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Abstract. Probabilistic inductive logic programming, sometimes also
called statistical relational learning, addresses one of the central ques-
tions of artificial intelligence: the integration of probabilistic reasoning
with first order logic representations and machine learning. A rich variety
of different formalisms and learning techniques have been developed. In
the present paper, we start from inductive logic programming and sketch
how it can be extended with probabilistic methods.
More precisely, we outline three classical settings for inductive logic pro-
gramming, namely learning from entailment, learning from interpreta-
tions, and learning from proofs or traces, and show how they can be
used to learn different types of probabilistic representations.

1 Introduction

In the past few years there has been a lot of work lying at the intersection of
probability theory, logic programming and machine learning [39, 15, 41, 30, 34,
17, 24, 20, 2, 23]. This work is known under the names of statistical relational
learning [14, 11], probabilistic logic learning [9], or probabilistic inductive logic
programming. Whereas most of the existing works have started from a prob-
abilistic learning perspective and extended probabilistic formalisms with rela-
tional aspects, we will take a different perspective, in which we will start from
inductive logic programming and study how inductive logic programming for-
malisms, settings and techniques can be extended to deal with probabilistic is-
sues. This tradition has already contributed a rich variety of valuable formalisms
and techniques, including probabilistic Horn abduction by David Poole, PRISMs
by Sato, stochastic logic programs by Eisele [12], Muggleton [30] and Cussens [4],
Bayesian logic programs [21, 19] by Kersting and De Raedt, and Logical Hidden
Markov Models [23].

The main contribution of this paper is the introduction of three probabilistic
inductive logic programming settings which are derived from the learning from
entailment, from interpretations and from proofs settings of the field of induc-
tive logic programming [6]. Each of these settings contributes different notions
of probabilistic logic representations, examples and probability distributions.
The first setting, probabilistic learning from entailment, combines key princi-
ples of the well-known inductive logic programming system FOIL [40] with the



näıve Bayes’ assumption; the second setting, probabilistic learning from inter-
pretations, incorporated in Bayesian logic programs [21, 19], integrates Bayesian
networks with logic programming; and the third setting, learning from proofs,
incorporated in stochastic logic programs [12, 30, 4], upgrades stochastic context
free grammars to logic programs. The sketched settings (and their instances
presented) are by no means the only possible settings for probabilistic induc-
tive logic programming. Nevertheless, two of the settings have – to the authors’
knowledge – not been introduced before. Even though it is not our aim to pro-
vide a complete survey on probabilistic inductive logic programming (for such
a survey, see [9]), we hope that the settings will contribute to a better under-
standing of probabilistic extensions to inductive logic programming and will also
clarify some of the logical issues about probabilistic learning.

This paper is structured as follows: in Section 2, we present the three induc-
tive logic programming settings, in Section 3, we extend these in a probabilistic
framework, in Section 4, we discuss how to learn probabilistic logics in these
three settings, and finally, in Section 5, we conclude. The Appendix contains a
short introduction to some logic programming concepts and terminology that
are used in this paper.

2 Inductive Logic Programming Settings

Inductive logic programming is concerned with finding a hypothesis H (a logic
program, i.e. a definite clause program) from a set of positive and negative ex-
amples P and N . More specifically, it is required that the hypothesis H covers

all positive examples in P and none of the negative examples in N . The rep-
resentation language chosen for representing the examples together with the
covers relation determines the inductive logic programming setting [6]. Various
settings have been considered in the literature, most notably learning from en-

tailment [38] and learning from interpretations [8, 16], which we formalize below.
We also introduce an intermediate setting inspired on the seminal work by Ehud
Shapiro [42], which we call learning from proofs.

Before formalizing these settings, let us however also discuss how background
knowledge is employed within inductive logic programming. For the purposes of
the present paper1, it will be convenient to view the background knowledge B
as a logic program (i.e. a definite clause program) that is provided to the induc-
tive logic programming system and fixed during the learning process. Under the
presence of background knowledge, the hypothesis H together with the back-
ground theory B should cover all positive and none of the negative examples.
The ability to provide declarative background knowledge to the learning engine
is viewed as one of the strengths of inductive logic programming.

1 For the learning from interpretations setting, we slightly deviate from the standard
definition in the literature for didactic purposes.



2.1 Learning from Entailment

Learning from entailment is by far the most popular inductive logic programming
systems and it is addressed by a wide variety of well-known inductive logic
programming systems such as FOIL [40], Progol [29], and Aleph [43].

Definition 1. When learning from entailment, the examples are definite clauses

and a hypothesis H covers an example e w.r.t. the background theory B if and

only if B ∪H |= e.

In many well-known systems, such as FOIL, one requires that the examples
are ground facts, a special case of definite clauses. To illustrate the above set-
ting, consider the following example inspired on the well-known mutagenicity
application [44].

Example 1. Consider the following facts in the background theory B. They de-
scribe part of molecule 225.

molecule(225). bond(225,f1_1,f1_2,7).

logmutag(225,0.64). bond(225,f1_2,f1_3,7).

lumo(225,-1.785). bond(225,f1_3,f1_4,7).

logp(225,1.01). bond(225,f1_4,f1_5,7).

nitro(225,[f1_4,f1_8,f1_10,f1_9]). bond(225,f1_5,f1_1,7).

atom(225,f1_1,c,21,0.187). bond(225,f1_8,f1_9,2).

atom(225,f1_2,c,21,-0.143). bond(225,f1_8,f1_10,2).

atom(225,f1_3,c,21,-0.143). bond(225,f1_1,f1_11,1).

atom(225,f1_4,c,21,-0.013). bond(225,f1_11,f1_12,2).

atom(225,f1_5,o,52,-0.043). bond(225,f1_11,f1_13,1).

...

ring_size_5(225,[f1_5,f1_1,f1_2,f1_3,f1_4]).

hetero_aromatic_5_ring(225,[f1_5,f1_1,f1_2,f1_3,f1_4]).

...

Consider now the example mutagenic(225). It is covered by the following clause

mutagenic(M) :- nitro(M,R1), logp(M,C), C > 1 .

Inductive logic programming systems that learn from entailment often em-
ploy a typical separate-and-conquer rule-learning strategy [13]. In an outer loop
of the algorithm, they follow a set-covering approach [28] in which they repeat-
edly search for a rule covering many positive examples and none of the negative
examples. They then delete the positive examples covered by the current clause
and repeat this process until all positive examples have been covered. In the in-
ner loop of the algorithm, they typically perform a general-to-specific heuristic
search employing a refinement operator under θ-subsumption [38].

2.2 Learning from Interpretations

The learning from interpretations settings [8] has been inspired on the work on
boolean concept-learning in computational learning theory [46].



Definition 2. When learning from interpretations, the examples are Herbrand

interpretations and a hypothesis H covers an example e w.r.t. the background

theory B if and only if e is a model of B ∪H.

Herbrand interpretations are sets of true ground facts and they completely de-
scribe a possible situation.

Example 2. Consider the interpretation I which is the union of B

{father(henry,bill), father(alan,betsy), father(alan,benny),

father(brian,bonnie), father(bill,carl), father(benny,cecily),

father(carl,dennis), mother(ann,bill), mother(ann,betsy),

mother(ann,bonnie), mother(alice,benny), mother(betsy,carl),

mother(bonnie,cecily), mother(cecily,dennis), founder(henry).

founder(alan). founder(an). founder(brian). founder(alice).

and C = {carrier(alan), carrier(ann), carrier(betsy)}. It is covered by the
clause c

carrier(X) :- mother(M,X),carrier(M),father(F,X),carrier(F).

This clause covers the interpretation I because for all substitutions θ such that
body(c)θ ⊆ I holds, it also holds that head(c)θ ∈ I.

The key difference between learning from interpretations and learning from
entailment is that interpretations carry much more – even complete – informa-
tion. Indeed, when learning from entailment, an example can consist of a single

fact, whereas when learning from interpretations, all facts that hold in the ex-
ample are known. Therefore, learning from interpretations is typically easier and
computationally more tractable than learning from entailment, cf. [6].

Systems that learn from interpretations work in a similar fashion as those that
learn from entailment. There is however one crucial difference and it concerns
the generality relationship. A hypothesis G is more general than a hypothesis
S if all examples covered by S are also covered by G. When learning from
entailment, G is more general than S if and only if G |= S, whereas when
learning from interpretations, when S |= G. Another difference is that learning
from interpretations is well suited for learning from positive examples only. For
this case, a complete search of the space ordered by θ-subsumption is performed
until all clauses cover all examples [7].

2.3 Learning from Proofs

Because learning from entailment (with ground facts as examples) and interpre-
tations occupy extreme positions w.r.t. the information the examples carry, it is
interesting to investigate intermediate positions. Ehud Shapiro’s Model Inference
System (MIS) [42] fits nicely within the learning from entailment setting where
examples are facts. However, to deal with missing information, Shapiro employs
a clever strategy: MIS queries the user for missing information by asking her for



the truth-value of facts. The answers to these queries allow MIS to reconstruct
the trace or the proof of the positive examples. Inspired by Shapiro, we define
the learning from proofs setting.

Definition 3. When learning from proofs, the examples are ground proof-trees

and an example e is covered by a hypothesis H w.r.t. the background theory B if

and only if e is a proof-tree for H ∪B.

At this point, there exist various possible forms of proof-trees. In this paper, we
will – for reasons that will become clear later – assume that the proof-tree is
given in the form of an and-tree where the nodes contain ground atoms. More
formally:

Definition 4. t is a proof-tree for T if and only if t is a rooted tree where for

every node n ∈ t with children child(n) satisfies the property that there exists a

substitution θ and a clause c such that n = head(c)θ and child(n) = body(c)θ.

Example 3. Consider the following definite clause grammar.

sentence(A, B) :- noun_phrase(C, A, D), verb_phrase(C, D, B).

noun_phrase(A, B, C) :- article(A, B, D), noun(A, D, C).

verb_phrase(A, B, C) :- intransitive_verb(A, B, C).

article(singular, A, B) :- terminal(A, a, B).

article(singular, A, B) :- terminal(A, the, B).

article(plural, A, B) :- terminal(A, the, B).

noun(singular, A, B) :- terminal(A, turtle, B).

noun(plural, A, B) :- terminal(A, turtles, B).

intransitive_verb(singular, A, B) :- terminal(A, sleeps, B).

intransitive_verb(plural, A, B) :- terminal(A, sleep, B).

terminal([A|B],A,B).

It covers the following proof tree u (where abbreviated accordingly):

s([the,turtles,sleep],[])

np(pl,[the,turtles,sleep],[sleep]) vp(pl,[sleep],[])

a(pl,[the,turtles,sleep],[turtles,sleep]) n(pl,[turtles,sleep],[sleep]) iv(pl,[sleep],[])

t([the,turtles,sleep],the,[turtles,sleep]) t([turtles,sleep],turtles,[sleep])

{} {}

t([sleep],sleep,[])

{}

Proof-trees contain – as interpretations – a lot of information. Indeed, they
contain instances of the clauses that were used in the proofs. Therefore, it may be
hard for the user to provide this type of examples. Even though that is generally
true, there exist specific situations for which this is feasible. Indeed, consider tree
banks such as the UPenn Wall Street Journal corpus [26], which contain parse
trees. These trees directly correspond to the proof-trees we talk about. Even



though – to the best of the authors’ knowledge (but see [42, 3] for inductive logic
programming systems that learn from traces) – no inductive logic programming
system has been developed to learn from proof-trees, it is not hard to imagine
an outline for such an algorithm. Indeed, by analogy with the learning of tree-
bank grammars, one could turn all the proof-trees (corresponding to positive
examples) into a set of ground clauses which would constitute the initial theory.
This theory can then be generalized by taking the least general generalization
(under θ-subsumption) of pairwise clauses. Of course, care must be taken that
the generalized theory does not cover negative examples.

3 Probabilistic Inductive Logic Programming Settings

Given the interest in probabilistic logic programs as a representation formalism
and the different learning settings for inductive logic programming, the question
arises as to whether one can extend the inductive logic programming settings
with probabilistic representations.

When working with probabilistic logic programming representations, there
are essentially two changes:

1. clauses are annotated with probability values, and
2. the covers relation becomes a probabilistic one.

We will use P to denote a probability distribution, e.g. P(x), and the normal
letter P to denote a probability value, e.g. P (x = v), where v is a state of x.
Thus,

a probabilistic covers relation takes as arguments an example e, a hypoth-

esis H and possibly the background theory B. It then returns a probability

value between 0 and 1. So, covers(e,H∪B) = P(e | H,B), the likelihood

of the example e.

The task of probabilistic inductive logic programming is then to find the hy-
pothesis H∗ that maximizes the likelihood of the data P(E | H∗, B), where E
denotes the set of examples. Under the usual i.i.d. assumption this results in the
maximization of P(E | H∗, B) =

∏
e∈E P(e | H∗, B).

The key contribution of this paper is that we present three probabilistic
inductive logic programming settings that extend the traditional ones sketched
above.

3.1 Probabilistic Entailment

In order to integrate probabilities in the entailment setting, we need to find a
way to assign probabilities to clauses that are entailed by an annotated logic
program. Since most inductive logic programming systems working under en-
tailment employ ground facts for a single predicate as examples and the authors
are unaware of any existing probabilistic logic programming formalisms that



implement a probabilistic covers relation for definite clauses in general, we will
restrict our attention in this section to assign probabilities to facts for a single
predicate. Furthermore, our proposal in this section proceeds along the lines of
the näıve Bayes’ framework and represents only one possible choice for proba-
bilistic entailment. It remains an open question as how to formulate more general
frameworks for working with entailment (one alternative setting is also presented
in Section 3.3).

More formally, let us annotate a logic program H consisting of a set of clauses
of the form p ← bi, where p is an atom of the form p(V1, ..., Vn) with the Vi

different variables, and the bi are different bodies of clauses. Furthermore, we
associate to each clause in H the probability values P(bi | p); they constitute the
conditional probability distribution that for a random substitution θ for which
pθ is ground and true (resp. false), the query biθ succeeds (resp. fails) in the
knowledge base B. 2 Furthermore, we assume the prior probability of p is given
as P(p), it denotes the probability that for a random substitution θ, pθ is true
(resp. false). This can then be used to define the covers relation P(pθ | H,B) as
follows (we delete the B as it is fixed):

P(pθ | H) = P(pθ | b1θ, ..., bkθ) =
P(b1θ, ..., bkθ | pθ)×P(pθ)

P(b1θ, ..., bkθ)
(1)

Applying the näıve Bayes assumption yields

P(pθ | H) =

∏
i P(biθ | pθ)×P(pθ)

P(b1θ, ..., bkθ)
(2)

Finally, since we can P (pθ | H) + P (¬pθ | H) = 1, we can compute P (pθ | H)
without P (b1θ, ..., bkθ) through normalization.

Example 4. Consider again the mutagenicity domain and the following anno-
tated logic program:

(0.01, 0.21) : mutagenetic(M)← atom(M, , , 8, )

(0.38, 0.99) : mutagenetic(M)← bond(M,, A, 1), atom(M, A, c, 22, ), bond(M, A,, 2)

where we denote the first clause by b1 and the second one by b2, and the vectors
on the left-hand side of the clauses specify P (biθ = true | pθ = true) and P (biθ =
true | pθ = false). The covers relation assigns probaility 0.97 to example 225
because both features fail for θ = {M← 225}. Hence,

P ( mutagenetic(225) = true,b1θ = false, b2θ = false)

= P ( b1θ = false | muta(225) = true )

· P ( b2θ = false | muta(225) = true )

· P ( mutagenetic(225) = true )

= 0.99 · 0.62 · 0.31 = 0.19

2 The query q succeeds in B if there is a substitution σ such that B |= qσ.



and P ( mutagenetic(225) = false, b1θ = false, b2θ = false) = 0.79 · 0.01 ·
0.68 = 0.005 . This yields

P ( muta(225) = true | b1θ = false, b2θ = false}) =
0.19

0.19 + 0.005
= 0.97 .

3.2 Probabilistic Interpretations

In order to integrate probabilities in the learning from interpretation setting,
we need to find a way to assign probabilities to interpretations covered by an
annotated logic program. In the past few years, this question has received a lot
of attention and various different approaches have been developed such as [37].
In this paper, we choose Bayesian logic programs [20] as the probabilistic logic
programming system because Bayesian logic programs combine Bayesian net-
works [36], which represent probability distributions over propositional interpre-
tations, with definite clause logic. Furthermore, Bayesian logic programs have
already been employed for learning.

The idea underlying Bayesian logic programs is to view ground atoms as
random variables that are defined by the underlying definite clause programs.
Furthermore, two types of predicates are distinguished: deterministic and prob-
abilistic ones. The former are called logical, the latter Bayesian. Likewise we
will also speak of Bayesian and logical atoms. A Bayesian logic program now
consists of a set of of Bayesian (definite) clauses, which are expressions of the
form A | A1, . . . , An where A is a Bayesian atom, A1, . . . , An, n ≥ 0, are Bayesian
and logical atoms and all variables are (implicitly) universally quantified. To
quantify probabilistic dependencies, each Bayesian clause c is annotated with its
conditional probability distribtion cpd(c) = P(A | A1, . . . , An), which quantifies
as a macro the probabilistic dependency among ground instances of the clause.

Let us illustrate Bayesian logic programs on Jensen’s stud farm example [18],
which describes the processes underlying a life threatening heridatary disease.

Example 5. Consider the following Bayesian clauses:

carrier(X) | founder(X). (3)

carrier(X) | mother(M, X), carrier(M), father(F, X), carrier(F). (4)

suffers(X) | carrier(X). (5)

They specify the probabilistic dependencies governing the inheritance process.
For instance, clause (4) says that the probability for a horse being a carrier of
the disease depends on its parents being carriers.

In this example, the mother, father, and founder are logical, whereas the
other ones, such as carrier and suffers, are Bayesian. The logical predicates
are then defined by a classical definite clause program which constitute the
background theory for this example. It is listed as interpretation B in Example 2.

The conditional probability distributions for the Bayesian clause are

P (carrier(X) = true)

0.6

carrier(X) P (suffers(X) = true)

true 0.7
false 0.01



carrier(M) carrier(F) P (carrier(X) = true)

true true 0.6
true false 0.5
false true 0.5
false false 0.0

Observe that logical atoms, such as mother(M, X), do not affect the distribution
of Bayesian atoms, such as carrier(X), and are therefore not considered in the
conditional probability distribution. They only provide variable bindings, e.g.,
between carrier(X) and carrier(M).

By now, we are able to define the covers relation for Bayesian logic programs.
A set of Bayesian logic program together with the background theory induces
a Bayesian network. The random variables A of the Bayesian network are the
Bayesian ground atoms in the least Herbrand model I of the annotated logic pro-
gram. A Bayesian ground atom, say carrier(alan), influences another Bayesian
ground atom, say carrier(betsy), if and only if there exists a Bayesian clause
c such that

1. carrier(alan) ∈ body(c)θ ⊆ I, and

2. carrier(betsy) ≡ head(c)θ ∈ I.

Each node A has cpd(cθ) as associated conditional probability distribution. If
there are multiple ground instances in I with the same head, a combining rule

combine{·} is used to quantified the combined effect. A combining rule is a
function that maps finite sets of conditional probability distributions onto one
(combined) conditional probability distribution. Examples of combining rules are
noisy-or, and noisy-and, see e.g. [18]

Example 6. The Stud farm Bayesian logic program induces the following
Bayesian network.

c(henry)

s(henry) c(bill)

c(alan)

s(alan)c(betsy) c(benny)

s(betsy)c(carl) s(benny)c(cecily)

c(brian)

s(brian)c(bonnie)

s(bonnie)s(bill)

s(carl) c(dennis) s(cecily)

s(dennis)

c(ann)

s(ann)

c(alice)

s(alice)

Note that we assume that the induced network is acyclic and has a finite branch-
ing factor. The probability distribution induced is now

P(I|H) =
∏

Bayesian atom A∈I

combine{cpd(cθ) |body(c)θ ⊆ I, head(c)θ ≡ A}. (6)



From Equation (6), we can see that an example e consists of a logical part

which is a Herbrand interpretation of the annotated logic program, and a prob-

abilistic part which is a partial state assignment of the random variables oc-
curing in the logical part.

Example 7. A possible example e in the Stud farm domain is

{carrier(henry) = false, suffers(henry) = false, carrier(ann) = true,
suffers(ann) = false, carrier(brian) = false, suffers(brian) = false,
carrier(alan) =?, suffers(alan) = false, carrier(alice) = false,
suffers(alice) = false, . . .}

where ? denotes an unobserved state. The covers relation for e can now be
computed using any Bayesian network inference engine based on Equation (6).

3.3 Probabilistic Proofs

The framework of stochastic logic programs [12, 30, 4] was inspired on research
on stochastic context free grammars [1, 25]. The analogy between context free
grammars and logic programs is that

1. grammar rules correspond to definite clauses,
2. sentences (or strings) to atoms, and
3. derivations to proofs.

Furthermore, in stochastic context-free grammars, the rules are annotated with
probability labels in such a way that the sum of the probabilities associated to
the rules defining a non-terminal is 1.0 .

Eisele and Muggleton have exploited this analogy to define stochastic logic
programs. These are essentially definite clause programs, where each clause c
has an associated probability label pc such that the sum of the probabilities as-
sociated to the rules defining any predicate is 1.0 (though less restricted versions
have been considered as well [4]).

This framework now allows to assign probabilities to proofs for a given pred-
icate q given a stochastic logic program H ∪B in the following manner. Let Dq

denote the set of all possible ground proofs for atoms over the predicate q. For
simplicity reasons, it will be assumed that there is a finite number of such proofs
and that all proofs are finite (but again see [4] for the more general case). Now
associate to each proof tq ∈ Dq the value

vt =
∏

c

pnc,t

c

where the product ranges over all clauses c and nc,t denotes the number of
times clause c has been used in proof tq. For stochastic context free grammars,
the values vt correspond to the probabilities of the derivations. However, the
difference between context free grammars and logic programs is that in grammars
two rules of the form n → q, n1, ..., nm and q → q1, ..., qk always ’resolve’ to



give n → q1, ..., qk, n1, ..., nm whereas resolution may fail due to unification.
Therefore, the probability of a proof tree t in Dq

P (t | H,B) =
vt∑

s∈Dq
vs

.

The probability of a ground atom is then defined as the sum of all the probabil-
ities of all the proofs for that ground atom.

Example 8. Consider a stochastic variant of the definite clause grammer in
Example 3 with uniform probability values for each predicate. The value vu

of the proof (tree) u in Example 3 is vu = 1
3
· 1

2
· 1

2
= 1

12
. The only

other ground proofs s1, s2 of atoms over the predicate sentence are those of
sentence([a, turtle, sleeps], []) and sentence([the, turtle, sleeps], []). Both
get value vs1

= vs2
= 1

12
, too. Because there is only one proof for each of the

sentences, P (sentence([the, turtles, sleep], [])) = vu = 1
3

.

At this point, there are at least two different settings for probabilistic induc-
tive logic programming using stochastic logic programs. The first actually corre-
sponds to a learning from entailment setting in which the examples are ground
atoms entailed by the target stochastic logic program. This setting has been
studied by Cussens [5], who solves the parameter estimation problem, and Mug-
gleton [31, 32], who presents a preliminary approach to structure learning (con-
centrating on the problem of adding one clause to an existing stochastic logic
program).

In the second setting, which we sketch below, the idea is to employ learn-
ing from proofs instead of entailment. This significantly simplifies the structure
learning process because proofs carry a lot more information about the struc-
ture of the underlying stochastic logic program than clauses that are entailed
or not. Therefore, it should be much easier to learn from proofs. Furthermore,
learning stochastic logic programs from proofs can be considered an extension of
the work on learning stochastic grammars. It should therefore also be applicable
to learning unification based grammars.

4 Probabilistic Inductive Logic Programming

By now, the problem of probabilistic inductive logic programming can be defined
as follows:

Given – a set of examples E,
– a probabilistic covers relation P (e | H,B),
– a probabilistic logic programming representation lan-

guage, and
– possibly a background theory B.

Find the hypothesis H∗ = argmaxHP (E | H,B).



Because H = (L, λ) is essentially a logic program L annotated with probabilistic
parameters λ, one distinguishes in general two subtasks:

1. Parameter estimation, where it is assumed that the underlying logic program
L is fixed, and the learning task consists of estimating the parameters λ that
maximize the likelihood.

2. Structure learning, where both L and λ have to be learned from the data.

Below, we briefly sketch the basic parameter estimation and structure learn-
ing techniques for probabilistic inductive logic programming. A complete survey
of learning probabilistic logic representations can be found in [9].

4.1 Parameter Estimation

The problem of parameter estimation is thus concerned with estimating the
values of the parameters λ∗ of a fixed probabilistic logic program L that best
explain the examples E. So, λ is a set of parameters and can be represented as a
vector. As already indicated above, to measure the extent to which a model fits
the data, one usually employs the likelihood of the data, i.e. P (E | L, λ), though
other scores or variants could – in principle – be used as well.

When all examples are fully observable, maximum likelihood reduces to fre-
quency counting. In the presence of missing data, however, the maximum like-
lihood estimate typically cannot be written in closed form. It is a numerical
optimization problem, and all known algorithms involve nonlinear optimization
The most commonly adapted technique for probabilistic logic learning is the
Expectation-Maximization (EM) algorithm [10, 27]. EM is based on the obser-
vation that learning would be easy (i.e., correspond to frequency counting), if the
values of all the random variables would be known. Therefore, it first estimates
these values, and then uses these to maximize the likelihood, and then iterates.
More specifically, EM assumes that the parameters have been initialized (e.g., at
random) and then iteratively performs the following two steps until convergence:

E-Step: On the basis of the observed data and the present parameters of the
model, compute a distribution over all possible completions of each partially
observed data case.

M-Step: Using each completion as a fully-observed data case weighted by its
probability, compute the updated parameter values using (weighted) fre-
quency counting.

The frequencies over the completions are called the expected counts.

4.2 Structure Learning

The problem is now to learn both the structure L and the parameters λ of the
probabilistic logic program from data. Often, further information is given as well.
It can take various different forms, including:



1. a language bias that imposes restrictions on the syntax of the definite clauses
allowed in L,

2. a background theory,
3. an initial hypothesis (L, λ) from which the learning process can start, and
4. a scoring function score(L, λ,E) that may correct the maximum likelihood

principle for complex hypthesis; this can be based on a Bayesian approach
which takes into account priors or the minimum description length princple.

Nearly all (score-based) approaches to structure learning perform a heuristic
search through the space of possible hypotheses. Typically, hill-climbing or beam-
search is applied until the hypothesis satisfies the logical constraints and the
score(H,E) is no longer improving. The logical constraints typically require that
the exammples are covered in the logical sense. E.g., when learning stochastic
logic programs from entailment, the example clauses must be entailed by the
logic program, and when learning Bayesian logic programs, the interpretation
must be a model of the logic program.

At this point, it is interesting to observe that in the learning from entailment
setting the examples do have to be covered in the logical sense when using the
setting combining FOIL and näıve Bayes, whereas using the stochastic logic
programs all examples must be logically entailed.

The steps in the search-space are typically made through the application of
so-called refinement operators [42, 35], which make perform small modifications
to a hypothesis. From a logical perspective, these refinement operators typi-
cally realize elementary generalization and specialization steps (usually under
θ-subsumption).

Before concluding, we will now sketch for each probabilistic inductive logic
learning setting a structure learning algorithm.

4.3 Learning from Probabilistic Entailment

One promising approach to address learning from probabilistic entailment is
to adapt FOIL [40] with the conditional likelihood as described in Equa-
tion (2) as the scoring function score(L, λ,E) (see N. Landwehr, K. Kersting
and L. De Raedt, forthcoming, for more details).

Given a training set E containing positive and negative examples (i.e. true
and false ground facts), this algorithm computes Horn clause features b1, b2, . . .
in an outer loop. It terminates when no further improvements in the score
are obtained, i.e, when score({b1, . . . , bi}, λi, E) < score({b1, . . . , bi+1}, λi+1, E),
where λ denotes the maximum likelihood parameters. A major difference with
FOIL is, however, that the covered positive examples are not removed.

The inner loop is concerned with inducing the next feature bi+1 top-down, i.e.,
from general to specific. To this aim it starts with a clause with an empty body,
e.g., muta(M)←. This clause is then specialised by repeatedly adding atoms to the
body, e.g., muta(M) ← bond(M, A, 1), muta(M) ← bond(M, A, 1), atom(M, A, c, 22, ),
etc. For each refinement b′i+1 we then compute the maximum-likelihood param-
eters λ′

i+1 and score({b1, . . . , b
′

i+1}, λ
′

i+1, E). The refinement that scores best,



c(X) | f(X).
c(X) | m(M,X),c(M),s(X).
s(X) | c(X).

c(X) | f(X).
c(X) | m(M,X),c(M),f(F,X).
s(X) | c(X).

c(X) | f(X).
c(X) | m(M,X).
s(X) | c(X).

c(X) | f(X).
c(X) | m(M,X),c(M).
s(X) | c(X).

Fig. 1. The use of refinement operators during structural search within the framework
of Bayesian logic programs. We can add an atom or delete an atom from the body
of a clause. Candidates crossed out illegal because they are cyclic. Other refinement
operators are reasonable such as adding or deleting logically valid clauses.

say b′′i+1, is then considered for further refinement and the refinement process
terminates when score({b1, . . . , bi+1}, λi+1, E) < score({b1, . . . , b

′′

i+1}, λ
′′

i+1, E).
Preliminary results with a prototype implementation are promising.

4.4 Learning from Probabilistic Interpretations

Scooby [21, 19, 22] is a greedy hill-climbing approach for learning Bayesian logic
programs. Scooby takes the initial Bayesian logic program H = (L, λ) as start-
ing point and computes the parameters maximizing score(L, λ,E). Then, re-
finement operators generalizing respectively specializing H are used to to com-
pute all legal neighbours of H in the hypothesis space, see Figure 1. Each
neighbour is scored. Let H ′ = (L′, λ′) be the legal neighbour scoring best. If
score(L, λ,E) < score(L′, λ′, E) then Scooby takes H ′ as new hypothesis. The
process is continued until no improvements in score are obtained.

Scooby is akin to theory revision approaches in inductive logic prorgam-
ming. In case that only propositional clauses are considered, Scooby coincides
with greedy hill-climbing approaches for learning Bayesian networks [?].

4.5 Learning from Probabilistic Proofs

Given a training set E containing ground proofs as examples, one possible
approach combines ideas from the early inductive logic programming system
Golem [33] that employs Plotkin’s [38] least general generalization (LGG) with
bottom-up generalization of grammars and hidden Markov models [45]. The
resulting algorithm employs the likelihood of the proofs score(L, λ,E) as the
scoring function. It starts by taking as L0 the set of ground clauses that have
been used in the proofs in the training set and scores it to obtain λ0. After in-
tialization, the algorithm will then repeatedly select a pair of clauses in Li, and
replace the pair by their LGG to yield a candidate L′. The candidate that scores
best is then taken as Hi+1 = (Li+1, λi+1), and the process iterates untill the
score no longer improves. One interesting issue is that strong logical constraints
can be imposed on the LGG. These logical constraints directly follow from the



fact that the example proofs should still be valid proofs for the logical compo-
nent L of all hypotheses considered. Therefore, it makes sense to apply the LGG
only to clauses that define the same predicate, that contain the same predicates,
and whose (reduced) LGG also has the same length as the original clauses. More
details on this procedure will be worked out in a forthcoming paper (by S. Torge,
K. Kersting and L. De Raedt).

5 Conclusions

In this paper, we have presented three settings for probabilistic inductive logic
programming: learning from entailment, from interpretations and from proofs.
We have also sketched how inductive logic programming and probabilistic
learning techniques can – in principle – be combined to address these settings.
Nevertheless, more work is needed before these techniques will be as applicable
as traditional probabilistic learning or inductive logic programming systems.
The authors hope that this paper will inspire and motivate researchers in
probabilistic learning and inductive logic programming to join the exciting new
field lying at the intersection of probabilistic reasoning, logic programming and
machine learning.
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Appendix: Logic Programming Concepts

A first order alphabet is a set of predicate symbols, constant symbols and functor
symbols. A definite clause is a formula of the form A← B1, ..., Bn where A and
Bi are logical atoms. An atom p(t1, ..., tn) is a predicate symbol p/n followed by
a bracketed n-tuple of terms ti. A term t is a variable V or a function symbol
f(t1, ..., tk) immediately followed by a bracketed n-tuple of terms ti. Constants
are function symbols of arity 0. Functor-free clauses are clauses that contain
only variables as terms. The above clause can be read as A if B1 and ... and Bn.
All variables in clauses are universally quantified, although this is not explicitly
written. We call A the head of the clause and B1, ..., Bn the body of the clause.
A fact is a definite clause with an empty body, (m = 1, n = 0). Throughout
the paper, we assume that all clauses are range restricted, which means that all
variables occurring in the head of a clause also occur in its body. A substitution

θ ={V1 ← t1, ..., Vk ← tk} is an assignment of terms to variables. Applying a
substitution θ to a clause, atom or term e yields the expression eθ where all
occurrences of variables Vi have been replaced by the corresponding terms. A
Herbrand interpretation is a set of ground facts over an alphabet A. A Herbrand
interpretation I is a model for a clause c if and only if for all θ such that



body(c)θ ⊆ I → head(c)θ ∈ I; it is a model for a set of of clauses H if and only
if it is a model for all clauses in H. We write H |= e if and only if all models of
H are also a model of e.
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