. some set transform instance that it

encapsulates) is to declare a channel that has that set transform instance as its

description. The channel is declared simply so that it can be re-used in some other

channel, and has no semantic value of its own. Condition Tests cannot be re-used

at all. Thus, it would be useful for the user to be able to store set transform

instances (that are not actually computed by the channel manager) and condition

test closures that can be duplicated and used when defining channels.

• Property Lens Library – Given that many properties are common across

ontologies, such as title, date, etc., the user may want to inspect them in multiple

views. Thus, the ability to add existing property lenses to new views without

having to define them each time would be very useful. Perhaps, our system should

increase the granularity at which users can control visualization of information by

allowing them to create and manage individual property lenses, and then reuse

them in different layouts and combinations to create new views rapidly.

• Metadata Lens View Enhancement – The current implementation of the

metadata lens view parts that users can create, do not allow them to add or delete

property values; property values can only be inspected or modified. Such a

capability would allow users complete CRUD (Create, Replace, Update, Delete)

control over their information store. An interesting design question here would be

whether or not to enforce the schema for the underlying object (i.e. not allow

additional values, if the property is unique, e.g. age). Users may desire both

structured and semi-structured access in different circumstances.

 101

Appendix A – Available Set Transforms

Table 1 Available Set Transforms

Name Arguments Description

Set Operators

SetUnion Set1, Set2: The sets to be

combined via a set union.

A transform that allows a

set union to be computed of

its constituent arguments. It

is used as a substitute for

boolean disjunction

(Inclusive OR).

SetIntersection Set1, Set2: The sets to be

combined via a set

intersection.

A transform that allows a

set intersection to be

computed of its constituent

arguments. It is used as a

substitute for boolean

conjunction (AND).

SetDifference Minuend Set: The

"universal" set.

Subtrahend Set: The set to

be subtracted.

A transform that returns the

set difference of two sets. It

is used as a substitute for

boolean negation when

supplied with an

appropriate "universal" set.

Query Primitives

Subject Query (Fixed Predicate: The predicate to A transform that returns all

 102

Predicate, Literal Object) fix in the subject query.

Condition Test: A closure

for the condition test to

apply.

resources that are subjects

having the specified

predicate, and an object

value that satisfied the

specified condition test

closure.

Subject Query (Fixed

Predicate, Resource

Object)

Predicate: The predicate to

fix in the subject query.

Condition Test: A closure

for the condition test to

apply.

A transform that returns all

resources that are subjects

having the specified

predicate, and an object

value that satisfies the

specified condition test

closure.

Subject Query (Fixed

Literal Object)

Object (Literal): The

(literal) object to fix in the

query.

Condition Test: A closure

for the condition test to

apply.

A transform that returns all

resources that are subjects

having the specified object,

and a predicate that satisfies

the specified condition test

closure.

Subject Query (Fixed

Resource Object)

Object (Resource): The

(resource) object to fix in

the query.

Condition Test: A closure

for the condition test to

apply.

A transform that returns all

resources that are subjects

having the specified object,

and a predicate that satisfies

the specified condition test

closure.

Predicate Query (Fixed

Subject, Literal Object)

Subject: The subject to fix

in the query.

Condition Test: A closure

for the condition test to

apply.

A transform that returns all

resources that are predicates

having the specified subject,

and a corresponding object

value that satisfies the

specified condition test

closure.

Predicate Query (Fixed

Subject, Resource Object)

Subject: The subject to fix

in the query.

Condition Test: A closure

for the condition test to

apply.

A transform that returns all

resources that are predicates

having the specified subject,

and a corresponding object

value that satisfies the

specified condition test

closure.

Predicate Query (Fixed

Literal Object)

Object (Literal): The

object to fix in the query.

A transform that returns all

resources that are predicates

having the specified object,

 103

Condition Test: A closure

for the condition test to

apply.

and a corresponding subject

value that satisfies the

specified condition test

closure.

Predicate Query (Fixed

Resource Object)

Object (Resource): The

object to fix in the query.

Condition Test: A closure

for the condition test to

apply.

A transform that returns all

resources that are predicates

having the specified object,

and a corresponding subject

value that satisfies the

specified condition test

closure.

Object Query (Fixed

Subject)

Subject: The subject to fix

in the query.

Condition Test: A closure

for the condition test to

apply.

A transform that returns all

resources that are objects

having the specified subject,

and a corresponding

predicate value that satisfies

the specified condition test

closure.

Object Query (Fixed

Predicate)

Predicate: The predicate to

fix in the query.

Condition Test: A closure

for the condition test to

apply.

A transform that returns all

resources that are objects

having the specified

predicate, and a

corresponding subject value

that satisfies the specified

condition test closure.

Identity/Null Primitives

Null None A transform that returns an

empty set.

Channel Duplicator Channel: The channel

whose contents are to be

duplicated.

A transform that copies and

returns the contents of

another channel.

Collection Wrapper Collection: The collection

that is to be wrapped.

A transform that copies and

returns the contents of

another collection.

Others

Items of Type Item Type: The type of the

items to be selected.

A transform that allows

selection of items of a

particular type.

 104

Appendix B – Available Condition Tests

Table 2 Available Condition Tests

Name Arguments Description

Null Condition

Any Value None A condition test that always

returns true, i.e. any value is

acceptable.

Conditions on Literals

== (Literal) Variable Value (Literal):

The item to which the

condition test is applied.

Fixed Value (Literal): The

item used to compare to the

variable value in the

relational condition test.

A condition test that returns

true if the variable argument

is equal to the fixed

argument (in a string match

sense).

!= (Literal) Variable Value (Literal):

The item to which the

condition test is applied.

Fixed Value (Literal): The

item used to compare to the

variable value in the

relational condition test.

A condition test that returns

true if the variable argument

is not equal to the fixed

argument (in a string match

sense).

 105

Conditions on Resources

== (Resource) Variable Value

(Resource): The item to

which the condition test is

applied.

Fixed Value (Resource):

The item used to compare

to the variable value in the

relational condition test.

A condition test that returns

true if the variable argument

is equal to the fixed

argument (in a string match

sense).

!= (Resource) Variable Value

(Resource): The item to

which the condition test is

applied.

Fixed Value (Resource):

The item used to compare

to the variable value in the

relational condition test.

A condition test that returns

true if the variable argument

is not equal to the fixed

argument (in a string match

sense).

Conditions on Numeric Values (Literals)

> Fixed Value (Double): The

item used to compare to the

variable value in the

relational condition test.

Variable Value (Literal):

The item to which the

condition test is applied.

A condition test that returns

true if the variable argument

is greater than the fixed

argument. Both operands

must be numeric.

< Fixed Value (Double): The

item used to compare to the

variable value in the

relational condition test.

Variable Value (Literal):

The item to which the

condition test is applied.

A condition test that returns

true if the variable argument

is less than the fixed

argument. Both operands

must be numeric.

>= Fixed Value (Double): The

item used to compare to the

variable value in the

relational condition test.

Variable Value (Literal):

A condition test that returns

true if the variable argument

is greater than or equal to

the fixed argument. Both

operands must be numeric.

 106

The item to which the

condition test is applied.

<= Fixed Value (Double): The

item used to compare to the

variable value in the

relational condition test.

Variable Value (Literal):

The item to which the

condition test is applied.

A condition test that returns

true if the variable argument

is less than or equal to the

fixed argument. Both

operands must be numeric.

== (Numeric) Fixed Value (Double): The

item used to compare to the

variable value in the

relational condition test.

Variable Value (Literal):

The item to which the

condition test is applied.

A condition test that returns

true if the variable argument

is equal to the fixed

argument. Both operands

must be numeric.

 107

References

1. Extensible Markup Language (XML). http://www.w3.org/XML/.

2. Web Services Activity. http://www.w3.org/2002/ws/.

3. Semantic Web. http://www.w3.org/2001/sw/.

4. Bellotti, V., Ducheneaut, N., Howard, M. and Smith, I. Taking Email to Task:

The Design and Evaluation of a Task Management Centered Email Tool.

Proceedings of the Conference on Human Factors in Computing Systems 2003.

5. Kubi Software. www.kubisoft.com.

6. Anderson, C. and Horvitz, E. Web Montage: A Dynamic Personalized Start Page.

Proceedings of the eleventh international conference on the World Wide Web,

2002.

7. Bauer, D. Personal Information Geographies. Extended Abstracts of the

Conference on Human Factors in Computing Systems 2002.

8. Microsoft Office Online. http://www.office.microsoft.com/home/.

9. Microsoft Office Online, Outlook. http://www.microsoft.com/outlook/.

10. Storey, M., Best, C., Michaud, J., Rayside, D., Litoiu, M. and Musen, M. SHriMP

Views: An Interactive Environment for Information Visualization and Navigation.

Extended Abstracts of the Conference on Human Factors in Computing Systems

2002.

11. Bier, E., Stone, M., Pier, K., Buxton, W. and DeRose, T. Toolglass and Magic

Lenses: The See-Through Interface. Proceedings of International Conference on

Computer Graphics and Interactive Techniques (SIGGRAPH) 1993.

12. Hutchings, D. and Stasko, J. QuickSpace: New Operations for the Desktop

Metaphor. Extended Abstracts of the Conference on Human Factors in

Computing Systems 2002.

13. Berners-Lee, T., Hendler, J. and Lassila, O. The Semantic Web. Scientific

American, May 2001.

14. Hogue, A. Tree Pattern Inference and Matching for Wrapper Induction on the

World Wide Web. MEng. Thesis. MIT, 2004.

15. MyYahoo! http://my.yahoo.com.

 108

16. Card, S., Henderson, D. Rooms: The Use of Multiple Virtual Workspaces to

Reduce Space Contention in a Window-Based Graphical User Interface. ACM

Transactions on Graphics Vol. 5, Issue 3, July 1986, pp. 211 – 243.

17. Cruz, I., and Lucas, W. A Visual Approach to Multimedia Querying and

Presentation. Proceedings of the fifth ACM International Conference on

Multimedia, 1997.

18. Schraefel, M., and Zhu, Y. Hunter Gatherer: A Collection Making Tool for the

Web. Extended Abstracts of the Conference on Human Factors in Computing

Systems 2002.

19. Quan, D., Huynh, D. and Karger, D. Haystack: A Platform for Authoring End

User Semantic Web Applications. 2
nd
 International Semantic Web Conference,

2003.

20. Resource Description Framework (RDF). http://www.w3.org/RDF/.

21. Quan, D. Designing End User Information Environments Based On

Semistructured Data Models. PhD Thesis. MIT, 2003.

22. RSS 2.0 Specification. http://blogs.law.harvard.edu/tech/rss.

23. Goldman, R. and Widom, J. DataGuides: Enabling Query Formulation and

Optimization in Semistructured Databases, Proceedings of 23
rd
 International

Conference on Very Large Data Bases, 1997.

24. START Natural Language Question Answering System.

http://www.ai.mit.edu/projects/infolab/start-system.html.

25. Popescu, A., Etzioni, O. and Kautz, H. Towards a Theory of Natural Language

Interfaces to Databases, Proceedings of the 8
th
 International Conference on

Intelligent User Interfaces, 2003.

26. Banko, M., Brill, E., Dumais, S. and Lin, J. AskMSR: Question Answering Using

the Worldwide Web. Proceedings of 2002 AAAI Spring Symposium on Mining

Answers from Texts and Knowledge Bases, March 2002.

27. Zloof, M. "Design Aspects of the Query-By-Example Data Base Manipulation

Language," in B. Shneiderman (Ed.) Databases: Improving Usability and

Responsiveness. Academic Press. New York, USA.1978.

28. Microsoft Office Online, Access. http://www.microsoft.com/office/access/.

29. FileMaker. http://www.filemaker.com/.

30. Myers, B., McDaniel, R. and Kosbie, D. Marquise: Creating Complete User

Interfaces By Demonstration. Proceedings of the Conference on Human Factors

in Computing Systems 1993.

31. Huynh, D. Haystack’s User Interface Framework: Tutorial and Reference.

http://haystack.lcs.mit.edu/documentation/ui.pdf.

