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Abstract

Stochastic logic programs combine ideas from probabilistic
grammars with the expressive power of definite clause logic;
as such they can be considered as an extension of probabilistic
context-free grammars. Motivated by an analogy with learn-
ing tree-bank grammars, we study how to learn stochastic
logic programs from proof-trees. Using proof-trees as ex-
amples imposes strong logical constraints on the structure of
the target stochastic logic program. These constraints can be
integrated in the least general generalization (lgg) operator,
which is employed to traverse the search space. Our imple-
mentation employs a greedy search guided by the maximum
likelihood principle and failure-adjusted maximization. We
also report on a number of simple experiments that show the
promise of the approach.

Introduction
In the past few years there has been a lot of work ly-
ing at the intersection of probability theory, logic program-
ming and machine learning (De Raedt & Kersting 2003;
Getoor & Jensen 2003; Dietterich, Getoor, &Murphy 2004).
This work is known under the names of statistical relational
learning (SRL), probabilistic logic learning, or probabilistic
inductive logic programming. By combining logic, proba-
bility, and machine learning, SRL approaches can perform
robust and accurate reasoning and learning about complex
relational data, that is, data stored in more than a single
relational table. A great variety of SRL approaches has
been proposed, such as PRISM (Sato & Kameya 1997),
ICL (Poole 1993), SLPs (Muggleton 1996), BLPs (Kerst-
ing & De Raedt 2001), PRMs (Getoor et al. 2001), and
MLNs (Domingos & Richardson 2004). Typically, two dif-
ferent learning problems are considered: parameter estima-
tion and structure learning. So far, with a few notable ex-
ceptions (Getoor et al. 2001; Kersting & De Raedt 2001;
Muggleton 2002; Domingos & Richardson 2004), the vast
majority of present SRL approaches has focused on param-
eter estimation. The main reason is that in order to learn
the structure of a probabilistic inductive logic programming
model, one needs to solve the underlying inductive logic
programming problem, which is a non-trivial task by itself,
as well as the parameter estimation problem.
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In this paper, we focus on learning the structure of
stochastic logic programs (SLPs), a probabilistic logic in-
troduced by Muggleton (1996). To the best of the authors’
knowledge, the only approach so far to learn the structure
of SLPs is due to Muggleton (2002). This approach incre-
mentally learns an additional clause for a single predicate
in a SLP. From an inductive logic programming perspec-
tive, this corresponds to a typical single predicate learning
setting under entailment. Indeed, the examples are ground
facts for a single predicate and the goal is to learn the cor-
responding predicate definition annotated with probability
labels. Learning logic programs (involving multiple pred-
icates) under entailment (De Raedt 1997) is hard because
the examples are not very informative. Therefore, alterna-
tive settings, such as learning from interpretations and learn-
ing from traces (Shapiro 1983; Bergadano & Gunetti 1996)
have been considered in ILP. This raises the question as to
whether it is possible to learn SLPs in these other settings.
The main contribution of the present paper is that we show

how to learn the structure of SLPs from proofs. In this
setting, the examples are proof-trees of the unknown tar-
get SLP. This learning from proofs setting is not only moti-
vated from an inductive logic programming perspective, it is
also motivated by the work on learning probabilistic context-
free grammars (Charniak 1996) and combinatory catego-
rial grammars (Hockenmaier 2003) from tree-banks. In-
deed, within the empirical natural language processing com-
munity, the learning of probabilistic context-free grammars
from parse trees (such as theWall-Street Journal) is an estab-
lished and successful practice. Because SLPs upgrade prob-
abilistic context-free grammars, and parse trees for proba-
bilistic context-free grammars correspond to proof-trees for
SLPs, it seems natural to try to upgrade the tree-bank gram-
mar to SLPs. This is in line with the common practice in
inductive logic programming to derive new inductive logic
programming systems by upgrading existing ones for sim-
pler representations.

Stochastic Logic Programs (SLPs)
SLPs combine definite clauses with ideas from probabilistic
context-free grammars. A SLP is a definite clause program,
where each of the clauses is labeled with a probability value.

Definition 1 A stochastic logic program is a set of clauses



of the form p : h ← b1, ..., bm, where h and the bi are logical
atoms and p > 0 is a probability label.

Furthermore, as in probabilistic context-free grammars, we
will assume that the sum of the probability values for all
clauses defining a particular predicate q (i.e. with q in the
left-hand side or head of the clause) is equal to 1 (though
less restricted versions have been considered as well).

Example 1 Consider the following probabilistic definite
clause grammar1:

1 : s(A,B) ← np(Number,A,C), vp(Number,C,B).
1/2 : np(Number,A,B) ← det(A,C), n(Number,C,B).
1/2 : np(Number,A,B) ← pronom(Number,A,B).
1/2 : vp(Number,A,B) ← v(Number,A,B).
1/2 : vp(Number,A,B) ← v(Number,A,C), np(D,C,B).
1 : det(A,B) ← term(A, the,B).
1/4 : n(s,A,B) ← term(A,man,B).
1/4 : n(s,A,B) ← term(A, apple,B).
1/4 : n(pl,A,B) ← term(A,men,B).
1/4 : n(pl,A,B) ← term(A, apples,B).
1/4 : v(s,A,B) ← term(A, eats,B).
1/4 : v(s,A,B) ← term(A, sings,B).
1/4 : v(pl,A,B) ← term(A, eat,B).
1/4 : v(pl,A,B) ← term(A, sing,B).
1 : pronom(pl,A,B) ← term(A, you,B).
1 : term([A|B],A,B) ←
SLPs define a probability distribution over proof-trees. At
this point, there exist various possible forms of proof-trees.
In this paper, we will – for reasons that will become clear
later – assume that the proof-tree is given in the form of
an and-tree where the nodes contain ground atoms. More
formally:

Definition 2 t is a proof-tree for a SLP S if and only if t is a
rooted tree where for all nodes n ∈ t with children child(n)
there exists a substitution θ and a clause c ∈ S such that
n = head(c)θ and child(n) = body(c)θ2.

If the property holds for all nodes, except for some of
the leaves of the tree, we will talk about a partial proof-
tree. A partial proof-tree is a representation of a (success-
ful or failed) SLD-derivation, cf. also the Appendix. A
proper proof-tree encodes an SLD-refutation, i.e. a suc-
cessful SLD-derivation, see Figure 1 for an example. As
probabilistic context-free grammars, SLPs define probabil-
ity distributions over derivations and atoms (or sentences).
However, there is one crucial difference between context-
free grammars and logic programs. Resolution derivations
for logic programs can fail, whereas derivations in a context-
free grammar never fail. Indeed, if an intermediate gram-
mar rule of the form S → t1, ..., tk, n1, ..., nm is derived
in a context-free grammar, where the ti are terminal sym-
bols and the nj are non-terminal ones, it is always possible

1We follow the typical Prolog convention, where variables start
with an upper-case and constants with a lower-case character.

2In order to avoid having to account for several representations
of the same proof, we will assume that the children of a node are
ordered in the same order as they occur in the clauses.

verb phrase(plural,[eat,the,apple],[])

s([you,eat,the,apple],[])

{}
verb(plural,[eat,the,apple],[the,apple])

{}

{}

{}

noun phrase(singular,[the,apple],[])

determiner(singular,[the],[apple])

noun(singular,[apple],[])

pronom(plural,[you,eat,the,apple],[eat,the,apple])

noun phrase(plural,[you,eat,the,apple],[eat,the,apple])

Figure 1: A proof tree for the probabilistic definite clause
grammar.

to “resolve” a non-terminals nj away using any rule defin-
ing nj . In contrast, in a logic program, this is not always
possible because the two literals may not unify. That is also
the reason why some partial proof-trees cannot be expanded
into a proof-tree.
We can now define three different probability distribu-

tions (where we will – for simplicity – assume that all SLD-
trees are finite, cf. (Cussens 2001) for a more general case).
First, let us define the distribution over partial proof-trees or
derivations of a variabilized atom a (i.e. an atom of the form
p(X1, ...,Xn), where all the arguments are different vari-
ables). This is similar to the case for probabilistic context-
free grammars: The probability PD(d) of a partial proof-tree
d, in which the clauses c1, ..., cn with associated probability
labels p1, ..., pn are usedm1, ...,mn times, is

PD(d) =
∏

i
pmi

i .

Observe that the probability distribution PD also assigns a
non-zero probability to failed derivations. Usually, we are
interested in successful derivations or proof-trees, i.e. refu-
tations ending in the empty clause. The probability distribu-
tion PR(r), defined on a refutation r for a variabilized atom
a and induced by PD and the logic program, can be obtained
by normalizing PD:

PR(r) = PD(r)/
(∑

r(a)
PD(r(a))

)

where the sum ranges over all proof-trees or refutations r(a)
of the atom a. This in turn allows us to define the probability
PA(aθ) of a ground atom aθ:

PA(aθ) =
(∑

r(aθ)
PR(r(aθ))

)
/

(∑
r(a)

PR(r(a))
)

where r(aθ) ranges over all proof-trees of aθ and r(a) over
all proof-trees of a.

Example 2 Consider the previous SLP. The probability
PD(u) of the proof (tree) u in Figure 1 is PD(u) = 1

2 · 1
2 ·

1
4 · 1

2 · 1
4 = 1

128 . All in all, there are 60 ground proofs
si, i = 1, ...60 of atoms over the predicate s. In order
to get the value of PR(s([you, eat, the, apple], [])), first
the probability PD(si) must be calculated for each proof-
tree si. Secondly, all probabilities PD(si) are summed up.



Multiplying the inverse of this sum with 1
128 finally yields

PR(s([you, eat, the, apple], [])).

By now we are able to define the learning setting ad-
dressed in this paper. Given are a set of proof-trees E that
are sampled from an unknown SLP S, and the goal is to try to
reconstruct S from E. As we are given only a sample from
S it will – in general – be impossible to reconstruct S from
E. Instead, we want to find the best possible approximation
of S, i.e. the hypotheses H which maximizes the likelihood
of the data. More formally, we can specify this problem as
follows:

Given • a set of proof-trees E for an unknown target SLP
selected according to PR, and

• a space of possible SLPs L,
Find a SLP H ∈ L, such that

H = arg maxH∈L
∏

e∈E PR(e|H) .

For simplicity, we employ a maximum likelihood criterion
here. Instead, one may want to employ a Bayesian or a min-
imum description length criterion.
This setting upgrades the problem of learning probabilis-

tic context-free grammars from parse trees or tree-banks.
It also introduces a novel setting for inductive logic pro-
gramming, in which the examples are proof-trees rather
than interpretations or clauses. To the best of the authors’
knowledge, this setting has not yet been pursued within in-
ductive logic programming even though there are certainly
related approaches, most notably Bergadano and Gunetti’s
TRACY (Bergadano & Gunetti 1996) and Shapiro’s seminal
Model Inference System (Shapiro 1983). Whereas TRACY
learns logic programs from traces, Shapiro’s tries to recon-
struct a trace by querying an oracle.
Observe also that this setting is meaningful in several ap-

plications. First, it applies very naturally to natural lan-
guage processing problems, where one could e.g. try to
induce probabilistic unification based grammar, e.g. prob-
abilistic definite clause grammars, from parse trees. SLPs
have actually been defined and inspired by applications in
natural language processing, cf. (Muggleton 1996; Riezler
1998). This type of application is similar in spirit to our
running example. Second, considerweb-mining applications
such as analyzing traces through web-sites as illustrated in
the next example.

Example 3 In the following stochastic logic program

0.1 : deptp(D) ← dept(D).
0.5 : deptp(D) ← dept(D), prof(P), bel(D,P), profp(P).
0.4 : deptp(D) ← dept(D), cou(C), off(D,C), coursep(P).
0.1 : coursep(C) ← cou(C).
0.3 : coursep(C) ← cou(C), prof(P), tea(P,C), profp(P)
0.6 : coursep(C) ← cou(C), dept(D), off(D,P), deptp(D)
0.1 : dept(cs) ← . . .
0.1 : prof(tom) ← . . .
0.2 : cou(ai) ← . . .

ground facts for predicates ending in p denote a particu-
lar page, e.g. deptp(cs). Other unary predicates such as
cou denote a particular set of entities (in this case courses).
Finally, binary relations represent possible transitions, such

as bel(ongs), off(ers) and tea(ches). Using
this SLP, a web log corresponds to a proof-tree.

This example is similar in spirit to the application and frame-
work for Relational Markov Models (RMMs) (Anderson,
Domingos, & Weld 2002). Third, in a similar setting one
can well imagine applications within bioinformatics. The
biological functions of proteins/RNA molecules depend on
the way they fold. Kersting et al. (2003) report on promis-
ing results for protein fold classification. They represent the
secondary structures3 of proteins as sequences of ground
atoms, i.e. proof chains. Similarly, the secondary structures
of mRNA molecules contain special subsequences called
signal structures that are responsible for special biologi-
cal functions, such as RNA-protein interactions and cellular
transport. In contrast to proteins, the secondary structures of
mRNA molecules do not form chains but (proof) trees.

Learning from proofs
As for any probabilistic inductive logic programming ap-
proach, there are logical and probabilistic issues to be taken
into account. The former are related to the structure of the
SLP, i.e. the clauses, the latter to the parameters, i.e. the
probability labels.

Logical issues
From a logical perspective, an important constraint is im-
posed on target SLPs by the learning from proofs setting. It
follows from the following property.

Property 1 For all SLPs S: e is a (proper) proof-tree of S
if and only if PR(e|S) > 0.
This property implies that the learner should restrict its at-
tention to those (stochastic) logic programs S for which all
examples e are proper proof-trees (i.e. PR(e|S) > 0). If
there exists an example e that is no longer a proper proof-tree
for a particular hypothesis H , PR(e|H) = 0 and therefore,
the likelihood of that hypothesis is 0. Hence, such hypothe-
ses should not be considered during the search. This raises
the question as to how to organize the search through the
search space of (stochastic) logic programs.
A starting hypothesis H0 that satisfies the above con-

straint can easily be obtained by collecting all ground
clauses that appear in the examples E and assigning them
non-zero probability labels. More formally, let

H0 = {n ← c1, · · · , cm| node n has children ci in e ∈ E}.
The hypothesis H0 also corresponds to the initial grammar
that is constructed from tree-banks. This grammar will how-
ever be too specific because it only contains ground clauses,
which raises the question as to how we could generalize
these clauses. Again, motivated by common practice in tree-
bank grammars (Charniak 1996) and inductive logic pro-
gramming (Muggleton & Feng 1992), we consider general-
izing clauses by applying the well-known lgg operator intro-
duced by (Plotkin 1970), cf. also the Appendix. One prop-
erty of the lgg is that lgg(c1, c2) |= ci, i.e. the lgg entails the

3The secondary structure is an intermediate representation of
how proteins/RNA molecules fold up in nature.



original clauses. This means that if one replaces two clauses
c1, c2 ∈ H by lgg(c1, c2) to yieldH ′ all facts entailed byH
are still entailed by H ′. However, in our context, we have
the logical constraint that all proof-trees for H must still be
proof-trees forH ′. This constraint does not hold in general.
Example 4 Consider the clauses h ← q and h ← r and
assume that the hypothesis H also contains the fact q ←.
Then the proof-tree for h in H is no longer a valid proof-
tree in H ′ consisting of h ← and q ←.

This provides us with a powerful means to prune away unin-
teresting generalizations. Indeed, whenever a candidate lgg
does not preserve the proof-trees, it is overly general and
should be pruned. A naive way of verifying this condition,
would be to compute the proofs for the generalized hypothe-
sisH ′. However, this would be computationally very expen-
sive. Fortunately, it is possible to guarantee this condition
much more efficiently. Indeed, it suffices to verify that

1. ∃ substitutions θ1, θ2 : lgg(c1, c2)θ1 = c1 and
lgg(c1, c2)θ2 = c2

2. there is a one-to-one mapping from literals in
lgg(c1, c2)θi to literals in ci

If the first condition is violated, then there are literals in ci

that do not occur in lgg(c1, c2)θi. These literals would be
lost from the corresponding proofs (as sketched in the exam-
ple) and so the proofs would not be preserved. If the second
condition is violated, a standard theorem prover would de-
rive different proofs (containing more children), and again
the proofs would not be preserved. Furthermore, as com-
mon in inductive logic programming, we will assume that
all clauses in the target (and intermediate) logic programs
are reduced w.r.t. θ-subsumption. The above conditions al-
low us to verify whether the proofs are preserved after com-
puting the lgg. However, one needs to compute and consider
only the lgg of two clauses if the multi-set of predicates oc-
curring in these two clauses are identical.

Probabilistic Issues
From a probabilistic perspective, the examples also con-
strain the target SLP as each proof can be viewed as a sample
from a Markov chain induced by the SLP, which constrains
the probability labels associated to the clauses.
Once the structure of the SLP H is fixed, the problem of

parameter estimation is that of finding those parameters λ∗
ofH that best explain the examples E. As already indicated
earlier, we employ the maximum likelihood criterion

λ∗ = arg max
λ

PD(E|H,λ) .

(possibly with a penalty for the complexity of the model).
For SLPs, the parameter estimation problem has been

thoroughly studied by James Cussens (2001). However, the
setting he uses is that of learning from entailment, in which
the examples are ground facts instead of proof-trees. Since
proof-trees carry more information than facts, it is possibly
to adapt and simplify Cussens’ Failure Adjusted Maximiza-
tion (FAM) approach for our purposes.
Cussens’s FAM approach is essentially an instance of

the Expectation - Maximization (EM) algorithm. The EM

scheme is based on the observation that parameter estima-
tion would correspond to frequency counting, if the values
of all random variables were known. Therefore, the EM it-
eratively performs two steps to find the maximum likelihood
parameters:

(E-Step) Based on the current parameters λ and the ob-
served data E, the algorithm computes a distribution over
all possible completions of E.

(M-Step) Each completion is then treated as a fully ob-
served example weighted by its probability. New param-
eters are then computed based on (expected) frequency
counting.

In Cussens’ FAM approach, the atoms are treated as an in-
complete example set derived from a complete example set
of derivations (i.e. proofs and failures), truncated to yield
refutations only, and finally grouped to produce the set of
observed atoms. As shown by (Cussens 2001), this yields
the following formula for computing the expected counts of
a clause Ci given E for the E-Step:

ecλ(Ci|E) =∑
e∈E

(
ecλ(Ci|e) + (Z−1 − 1) ecλ(Ci|fail)

) (1)

Here, ecλ(Ci|e) (resp. ecλ(Ci|fail)) denotes the expected
number of times clause Ci has been used to derive atom e
(resp. to derive a failure), and Z is the normalization con-
stant

Z =
∑
r(h)

PD(r(h))

where the sum ranges over all proof-trees r(h) of the vari-
abilized head h of clauses Ci. In the M-Step, FAM com-
putes the improved probability label pi for each clause Ci as

pi ← ecλ(Ci|E)/
∑

C′ ecλ(C ′|E)

where the sum ranges over all clausesC ′ with the same pred-
icate in the head as Ci.
Because proofs carry more information than ground facts,

we can directly compute the number of times c(Ci|e) clause
Ci has been used in the given proof-tree e instead of having
to compute the expected number ecλ(Ci|e) clauseCi is used
to prove an atom, in Equation (1). This is the only modifica-
tion needed to adapt the FAM algorithm to the learning from
proofs setting.

The Learning Algorithm
Our algorithm is summarized in Algorithm 1. It naturally
takes both the logical and the probabilistic constraints im-
posed by the learning from proofs setting into account.
The algorithm performs a greedy hill-climbing search

through the space of possible logic programs and is guided
by the maximum likelihood score. The starting point of the
searchH0 consists of the SLP containing all ground clauses
inE. The lgg is then used to compute the legal “neighbours”
(candidates, where subsumed clauses are removed) of H .
The best neighbor (according to the score) is then selected



Algorithm 1 Learning SLPs from Proofs.
1: H0 = {n ← c1, · · · , cm| node n has children ci in e ∈ E}
2: estimate parameters of H0

3: compute score(H0, E)
4: i := −1
5: repeat
6: i := i + 1
7: Hi+1 := Hi

8: for all clauses c1, c2 ∈ Hi with identical multi-sets of
predicates do

9: compute the reduced lgg(c1, c2)
10: if lgg(c1, c2) preserves the proofs then
11: H ′ := Hi

12: delete from H ′ all clauses subsumed by
lgg(c1, c2)

13: add lgg(c1, c2) to H ′
14: re-estimate parameters ofH ′
15: compute score(H ′, E)
16: if score(H ′, E) is better than score(Hi+1, E)

then
17: Hi+1 := H ′
18: until score(Hi+1, E) � score(Hi, E)

and the search is repeated until no further improvements in
score are obtained.
Instead of the algorithm presented, one could also easily

adapt Friedman’s structural EM (Friedman 1997). This al-
gorithm would take the current model Hk and run the FAM
algorithm for a while to get reasonably completed data. It
would then fix the completed data case, i.e. the failures, and
use them to compute the ML parameters λ′ of each neigh-
bour H ′ and choose the neighbour with the best improve-
ment in score as the new best hypothesis Hk+1, if it im-
proves upon Hk, and iterate.

Experimental Evaluation
Our intentions here are to investigate whether

(H) our proposed bottom-up learning approach can discover
the SLP underlying a set of proofs.

To this aim, we implemented the algorithm using the SICS-
TUS Prolog 3.10.1. Instead of computing and counting all
failure derivations, sampling is used to avoid infinite com-
putations. We use the log-likelihood as score. Following the
minimum description length score for Bayesian networks,
we use additionally the penalty |H| log(|E|)/2. Data were
generated from the SLP in example 1. Note that this is not
a context-free grammar as failure derivations occur due to
variable bindings.
From the target SLP, we generated (independent) train-

ing sets of 50, 100, 200, and 500 proofs. For each train-
ing set, 4 different random initial sets of parameters were
tried. We ran the learning algorithm on each data set start-
ing from each of the initial sets of parameters. The algorithm
stopped when a limit of 200 iterations was exceeded or a
change in log-likelihood between two successive iterations
was smaller than 0.0001.
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Figure 2: Experimental results. (a) A typical learning curve.
(b) Final log-likelihood averaged over 4 runs. The error bars
show the standard deviations.

Figure 2 (a) shows a typical learning curve, and Fig-
ure 2 (b) summarizes the overall results. In all runs, the
original structure was induced from the proof-trees. This
validates H. Moreover, already 50 proof-trees suffice to re-
discover the structure of the original SLP. (Note, that exam-
ple 1 yields 60 sentences.) Further experiments with 20 and
10 samples respectively show that even 20 samples suffice to
learn the given structure. Sampling 10 proofs, the original
structure is rediscovered in one of five experiments. This
supports that the learning from proof trees setting carries
more information than the learning from entailment setting.
Furthermore, our methods scales well. Runs on two inde-
pendently sampled sets of 1000 training proofs yield similar
results: −4.77 and −3.17, and the original structure was
learned in both cases.

Conclusions and Related Work
We have presented a novel framework for probabilistic in-
ductive logic programming, in which one learns from proof-
trees rather than from facts or interpretations. It was mo-
tivated by an analogy with learning of tree-bank gram-
mars (Charniak 1996). The advantage of this framework is
that it provides strong logical constraints on the structure of
the stochastic logic program and at the same time simplifies
the parameter estimation problem (as compared to (Cussens
2001)).
From an inductive logic programming perspective, this

work is closest to the Golem system (Muggleton & Feng
1992), which also employed the lgg as its key operation
to induce logic programs (without probability labels). It
also extends Cussens’ FAM algorithm with structure learn-
ing, and the work by Muggleton (2002) in that it learns a
set of clauses simultaneously instead of a single predicate
(or clause). The present work is also related to various ap-
proaches in grammar learning, such as the work on tree-bank
grammars (Charniak 1996), and the work on generalizing
grammars by for instance state-merging (e.g. (Cicchello &
Kremer 2003)). Nevertheless, to the best of our knowledge,
learning from proofs is a new setting for inductive logic pro-
gramming, and has not yet been used in this form to learn
probabilistic extensions of universal Turing machines.



Further work will be concerned with applying our
framework to practical problems, both in natural language
processing and in contexts where relational and logical
Markov models have been used. As SLPs can be regarded
as a generalization of RMMs (Anderson, Domingos, &
Weld 2002) and LOHMMs (Kersting et al. 2003) they
should essentially apply to this setting. It would also
be interesting to see whether our techniques could be
employed to learning unification based grammars such as
HPSG (for instance for the HPSG tree bank for Bulgarian,
see http://www.bultreebank.org/).
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Appendix - Logic
SLD resolution is a logical inference operator for prov-
ing statements in first-order logic. Given a goal
: - G1, G2 . . . , Gn and a clause G : - L1, . . . , Lm such that
G1θ = Gθ, applying SLD resolution yields the new goal
: - L1θ, . . . , Lmθ, G2θ . . . , Gnθ. A successful refutation, i.e. a
proof of a goal is then a sequence of resolution steps yield-
ing the empty goal, i.e. : - . Failed proofs do not end in the
empty goal.
The least general generalization lgg (under θ-

subsumption) for clauses is defined recursively. The
lgg of two terms is defined as follows: lgg(t, t) = t,
lgg(f(s1, ..., sn), f(t1, ..., tn))= f(lgg(s1, t1), ..., lgg(sn, tn)),
lgg(f(s1, ..., sn), g(t1, ..., tm)) = V where f �= g and V
is a variable. The lgg of two atoms p(s1, ..., sn) and
p(t1, ..., tn) is lgg(p(lgg(s1, t1), . . . , lgg(sn, tn)), and it
is undefined if the sign or predicate symbols are unequal.
Finally, the lgg of two clauses c1 and c2 is the clause
{lgg(l1, l2)|lgg(l1, l2) is defined and li ∈ ci}.
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