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Abstract. Combining statistical and relational learning receives cur-
rently a lot of attention. The majority of statistical relational learning
approaches focus on density estimation. For classification, however, it is
well-known that the performance of such generative models is often lower
than that of discriminative classifiers. One approach to improve the per-
formance of generative models is to combine them with discriminative
algorithms. Fisher kernels were developed to combine them with kernel
methods, and have shown promising results for the combinations of sup-
port vector machines with (logical) hidden Markov models and Bayesian
networks. So far, however, Fisher kernels have not been considered for
relational data, i.e., data consisting of a collection of objects and rela-
tional among these objects. In this paper, we develop Fisher kernels for
relational data and empirically show that they can significantly improve
over the results achieved without Fisher kernels.

1 Introduction

From a machine learning perspective, many real world applications can be re-
garded as classification problems: One tries to estimate the dependence of a
target variable Y on some observation X, based on a finite set of observations x
for which the value y of the target variable is known. More formally:

Definition 1 (Classification Problem). Given a finite set of training exam-
ples {(xi, yi)}m

i=1 ⊆ X×Y , where X is the feature space and Y = {y1, y2, . . . , yn}
is the set of possible classes, find a function f : X → Y with low approximation
error on the training data as well as on unseen examples.

The classification problem has traditionally been considered for data in attribute-
value form, i.e., xi is a vector of fixed length. Many — if not most — real-
world data sets, however, are not in attribute-value form. Applications are char-
acterized by the presence of uncertainty and complex relations. Consider the
KDD Cup 2001 localization of genes/proteins task [1].

Example 1 (Genes/Proteins Localization). The KDD Cup 2001 focused on
data from life science. One data set, which we also used in our experiments,
is from genomics. The data consists of 1243 genes of one particular but
unknown type of organism. Each gene encodes a protein, which occupies a
particular position in some part of a cell. For each gene, information on the



class, the phenotype, i.e., its characteristics, the complex it belongs to etc. are
given. Furthermore, the graph of interactions among the genes is provided.
Using relational logic, this can elegantly be represented as set of ground
atoms gene(g1). gene(g2). . . . phenotype(g1, 1). . . . complex(g2, 13). . . .
interaction(g1, g2). interaction(g3, g245) . . . Here, gene/1, phenotyp/2,
gene/1 interaction/2 are predicates that identify relations, numbers and lower-
case strings like g1 and 1 are constants that identify objects. Ground atoms are
predicates together with their arguments, for example interaction(g3, g245)
denotes that genes g3 and g245 interact. 381 of the 1243 genes are withheld
as test set. The task is to predict the localization of a protein/gene based on
the features of the protein/gene and of proteins/genes interacting with the
protein/gene and is characterized by the presence of uncertainty, a varying
number of objects (genes), and relations (interactions) among the objects.

Inductive logic programming [17] (ILP) and relational learning have been
developed for coping with this type of data. They aim at inducing hypotheses
consisting of clauses c (abstract rules) such as

localization(A) : − neighbour(A, B), localization(B)

which consist of a head(c) ≡ localization(A) and a body(c) ≡
{neighbour(A, B), localization(B)}. Upper-case strings denote variables, i.e.,
placeholders for objects. Atoms are predicates together with their arguments,
for example localization(A, B). A clause or atom is called ground if it does not
contain any variables. Relational abstraction has two advantages: (1) variables
such as A, i.e., placeholders for objects allow one to make abstraction of specific
objects such as g1; (2) unification {A/g3, B/g245}, i.e., the matching of variables
allows one to evaluate abstract knowledge. Thus, relational learning allows to
induce general regularities in terms of clauses but it does not handle uncertainty
in a principled way. It is therefore not surprising that there has been a significant
interest in integrating statistical learning with relational representations. This
newly emerging research field is known under the name of statistical relational
learning (SRL) and aims in principle at estimating a probability distribution
P(X, Y ) over relational X × Y. The key idea of SRL is to employ relational
abstraction within statistical learning and therefore learning general (abstract)
statistical regularities among groups of entities.

For classification, most SRL approaches (in particular the ILP motivated
ones) are generative, i.e., they aim at estimating the joint distribution P(X, Y )
by learning the class prior distribution P(Y ) and the class-conditional feature
distribution P(X|Y ). The required posterior distribution P (Y = y|X = x) is
then obtained using Bayes’ rule yielding f(x) = arg maxyi∈Y P (X = x|Y =
yi,λ

∗) · P (Y = yi|λ∗) as solution to the classification problem 1. Here, λ∗ are
the maximum likelihood parameters of the given generative model, which are
typically estimated using the EM algorithm.

The classification performance of a generative approach, however, is often
lower than that of a discriminative classifier, which estimates f : X → Y directly
without representing the full joint probability distribution P(X, Y ). To improve



the classification accuracy of generative models, different kernel functions have
been proposed to make use of the good predictive performance of kernel methods
such as support vector machine (SVM) [20]. A prominent representative of these
kernel functions is the Fisher kernel [9]. The key idea there is to use the gradient
of the log likelihood of the generative model with respect to its parameters as
features. The motivation to use this feature space is that the gradient captures
the generative process rather than just the posterior probabilities.

Fisher kernels have successfully been applied in many learning problems
where the instances are described in terms of attribute-value vectors and for
sequences of logical atoms [12]. So far, however, they have not been applied
to relational data. Our main contribution is the definition of relational Fisher
kernels, i.e., Fisher kernels derived from SRL models.

Definition 2 (Relational Fisher Kernel). Relational Fisher kernels are the
family of kernel functions k obtained by using the gradient Ux = ∇λ log P (X =
x | λ∗,M) of the log likelihood of a statistical relational model with respect to the
model’s parameters as features.

We will experimentally show that the predictive accuracy of a SRL model can
considerably be improved using Fisher kernels and SVMs. As showcase, we will
focus on Bayesian logic programs [10] as SRL model but the idea applies natu-
rally to any other SRL.

The outline of the paper is as follows. After discussing related work, we
review Fisher Kernels in Section 3. In Section 4, we devise relational Fisher
kernels based on Bayesian logic programs. Before concluding, we experimentally
evaluate relational Fisher kernels in Section 5.

2 Related Work

Discriminative learning and kernels have only recently started to receive atten-
tion within SRL. To the best of our knowledge, [22, 24, 23, 21] are the only ones
who aim at discriminative (probabilistic) models for structured data. In contrast
to relational Fisher kernels, however, [22] and [21] do not explore kernel functions
but gradient-based optimization of the conditional likelihood P(y|x). Taskar et
al. [24] present a max-margin algorithm, where the structure in the input/output
is modeled by a (relational) Markov network and not by a (relational) Bayesian
network. In contrast to all these SRL approaches, relational Fisher kernels are
easier to implement because gradient-based optimization techniques are typi-
cally already implemented for parameter estimation of SRL models. Recently,
Landwehr et al. [13] (and related approaches) tightly integrated Näıve Bayes
with ILP techniques focusing on discriminative objective functions such as con-
ditional likelihood. The idea has been recently even generalized to learning sim-
ple relational kernels [14]. They do not consider fully generative models and no
recursive dependencies.

Indeed, there has been a lot of interest in kernels for structured input/output
spaces data in the kernel community, see e.g. [6, 25] and references in their. For



structure input, there are in principle two ways to apply support vector machines
to structured data: Using syntax-driven and model-driven kernel functions.

Syntax-driven kernels decompose the input into a set of its parts and the
intersection of two sets of parts. The kernel on two objects is then defined as a
measure of the intersection of the two corresponding sets of parts. In the case
that the sets are finite or countable sets of vectors it is often beneficial to sum
over all pairwise kernels on the elements. This idea of intersection and cross-
product kernels is reflected in most work on kernels for structured data, from
the early and influential technical reports [8, 28], through work on string kernels,
kernels for higher order terms, and tree kernels, to more recent work on graph
and relational kernels such as [3, 18]. They are not generative models.

An alternative to syntax-driven kernels are model-driven kernels like Fisher
kernels. For instance [26] introduced the TOP kernel function, which is the scalar
product between the posterior log-odds of the model and the gradient thereof.
The posterior log-odds is the difference in the logarithm of the probability of
each class given the instance. Marginalized kernels [27] have later been intro-
duces as a generalization of Fisher kernels. Here, a kernel over both the hidden
and the observed data is assumed. The marginalized kernel for the observed data
is obtained by taking the expectation over the hidden variables. One advantage
of model-driven kernels is their ability to explain the data using the underly-
ing generative models. This is generally not the case for the recently proposed
generalizations of the classical maximum-margin formulations to structured in-
put/ouput spaces have been proposed, see e.g. [25] and references in their.

3 Kernel Methods and Probabilistic Models

Support vector machines [20] are one kernel method that can be applied to
binary supervised classification problems. Being on one hand theoretically well
founded in statistical learning theory, they have on the other hand shown good
empirical results in many applications. The characteristic aspect of this class
of learning algorithms is the formation of hypotheses by linear combination of
positive-definite kernel functions ‘centered’ at individual training examples. It is
known that such functions can be interpreted as the inner product in a Hilbert
Space. The solution of the support vector machine is then the hyperplane in
this Hilbert space that separates positive and negative labeled examples, and is
at the same time maximally distant from the convex hulls of the positive and
the negative examples. Conversely, every inner product in a linear space is a
positive-definite kernel function.

Fisher kernels are derived from a generative probability model of the domain.
More precisely, every learning example is mapped to the gradient of the log like-
lihood of the generative model with respect to its parameters. The kernel is
then the inner product of the examples’ images under this map. More precisely,
given a parametric probability model M with parameters λ = (λ1, . . . , λn)>,
maximum likelihood parameters λ∗, and output probability P (X = x |
λ,M), the Fisher score mapping Ux is defined as Ux = ∇λ log P (X = x |



λ∗,M) = ({∂ log P (X = x | λ∗,M)}/∂λ1, . . . , {∂ log P (X = x | λ∗,M)}/∂λn)>

The Fisher information matrix is the expectation of the outer product
of the Fisher scores over P (X = x | λ,M), more precisely, Jλ =

Ex

[
∇λ log P (x | λ,M)

] [
∇λ log P (x | λ,M)

]>
. Given these definitions, the

Fisher kernel is defined as k(x,x′) = U>
x J−1

λ∗Ux′ =

=
[
∇λ log P (X = x | λ∗,M)

]>
J−1

λ∗

[
∇λ log P (X = x′ | λ∗,M)

]
. (1)

In practice often the role of the Fisher information matrix Jλ is ignored, yielding
the kernel k(x,x′) = U>

x Ux′ . In the remainder of the paper, we will follow this
habit mainly to reduce the computational complexity.

4 Relational Fisher Kernels

To devise Fisher kernels for relational data, Equation (1) tells us that it is
sufficient to compute the gradient of the log likelihood of a data case with respect
to the parameters λ of any SRL model for relational data. This also explains
the schematic nature of Definition 2 of relational Fisher kernels: Any SRL model
appropriate for the type of data at hand can be used to implement relational
Fisher kernels. Here, we will focus on Bayesian logic programs as SRL model,
which we will briefly review now. For more information we refer to [11].

Bayesian Logic Programs [10, 11] (BLPs) integrate definite logic programs
with Bayesian networks [19] and specify probability distributions over sets of
ground atoms. The key idea is to view ground atoms as random variables,
thus atoms describe groups of random variables. As an example, consider
the KDD Cup BLP shown in Figure 1. The rule graph gives an overview of
all probabilistic dependencies (black boxes) among abstract random variables
(ovals). For instance, interaction/1 is specified in terms of neighbours/1 and
localization/1. Each dependency gives rise to a local probabilistic model which
is composed of a qualitative and a quantitative part. For instance, clause C2
neighbours(GeneX) | neighbour(GeneX, GeneY), localization(GeneY) in Fig-
ure 1 encodes that ”the neighbouring information depends on the localization
of a neighbouring gene.” Gradient gray ovals represent abstract random vari-
ables such as localization(GeneY), which take values from some domain
D(localization/2). Smaller white circles on boundaries denote arguments,
e.g., some genes GeneY. Larger white ovals together with undirected edges indi-
cate that arguments refer to the same gene as for localization(GeneX) and
neighbour(GeneX, GeneY). To quantify the structural knowledge, conditional
probability distributions cpd(ci) are associated with clauses ci. They encode
the distribution of each possible value of the random variable in the head,
given the values of the atoms in the body, i.e., cpd(ci)jk = P (uj | uk), where
uj ∈ D(head(c)) and uj ∈ D(body(c)). Some information might be of qual-
itative nature only, such as neighour(GeneX, GeneY). It does not affect the
distribution but ensures the variable bindings among neighbours(GeneX) and
localization(GeneY). Such ‘logical’ atoms are solid gray ovals. Furthermore,
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Fig. 1. Localization Bayesian logic program. The Bayesian clauses NB1, . . . ,NB17 en-
code a Näıve Bayes over local features of Gene. Clause D encodes the prior distribution
over localization for each Gene. Clause C2 aggregates the localizations of all neigh-
bouring genes of Gene in neighbours(Gene). The mode of the localizations is used as ag-
gregate function. Clause C1 implements a mutual influence among localization(Gene)
and the aggregated localization of interacting genes, neighbours(Gene).

octagonal such as neighbours(GeneX) denote aggregation, i.e., deterministic ran-
dom variables that summarize the joint state of their parents into a singleton.

The semantics of a BLP M is defined in terms of a Bayesian network. Each
ground instance cθ of a clause c in M , which is entailed by M (M |= c), constitute
a node head(cθ) and its parent body(cθ) in the network. The distribution cpd(c)
is associated with head(cθ) as conditional probability distribution. In case of
multiple ground clauses with the same atom in the head, a combining rule such
as noisy or or mode is used to combine the cpds associated with the node.

Kersting and De Raedt [10] have shown how to compute the gradient of a
BLP w.r.t. a data cases. A data case D is set of (ground atom, state) pairs.
The parameter vector λ of M consists of all cpd(ci)jk. Assuming decomposable
combining rules, i.e., combining rules, which can be expressed in the structure
of the induced Bayesian network (see [10]), the partial derivative of the log-
likelihood with respect to a parameter λ of λ is

∂ log P (D|λ,M)
∂λ

=
∑

subst. θ with
support(ciθ)

PN (head(ciθ) = uj ,body(ciθ) = uk | D)
cpd(ciθ)jk

(2)

where PN denotes the probability distribution of the Bayesian network induced
by M for data case D. Note that, in contrast to parameter estimation, we do
not reparameterize the Bayesian logic program.



In many cases, it is difficult — if not impossible — to devise a genera-
tive Bayesian logic program specifying a probability distribution, which sums
up to one over all possible instances, say proteins. For example in our ex-
periments, examples are partly specified within the logical background knowl-
edge. Consequently, their probabilities do not sum up to one and Equation (2)
is sensitive to the number of contributing ground clauses. Normalizing (2)
with respect to the number of contributing ground clauses, i.e., to compute
{|{θ| support(ciθ)}|}−1 · (∂ log P (D|λ,M)/∂λ) worked well in our experiments.

5 Experimental Evaluation

The normalized version of Equation (2) is all we need to devise Fisher kernels
for relational data such as the KDD cup 2001 data. In this section, we will ex-
perimentally evaluate them. Our intention here is to investigate to which extent
relational Fisher kernels are competitive with the generative approach:

Q Do relational Fisher kernels considerably improve the predictive accuracies
of their probabilistic baselines with plug-in estimates?

To investigate Q, we compare results achieved by Bayesian logic programs alone
with results achieved by relational Fisher kernels based on Bayesian logic pro-
grams combined with SVMs. The experiments took place in two different do-
mains: protein localization and web page classification. Both data sets are col-
lective respectively networked data sets (see [16] and references in their), i.e.,
relational data where individual examples are interconnected, such as web pages
(connected through hyperlinks) or gene (connected through interactions). This
contrasts with traditional relational domains such as molecules where each in-
dividual example is a graph of connected parts. Traditionally, machine learning
methods treat examples as independent, i.e., the classification task is treated as
a local optimization problem. In contrast, within collective classification tasks,
the class membership of one individual may have an influence on the class mem-
bership of a related individual. Thus, collective classification induces a global
optimization problem.

There is a wide range of possible models that one can apply to the two tasks.
We selected a set of models that we felt represented the main idea underlying
a variety of collective learners [7, 15, 16] who globally combine local, proposi-
tional Näıve Bayes classifiers. Relational Fisher kernels based on Bayesian logic
programs, however, are not designed for collective classification 1. They assume
each individual example as a graph of connected parts. Therefore, we apply the
following trick. While learning in a collective way, we consider only individuals
together with their direct neighbours at classification time, cf. Figure 2. For any
individual without any neighbours, we used a copy of the individual as neigh-
bour. Note that the direct neighbors can come from either the training or test set.

1 Taking the whole graph at classification time would essentially yield the same feature
vector for each individual because the data does not change.
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Fig. 2. (a) A collective data set, i.e., a graph of connected individuals each described by
a set of local features. (b) Data set broken into subgraphs centered around individuals.
Each subgraph consists of an individual and all its direct neighbours. Individuals can
appear in multiple fragments such as g.

Therefore, their labels are either known or unknown, respectively. This is akin
to iterative classifiers (see e.g. [16]), which also treat each individual together
with all its direct neighbours as a single data case.

We investigated collective Näıve Bayes models and relational Fisher kernels
derived from them as described above together with SVMs. We used Weka’s [29]
using polynomial kernels. To reduce the number of features of the local Näıve
Bayes models, we performed Weka’s greedy subset evaluation with default pa-
rameters on the training set. That is, we start with an empty feature set for
the Näıve Bayes and add one feature on each iteration. If we have added all
features or there is no improvement in score of the Näıve Bayes from adding
any further features, the search stops and returns the current set of features. To
score feature subsets, we used 10-fold cross-validated classification accuracy of
the Näıve Bayes on the training set. Finally, both classification tasks are multi-
class problems. In order to tackle multiclass problems with SVMs, we followed
a round robin approach [5]. That is, each pair of classes is treated as a separate
classification problem. The overall classification of an example instance is the
majority vote among all pairwise classification problems.

Protein Localization Reconsider the KDD Cup 2001 localization task
of example 1. Figure 1 shows the Bayesian logic program used in the experi-
ments. We listed the genes as ground atoms over gene/1 in the logical back-
ground knowledge. They were used to encode the prior localization, cf. Bayesian
clause D. The feature selection yielded 26 features for the local Näıve Bayes
describing the genes, which we encoded as Bayesian clauses NB1, . . . ,NB26.
So far, the Bayesian logic program encodes the simple, non-collective Näıve
Bayes model we used in the experiments. To model the collective nature of
the data set, we enriched the Näıve Bayes model as follows. We encoded
each interaction as a logical ground atom over d neighbour/2, i.e., we omit-
ted the originally given quantification of the interactions. Because interactions
are bidirectional, i.e., undirected, we additionally defined the symmetric closure
neighbour(A, B) : − d neighbour(A, B); d neighbour(B, A) (where ’;’ denotes a
logical or) as logical background. The localizations of the direct neighbours of
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Fig. 3. WebKB Bayesian logic program. The Bayesian clauses NB1, . . . ,NB67 encode
a Näıve Bayes over local features of genes web pages, page(Page). Clause D encodes
the prior distribution over class for each Page. Clause C2 aggregates the class mem-
berships of all web pages to which Page provides a link. Clause C4 aggregates the class
memberships of all web pages, which link to Page. In both cases, the mode of the class
memberships is used as aggregate function. Clauses C1 and C3 implement a mutual
influence among class(Page) and the aggregated class memberships of linked pages.

a Gene are aggregated in clause C2 into a single value neighbours(Gene) using
the mode of the interactions. To establish a mutual influence among the local-
izations of a gene and its neighbours, we introduced a boolean random variable
interaction(Gene), which has neighbours(Gene) and localization(Gene) as
parents, cf. clause C1. Setting the evidence for interaction(Gene) always to
be true guarantees that both parents are never d-separated, hence, they are
probabilistic dependent.

On the test set, the relational Fisher kernel achieved an accuracy of 72.89%,
whereas the collective Näıve Bayes only achieved 61.66%, and outperformed
Hayashi et al.’s KDD Cup 2001 winning nearest-neighbour approach [1] that
achieved a test set accuracy of 72.18%. This affirmatively answers Q.

Web Page Classification This dataset is based on the WebKB Project [2].
It consists of sets of web pages from four CS departments, with each page manu-
ally labeled into 7 categories: course, department, faculty, project, staff, student
or others. We excluded pages in the ’other’ category from consideration and put



Cornell Texas Washington Wisconsin Mean

Collective Näıve Bayes 63, 44 59, 20 58, 65 68, 07 62, 34
Relational Fisher Kernel 71, 08 73, 53 71, 93 84, 59 75, 28

Table 1. Leave-one-university-out accuracies on the WebKB data. Both collective clas-
sifiers used the same Bayesian logic program. The mean difference between collective
Näıve Bayes and relational Fisher kernel in test accuracy was 12.94%.

them into the background knowledge. This yielded a multiclass problem with 6
different classes, 877 web pages, and 1516 links among the web pages.

Figure 3 shows the Bayesian logic program used in the experiments. It essen-
tially follows the idea underlying the Bayesian logic program for the localization
task, cf. Figure 1. The feature selection yielded 67 local for the local Näıve Bayes
model (clauses NB1, . . . ,NB67. Whereas gene interaction is undirected, links
among web pages are directed. There are incoming and outcoming links on a web
page. We modeled their influences on the class membership of a web pages sep-
arately. The atom neighbours from(Page) (respectively neighbours to(Page))
aggregates the class memberships of all pages that have a link to Page (respec-
tively that Page links to) using mode as aggregate function. Again, we took
care that class(Page) and the aggregated class memberships of linked pages
mutually influence each other, i.e., we introduced isLinked from(Page) and
isLinked to(page), whose evidence is always yes.

We performed a leave-one-university-out cross-validation. The experimental
results are summarized in Table 1. The Fisher kernels achieved an accuracy
of 75.28%, which is significantly higher (two-tailed t-test, p = 0.05) than the
collective Näıve Bayes’ accuracy of 62.34%. For comparison, the performance
of the collective Näıve Bayes is in the range of Getoor et al.’s [7] probabilistic
relational model with link anchor words. The Fisher kernel outperforms the
probabilistic relational model with the best predictive accuracy Getoor et al.
report on. It takes structural uncertainty over the link relationship of web pages
into account and achieved with 68% its highest accuracy on the Washington
hold-out set. Thus, Q is again affirmatively answered.

6 Conclusions and Future Work

In this paper, Fisher kernels for relational data have been introduced and experi-
mentally investigated. They are ’off-the-shelf’ kernels and are easy to implement
for any SRL model. The experimental results show that Fisher kernels can handle
relational data and can indeed significantly improve the predictive performance
of their underlying probabilistic model: the WebKB model is outperformed by
an advanced probabilistic relational model, which in turn was outperformed by
our Fisher kernel; the probabilistic KDD Cup model ranks only around the top
50% level of submitted models (61% accuracy) whereas the corresponding Fisher
kernel performs better than the KDD Cup 2001 winning approach.



The research on the intersection of kernel, discriminative, and relational
learning has just started, and relational Fisher kernels are only a further step
into this direction. There is a lot of space for future research: other learning tasks
such as regression, clustering, and ranking should investigated. In general, choos-
ing the appropriate kernel is the major step for the application of kernel method
and should take as much domain knowledge into account as possible. To this aim,
knowledge-based SVMs [4] have been for instance proposed, which find in addi-
tion to a large margin solution an estimate statisfying constraints encoding prior
knoweldge in terms of polyhedral sets. As [3] point out, real-valued functions are
inappropriate as a general knowledge representation language; they suffer from a
non-declarative nature. Statistical relational languages are a natural alternative
and an attractive way to embed knowledge into statistical learning algorithms
in a principled and flexible way.

Acknowledgments The authors thank Luc De Raedt for his support. The
research was supported by the European Union IST programme, contract no.
FP6-508861, Application of Probabilistic ILP II.

References

1. J. Cheng, C. Hatzis, M.–A. Krogel, S. Morishita, D. Page, and J. Sese. KDD Cup
2001 Report. SIGKDD Explorations, 3(2):47 – 64, 2002.

2. M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. M. Mitchell, K. Nigam, and
S. Slattery. Learning to Construct Knowledge Bases from the World Wide Web.
Artificial Intelligence Journal, 118(1–2):69–113, 2000.

3. P. Frasconi, A. Passerini, S. H. Muggleton, and H. Lodhi. Declarative kernels.
Submitted, 2005.

4. G. Fung, O. Mangasaruan, and J. Shavlik. Knowledge-based Support Vector Ma-
chine Classifier. In Advances in Neural Information Processing Systems 15, 2002.

5. J. Fürnkranz. Round Robin Classification. Journal of Machine Learning Research
(JMLR), 2:721–747, 2002.
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