
TildeCRF: Conditional Random Fields for

Logical Sequences

Bernd Gutmann and Kristian Kersting

University of Freiburg, Institute for Computer Science, Machine Learning Lab,
Georges-Koehler-Allee, Building 079, 79110 Freiburg, Germany

{bgutmann,kersting}@informatik.uni-freiburg.de

Abstract. Conditional Random Fields (CRFs) provide a powerful in-
strument for labeling sequences. So far, however, CRFs have only been
considered for labeling sequences over flat alphabets. In this paper, we
describe TildeCRF, the first method for training CRFs on logical se-
quences, i.e., sequences over an alphabet of logical atoms. TildeCRF’s
key idea is to use relational regression trees in Dietterich et al.’s gradient
tree boosting approach. Thus, the CRF potential functions are repre-
sented as weighted sums of relational regression trees. Experiments show
a significant improvement over established results achieved with hidden
Markov models and Fisher kernels for logical sequences.

1 Introduction

Sequential data are ubiquitous and are of interest to many communities. Such
data can be found in virtually all application areas of machine learning including
computational biology, user modeling, speech recognition, empirical natural lan-
guage processing, activity recognition, information extractions, etc. Therefore,
it is not surprising that sequential data has been the subject of active research
for decades. One of the many problems investigated concerns assigning labels to
sequences of objects. For example, in protein secondary structure prediction, the
task is to assign a secondary structure class to each amino acid residue in the pro-
tein sequence [13]. Dietterich et al. [4] have called this general class of problems
sequential supervised learning (SSL), which can be formalized as follows.

Definition 1 (Sequential Supervised Learning). Given a finite set of

training examples of the form {(Xi, Yi)}
m
i=1, where each Xi is a sequence

〈xi,j〉
Ti

j=1 ∈
⊗

X of elements in the input space X and each Yi is the corre-

sponding sequence 〈yi,j〉
Ti

j=1 ∈
⊗

Y of elements in the output space Y, find a

function H : ⊗X → ⊗Y with low approximation error on the training data as

well as on unseen examples.

One appealing approach to SSL are probabilistic sequence models as they take
uncertainty into account explicitly. A probabilistic sequence model assumes the
Xi’s and Yi’s to be sampled from some random variables X and Y and attempt
to learn the statistical dependency P (X,Y) between them. Hidden Markov mod-
els (HMMs) [14] are among the most popular probabilistic sequence models. An

HMM models a sequence Xi by assuming that there is an underlying sequence
of states Yi drawn from a finite set of states S. To model the joint distribu-
tion P (X,Y) tractably, HMMs make two independency assumptions: each state
depends only on its immediate predecessor and each observation sequence xi,j

depends only on the current state yi,j . Given this, it is relatively straightforward
to estimate their parameters. Furthermore, HMMs are relatively easy to under-
stand by humans. Despite of their success, HMMs have two major weaknesses:

(A) they are able to only handle sequences over flat alphabets, and
(B) it is cumbersome to model arbitrary dependencies in the input space.

To overcome (A), logical hidden Markov models (LoHMMs) [6] have recently
been introduced as an extension of HMMs. They allow for logical sequences, i.e.,
sequences of atoms in a first order logic. In [6], LoHMMs have been applied
to the problem of discovering structural signatures of protein folds and led to
more compact models. The trained LoHMM consisted of 120 parameters corre-
sponding to an HMM with more than 62000 parameters. However, LoHMMs still
suffer from limitation (B), i.e., the difficulty to model arbitrary dependencies in
the input space. One way to address this problem is to explicitly model these
dependencies by using complex LoHMM structures. Selecting a structure of a
LoHMM, however, is a significant problem [8]. Whereas HMMs are commonly
learned by estimating the ML parameters of a fixed, fully connected model, this
is not feasible for LoHMMs: different abstraction levels have to be explored.

To overcome (B), i.e., to easily model arbitrary dependencies in the in-
put space, conditional random fields [9] (CRFs) have become popular in lan-
guage processing, computer vision, and information extraction. They have out-
performed HMMs on language processing tasks such as information extrac-
tion and shallow parsing. CRFs are undirected graphical models that repre-
sent the conditional probability distribution P (Y |X). Instead of the generatively
trained (Lo)HMM, the discriminatively trained CRF is designed to handle non-
independent input features, which can be beneficial in complex domains. For
example, we would like to exploit other features of an amino acid, such as its
molecular weight or its neighboring words.

Many sequences occurring in real-world problems such as in computational
biology, planning, and user modeling, however, exhibit internal structure. The
elements of such sequences can be seen as atoms in a relational logic (see e.g. [10]
for an introduction to logic). For example, the secondary structure of the Ribo-
somal protein L4 can be represented as

st(null, 2), he(h(right, alpha), 6), st(plus, 2), he(h(right, alpha), 4), . . .

Here, helices of a certain type and length he(HelixType,Length) and strands of
a certain orientation and length st(Orientation,Length) are essentially struc-
tured symbols, i.e., atoms over logical predicates. The application of traditional
CRFs to such sequences requires one to either ignore the structure of helices and
strands, which results in a loss of information, or to take all possible combina-
tions (of arguments such as orientation and length) into account, which leads to
a combinatorial explosion in the number of parameters.

The main contribution of this paper is TildeCRF, the first method for train-
ing CRFs for logical sequences, i.e., sequences over an alphabet of logical atoms.
The key idea of TildeCRF is to use relational regression trees in Dietterich et

al.’s gradient tree boosting approach [4] to make relational abstraction through
logical variables and unification. Thus, the TildeCRF potential functions are
represented as weighted sums of relational regression trees. Experiments show
a significant improvement over previous results achieved with hidden Markov
models and Fisher kernels for logical sequences.

The outline of the paper is as follows. After discussing related work, we will
briefly review CRFs in Section 3. In Section 4, we devise TildeCRFs for logical
sequences. Before concluding, we experimentally evaluate TildeCRF in Section 5.

2 Related Work

CRFs for logical sequences combine two different research directions. On the one
hand, they are related to several extensions of HMMs and CRFs. On the other
hand, they are related to the recent interest in combining relational learning
with probabilistic models such as Markov random fields [3].

In the first type of approaches, the underlying idea is to upgrade HMMs and
CRFs to represent more structured state spaces. Sutton and McCallum’s Facto-
rial CRFs [17], Quattoni et al.’s and Dietterich et al.’s tree-shaped CRFs [12, 4],
and Sutton et al.’s dynamic CRFs [18] decompose the state variables into smaller
units. The key differences with TildeCRF is that these approaches do not con-
sider learning the features and that they do not employ the logical concepts of
variables and unification. Both are essential because variables allows one to group
states together and unification allows one to share knowledge between abstract
states via abstract transitions. LoHMMs [6] and relational Markov models [1]
extend (H)MMs to handle sequences of logical atoms. Consequently, both suffer
from the same difficulty to model arbitrary dependencies in the input space.

In the second type of approaches, most attention has been devoted to devel-
oping highly expressive formalisms. Taskar et al. ’s relational Markov networks
(RMN) [19] extend Markov random fields by providing a relational language for
describing clique structures and enforcing parameter sharing at the template
level. RMNs have been applied to computer vision and natural language prob-
lems. Domingos and Richardson [15] introduced Markov logic networks (MLNs).
MLNs also upgrade Markov random fields to the relational case. In contrast to
RMNs, MLNs view logical formulas as soft constraints on the set of possible
worlds: if a world violates one formula, it is less probable but not necessar-
ily impossible as in classical logic. This is essentially realized by representing
potentials as weighted sets of logical formulas; the weights reflect how strong
the constraints are. Both approaches are not specifically designed for analyzing
logical sequences. Recently, Shanghei et al. [16] introduced dynamic probabilis-
tic relational models. In contrast to TildeCRF, they extend directed dynamic
models.

X1 X2 X3

Y3Y2Y1

X X

YY

T−1 T

TT−1

Fig. 1. Graphical representation of linear-chain CRF.

TildeCRF can be seen as an attempt towards downgrading such highly ex-
pressive frameworks for handling logical sequences.

3 Conditional Random Fields

In recent years, conditional random fields [9] (CRFs) turned out to be a suitable
representation for SSL. CRFs are undirected graphical models that encode a con-
ditional probability distribution using a given set of features. CRFs are defined
as follows. Let G be an undirected graphical model over sets of random variables
X and Y . As a special case, consider a linear-chain CRF, that is X = 〈xi,j〉

Ti

j=1

and Y = 〈Yi,j〉
Ti

j=1, so that Y is a labeling of an observed sequence X. Then,
CRFs define the conditional probability of a state sequence given the observed
sequence as

P (Y |X) = Z(X)−1 exp
∑T

t=1
Ψt(yt, X) + Ψt−1,t(yt−1, yt, X).

where Ψt(yt, X) and Ψt−1,t(yt−1, yt, X) are potential functions and Z(X) is a
normalization factor over all state sequences X. A potential function is a real-
valued function that captures the degree to which the assignment yt to the output
variable fits the transition from yt−1 and X. Due to the global normalization by
Z(X), each potential has an influence on the overall probability.

To apply CRFs to SSL problems, one must choose a representation for the
potentials. Typically, it is assumed that the potentials factorize according to a
set of features {fk}, which are given and fixed, so that Ψ(yt, X) =

∑

αkgk(yt, X)
and Ψ(yt−1, yt, X) =

∑

βkfk(yt−1, yt, X) respectively. The model parameters are
now a set of real-valued weights αk, βk, one weight for each feature. In linear-
chain CRF, a first-order Markov assumption is made on the hidden variables. A
graphical model for this is shown in Figure 1. In this case, there are features for
each label transition. Feature functions can be arbitrary such as a binary test
that has value 1 if and only if yt−1 has the label a.

4 TildeCRF: CRFs for Logical Sequences

Originally, Lafferty et al. introduced CRFs as an essentially propositional rep-
resentation: symbols used to represent states and outputs are flat. So far, CRFs
have not been considered for sequences of logical (ground) atoms. Here, we will
describe how to lift CRFs to the relational case. More precisely, we consider the
following variant of the SSL problem in Definition 1.

Definition 2 (Relational-propositional SSL (RP-SSL)). Given a set of

training examples (Xi, Yi), where each Xi is a sequences of logical atoms and

each Yi is a corresponding sequence of class labels yi,j ∈ {c1, . . . , cn}, find a

classifier H with low approximation error on the training data as well as on

unseen examples.

The idea underlying TildeCRF, i.e., a CRF for solving RP-SSL, is now to pick up
the idea of MLNs and to represent potentials as sets of weighted logical formulas.

4.1 Relational Logic and Relational Potentials

Based on the representation of the Ribosomal protein L4 given in the intro-
duction, we describe the necessary concepts of relational logic. The symbols
st, null, 2, he, h, . . . are distinguished into predicate and function symbols.
Associated with every symbol is the arity, i.e., number of arguments. In the
example, st/2 and he/2 are predicates of arity 2, h/2 is a function of arity 2,
and plus/0, 1/0, . . . are functions of arity 0, i.e., constants. The alphabet Σ
consists of predicates, functions, and variables (e.g., X). A term is a variable or
a function symbol followed by its arguments in brackets such as h(right, X) or
4; an atom is a predicate symbol followed by its arguments in brackets such
as he(h(right, X), 4). Valid arguments of functions and predicates are terms.
A ground term or atom is one that does not contain any variables. In the
protein example st(null, 2), he(h(right, alpha), 6), . . . are ground atoms and
null, 2, h(right, alpha), right, alpha, . . . are ground terms. A substitution
σ = {X/plus} is an assignment of terms plus to variables X. Applying a substi-
tution σ to a term or an atom e yields the instantiated term or atom eσ where
all occurrences of the variables X are simultaneously replaced by the term plus,
e.g., (st(X, 12), st(X, 10)) yields st(plus, 12), st(plus, 10). A substitution σ is a
unifier of a set of atoms S if Sσ is singleton; if furthermore for every unifier σ′ of
S there is a substitution σ′′ such that σ = σ′σ′′ then σ is the most general unifier

(MGU) of S. A conjunction A is θ-subsumed by a conjunction B, denoted by
A �θ B, if there exists a substitution θ such that Bθ ⊆ A.

Relational abstraction within potentials offers a great compactness. Consider

0.938 : outPrevIs(city(c)), containsAt(1, a(X, f)), containsAt(4, a(X, a))

taken from the regression tree shown in Figure 2. It groups all ground instances,
where X is substituted by some term such as {X/1}, {X/2}, . . . Therefore, rela-
tional abstraction makes useful prediction possible in very large state spaces,
where many of the states are never observed in the training data.

The compactness and even comprehensibility, however, comes at the expense
of a more complex parameter estimation problem: they are non-parametric func-
tional representations. Therefore, gradient-based optimization techniques such
as McCallum’s MALLET [11], which assume a parameterized representation,
cannot be applied. Instead, we follow Dietterich et al.’s gradient tree boosting
technique [4], called TreeCRF. In TreeCRF, the potential functions are repre-
sented by sums of traditional regression trees, which are grown stage-wise in

outPrevIs(city(c))

containsAt(1,a(X,f))true

containsAt(1,a(1,n))

false

containsAt(4,a(X,n))
true

0.610
false

0.271
true

containsAt(4,a(3,n))

false

0.938true

0.049
false

0.271
true

-0.010
false

Fig. 2. A relational regression tree (taken from the job scheduling experiment of Sec-
tion 5.2). An inner node represents a literal, a path constitutes a conjunction, and a
leave represents the regression value (mean) of all examples sorted in this leave. As
explained in Section 4.2, not the complete input X but only windows wd(X) at time
steps d of fixed size s are used. outPrevIs(Y) denotes the output Y at time step d − 1
and containsAt(P, X) the input X at position P in the current window wd(X).

the manner. Each regression tree can be viewed as defining several new feature
combinations one corresponding to each path in the tree from the root to a leaf.
The resulting potential functions still have the form of a linear combination of
features, but the features can be quite complex.

4.2 Model Selection via Functional Gradient Ascent

(Conditional) maximum likelihood parameter estimation is a common framework
to determine the parameter Θ of a CRF. The likelihood of the training data given
the current parameter Θm−1 is used to improve the parameter. Normally, one
uses some sort of gradient search for doing this. The parameter in the next
iteration are the current plus the gradient of the likelihood function: Θm =
Θ0 + δ1 + . . . + δm where δm = ηm · ∂/∂Θm−1

∑

i log P (yi|xi;Θm−1) is the
gradient multiplied by a constant ηm, which is obtained by doing a line search
along the gradient. In our non-parametric case, the potential can be arbitrarily
chosen. One starts with some initial potential Ψ0, e.g. the zero function, and
adds iteratively corrections Ψm = Ψ0 +∆1 + . . .+∆m, cf. TreeBoost in Alg. 1.
In contrast to the standard gradient approach, ∆i here denotes the so-called
functional gradient, i.e., ∆m = ηm · Ex,y [∂/∂Ψm−1 log P (y|x;Ψm−1)]. Since the
joint distribution P (x, y) is unknown, one cannot evaluate the expectation Ex,y.
Dietterich et al. suggested to evaluate the gradient function at every position
in every training example and fit a regression tree to these derived examples,
cf. GenExamples in Alg. 1. In our case, these regression trees are relational.

Relational Regression Trees Relational regression trees upgrade the at-
tribute value representation used within classical regression trees: every test
is a relational conjunction of atoms; a variable introduced in some node cannot
appear in its right subtree, i.e., variables are bounded along left-tree paths. Con-
sider the relational regression tree shown in Figure 2. The set of ground atoms
{outPrevIs(city(c)), containsAt(1, a(2, f)), containsAt(4, a(2, n))} is sorted

into the left most leaf, i.e., the value 0.938 is assigned. In contrast, changing the
last atom to containsAt(4, a(4, n)) yields 0.049 as value.

Now, to induce a relational regression tree, we essentially employ Blockeel
and De Raedt’s Tilde [2], which also explains the name of our approach: Tilde-
CRF. Tilde learns relational trees in the learning from interpretations setting,
i.e., examples are sets of ground atoms. It basically follows Quinlan’s well-known
C4.5 algorithm. The only point where Tilde differs from C4.5 is in the com-
putation of the tests to be placed in a node. To this aim, it employs a classical
refinement operator under θ-subsumption. The operator basically adds a literal,
unify variables, and grounds variables. When a node is to be splitted, the set of
all refinements are computed and evaluated. That is one starts with the empty
tree and repeatedly searches for the best test for a node according to some split-
ting criterion. Next, the examples D in the node are split into D1 (success) and
D2 (failure) according to the test. For each split, the procedure is recursively
applied, obtaining subtrees for the respective splits. As splitting criterion, we
use the weighted variance on D1 and D2. The procedure stops if the variance in
one node is small enough or the depth limit was reached. In leaves, the average
regression value is predicted.

Using relational trees, Dietterich et al.’s TreeCRF can be adapted as follows.

Relational Functional Gradients Following Dietterich et al.’s notation, we

define F yt(yt−1, X) = Ψ(yt, X)+Ψ(yt−1, yt, X). Then, the gradient ∂ log P (Y |X)
∂F v(u,wd(X))

can be evaluated quite easily as Corollary 1 (see below) shows. By evaluat-
ing the gradient at every known position in our training data and fitting a
regression model to this values, we get an approximation of the expectation
of the gradient. In order to simplify the derivation of the gradient and af-
terwards the evaluation, we do not use the complete input X but a window
wd(X) = xd−s, . . . , xd, . . . , xd+s, where s is a fixed window size. This is exactly
the learning setting of Tilde: each window, i.e., each regression example is a
(weighted) set of ground atoms.

Corolla 1 The functional gradient with respect to F v(u,wd(X)) is

∂ log P (Y |X)

∂F v(u,wd(X))
=I(yd−1 ⊆Θ u, yd ⊆Θ v) − P (yd−1 ⊆Θ u, yd ⊆Θ v|wd(X))

where I is the identity function, ⊆Θ denotes that u θ-subsumes y, and P (yd−1 ⊆Θ

u, yd ⊆Θ v|wd(X)) is the probability that class labels u, v fit the class labels at

positions d, d − 1. It is calculated as shown in GenExamples in Alg. 1.

Proof. This is a straightforward adaption of the proof of proposition 1 in [4].

All the rest of TreeCRF remains unchanged. That is, we can use the
forward-backward algorithm as proposed by [4] to compute Z(X). The for-
ward recursion is defined as α(k, 1) = exp F k(⊥, w1(X)) and α(k, t) =
∑

k′∈K

[

expF k(k′, wt(X))
]

· α(k′, t − 1). The backward recursion is defined as

β(k, T) = 1 and β(k, t) =
∑

k′∈K

[

expF k′

(k,Wt+1(X))
]

· β(k′, t + 1).

We will now turn over to how to use CRFs for making predictions.

Algorithm 1 Gradient Tree Boosting for SSL as introduced by [4].

1: function TreeBoost(Data, L)
2: for 1 ≤ m ≤ M do . Iterate Functional Gradient
3: for 1 ≤ k ≤ K do . Iterate through the class labels
4: Sk :=GenExamples(k, Data, Potm−1) . Generate examples
5: ∆m(k) :=FitRelRegressTree(S(k), L) . Functional gradient
6: F k

m := F k
m−1 + ∆m(k) . Update Models

7: return PotM . Return Relational Potential
8: function GenExamples(k, Data, Potm)
9: S := ∅ . Initialize relational regression examples

10: for all (Xi, Yi) ∈ Data do . Iterate over all training examples
11:

`

α, β, Z(Xi)
´

= ForwardBackward(Xi, T, K) . Compute forward and
backward probabilities

12: for 1 ≤ t ≤ Ti do . Iterate over all positions
13: for 1 ≤ k′ ≤ K do . Iterate over all class labels

. Compute value of gradient at position t for class label k

14: P (yt−1 = k′, yt = k|Xi) :=
α(k′, t − 1) · exp(F k

m(k′, wt(X)) · β(k, t)

Z(Xi)
15: ∆(k, k′, t) := I(yt−1 ⊆Θ k′, yt ⊆Θ k) − P (yt−1 ⊆Θ k′, yt ⊆Θ k|Xi)
16: S := S ∪ {((wt(Xi), k

′), ∆(k, k′, t))} . Update set of relational
regression examples

17: return S

4.3 Making Predictions

There are several ways for getting a classifier from a trained CRF. We can predict
the output sequence Y with the highest probability: H(X) = arg maxY P (Y |X).
The Viterbi algorithm [14] can be used for this. Another option is to pre-
dict every atom yt in the output sequence individually. This makes sense
when we want to maximize the number of correctly tagged input atoms:
Ht(X) = arg maxk∈K P (yt = k|X). Finally, one can also use a CRF for se-
quence classification, i.e., to predict a single label for the entire sequence. To
do so, we can simply make a kind of majority vote. That is, we first predict
H(X). Next, we count the number of times each class atom was predicted, i.e.,
count(c, Y) := |{i ∈ {1, . . . , T} | yi = c}|. Then, the sequence X is assigned to
class c with probability P (c|X) = T−1 · count(c,H(X)).

5 Experiments

Our intention here is to investigate to which extent TildeCRF for logical se-
quences is competitive with related approaches. To this aim, we implemented
our system in Yap 5.1.0 prolog and investigate the following questions:

(Q1) Does TildeCRF perform equally well as traditional CRFs?
(Q2) If so, are there cases where TildeCRF leads to better results?
(Q3) If so, are there real-world datasets on which TildeCRFs performs better

than established methods?

In the following, we will describe the experiments carried out to investigate Q1–
Q3 and the results.

5.1 (Q1) Protein Secondary Structure Prediction

To show that CRFs for logical sequences perform equally well as traditional
CRFs, we evaluated our gradient relational tree boosting algorithm on the pro-
tein secondary structure predication benchmark considered by Dietterich et. al
[4]. The protein secondary structure benchmark was originally published by Qian
and Sejnowski [13]. A protein consists of a sequence of amino acid residues. Each
residue is represented by a single feature with 20 possible values (corresponding
to the 20 standard amino acids). There are three classes: alpha helix, beta sheet,
and coil (everything else). There is a training set of 111 sequences and a test set
of 17 sequences.

The input features consisted of an 11-residue sliding window and we al-
lowed the regression trees of up to 32 leafs. Dietterich et. al ’s TreeCRF at-
tained a test set performance of 64.7%. Our TildeCRF achieved a 64.2% test set
accuracy. Qian and Sejnowski’s method attained 64.5%, whereas McCallum’s
Mallet (a gradient based optimization approach for traditional CRFs) reached
62.9%. Thus, TildeCRF is in the range of TreeCRFs. Completely reproducing
the TreeCRF results was difficult because we did not know the tree size used by
Dietterich et al.. Overall, the results affirmatively answers Q1.

5.2 (Q2) Job Scheduling

To see whether there are cases where TildeCRF leads to better results than
propositional approaches such as TreeCRF, we considered the task of job schedul-
ing. Many jobs in industry and elsewhere require completing a collection of jobs
while satisfying resource constraints. Thus, the goal is to arrange a total order
among the jobs satisfies all the constraints while taking as little overall time as
possible. Here, we will consider a version of the classical travel salesman problem.

There are a number of cities C given and different types of activities A, which
can have some parameters. E.g. an activity can be done with normal speed or
fast. There is a cost function for traveling from city to city ctravel : A×A → R+,
and there is a cost function cact : A×C → R+ which gives for every city and every
activity the costs of doing this activity in that city. It might be the case, that a
special activity isn’t possible in some cities, therefore cact can be a partial func-
tion. The task within this domain looks now as follows: given is a sequence of ac-
tivities a1, . . . , aT goal is to find a sequence of cities c1, . . . , cT such that the over-
all costs are minimized: costs(c1, . . . , cT) =

∑T
t=1 ctravel(ai, ai+1) + cact(ci, ai),

where aT+1 = a1. In the experiments, we considered the instance with 4 cities
and 8 possible activities. Each activity act(Type,Speed) can be executed with
normal speed and fast, therefore Speed∈ {normal, fast} and Type∈ {1, . . . , 8}.
The travel cost are listed in Figure 3 and the activity costs consists of two parts,
namely cact = cact’ + cspeedcosts as listed in the same figure. To generate a data
set, we randomly generated 100 independent activity sequences of length 15 and

city(a)

city(d)

city(b)

city(c)

8

14

17

12

10 10

act 1 2 3 4 5 6 7 8

city(a) - 7 2 1 10 - - 2
city(b) 11 - 3 - 5 - - -
city(c) 12 8 - - 5 8 10 3
city(d) 13 9 - - 5 8 - 10

Extra

city(a) 22
city(b) 50
city(c) 12
city(d) 10

Fig. 3. Job scheduling: Instance with 4 cities and 8 activities, that was used in the
experiment. (left) The map for the job scheduling domain. Nodes represent cities and
edges transitions with associated costs. (middle) Costs of activities (right) Costs of
doing an activity fast in one city.

searched brute force for an optimal travel sequence. This yield sequences such
as X = 〈act(4, normal), act(1, fast), act(8, normal), act(7, normal), . . .〉 with
Y = 〈city(a), city(d), city(c), city(c), . . .〉 We ran two experiments. At first
we allowed just ground atoms as tests in the regression trees. This equals to the
propositional approach of TreeCRF. In the second experiment we allowed atoms
with variables as tests. Figure 4(b) shows the 10-fold cross-validated accuracy of
predicted output symbols after each training iteration. One can readily see that
TildeCRF outperforms TreeCRF. This affirmatively answers Q2.

5.3 (Q3) Protein Fold Classification

This experiment is concerned with how proteins fold up in nature. This is an
important problem, as the biological functions of proteins depend on the way
they fold up. A common approach to protein fold recognition is to start from a
protein with unknown structure and search for the most similar protein (fold)
with known structure in the database. This approach has been followed by Ker-
sting et al. [6] where LoHMMs with the plug-in estimate were able to achieve a
cross-validate predictive accuracy of 75%. Notice that the number of parameters
of the LoHMMs used were by an order of magnitude smaller than the number
of an equivalent HMM (120 vs. approx. 62000). Based on these results, Kerst-
ing and Gärtner [7] devised Fisher kernels for logical sequences and achieved a
cross-validated accuracy of about 84%.

The data consists of logical sequences of the secondary structure of protein
domains. The task is to predict one of the five most populated SCOP folds of
alpha and beta proteins (a/b): TIM beta/alpha-barrel (c1), NAD(P)-binding
Rossmann-fold domains (c2), Ribosomal protein L4 (c23), Cysteine hydrolase
(c37), and Phosphotyrosine protein phosphatases I-like (c55). The class of a/b
proteins consists of proteins with mainly parallel beta sheets (beta-alpha-beta
units). Overall, the class distribution is as follows (class,#sequences): (c1, 721),
(c2,360), (c23,274), (c37,441), (c55,290). Thus, this is a multiclass problems with
5 different classes. Although, CRFs are indeed able to treat multiclass problems,
a round robin approach [5] worked better in our experiments. That is, each pair of

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50

A
cc

ur
ac

y

Iteration

Relational
Propositional

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80

A
cc

ur
ac

y

Iteration

LoHMMs
Fisher kernels

TildeCRFs, Forward-Backward
TildeCRFs, Viterbi

Fig. 4. Cross-validated classification accuracy (y axis) vs. number of iterations (x axis).
(Left) Job scheduling: TildeCRF achieved 83.13 whereas TreeCRF achieves 57.8%. The
difference is significant (one-tailored t-test, p = 0.05). (Right) Protein Fold Classifi-
cation: TildeCRF achieved 92.96%, HMMs (resp. Fisher kernels) for logical sequences
achieved 75% (resp. 84%) as indicated by the vertical lines. The differences are signif-
icant (one-tailored t-test, p = 0.05).

classes is treated as a separate classification problem. The overall classification
of an example instance is the majority vote among all pairwise classification
problems.

Figure 4(b) summarizes the experimental results. It shows the 10-fold cross-
validated accuracy learning curves. The accuracy converges around 92.96% (us-
ing Viterbi labeling). Thus, compared to LoHMMs, the error rate of CRFs is
about 3 times smaller. The CRF also performed better than Fisher kernels; the
error rate dropped about half. The differences are significant (one-tailored t-test,
p = 0.05). This finally affirmatively answers Q3.

6 Conclusions

So far, Conditional Random Fields (CRFs) have only been considered for se-
quences of flat symbols. In this paper, CRFs for logical sequences, i.e., sequences
over an alphabet of logical atoms have been introduced and experimentally in-
vestigated. Experiments have demonstrated that CRFs can handle logical se-
quences, the learning algorithm presented performs well in practice, and CRFs
for logical sequences can indeed lead to significantly better results than flat
CRFs, and HMMs respectively Fisher kernels for logical sequences.

The approach presented suggest a very interesting line of future research,
namely to address a more general labeling problem: labeling of sequences of
sets of ground atoms with ground atoms. Many problems in learning relational
actions and within relational reinforcement learning are of this type.

Acknowledgments: The authors thank Alan Fern for useful comments, Tom
Dietterich for providing his version of Qian and Sejnowski’s benchmark, and Luc
De Raedt for his support. The research was supported by the European Union
IST programme, contract no. FP6-508861, Application of Probabilistic ILP II.

References

1. C. R. Anderson, P. Domingos, and D. S. Weld. Relational Markov Models and
their Application to Adaptive Web Navigation. In Proc. of the 8th Int. Conf. on
Knowledge Discovery and Data Mining (KDD-02), pages 143–152, 2002.

2. H. Blockeel and L. De Raedt. Top-down Induction of First-order Logical Decision
Trees. Artificial Intelligence, 101(1–2):285–297, 1998.

3. L. De Raedt and K. Kersting. Probabilistic Inductive Logic Programming. In Proc.
15th Int. Conf. on Algorithmic Learning Theory (ALT-04), pages 19–36, 2004.

4. T. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random fields
via gradient tree boosting. In Proc. 21st International Conf. on Machine Learning,
pages 217–224. ACM, 2004.

5. J. Fürnkranz. Round Robin Classification. Journal of Machine Learning Research
(JMLR), 2:721–747, 2002.

6. K. Kersting, L. De Raedt, and T. Raiko. Logial Hidden Markov Models. Journal
of Artificial Intelligence Research (JAIR), 25:425–456, 2006.

7. K. Kersting and T. Gärtner. Fisher Kernels for Logical Sequences. In Proc. of 15th
European Conference on Machine Learning (ECML-04), pages 205 – 216, 2004.

8. K. Kersting and T. Raiko. ’Say EM’ for Selecting Probabilistic Models for Logical
Sequences. In Proc. of the 21st Conf. on Uncertainty in Artificial Intelligence
(UAI-05), pages 300–307, 2005.

9. J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proc. 18th Int. Conf. on
Machine Learning (ICML-01), pages 282–289, 2001.

10. J. W. Lloyd. Foundations of Logic Programming. Springer, Berlin, 2. edition, 1989.
11. A. McCallum. Effciently inducing features of conditional random fields. In Proc.

of the 21st Conference on Uncertainty in Artificial Intelligence (UAI-03), 2003.
12. A. Quanttoni, M. Collins, and T. Darrell. Conditional random fields for object

recognition. In Advances in Neural Information Processing Systems 17, pages 1097–
1104, 2005.

13. N. Quian and T. J. Sejnowski. Predicting the secondary structure of globular
proteins using neural network models. JMB, 202:865–884, 1988.

14. L. R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. In Proceedings of the IEEE, volume 77, pages 257–285, 1989.

15. M. Richardson and P. Domingos. Markov Logic Networks. Machine Learning,
62:107–136, 2006.

16. S. Sanghai, P. Domingos, and D. Weld. Dynamic probabilistic relational models.
In Proc. of the 8th Int. Joint Conference on Artificial Intelligence (IJCAI-03),
pages 992–997, 2003.

17. C. Sutton and A. McCallum. Piecewise training of undirected models. In Proc. of
the 21. Conference on Uncertainty in Artificial Intelligence (UAI-05), 2005.

18. C. Sutton, K. Rohanimanesh, and A. McCallum. Dynamic conditional random
fields: Factorized probabilistic models for labeling and segmenting sequence data.
In Proc. 21st International Conf. on Machine Learning. ACM, 2004.

19. B. Taskar, P. Abbeel, and D. Koller. Discriminative Probabilistic Models for Re-
lational Data. In Proc. of the 8th Conf. on Uncertainty in Artificial Intelligence
(UAI-02), pages 485–492, 2002.

