
A Unified Abstraction for Messaging on the Semantic Web
Dennis Quan, Karun Bakshi, David R. Karger

MIT AI Laboratory/LCS, 200 Technology Square, Cambridge, MA 02139 USA

{dquan,karunb,karger}@ai.mit.edu

1. OVERVIEW
Since its inception, the Internet has been a hotbed of several suc-
cessful communications channels, starting off with e-mail, IRC
and newsgroups and more recently adding web annotation, instant
messaging (IM), and news feeds. Although these channels were
developed fairly independently, in many cases their respective
functionalities and uses have grown to overlap significantly. For
instance, users often have separate identifiers for e-mail, chat, and
instant messaging, and clients for these systems all have their own
implementations of threaded message views. Furthermore, multi-
ple modalities may be involved in the completion of a single task:
to notify a friend that you are going to be out for the day, you may
start off using IM but switch to e-mail if he or she is not online.
We believe these peculiarities stem from a lack of a common data
model and user interface.

The opportunity exists to take a “big picture” look at the situation
and to recast the problem in terms of a broader messaging abstrac-
tion. Once the existing systems are unified under a common
model, we can realize a number of synergies that result from the
reduction of overlap and the fine-grained control users are given
over message composition, transmission, storage and retrieval.
We can also enhance all forms of messaging by incorporating
features that are currently present only for specific messaging
paradigms. In this paper we use basic concepts from the Semantic
Web to unify and model these seemingly disparate messaging
paradigms.

2. EXISTING MESSAGING SYSTEMS
Our messaging model is built upon generalizations of the major
Internet messaging systems. One recurring theme is synchronicity.
In asynchronous communication, the sender does not wait for a
response, conversations are generally carried out over longer peri-
ods of time, and each party has the luxury of formulating a well
thought out response. On the other hand, users exchange informa-
tion relatively rapidly in synchronous communication to facilitate
an active dialog. Communication paradigms may also be grouped
based on whether they support public access and dissemination of
information to a priori unknown recipients, or whether they are
intended for private communication where the participants are
known and can be selected.

Previous work has uncovered the core strengths and limitations of
each system. E-mail, serving as a generalized asynchronous com-
munication mechanism for social interaction and work-related
collaboration, is perhaps the most widely used mode of digital
communication. Whittaker et al. report that e-mail has evolved
from an asynchronous communication mode to a focal point for
task management and information organization simply because it
serves as a mechanism for assigning and tracking work, as well as

a receptacle of various kinds of information [5]. Furthermore, it
makes available a single convenient, accessible, long-term archiv-
ing mechanism allowing easy filing for items in the inbox, or
letting the inbox itself be the archive.

Like e-mail, newsgroups also afford automatic persistence, which
enables knowledge to be captured for future reference but also
allows extraneous information to add “noise” to the information
environment, making it difficult to obtain and attend to important
information [3]. As present, newsgroup users resort to e-mail as a
means of privately continuing conversations that start as public
posts. Whittaker argues that newsgroups should allow users to
easily change the communication mode (e.g. instant messaging
when answers to urgent queries are needed) [3].

Finally, although the individual messages themselves may be
short, immediate and rarely persisted, IM enables maintenance of
longer term sessions that allow awareness of presence of other
parties, thereby facilitating longer term context maintenance and
allowing continuation of the conversation [2]. However, in syn-
chronous systems such as IM, there is no way to ensure that a
response appears in the right context since the display is a tempo-
ral sequence rather than a topical hierarchy [3].

3. APPROACH
In attempting to unify messaging, we have developed a robust
infrastructure that rests on a well-defined ontology for messaging
based on the Resource Description Framework (RDF). This robust
infrastructure in turn facilitates addressing many of the UI prob-
lems and overlaps that exist. To realize our RDF data model, we
are building support for unified messaging into Haystack, an in-
formation management platform for the Semantic Web [1].

In order to apply RDF to the problem at hand, we give ontological
specifications of how to represent messages, conversations, and
people using RDF Schema. These representations generalize the
notions of sender, recipient and reply threads and form the basis
of our messaging data model. This model allows us to aggregate
arbitrary types of messages, thereby supporting the types of me-
dium interchanges people often make (e.g. switching from a pub-
lic post to a private e-mail discussion), while at the same time
capturing the entire conversation in order to maintain message
context that is so crucial in activities such as task management [5]
[2]. Furthermore, by casting messages and conversations into
RDF, we also gain a persistent description to which we can add
additional metadata that will improve searches and other informa-
tion retrieval techniques. Hence, users will be better able to re-
duce “noise” and manage information overload by being willing
to file information and not worrying about not being able to find it
later. Finally, a unified messaging paradigm implies that all in-
formation is collocated and hence conveniently accessible, which
is crucial from a usability perspective [5].

Another problem with messaging today is that user interfaces are
not equipped to handle the huge volumes of messages that are
often encountered. By creating higher-level organizational con-
cepts such as conversations, we are able to consolidate messages

Copyright is held by the author/owner(s).
WWW 2003, May 20-24, 2003, Budapest, Hungary.
ACM xxx.

with similar topics together and reduce the clutter in users’ in-
boxes, while giving users more intuitive ways to navigate through
their messages.

4. UNIFYING THE DATA MODEL
Our ontology is designed specifically to work with existing mes-
saging systems. As a result, the base of our messaging infrastruc-
ture consists of a series of drivers capable of sending and receiv-
ing messages over protocols such as POP3, SMTP, and Jabber. In
our system, messaging drivers are described as having type
msg:MessageSendService. Messaging drivers are also re-
sponsible for emulating functionality that is normally not avail-
able in the underlying protocol.

Each messaging protocol currently maintains its own address
scheme. For example, SMTP servers are programmed to route e-
mail messages according to recipients’ e-mail addresses. These
addresses are represented directly in our ontology as URIs, e.g.,
mailto:karunb@ai.mit.edu. We specify a base class
called msg:Address that represents addresses handled by mes-
saging drivers. This allows the system to recognize resources as
being addresses without relying on the syntactic form of a re-
source’s URI (e.g., whether the URI starts with “mailto:”). We
then derive classes such as msg:EmailAddress and stipulate
that e-mail address resources be asserted to have this type.

Our unified messaging ontology necessarily distinguishes between
identity and address since the same person may have a different
address for message delivery depending on the message type.
People are represented directly by the hs:Person class. Recipi-
ents and senders are specified by instances of the
msg:AddressSpecification class. Address specifications
can specify either a specific address or a person resource. Ad-
dresses can be associated with people using the
msg:hasAddress property. Furthermore, some protocols sup-
port the notion of presence, allowing users to tell when their con-
tacts are online. We model this notion by annotating
msg:Address’ s with the msg:onlineStatus property.

In order to incorporate the various forms of messaging available,
we define the class msg:Message in a very general manner. In
our system a message is a unit of expressive communication
transported from one or more senders to one or more recipients.
This definition allows us to unify the concepts of instant mes-
sages, e-mails, newsgroup postings, annotations, chat, and even
articles delivered via news feeds.

Built up from messages are higher level aggregations that model
patterns of communication: threads and conversations. Threads
typically indicate a stream of messages on a very specific topic.
We indicate threading by the msg:thread property, linking a
message to a msg:Thread object. Threading is not directly sup-
ported by most e-mail protocols, but one heuristic for constructing
msg:Thread objects is to reconstruct threads based on
msg:inReplyTo connections corresponding to the “ in reply to”
relationships present in e-mail and newsgroups.

Conversations consist of heterogeneous collections of messages,
but the connection between messages in a conversation tends to
be more loosely defined by a more generalized topic than those in
a thread. Conversations in our ontology have type
msg:Discussion. Conversations also maintain state in order
to help facilitate changes in the interaction, e.g., a record of the
current participants, whether the conversation is currently public
or private and synchronous or asynchronous.

5. EXAMPLE SCENARIO
The scenario in our poster features a dialog between John and
Mary coordinating the completion of a report using Haystack.

1. Mary notices that a key report is almost due and types up a
message to John telling him to finish the report.

2. She receives a reply in which John has asked her about what
is pending. She realizes that the conversation might require
several turns and decides to start tracking the conversation by
selecting “View Discussion” from the context menu.

3. In the conversation view she notices that John is online and
changes the conversation mode to instant. She then has a
short dialog with John explaining what needs to be finished.

4. Later Mary receives a message from John saying that an im-
portant chart is missing. She begins typing a response when
she realizes that she needs to CC her secretary. Mary clicks
“Compose message full screen” in order to take advantage of
the full screen message editor, which includes the advanced
functionality (e.g., CC) she needs for this particular message.

5. The next day she checks the conversation again and finds a
meeting invitation sent by her secretary. Unfortunately, she is
running late and sends John an IM concerning her tardiness.

The example conversation interleaves both synchronous (IMs)
and asynchronous (e-mail) communication. Users can select the
synchronicity when composing new messages by means of the
Conversation Mode widgets. Also of note is the way messages of
different types—here, textual and machine-processable structured
messages (e.g., meeting requests, invitations, etc.)—can be com-
bined within the same conversation. Finally, our system supports
viewing the same conversation in a variety of presentation styles,
e.g., threaded messages, reply graphs, etc.

6. FUTURE WORK
Although we have asserted a unified messaging model to be use-
ful, user studies are required to understand whether users prefer a
unified user interface or would rather keep the distinction present
in current messaging paradigms. Also, we hope to further exploit
RDF’s capability to encode arbitrary metadata in order to realize
other benefits of the Semantic Web. For example, if a piece of
information being sent has already been characterized on the
sender’s end, the recipients’ systems may be able to automatically
file the information into the proper categories or process requests
embedded within the information, such as meeting invitations.

7. ACKNOWLEDGMENTS
This work was supported by the MIT-NTT collaboration, the MIT
Oxygen project, a Packard Foundation fellowship, and IBM.

8. REFERENCES
[1] Huynh, D., Karger, D., and Quan, D. Haystack: A Platform for Creating, Orga-

nizing and Visualizing Information Using RDF. Semantic Web Workshop,
WWW2002.

[2] Nardi, B., Whittaker, S., and Bradner, E. Interaction and Outeraction: Instant
Messaging in Action. Proceedings of CSCW ‘00.

[3] Smith, M., Cadiz, J., and Burkhalter, B. Conversation Trees and Threaded
Chats. Proceedings of CSCW ‘00.

[4] Whittaker, S. Talking to Strangers: An evaluation of the Factors Affecting
Electronic Collaboration. Proceedings of CSCW 1996.

[5] Whittaker, S. and Sidner, C. E-mail Overload: Exploring Personal Information
Management of E-mail. Proceedings of CHI 96: Human Factors in Computing
Systems.

