
nFOIL: Integrating Na ı̈ve Bayes and FOIL

Niels Landwehr and Kristian Kersting and Luc De Raedt
University of Freiburg, Machine Learning Lab

Georges-Koehler-Allee, Building 079, 79110 Freiburg, Germany
{landwehr,kersting,deraedt}@informatik.uni-freiburg.de

Abstract

We present the system nFOIL. It tightly integrates the naı̈ve
Bayes learning scheme with the inductive logic program-
ming rule-learner FOIL. In contrast to previous combinations,
which have employed naı̈ve Bayes only for post-processing
the rule sets, nFOIL employs the naı̈ve Bayes criterion to
directly guide its search. Experimental evidence shows that
nFOIL performs better than both its base line algorithm FOIL
or the post-processing approach, and is at the same time com-
petitive with more sophisticated approaches.

Introduction
The study of learning schemes that lie at the intersec-
tion of probabilistic and logic or relational learning has re-
ceived a lot of attention recently (De Raedt & Kersting
2003; Dietterich, Getoor, & Murphy 2004). Whereas the
typical approaches upgrade existing probabilistic learning
schemes to deal with relational or logical data (such as e.g.
PRMs (Getooret al. 2001) or SLPs (Muggleton 1996)), we
start from an inductive logic programming system and ex-
tend it with a probabilistic model. More specifically, we
have selected the simplest approaches from both domains,
i.e. the inductive logic programming system FOIL (Quinlan
1990) and näıve Bayes, and integrated them in the nFOIL
system. The advantage of combining such simple learning
schemes is that the resulting probabilistic logical or rela-
tional model is easy to understand and interpret.

In relational learning or inductive logic programming, one
typically induces a set of rules (or clauses). The resulting
rule-set then defines a disjunctive hypothesis, since an in-
stance is classified as positive if it satisfies the conditions of
one of the rules. On the other hand, a probabilistic model
defines a joint probability distribution over a class variable
and a set of “attributes” or “features”, and the type of model
constrains the joint probability distributions that can be rep-
resented. A straightforward but powerful idea to integrate
these two approaches is to interpret the clauses or rules as
“attributes” over which a joint probability distribution can
be defined. Using naı̈ve Bayes as the probabilistic model,
this translates into the statement that “clauses are indepen-
dent”.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

This idea is not new. It has been pursued by Pompe and
Kononenko (1995) and Daviset al. (2004). In the existing
approaches for combining ILP and naı̈ve Bayes, however,
one learns the model in twoseparatesteps. First, the fea-
tures or clauses have been generated (e.g. using an existing
inductive logic programming system such as ILP-R (Pompe
& Kononenko 1995)) and then the probabilities for the naı̈ve
Bayes estimates are determined. This actually corresponds
to apropositionalizationapproach, where the propositional-
ized problem is learned using naı̈ve Bayes. We propose a
different andnovel approach, in which the learning of the
features is tightly integrated with naı̈ve Bayes. The advan-
tage is that the criterion according to which the features are
generated is that of naı̈ve Bayes. The idea of guiding the
structure search by the probabilistic score contrasts with the
propositionalization approaches, in which the criteria em-
ployed for feature generation and classification are differ-
ent, and has also been suggested by Popesculet al. (2003)
for learning relational logistic regression models.

The system nFOIL essentially performs a covering ap-
proach in which one feature (in the form of a clause) is
learned after the other, until adding further features does
not yield improvements. Clauses are combined with naı̈ve
Bayes. The search heuristic is based on class conditional
likelihood.

We will proceed as follows. After reviewing FOIL and
its learning setting in the next section, we lift FOIL’s learn-
ing setting to the probabilistic case and introduce the nFOIL
system. In a subsequent section, we experimentally evalu-
ate nFOIL on ILP benchmark datasets. Finally, we conclude
and touch upon related work.

FOIL’s Problem Specification
The problem that we tackle in this paper is a (probabilistic)
inductive logic programming problem, which can be for-
malized as follows:

Given

• a background theoryB, in the form of a set of definite
clauses, i.e., clauses of the formh← b1, · · · , bn whereh
and thebi are logical atoms, andb1, · · · , bn is calledbody
of the clause;

• a set of classified examplesE, in the form of ground facts;

• a language of clausesL, which specifies the clauses that
are allowed in hypotheses;

• a covers(e,H,B) function, which returns the classifica-
tion covers(e,H,B) of an examplee, with respect to a
hypothesisH, and the background theoryB;

• ascore(E,H, B) function, which specifies the quality of
the hypothesisH with respect to the dataE and the back-
ground theory;

Find
arg max

H⊂L
score(E,H, B) .

The traditional approaches to inductive logic program-
ming tackle a concept-learning problem, in which there are
typically two classes, and the goal is to find a complete
and consistent concept description. This can be formalized
within our framework by making the following choices for
covers andscore:

• covers(e,H,B) = positive if B ∪ H |= e (i.e. e is en-
tailed byB∪H); otherwise,covers(e,H,B) = negative;

• score(E,H, B) = training set accuracy.

This setting is incorporated in many well known inductive
logic programming systems such as FOIL (Quinlan 1990),
GOLEM (Muggleton 1990), PROGOL (Muggleton 1995)
and TILDE (Blockeel & De Raedt 1997).

Example 1 To illustrate this setting, consider the follow-
ing background theoryB (inspired on the well known mu-
tagenicity benchmark (Srinivasanet al.1996)):

atom(mol1, a0, c) bond(mol1, a0, a10, 7)
atom(mol1, a1, n) bond(mol1, a1, a3, 7)
atom(mol1, a2, o) bond(mol1, a3, a4, 2)
.

and the examplemuta(mol1). It is covered by the following
hypothesis:

muta(X)←
atom(X, A, c), atom(X, B, o), bond(X, A,B, 7)

muta(X)← atom(X, A, fl), bond(X, A,B, 2)

FOIL, like many inductive logic programming systems,
follows a separate-and-conquerapproach to induce a hy-
pothesis. Such an algorithm is described in Algorithm 1.
The algorithm repeatedly searches for clauses that score well
with respect to the data set and the current hypothesis and
adds them to the current hypothesis. Anupdatefunction
removes examples fromE that are covered by the current
hypothesisH, i.e.,

update(E,H) = E \ covered(H) .

The inner loop greedily searches for a clause that scores
well. To this aim, it employs a general-to-specific hill-
climbing search strategy. To generate the specializations of
the current clausec, a so-called refinement operatorρ un-
derθ-subsumption is employed. A clausec1 θ-subsumes a
clausec2 if and only if there is a substitutionθ such that
c1θ ⊆ c2. The most general clause is

p(X1, · · · , Xn)←

Algorithm 1 Summarizing the FOIL algorithm.

Initialize H := ∅
repeat

Initialize c := p(X1, · · · , Xn)←
repeat

for all c′ ∈ ρ(c) do
computescore(E,H ∪ {c′}, B)

end for
let c be thec′ ∈ ρ(c) with the best score

until stopping criterion
addc to H
E := update(E,H)

until stopping criterion
outputH

wherep/n is the predicate being learned and theXi are
different variables. The refinement operator specializes the
current clauseh ← b1, · · · , bn . This is typically real-
ized by either adding a new literall to the clause yielding
h ← b1, · · · , bn, l or by applying a substitutionθ, yielding
hθ ← b1θ, · · · , bnθ. This type of algorithm has been suc-
cessfully applied to a wide variety of problems in inductive
logic programming. Many different scoring functions and
stopping criteria have been employed.

nFOIL’s Problem Specification
We now show how to integrate the naı̈ve Bayes method in
FOIL’s problem specification. This will be realized by mod-
ifying the covers andscore functions in the inductive logic
programming setting. All other choices, such as the form of
examples and hypotheses, will be untouched.

A probabilistic covers function
In the setting of learning from probabilistic entailment (De
Raedt & Kersting 2004), the notion of coverage is replaced
by a probability. We will use the symbolP to denote a prob-
ability distribution, e.g.P(x), andP to denote a probability
value, e.g.P (x), wherex is a state ofx.

The probabilistic covers relation is then defined as the
likelihood of the example, conditioned on the hypothesis and
the background theory:

covers(e,H ∪B) = P (e | H,B) .

whereH andB are as before, i.e. a set of clauses defin-
ing the target predicatep and a background theory. An
examplee is of the form p(X1, · · · , Xn)θ = true or
p(X1, · · · , Xn)θ = false. Abusing notation, when the con-
text is clear, we will sometimes refer to the examples asθ,
and say that the random variablep (class label) takes on the
valuepθ (true or false) for exampleθ.

We now still need to defineP (e | H,B). The key idea is
that we interpret the clauses inH together with the example
e as queries or features. More formally, letH contain a set
of clauses defining the predicatep. Then for each clause
c ∈ H of the formp(X1, · · · , Xn) ← b1, · · · , bn we view
the queryqc, i.e. ← b1, · · · , bn, as a boolean feature or
attribute. Applied to an exampleθ these queries become

instantiated, e.g.← b1θ, · · · , bnθ, and either succeed or fail
in the background theoryB. We will use the notationqcθ to
refer to such instantiated queries.

The probabilistic model specifies a distribution over the
random variablesp andqc, whereqc represents whether
the query corresponding to clausec succeeds or fails. The
observed (boolean) value ofqc is qcθ. We now define

P (e | H,B) = PΦ(pθ|q1θ, · · · , qkθ)

=
PΦ(q1θ, · · · , qkθ|pθ) · PΦ(pθ)

PΦ(q1θ, · · · , qkθ)
where the queriesqi correspond to the clausesC in the hy-
pothesisH = (C,Φ) andΦ denotes the parameters of the
probabilistic modelH. Thus, a hypothesisH actually con-
sists of the clausesC and the parametersΦ.

Now it becomes possible to state the naı̈ve Bayes assump-
tionPΦ(q1, ...,qk|p) =

∏
i PΦ(qi|p) and to apply it to our

coversfunction:

P (e | H,B) =
∏

i PΦ(qiθ|pθ) · PΦ(pθ)
PΦ(q1θ, · · · , qkθ)

At the same time, this equation specifies the parametersΦ
of the probabilistic logical modelH, i.e. the distributions
PΦ(qi|p) andPΦ(p) (note thatPΦ(q1, ...,qk) can be com-
puted by summing out).

Example 2 Reconsider the mutagenicity example, and as-
sume that the hypothesis is as sketched before. Then the
queriesq1 andq2 are

← atom(X, A, c), atom(X, B, o), bond(X, A,B, 7)
and ← atom(X, A, fl), bond(X, A,B, 2) .

and the target predicatep is ”muta(X)”. Now assume that
the probability distributionsPΦ(qi|p) encoded in the model
are

PΦ(p = t) = 0.6
PΦ(q1 = t|p = t) = 0.7 PΦ(q1 = t|p = f) = 0.4
PΦ(q2 = t|p = t) = 0.5 PΦ(q2 = t|p = f) = 0.1

Summing out yields

PΦ(q1 = t,q2 = t) = 0.226 PΦ(q1 = t,q2 = f) = 0.354
PΦ(q1 = f,q2 = t) = 0.114 PΦ(q1 = f,q2 = f) = 0.306

wheret (f) denotestrue (false). For the positively labeled
exampleθ = {X/mol1}, we have thatq1 succeeds andq2

fails: pθ = true, q1θ = true, q2θ = false. Thus,

P (e | H,B) =
PΦ(q1θ|pθ) · PΦ(q2θ|pθ) · PΦ(pθ)

PΦ(q1θ, q2θ)

=
0.7 · 0.5 · 0.6

0.354
≈ 0.59

The score function
As scoring function, we employ the likelihood of the data
given the model and the background knowledge, and we as-
sume also that the instances are independently and identi-
cally distributed (i.i.d.). Therefore, we want to find the hy-
pothesisH that maximizes

l(E,H, B) =
∏
e∈E

P (e|H,B) .

However, in contrast to the traditional naı̈ve Bayes ap-
proach, the model consists of two components: a set of
clauses and the corresponding probabilistic parameters.

The nFOIL Algorithm
Formally, the model space under consideration is

H = {H = (C,ΦC)|C ⊆ L,ΦC ∈ R2k+1, |C| = k)

and the goal of learning is to identify

H∗ = arg max
H

l(E,H, B)

= arg max
C

arg max
ΦC

l(E, (C,ΦC), B) .

Thus, there are two nested optimization tasks: Finding a
globally optimal ”structure” of the model involves the task
of augmenting a given model structureC with its optimal
parametersΦC .

Roughly speaking, the existing approaches pursued by
Pompe and Kononenko (1995) and Daviset al. (2004) solve
these nested optimization tasks one after the other: First,C
is found (using a standard ILP system, and thus some dif-
ferent score) and fixed; second, the parameters for the fixed
structure are optimized using a probabilistic score (usually,
maximum likelihood). Therefore, it is unclear which global
score is being maximized.

In the nFOIL system, we follow the more principled ap-
proach of guiding the search for the structure directly by the
probabilistic objective function. We will show how this can
be achieved by modifying the original search technique used
in FOIL.

From FOIL to nFOIL
The main difference between FOIL and nFOIL is that nFOIL
does not follow a separate-and-conquer approach. In FOIL,
this is possible because the final model is taken as the dis-
junction of the clauses (every clause covering a certain sub-
set of examples), which has two consequences:

1. Examples that are already covered do not have
to be considered when learning additional clauses:
update(E,H) = E \ covered(H)

2. (Non-recursive) clauses already learned do not need
to be considered when scoring additional clauses:
score(E,H ∪ {c′}, B) = accuracy(c′)

These properties do not hold in nFOIL because every clause
can affect the likelihood of all examples. Consequently, the
nFOIL algorithm is obtained from FOIL by changing two
components in Algorithm 1:

1. The set of examples is not changed:update(E,H) = E.

2. The score of a clausec′ is the conditional likelihood
of data assuming modelC∪{c′}with optimal parameters:

score(E,H ∪ {c′}, B) =

= max
ΦC∪{c′}

l(E, (C ∪ {c′},ΦC∪{c′}), B)

whereC is the clause set ofH.

We also have to modify the stopping criterion. The basic
FOIL algorithm stops if all positive examples are covered.
Instead, nFOIL stops adding new clauses when the improve-
ment in score is below a certain threshold. In general, this
simple criterion might lead to overfitting. Standard tech-
niques to avoid overfitting such as rule post-pruning could
be applied. In the experiments, however, our basic stopping
criterion worked surprisingly well.

Parameter Estimation: An Approximation
To computescore(E,H ∪ {c′}, B), one needs to solve the
“inner” optimization problem of finding the parametersΦC

for a clause setC with bodies{q1, ..., qk}. From the näıve
Bayes point of view, this amounts to finding themaximum
conditional likelihood(MCL) parameters:

Φ∗
C = arg max

ΦC

∏
θ∈E

PΦC
(pθ|q1θ, · · · , qkθ)

= arg max
ΦC

∏
θ∈E

∏
j PΦC

(qjθ | pθ) · PΦC
(pθ)

PΦC
(q1θ, ..., qkθ)

(1)

The usual way of estimating parameters for naı̈ve Bayes is

P (qi = qi|p = p) =
n(qi = qi,p = p)

n(p = p)
wheren(X) are thecounts, i.e. the number of examples
for which the queryX succeeds. However, these are the
maximum likelihoodparameters, maximizing∏

pθ∈E PΦC
(pθ, q1θ, ..., qkθ) =

=
∏

pθ∈E

∏
j

PΦC
(qjθ | pθ) · PΦC

(pθ) (2)

Could we use the likelihood as defined by Equation (2)
as the score? The problem is that this term is dominated by
the “feature likelihood”PΦC

(q1θ, ..., qkθ), which is maxi-
mized for constant featuresqi (which are completely unin-
formative). In fact, in this case no feature could achieve
a higher likelihood than the feature that always succeeds,
and no refinements would ever be considered. In contrast,
in Equation (1), the likelihood is corrected by the term
PΦC

(q1θ, ..., qkθ); in this way informative features are se-
lected. On the other hand, solving for the MCL parameters
is computationally expensive.

A similar problem also arises in Bayesian Network struc-
ture learning (Grossman & Domingos 2004). Here, like-
lihood maximization leads to over-connected structures, a
problem which is also solved by maximizing conditional
likelihood. Because finding MCL parameters is computa-
tionally too expensive, Grossman and Domingos propose a
“mixed” approach: using conditional likelihood as the score,
but setting parameters to their ML values (seen as an approx-
imation to their MCL values).

For nFOIL, we follow the same approach. Parameters
are estimated to maximize the likelihood, i.e., Equation (2),
while the conditional likelihood, see Equation (1), is re-
tained as the score for selecting the features. The compu-
tational costs for evaluating a hypothesis in nFOIL are dom-
inated by computing for each query the examples on which

it succeeds. This involves basically the same computational
steps as scoring in FOIL. FOIL, however, profits from its
separate-and-conquer approach; the number of examples is
reduced after each iteration. Thus, even though nFOIL needs
to consider more examples when evaluating a hypothesis,
nFOIL’s complexity is very similar to FOIL’s.

Finally, we note that unlike for ILP (and the propositional-
ization approaches relying on ILP systems), the extension of
the nFOIL model and algorithm for multi-class problems is
straightforward: replace the binary class variable by a multi-
valued class variable.

Experiments
Our intention here is to investigate to which extent nFOIL is
competitive with related approaches on typical ILP bench-
mark problems. More precisely, we will investigate:

(Q1) Is there a gain in predictive accuracy of nFOIL over
its baseline, FOIL?

(Q2) If so, is the gain of an integrated approach (such as
nFOIL) over its baseline larger than the gain of proposi-
tionalization approaches?

(Q3) Relational näıve Bayes approaches such as 1BC2 es-
sentially follow a propositionalization approach, employ-
ing all features within the bias. Does nFOIL employ less
features and perform well compared to these approaches?

(Q4) Is nFOIL competitive with advanced ILP approaches?

In the following section, we will describe the datasets and
algorithms used to experimentally investigateQ1–Q4.

Datasets and Algorithms
In order to investigateQ1–Q4, we conduct experiments on
three ILP benchmark datasets. OnMutagenesis(Srinivasan
et al. 1996) the problem is to predict the mutagenicity of a
set of compounds. In our experiments, we use the atom and
bond structure information only. The dataset is divided into
two sets: a regression friendly (r.f.) set with 188 entries
(125 positives,63 negatives) and a regression unfriendly
(r.u.) set with 42 entries (13 positives and29 negatives).
For Alzheimer (King, Srinivasan, & Sternberg 1995), the
aim is to compare four desirable properties of drugs against
Alzheimer’s disease. In each of the four subtasks, the aim
is to predict whether a molecule is better or worse than an-
other molecule with respect to the considered property: in-
hibit amine reuptake (686 examples), lowtoxicity (886 ex-
amples), highacetyl cholinesterase inhibition (1326 exam-
ples), and goodreversal of scopolamine-induced memory
deficiency (642 examples). ForDiterpene (Džeroskiet al.
1998), the task is to identify the skeleton of diterpenoid com-
pounds, given their C-NMR-Spectra which include the mul-
tiplicities and the frequencies of the skeleton atoms. The
dataset contains information on1530 diterpenes with known
structure. There is a total of23 classes. We used the version
with both relational and propositional information.

We investigate the following learners.mFOIL (Lavrǎc
& Džeroski 1994) is a variant of FOIL employing beam
search and different search heuristics. The beam size is set
to k = 5, and the confidence parameter to prune clauses

Table 1: Cross-validated accuracy results on ILP benchmark data sets. ForMutagenesis r.u., leave-one-out cross-validated
accuracies are reported because of the small size of the data set. For all other domains,10-fold cross-validated results are
given. •/◦ indicates that nFOIL’s mean is significantly higher/lower (paired sampled t-test,p = 0.05). For 1BC2, we do not
test significance because the results onMutagenesisare taken from (Flach and Lachiche 2004).

Dataset nFOIL mFOIL mFOIL+NB Aleph Aleph+NB 1BC2
Mutagenesis r.f. 78.3± 12.0 68.6± 8.7 68.6± 8.7 72.8± 11.7 72.8± 11.7 79.3
Mutagenesis r.u. 78.6± 41.5 78.6± 41.5 78.6± 41.5 88.1± 32.8 88.1± 32.8 73.8
Alzheimer amine 83.1± 6.5 70.4± 6.6• 69.9± 6.9• 70.1± 7.6• 70.1± 7.6• 70.6
Alzheimer toxic 90.0± 2.9 81.4± 4.3• 81.4± 4.3• 90.8± 4.9 90.8± 4.9 80.0
Alzheimer acetyl 78.3± 4.3 73.5± 2.4• 73.1± 2.6• 69.2± 4.1• 69.2± 4.1• 74.7
Alzheimer memory 66.7± 5.3 60.6± 7.8 60.6± 7.8 66.7± 5.2 66.7± 5.2 66.8
Average over Muta. + Alz. 79.2 72.2 72.0 76.3 76.3 74.2
Diterpene 84.2± 4.1 – – 85.0± 3.6 85.0± 3.6 81.9
Overall Average 79.9 – – 77.5 77.5 75.3

is set to1 as this yields better results than the default set-
ting. Our implementation ofnFOIL also uses – as mFOIL
– beam search with beam sizek = 5. To consider the
same space of clauses, we do not allow for negative liter-
als in mFOIL and nFOIL.Aleph (Srinivasan 2004) is an ad-
vanced ILP system. For the two-class datasetsMutagenesis
andAlzheimer, we apply Aleph’s standard rule learner. To
handle the multi-class problemDiterpene, we use Aleph’s
tree learner. In both cases, the standard settings are used.
1BC2 is a näıve Bayes classifier for structured data (Flach
& Lachiche 2004). Finally, we consider propositionalization
approaches, denoted by ILP+NB, along the lines of (Daviset
al. 2004). They employ clauses learned by the ILP systems
mFOIL andALEPH as features of anäıveBayes.

Results
The cross-validated experimental results are summarized in
Table 1. Comparing the results fornFOIL and mFOIL ,
the experiments clearly affirmatively answerQ1. On aver-
age,nFOIL ’s gain in predictive accuracy is7.0. In con-
trast, the propositionalization approachesAleph+NB and
mFOIL+NB show no gains in predictive performance over
their corresponding baselines. This indicates that the answer
to Q2 is yes. Moreover, in3 out of 6 cases,nFOIL ’s mean
is significantly higher than that ofmFOIL+NB . A simple
sign test (5/0) shows thatmFOIL+NB ’s mean was never
higher than that ofnFOIL . A sign test betweennFOIL and
Aleph yields a draw while the average predictive accuracy
(79.9/77.5) slightly favorsnFOIL . Only nFOIL shows sig-
nificantly higher means. This is a positive answer to ques-
tion Q4. QuestionQ3 seems to have an affirmative answer
because both the average predictive accuracy (79.9/75.3)
and a sign test (5/2) prefernFOIL over1BC2.

The complexities of the learned models are hard to com-
pare because of the different formats of the complexities.
For nFOIL and 1BC2, they are the number of probabil-
ity values attached to clauses. More precisely, there are
#classesmany probability values attached to each clause
where#classesis the number of classes. Additionally, we
have to specify the prior distribution over the class vari-
able. Thus, there are#classes· #clauses+ #classes− 1

many probability values. Because this is of the order of
O(#clauses), it is sufficient to compare the number of
clauses. In the experiments,1BC2 uses an order of magni-
tude more clauses thannFOIL . More precisely,1BC2 uses
more than400 (in some cases even more than1000) clauses,
whereasnFOIL selects fewer than23 clauses on average.
Indeed,1BC2actually does not select clauses but rather uses
all clauses within a given language bias. This clearly shows
thatQ3 can be answered affirmatively as well.

Furthermore, on average,nFOIL selected roughly as
many clauses asmFOIL andAleph. The number of clauses
varied between8 and25. The problem when comparing the
nFOIL /1BC2 results with themFOIL and Aleph results
is that the latter do not attach probability values to clauses.
Still, the model complexity – as argued above – linearly
scales with the number of clauses for a fixed application do-
main, and, more importantly, the selected clauses give the
expert some indication of which logical knowledge discrim-
inates well between the classes. This supports an affirmative
answer toQ4.

To summarize, the experiments show thatnFOIL is com-
petitive with state-of-the-art machine learning approaches.

Related Work
Approaches that combine statistical learning with inductive
logic programming techniques for addressing classification
can be divided into three categories.

The first class of techniques starts by generating a set of
first-order features (using either a kind of propositionaliza-
tion approach, as in the 1BC system (Flach & Lachiche
2004), or by running a traditional ILP algorithm (Pompe
& Kononenko 1995; Daviset al. 2004) and then using
the generated clauses as attributes in a probabilistic model
(such as näıve Bayes (Pompe & Kononenko 1995), or tree-
augmented naı̈ve Bayes or Bayesian networks (Daviset al.
2004)). In this class of techniques, the feature construction
and the statistical learning steps are performed consecutively
and independently of one another, whereas in nFOIL they
are tightly integrated.

The second class of techniques ((Taskar, Segal, & Koller
2001), the 1BC2 system (Flach & Lachiche 2004), (Neville,

Jensen, & Gallagher 2003)) employs a relational or a higher-
order logical probabilistic model, whose logical component
(and hence its features) are fixed, and then learns the param-
eters of such a model using statistical learning techniques.
The difference with nFOIL is that this class of techniques
does not address structure learning or feature generation.

The third class of techniques (Popesculet al. 2003;
Dehaspe 1997) indeed tightly integrates the inductive logic
programming step with the statistical learning one. How-
ever, whereas nFOIL employs the simplest possible statisti-
cal model, i.e. näıve Bayes, these approaches employ much
more advanced (and hence computationally much more ex-
pensive) statistical models such as logistic regression and
maximum entropy modeling, which does seem to limit the
application potential. For instance, (Popesculet al. 2003)
report that – in their experiments – they had to employ a
depth limit of 2 when searching for features. The work
on nFOIL is similar in spirit to these two approaches but
is much more simple and, therefore, we believe also more
appealing for the traditional classification task considered in
inductive logic programming.

Finally, there is also the approach of Craven and Slat-
tery (2001), who combine several naı̈ve Bayes models with
FOIL. The decisions of naı̈ve Bayes models are viewed as
truth values of literals occurring in clauses. This work can
be regarded as the inverse of nFOIL in that nFOIL employs
näıve Bayes on top of logic, whereas Craven and Slattery
employ näıve Bayes as a predicate in the logical definitions.

Conclusions
We have introduced the nFOIL system. It combines the sim-
plest approaches from ILP and probabilistic learning. De-
spite its simplicity, it was shown to be competitive with more
advanced systems, such as Aleph, and to have advantages
over baseline approaches (such as 1BC2 and mFOIL).

In further work, we want to investigate whether one
can also integrate more advanced ILP systems (such as
Aleph) with more advanced probabilistic models (such as
tree-augmented naı̈ve Bayes).

AcknowledgementsThe authors would like to thank the
anonymous reviewers for valuable comments. The research
was supported by the European Union IST programme, con-
tract no. FP6-508861,Application of Probabilistic Inductive
Logic Programming II.

References
Blockeel, H., and De Raedt, L. 1997. Lookahead and dis-
cretization in ILP. InProceedings of ILP-97, 77–85.

Craven, M., and Slattery, S. 2001. Relational Learning
with Statistical Predicate Invention: Better Models for Hy-
pertext.Machine Learning43(1–2):97–119.

Davis, J.; V. Santos Costa, I. O.; Page, D.; and Dutra, I.
2004. Using Bayesian Classifiers to Combine Rules. In
Working Notes of MRDM-04.

De Raedt, L., and Kersting, K. 2003. Probabilistic Logic
Learning.ACM-SIGKDD Explorations5(1):31–48.

De Raedt, L., and Kersting, K. 2004. Probabilistic In-
ductive Logic Programming. InProceedings of ALT-04,
19–36.
Dehaspe, L. 1997. Maximum entropy modeling with
clausal constraints. InProceedings of ILP-97, 109–124.
Dietterich, T.; Getoor, L.; and Murphy, K., eds. 2004.
Working Notes of the ICML-2004 Workshop on Statistical
Relational Learning and its Connections to Other Fields
(SRL-04).
Džeroski, S.; Schulze-Kremer, S.; Heidtke, K.; Siems, K.;
Wettschereck, D.; and Blockeel, H. 1998. Diterpene
Structure Elucidation from13C NMR Spectra with Induc-
tive Logic Programming. Applied Artificial Intelligence
12:363–383.
Flach, P., and Lachiche, N. 2004. Naive Bayesian classi-
fication of structured data.Machine Learning57(3):233–
269.
Getoor, L.; Friedman, N.; Koller, D.; and Pfeffer, A. 2001.
Learning probabilistic relational models. In Džeroski, S.,
and Lavrǎc, N., eds.,Relational Data Mining. Springer.
Grossman, D., and Domingos, P. 2004. Learning Bayesian
Network Classifiers by Maximizing Conditional Likeli-
hood. InProceedings of ICML-04, 361–368.
King, R.; Srinivasan, A.; and Sternberg, M. 1995. Relat-
ing chemical activity to structure: an examination of ILP
successes.New Gen. Comput.13(2,4):411–433.
Lavrǎc, N., and Ďzeroski, S. 1994.Inductive Logic Pro-
gramming. Ellis Horwood.
Muggleton, S. 1990. Efficient induction of logic programs.
In Proceedings of ALT-90, 368–381.
Muggleton, S. 1995. Inverse Entailment and Progol.New
Gen. Comp.13:245–286.
Muggleton, S. 1996. Stochastic logic programs. InAd-
vances in Inductive Logic Programming. IOS Press.
Neville, J.; Jensen, D.; and Gallagher, B. 2003. Simple
Estimators for Relational Bayesian Classifiers. InProceed-
ings of ICDM-03, 609–612.
Pompe, U., and Kononenko, I. 1995. Naive Bayesian clas-
sifier within ILP-R. InProceedings of ILP-95, 417–436.
Popescul, A.; Ungar, L.; Lawrence, S.; and Pennock, D.
2003. Statistical Relational Learning for Document Min-
ing. In Proceedings of ICDM-03, 275–282.
Quinlan, J. 1990. Learning logical definitions from rela-
tions. Machine Learning239–266.
Srinivasan, A.; Muggleton, S.; King, R.; and Sternberg, M.
1996. Theories for mutagenicity: a study of first-order and
feature based induction.Artificial Intelligence85:277–299.
Srinivasan, A. 2004. The Aleph Manual.
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/
Aleph/alephtoc.html. Last update June 30, 2004.
Taskar, B.; Segal, E.; and Koller, D. 2001. Probabilistic
Clustering in Relational Data. InProceedings of IJCAI-01,
870–878.

