
Bellman goes Relational

Kristian Kersting1 kersting@informatik.uni-freiburg.de

University of Freiburg, Machine Learning Lab, Georges-Koehler-Allee 079, 79110 Freiburg, Germany

Martijn Van Otterlo1 otterlo@cs.utwente.nl

University of Freiburg, Machine Learning Lab, Georges-Koehler-Allee 079, 79110 Freiburg, Germany
Twente University, Department of Computer Science, TKI, P.O. Box 217, 7500 AE Enschede, The Netherlands

Luc De Raedt deraedt@informatik.uni-freiburg.de

University of Freiburg, Machine Learning Lab, Georges-Koehler-Allee 079, 79110 Freiburg, Germany

Abstract

Motivated by the interest in relational re-
inforcement learning, we introduce a novel
relational Bellman update operator called
ReBel. It employs a constraint logic pro-
gramming language to compactly represent
Markov decision processes over relational do-
mains. Using ReBel, a novel value iteration
algorithm is developed in which abstraction
(over states and actions) plays a major role.
This framework provides new insights into re-
lational reinforcement learning. Convergence
results as well as experiments are presented.

1. Introduction

There has been a lot of attention and progress in re-
inforcement learning (RL) and Markov decision pro-
cesses (MDPs) recently. Several basic algorithms have
been proposed and their behavior is relatively well un-
derstood today (Sutton & Barto, 1998). This has led
to an increased interest into the effects of generaliza-
tion and to new challenges. One of them concerns the
use of RL in relational domains (Džeroski et al., 2001).
Even though a number of relational RL algorithms has
been developed — essentially through varying the un-
derlying function approximators (Driessens & Ramon,
2003; Gärtner et al., 2003) — the problem of relational
RL is still not well understood and a theory of rela-
tional RL is lacking.

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
by the authors.

In traditional RL, the Bellman backup operator is one
of the central concepts. A particularly interesting ap-
proach is that of Dietterich and Flann (1997), who
showed that value backups in model-based RL can
be upgraded to region-based backups, where multiple
states are updated simultaneously using a backup op-
erator that reverses the action operators.
Inspired by this work, the key contribution of this pa-
per is the introduction of a relational Bellman backup
operator, called ReBel. ReBel is developed within
a simple probabilistic STRIPS-like relational formal-
ism that incorporates several elements of relational
and logical Markov Decision Programming (Kersting
& De Raedt, 2003; Van Otterlo, 2004) such as abstract
states that are represented using relational queries.
Using ReBel, we then develop a model-based rela-
tional RL algorithm and demonstrate it on a num-
ber of experiments. The approach is also related to
that by Boutilier et al. (2001) who employ a situation
calculus based language. Although their work is cer-
tainly elegant and principled, due to the complexity of
the language, they neither report on a complete im-
plementation nor present automated experiments. In
contrast, our approach is simpler and therefore fully
automated. It deals fully automatically with the same
experimental example that Boutilier et al. report on.

Outline: Section 2 briefly reviews relational logic and
MDPs. After discussing value iteration (VI) for MDPs
in Section 3, we introduce a language to compactly
specify MDPs over relational domains in Section 4. In
Section 5, we develop a relational VI algorithm based
on ReBel. It is empirically validated in Section 6.
Before concluding we discuss related work.

1Both authors contributed equally to the paper.



2. Preliminaries

Relational Logic, cf. (Nienhuys-Cheng & de Wolf,
1997): An alphabet Σ is a set of relation symbols p

with arity m ≥ 0, and a set of constants c. An atom

p(t1, . . . tm) is a relation symbol p followed by a brack-
eted m-tuple of terms ti. A term is a variable X or a
constant c. A conjunction A is a set of atoms. The set
of variables in a conjunction A is denoted as vars(A).
A substitution θ is a set of assignments of terms to
variables {X1/t1, . . . Xn/tn} where Xi are variables and
all ti are terms. A term, atom or conjunction is called
ground if it contains no variables. Conjunctions are
implicitly assumed to be existentially quantified. A
conjunction A is said to be θ-subsumed by a conjunc-
tion B, denoted by A ¹θ B, if there exists a substi-
tution θ such that Bθ ⊆ A. The most general unifier

(mgu) for atoms a and b is denoted by mgu(a, b). A
(Horn) clause H ← B consists of a positive atom H
and a conjunction B and can be read as H is true if B
is true. The greatest lower bound (glb) of two conjunc-
tions A and B is the most general conjunction that is
subsumed by both A and B. Both subsumption and
glb are also defined for clauses. The Herbrand base of
Σ, HBΣ, is the set of all ground atoms which can be
constructed with the predicate symbols and constants
of Σ. An interpretation is a subset of HBΣ.

Our running example will be blocks world. Here, a
block X can be moved on top of another block Y, de-
noted as move(X, Y). Valid relations are on(X, Y), i.e.
block X is on Y, and cl(Z), i.e. block Z is clear. To
model the floor, we follow a common approach. It is a
set of blocks which cannot be on top of other blocks.

Markov Decision Processes, cf. (Sutton & Barto,
1998): A Markov Decision Process (MDP) is a tuple
M = 〈S,A, T,R〉, where S is a set of states, A a set
of actions, T : S × A × S → [0, 1] a transition model

and R : S × A × S → [0, 1] a reward model. The set
of actions applicable in a state s ∈ S is denoted A(s).
A transition from state i ∈ S to j ∈ S caused by
some action a ∈ A(i) occurs with probability T (i, a, j)
and a reward R(i, a, j) is received. T defines a proper
probability distribution if for all states i ∈ S and all
actions a ∈ A(i):

∑

j∈S T (i, a, j) = 1. A deterministic
policy π : S → A for M specifies which action a ∈ A(s)
will be executed when the agent is in some state s ∈ S,
i.e. π(s) = a.

3. Value Iteration

Given some MDP M = 〈S,A, T,R〉, a policy π for M ,
and a discount factor γ ∈ [0, 1], the state value func-

tion V π : S → R represents the value of being in a

state following policy π, w.r.t. expected rewards. A
similar state-action value function Qπ : S×A→ R can
be defined. A policy π∗ is optimal if V π∗

(s) ≥ V π′

(s)
∀s ∈ S and ∀π′. Optimal value functions are de-
noted V ∗ and Q∗. Bellman’s (1957) optimality equa-

tion states:

V ∗(s) = max
a

∑

s′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)] (1)

From this equation, basically all methods for solving
MDPs can be derived. For example, the well-known
exact solution technique value iteration (VI) is ob-
tained from (1) by turning it into an update rule:

Vt+1(s) = max
a

∑

s′

T (s, a, s′)[R(s, a, s′) + γVt(s
′)] (2)

= max
a

Qt+1(s, a). (3)

Based on Equation (2), the VI algorithm can be stated
as follows: starting with a value function V0 over all
states, we iteratively update the value of each state
according to (2) to get the next value functions Vt (t =
1, 2, 3, . . .). VI is guaranteed to converge in the limit
towards V ∗, i.e. the Bellman optimality equation (1)
holds for each state.

Traditional VI as expressed by Equation (2) assumes
that all states and values are represented explicitly in a
table. This is impractical for all but the smallest state
spaces. Furthermore, for relational domains, where
the number of states can grow very large (even in-
finitely large) this is infeasible. Therefore, methods
that make abstract from specific states are needed.
Such a method is developed in the next sections.

4. Markov Decision Programs

Traditional MDPs are essentially propositional in that
each state can be represented using a separate proposi-
tion. In Markov decision programs these propositional
symbols are replaced by abstract states:

Definition 1 An abstract state is a conjunction Z of

logical atoms, i.e., a logical query.

Abstract states represent sets of states. More formally,
a state is an interpretation, i.e. a set of grounds facts.
Consider e.g. the state z = cl(a), cl(b), on(a, c) in the
blocks world. An abstract state Z is, e.g., cl(X). It
represents all states that are subsumed by Z, i.e., all
interpretations in which there exists something that is
clear.

We can now introduce the basic ingredients of Markov
decision programs, namely, abstract actions, ab-
stract rewards, and integrity constraints.



An abstract action is defined as follows.

Definition 2 An action2 is a finite set of action rules

Hi
pi:A
←−−− B where A is an atom representing the name

and the arguments of the action and B is an abstract

state denoting the preconditions of A. Hi is the i-th
possible outcome of A. It holds that

∑

i pi = 1.

We assume that vars(A) = (vars(Hi) ∪ vars(B)). The
semantics of the action definition are: If the current

state b is subsumed by B, i.e., b ¹θ B, then taking

action A will result in [b \Bθ] ∪ Hiθ with probability

pi. So, if the preconditions are fullfilled, all outcomes
are possible. As an illustration, consider

on(X, Y), cl(X), cl(Z),
X 6= Y, Y 6= Z, X 6= Z

0.9:move(X,Y,Z)
←−−−−−−−−

cl(X), cl(Y), on(X, Z),
X 6= Y, Y 6= Z, X 6= Z

cl(X), cl(Y), on(X, Z),
X 6= Y, Y 6= Z, X 6= Z.

0.1:move(X,Y,Z)
←−−−−−−−−

cl(X), cl(Y), on(X, Z),
X 6= Y, Y 6= Z, X 6= Z.

which moves block X on Y with probability 0.9. With
probability 0.1 the action fails, i.e., we do not change
the state. Applied to the above state z the ac-
tion tells us that move(a, b, c) will result in z′ ≡
on(a, b), cl(a), cl(c) with probability 0.9 and with
probability 0.1 we stay in z. This type of action defi-
nition implements a kind of probabilistic STRIPS op-
erator.

The model R of abstract rewards specifies the re-
wards generated by entering abstract states. In our
framework it coincides with our initial abstract state

value function V0.

Definition 3 An abstract state value function V is a

finite list of value rules of the form c ← B were B is

an abstract state and c ∈ R.

To any abstract state Z, V assigns the maximal value
c of all matching value rules c ← B to Z as value. A
rule matches if Z ¹θ B. Consider e.g. R = V0 as

10.0← on(a, b). and 0.0← true.

It assigns 0 to z but 10 to z′. Using true in the
last value rule assures that all state are assigned a
value. To develop ReBel, we will also employ abstract

action-state value functions, which are similar to ab-
stract state value functions and of which an example
can be found in Section 5.2.

Definition 4 An abstract state action value function

Q is a finite set of Q-rules of the form c : A← B were

B is an abstract state, A is an action and c ∈ R.

2For the sake of simplicity, we consider cost-free actions.
The framework can be adapted to the case of action costs.
Note also that the meaning of abstract action here differs
from that sometimes used in the context of hierarchical
RL.

To any abstract state-action “pair” B and A, Q assigns
the maximal value c of all abstract state action rules
subsumed by A← B.

Rewards are specified over queries, i.e., existentially
quantified goals. Although these are simple, they are
expressive enough to specify many interesting prob-
lems studied by the (relational) RL community such
as shortest-path problems. Here, the goal is to reach
certain (abstract) states. When a goal state is entered,
the process ends. In RL, episodic tasks are encoded us-
ing absorbing states. We encode it by artificial deter-

ministic actions such as on(a, b)
1.0:absorbing
←−−−−−−−− on(a, b),

which denotes that all states that are subsumed by
on(a, b) transition only to themselves and generate
only zero rewards. For example, z is not absorbing
but z′ is.

Finally, we need a way to cope with the integrity
constraints imposed by our domain. For instance, in
the move definition above we employed symmetry of
6=. This can be modeled by a set C of integrity con-
straints. Each integrity constraint is a Horn clause.
For instance in the blocks world, no block can be free
if there is a block on top of it and no block can be on
itself: false ← on(X, Y), cl(Y) and X 6= Y ← on(X, Y).
The completion of an abstract state Z is the least fix-
point of C∪{Z}, i.e., all facts deducible from C∪{Z}.
For example, on(a, b) does not encode that a is not
b. Using the rules above, this state is completed to
on(a, b), a 6= b. Furthermore, if the completion in-
cludes false, the state does not satisfy the constraints,
i.e., it is an illegal state. To deal with integrity con-
straints, we also have to adapt our notations of action
definitions and generality. Action definitions are now
constrained so that they cannot lead to illegal states.
For subsumption we employ the integrity constraints
as a background theory and use Buntine’s generalized

subsumption framework (Buntine, 1988).

Along the lines of (Kersting & De Raedt, 2003; Van
Otterlo, 2004), it can be proven that any Markov de-
cision program induces a (possibly infinite) MDP.

5. Relational Value Iteration: ReBel

We will now develop a value iteration algorithm for
Markov decision programs, i.e., given an abstract re-
ward model R, i.e., initial abstract state value function
V0, compute the next abstract state value functions
Vt, t = 1, 2, . . .

The main idea is to upgrade Bellman’s traditional
backup operator in Equation (2). Therefore, we it-
erate over:
1): Regress all preceding abstract states from Vt.



2): Compute Qt+1 over the regressed states.
3): Compute Vt+1 by maximizing over Qt+1.

We will now discuss each step in turn.

5.1. Regression

Let Vt be the current abstract state value function,
say V0, and consider the abstract action move. For
a single Bellman backup, all abstract states S which
lead to a condition in V0 when taking action move have
to be computed. Thus, we have to reason from post-
to preconditions. For example, the first outcome of
move(a, b, c) can lead from state S ≡

(

cl(a), cl(b),

on(a, c), on(b, d)
)

(inequality constraints omitted) to
the abstract state S′ ≡ on(a, b). Thus, we have to
compute the weakest preconditions for the outcomes
of move and S.

Definition 5 All abstract states which lead to S ′ when

following some action rule Hi
pi:A
←−−− B constitute the

so called weakest precondition wpi(A,S′) of the i-th
outcome of A.

For example, S lies in the weakest precondition of S ′,
i.e., S ∈ wp1(move(X, Y, Z), S

′) but it does not lie in
wp2(move(X, Y, Z), S

′)

To compute wp1(move(X, Y, Z), S
′) we can assume that

we “moved” from S to S′. Thus, 1) the preconditions
of the action (rule) are fullfilled in S, and 2) S ′ is
partially caused by the first outcome of the action. As
an illustration of 2), consider on(a, b) :

move caused on(a,b): We have been in abstract
state S1 ≡

(

cl(a), cl(b), on(a, Z), a 6= b, a 6= Z, b 6= Z
)

and moved X = a on Y = b.

move did not cause on(a,b): We
moved X on Y but not a on b. There-
fore, we have been in abstract states T ≡
(

cl(X), cl(Y), on(X, Z),on(a, b), X 6= Y, X 6= Z, Y 6= Z
)

satisfying that we did not move a on b, i.e.,
on(X, Y) 6= on(a, b), and that we did not move a

from b away, i.e., on(X, Z) 6= on(a, b). The con-
straints guarantee that applying move(X, Y, Z) in T
preserves on(a, b). The definition of S simplifies to
S2 ≡

(

T∧X 6= a
)

, S3 ≡
(

T∧X 6= a ∧ Z 6= b
)

, S4 ≡
(

T∧Y 6= b ∧ X 6= a
)

, and S5 ≡
(

T∧Y 6= b ∧ Z 6= b
)

.
All Si are completed to the same state namely
S6 ≡ cl(A), cl(B), on(a, b), on(A, C) where all variables
and constants are mutually different.

The abstract states S1, S6 together logically define
wp1(move(X, Y, Z), S

′) ≡
(

S1 ∨ S6

)

.

So far, we considered a single effect only, namely
on(a, b). In general, however, there can be multiple

1: initialize wpi to be the empty list
2: for each subset S′′ of S′ and subset P of Hi such

that θ = mgu(S′′, P ) exists
or S′′ == ∅ ∧ P == Hi, i.e., θ = ∅ do

3: S := (S′θ \ Pθ) ∪Bθ
4: for all pairs (l, l′) in

{(l, l′) | l ∈ (S′θ \ Pθ)∧ l′ ∈ Hiθ ∪Bθ} do
5: if mgu(l, l′) exists then
6: add l 6= l′ to S
7: add all simplifications of S to wpi

8: return wpi

Procedure 1: WeakestPre returns the weakest pre-

condition of action rule Hi
pi:A←−−− B and abstract state S′

given a set of integrity constraints C. We omitted that only

legal and completed abstract states are inserted in wpi.

(combined) effects that are or that are not caused by
taking action move, cf. WeakestPre in Procedure 1.
Consider for example S ≡

(

on(a, b), on(c, d)
)

. Moving
a block on some other block can have caused either
on(a, b) or on(c, d), or neither of them, cf. line 2. As-
sume that no effect was caused. Then, S ′′ is empty and
P = H1, cf. line 2. Therefore, θ is the empty substitu-
tion and S ≡

(

on(a, b), on(c, d), cl(X), cl(Y), on(X, Z)
)

(inequality constraints omitted) is a possible preim-
age, cf. line 3. However, we know that
move did not cause on(a, b), on(c, d). Therefore,
it holds on(X, Z) 6= on(a, b) ∧ on(X, Z) 6= on(c, d) ∧
on(X, Y) 6= on(a, b) ∧ on(X, Y) 6= on(c, d), cf. lines 4–
6. S can be simplified for instance to S, X 6= a, X 6= c

which is a legal abstract state. The case that the ac-
tion caused some effects is covered by the “mgu(S ′′, P )
exists” conditition in line 2. It is treated analogously.

5.2. Computing Abstract State Action Values

Given the regressed abstract states and the current
abstract state value function Vt, we now compute an
abstract state-action value function Qt+1 according to
Procedure 2. To do so, (A) we treat each outcome
of an action A as though it would be a single action
and compute its abstract state action value, cf. line
4. Then, (B) we combine the values of all outcomes
to an abstract state action value for A, cf. lines 8–12.
For the sake of brevity, we will not state constraints in
the examples till the end of Section 5.3.

For step (A), consider again the first outcome of move.
The weakest precondition was wp1(move(X, Y, Z), S

′) ≡
S1∨S6. Because S6, is absorbing, we assign an abstract
state action value of 10 for taking action move, i.e.,
10 : move(X, Y, Z) ← S6 . The value of S1, however, is
dependent on Vt(S

′), i.e. in our example V0. Assuming
a discount factor of 0.9 this yields R(S) + p1 · 0.9 ·
V0(S

′) = 0+0.9·0.9·10 = 8.1 , i.e., 8.1 : move(a, b, Z)←



1: initialize Qrules to the empty set.

2: for each action rule Hi
pi:A←−−− B for A do

3: for each v ← V in Vt do
4: partialQ := {q̃ : Ã← S | S ∈ wpi(A, V )}

q̃ :=

(

R(S) : S is absorbing

R(S) + pi · γ · Vt(V ) : otherwise

5: if Qrules 6= ∅ then
6: Qrules := partialQ
7: else
8: newQ := ∅
9: for all pairs q′ : Ã′ ← S′ ∈ Qrules and

q′′ : Ã′′ ← S′′ ∈ partialQ do

10: if G := glb(Ã← S′, Ã′′ ← S′′) exists then
11: add q : G to newQ with q = q′ + q′′

12: Qrules := newQ

13: return Qrules

Procedure 2: QRules returns the Q-rules of an action

A given the reward model R, the current value function Vt

and a discount factor γ. Note that Ã denotes the action

head where we keep the substitution made by wpi. We

also omitted that only legal and completed abstract states

g are inserted in Qrules.

S1 . Doing the same for all other rules in V0 results in:

〈a〉 10 : move(X, Y, Z) ← cl(X), cl(Y), on(a, b), on(X, Z)
〈b〉 8.1 : move(a, b, Z) ← cl(a), cl(b), on(a, Z)
〈c〉 0.0 : move(X, Y, Z) ← cl(X), cl(Y), on(X, Z)

For the second outcome of move, step (A) leads to:

〈d〉 1.0 : move(a, X, b) ← cl(a), cl(X), on(a, b)
〈e〉 1.0 : move(X, Y, Z) ← cl(X), cl(Y), on(a, b), on(X, Z)
〈f〉 0.0 : move(X, Y, Z) ← cl(X), cl(Y), on(X, Z)

For step (B), we note that each of these rules describes
situations such as if we are in a state then we can get

some value for achieving the i-th outcome of action A.
This information has to be combined to an abstract
state action values for A. To do so, we select a rule
from 〈a〉 − 〈c〉, say 〈b〉, and a rule from 〈d〉 − 〈f〉, say
〈f〉, and check whether we can be in both abstract
states at the same time and whether we can apply the
same action. In other words, we compute the greatest

lower bound (glb) of the logical clauses underlying both
value rules. If the glb (where the actions have to unify)
exists and it is a legal state, then it is inserted as a new
rule, cf. line 11. The value of the new rule is the sum
of values of the combined rules. For 〈b〉 and 〈f〉 this
yields

8.1 : move(a, b, X) ← cl(a), cl(b), on(a, X).

In contrast, 〈b〉 and 〈d〉 do not give a new rule.

In our blocks world example, QRules yields the fol-
lowing abstract state action value function when ap-
plied on V0 and move and absorbing:

1: initialize Vt+1 to the empty set of V -rules.
2: sort Qrules in decreasing order of Q-values
3: while Qrules not empty do
4: remove top element d : A← B of Qrules
5: if no other rule d : A′ ← B′ in Qrules exists such

that B′ subsumes B then
6: add d← B to Vt+1

7: remove all rules d′′ ← B′′ from Qrules
such that B′′ is subsumed by B

8: return Vt+1

Procedure 3: VRules returns the value functions Vt+1

given the Q-rules computed from Vt for all actions.

〈1〉 10 : absorbing ← on(a, b)
〈2〉 10 : move(X, Y, Z) ← cl(X), cl(Y), on(a, b), on(X, Z)
〈3〉 8.1 : move(a, b, X) ← cl(a), cl(b), on(a, X)
〈4〉 0.0 : move(X, Y, Z) ← cl(X), cl(Y), on(X, Z)

Note that we have sorted the Q-rules in descending
order only for the sake of readability.

5.3. Computing Abstract State Values

The set of Q-rules enables one to compute the next
abstract state value function Vt+1. In contrast to the
traditional case, Q-rules, i.e., values of abstract state
action pairs, can overlap such as Q-rules 〈1〉 and 〈2〉.
To compute abstract state values we make use of the
fact that Vt+1(S) = maxA Qt+1(S,A) due to Eq. (3).

In general, any value-preserving transformation can be
applied. In this paper, we use a simple separate-and-
conquer rule learning approach where the rules to learn
and the examples to learn from coincide, see VRules

in Procedure 3. We search for a Q-rule m having a
maximal Q-value among Qrules, lines 3–4, separate
the covered Q-rules, line 5, and recursively conquer
the remaining Q-rules by selecting more rules until no
Q-rules remain, line 6. The main difference is that we
select m and add it to Vt+1 only if there is no other
Q-rule left in Qrules with the same value whose body
subsumes the body of m, cf. line 8. In our running
example, we start with rule 〈1〉. Because it is not
subsumed by any other rule having the same value, we
add 10← on(a, b) to V1 and, because it subsumes 〈2〉,
we remove 〈2〉 from Qrules. The remaining highest
valued rule is 〈3〉, and we iterate. After completing,
this yields the new value function V1 (constraints listed
again):

10 ← on(a, b), a 6= b.
8.1 ← cl(a), cl(b), on(a, X), a 6= b, a 6= X, b 6= X.

0 ← cl(X), cl(Y), on(X, Z), X 6= Y, X 6= Z, Y 6= Z.

5.4. Relational Bellman Backup Operator

To summarize, the general scheme of ReBel is:
1) Compute the weakest precondition of each action



���
���
���
���

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

	�	
	�	
	�	
	�	


�


�


�


�


���
���
���
���

���
���
���
���

��
��
��
��

���
���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

�����
�����
�����
�����

���
���
���
���

�����
�����
�����

���
���
���

Values

6.28
5.59
4.97
4.39
3.73
2.72
1.22

8.90

7.92

10.00

7.05

a

X1 6= F1
X1 6= F2

F1 6= F2
a 6= F2
a 6= F1

a 6= X1

X1

a 6= F1

X1 6= F2, X2 6= F1

a 6= X2

a 6= X1

X1 6= F1

X1 6= X2

a 6= F2

Xi 6= Xj(i < j; i, j = 1, . . . k)

f
o
r

k
=

3
,
4
,
.
.
.
,
1
0

X2 6= F2, F1 6= F2

a 6= Xi(i = 1, . . . , k)

Xi 6= Fj(i = 1, . . . k; j = 1, 2)

a 6= Fi(i = 1, 2)

F1 6= F2

X1

X2

F2F1a

F1a

Xk

X1
aF2F1

F2

Figure 1. Blocks World Experiment I: Abstract state
value function for the cl(a) goal after 10 iterations. It
applies for any number of blocks. Values are rounded to
the second digit. Fi can be a block or a floor block. States
structurally different from the depicted ones get value 0.0 .

outcome for each abstract state in Vt using Weakest-

Pre. As done in QRules, 2a) assign to each abstract
state – action outcome pair computed in 1) a Q-value
and 2b) combine them based using the glb. 3) Maxi-
mize the Q-rules to compute Vt+1 using VRules.

Note that in 2b), if there are n > 1 many outcomes of
an action, then the Q-values of the n-th outcome are
combined with already combined Q-values of the n−1
previous outcomes. Thus, there are n−1 many combi-
nations per action. This might produces many rules.
To overcome this, one can adapt VRules maximizing
Q-rules to compress Q-rules: if we are in a state with
different currently combined values for compatible ac-
tions, then we select only the higher one. This is safe
because the higher valued Q-rule subsumes the lower
valued one. Therefore, it would have been selected in
any case later on.

Formally, this Bellman backup requires an infinite
number of iterations to converge to V ∗, cf. Section 6.
In practice, we stop when the abstract value function
changes by only a small amount.

6. Experiments

In this section we empirically validate ReBel. We im-
plemented ReBel with compressing Qrules in the Pro-
log system YAP version 4.4.4. and we used the supple-
mented constraint handling rules library (Frühwirth,
1998). In all experiments we assume a discount factor
of 0.9 and a goal reward of 10, i.e., in all other states
we receive 0 reward. Only goal states are absorbing.
Experiments were run on a 3.1 GHz Linux machine.
The running times were estimated using YAP’s build-
in statistics(runtime, ·). We focused on standard

�����
�����
�����

�����
�����
�����

���
���
���

���
���
���

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

���
���
���

�����
�����
�����

 � 
 � 
 � 

!�!�!
!�!�!
!�!�!

"�"
"�"
"�"

#�#�#
#�#�#
#�#�#
#�#�#

$�$
$�$
$�$
$�$

%�%�%
%�%�%
%�%�%

&�&
&�&
&�&

'�'�'
'�'�'
'�'�'

(�(�(
(�(�(
(�(�(

)�)�)
)�)�)
)�)�)

*�*�*
*�*�*
*�*�*

+�+�+
+�+�+
+�+�+

,�,�,
,�,�,
,�,�,

-�-
-�-
-�-
-�-

.�.
.�.
.�.
.�.

/�/�/
/�/�/
/�/�/

0�0�0
0�0�0
0�0�0

Values

1�1�1
1�1�1
1�1�1

2�2�2
2�2�2
2�2�2

3�3�3
3�3�3
3�3�3

4�4�4
4�4�4
4�4�4

3.49
3.87
4.31
4.78
5.31
5.91

..
.

...

..
.

10.00

9.00

8.10

7.29
6.56

..
.

...

...

b
a

a

A
a

B
C

A
a

b F1 F2

F1 F2

b F2F1

F1 b b

a

A a
b F2F1

Figure 2. Blocks World Experiment II: Parts of the ab-
stract value function for on(a, b) after 10 iterations (values
rounded to the second digit). It applies for any number of
blocks. We omitted the inequality constraints: All blocks
are mutually different. Fi can be a block or a floor block.
State more than 10 steps away from the goal get value 0.0.

examples known from the relational RL literature.

Blocks World Experiment I: We consider cl(a) as
goal in our probabilistic blocks world setting. The ex-
periment shows that even on simple problems ReBel

is not guaranteed to converge on the structural level.

Figure 1 shows the abstract state value function after
10 iterations. It took ReBel roughly 1 minute to it-
erate ten times. Figure 1 highlights that states that
are one step further away from the goal get the same
value. The value, however, is lower because of the ad-
ditional block on top of the stack of a. Thus, because
the number of blocks is not restricted, value iteration
will never stop.

Proposition: Abstraction does not guarantee conver-
gence in infinite domains because an infinite number
of abstract states can be required.

This is interesting, because infinite state spaces eas-
ily arise when relational representations are used and
relational abstraction was hoped to be a solution. Nev-
ertheless, relational value iteration can converge even
for infinite domains as our third experiment will show.

Blocks World Experiment II: We consider the goal
on(a, b) in a deterministic blocks world because it is
reported to be a hard problem for model-free relational
RL (RRL) approaches (Džeroski et al., 2001; Driessens
& Ramon, 2003). For instance, Driessens and Ramon
(2003) report that on average the learned policies did
not reach optimal performance even for 5 blocks.

Using the same experimental set-up as in our first
experiment but a deterministic move action, ReBel



Vt

abstract states 1 2 3 4 5 6 7 8 9 10
bin(b, p). 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000
tin(A, p), on(b, A), not rain. 8.100 8.829 8.895 8.901 8.901 8.901 8.901 8.901 8.901 8.901
tin(A, p), on(b, A), rain. 6.300 8.001 8.460 8.584 8.618 8.627 8.629 8.630 8.630 8.630
tin(A, B), on(b, A), not rain. 7.290 7.946 8.005 8.010 8.011 8.011 8.011 8.011 8.011
tin(A, B), on(b, A), rain. 5.670 7.201 7.614 7.726 7.756 7.764 7.766 7.767 7.767
tin(A, B), bin(b, B), not rain. 5.905 6.968 7.111 7.128 7.130 7.131 7.131 7.131
tin(A, B), bin(b, B), rain. 3.572 5.501 6.282 6.563 6.658 6.689 6.699 6.702

tin(A, B), bin(b, C), not rain. 5.314 6.271 6.400 6.416 6.417 6.418 6.418
tin(A, B), bin(b, C), rain. 3.215 4.951 5.654 5.907 5.993 6.020 6.029

tin(A, B). 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 1. Load-Unload Experiment: The t-th column shows the abstract state value function after the t-th iteration.
When no value is given, the abstract state has value 0.0. Bold numbers highlight changed values.

computed V10 in less than 12 minutes. The abstract
value function is partially shown in Figure 2. Because
the move action is deterministic, V10 is optimal for 10
blocks (more than 58 million ground states). The opti-
mal policy can directly be extracted by computing the
maximizing Q-rules for each abstract state. In our ex-
ample, this results in removing the top elements from
the stacks on top of a and b. However, to compactly
represent this strategy, one needs to define the predi-
cate ontop. In the experiments Driessens and Ramon
(2003) reported on, this was always the case. The pol-
icy based on Rebel is optimal no matter how many
blocks there are.

Load-Unload Experiment: Our final experiment
considers the logistics domain which Boutilier et al.
(2001) solved semi-automatically. The domain con-
sists of cities, trucks and boxes. Boxes can be loaded
onto and unloaded from trucks, and trucks can be
driven between cities. The predicate on(B, T) denotes
that a box B is on the truck T, bin(B, C) denotes that
a box B is in some city C and tin(T, C) denotes that a
truck T is in city C. The actions that can be performed
are: load(B, T) and unload(B, T) specifying how a box
B can be loaded onto or loaded from a truck T and
drive(T, C) specifying that the truck T is driven to
city C. The actions in this domain have probabilistic
effects. The probability of failing a load or unload

action, i.e., staying in the current state, depends on
whether it rains or not, denoted by rain. The action
specification is as follows (we omit the failing specifi-
cations for the sake of brevity):

bin(B, C), tin(T, C), R
pr:unload(B,T)
←−−−−−−−− on(B, T), tin(T, C), R

on(B, T), tin(T, C), R
pr:load(B,T)
←−−−−−−− bin(B, C), tin(T, C), R

tin(T, C′), C 6= C′
1.0:drive(T,C′)
←−−−−−−−−− tin(T, C)

where the probability pr is 0.9 if R is rain and 0.7
if R is not rain. To correctly handle the explicit

negation we used for rain, we provided false ←
rain, not rain as constraint. The goal in this domain
is to get some box b in p where p stands for Paris, i.e.,
in bin(b, p) we get a reward of 10.

ReBel ran for less than 6 seconds to compute the re-
sults summarized in Table 1. In contrast to the blocks
world examples, the solution converges both at the
value level and at the structural level. E.g., take the
situation in which a truck is in a city different from
Paris and the box is there too. Then, it will take three
steps (load− drive− unload) to reach the goal state
and the state value in V10 is 6.702 in case it rains. The
abstract state value function applies no matter how
many trucks, boxes and cities are present.

7. Related Work

In the past few years, there has been an increased and
significant interest in using rich relational representa-
tions for modeling and learning MDPs.

In model-free relational RL, one has studied dif-
ferent relational learners for function approximation
(Džeroski et al., 2001; Lecoeuche, 2001; Driessens &
Ramon, 2003; Gärtner et al., 2003). Others have ap-
plied Q-learning based on pre-specified abstract state
spaces: Kersting and De Raedt (2003) investigate pure
Q-learning, Van Otterlo (2004) learns the Q-function
via learning the underlying transition model. Fern
et al. (2003) extended previous work on upgrading
learned policies for small relational MDPS (RMDPs)
with approximated policy iteration. Finally, Guestrin
et al. (2003) recently reported on class-based, approx-
imate value functions for RMDPs.

For model-based approaches, there has been a surpris-
ing lack of research on exact solution methods. From a
general point of view, ReBel is closely related to deci-

sion theoretic regression (DTR) (Boutilier et al., 1999)
and, because of that, it is also related to regression
planning in the same way as DTR is. Within DTR,
most algorithms are designed to work with proposi-

tional representations. Actually, the only exception
the authors know of is that of Boutilier et al. (2001).
ReBeL relates to this in that it also is a model-based
exact solution method for RMDPs. One key differ-
ence is that Boutilier et al. employ situation calculus



for representing RMDPs. Situation calculus is very
expressive and as a consequence it is harder to sim-
plify the logical descriptions of the abstract value func-
tions states that are obtained. This may also explain
why — to the best of the authors’ knowledge — that
approach has not been fully implemented and exper-
imented with. In contrast, because of the use of a
simpler logical language, the simplification in ReBel

is computationally feasible. As shown in the experi-
ments, ReBel successfully and fully automatically im-
plements a relational value iteration.
Finally, the work by Dietterich and Flann (1997) is
also concerned with generalizing Bellman backups but
no relational representation is used.

8. Conclusions

The key contribution of this paper is the introduc-
tion of ReBel, a relational upgrade of the Bellman
update operator. It has been used to implement a re-
lational value iteration algorithm. It has been shown
to be effective in a number of simple though signifi-
cant examples. This – in turn – has led to a number
of novel insights into relational MDPs. First, it has
been shown that value-based methods for relational
MDPs may not converge because an infinite number
of abstract states has to represented. Second, we high-
lighted that in such cases background knowledge may
enable the learning of optimal policies. So, depending
on the representation of the problem, one can or can-
not learn the optimal policy. Therefore, using back-
ground knowledge in RMDPs is not only an interesting
feature, but in some cases also a necessity for success-
ful learning. In this way, we have given an explanation
for and confirmed some of the experimental insights of
the early relational RL work (Džeroski et al., 2001).

Further work could address combining ReBel with
other types of value-based methods, extending the rep-
resentation language, efficient data structures, com-
plexity analysis, and employing other learning algo-
rithms to compress value functions.

The authors hope that the theoretical insights, as well
as the algorithm developed in this paper, will be help-
ful in advancing the field of relational RL as well as
contribute to an improved understanding of the prob-
lems involved.

Acknowledgements

The authors would like to thank the anonymous re-
viewers for their helpful comments. This research was
supported by the European Union IST programme,
contract no. FP6-508861, APrIL II. Martijn Van Ot-

terlo was supported by a Marie Curie fellowship at
DAISY, HPMT-CT-2001-00251.

References

Bellman, R. E. (1957). Dynamic programming. Princeton,
New Jersey: Princeton University Press.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-
theoretic planning: Structural assumptions and compu-
tational leverage. J. Art. Intel. Res., 11, 1–94.

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic
dynamic programming for first-order MDP’s. Proc. of
IJCAI’01.

Buntine, W. (1988). Generalized subumption and its ap-
plications to induction and redundancy. Artificial Intel-
ligence, 36, 149–176.

Dietterich, T. G., & Flann, N. S. (1997). Explanation-
based learning and reinforcement learning: a unified
view. Machine Learning, 28, 169–210.

Driessens, K., & Ramon, J. (2003). Relational instance
based regression for relational reinforcement learning.
Proc. of ICML-2003.

Džeroski, S., De Raedt, L., & Driessens, K. (2001). Re-
lational reinforcement learning. Machine Learning, 43,
7–52.

Fern, A., Yoon, S., & Givan, R. (2003). Approximate policy
iteration with a policy language bias. Proc. of NIPS’03.

Frühwirth, T. (1998). Theory and Practice of Constraint
Handling Rules. Journal of Logic Programming, 37, 95–
138.

Gärtner, T., Driessens, K., & Ramon, J. (2003). Graph
kernels and Gaussian processes for relational reinforce-
ment learning. Proc. of ILP’03.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N.
(2003). Generalizing plans to new environments in rela-
tional MDPs. Proc. of IJCAI’03.

Kersting, K., & De Raedt, L. (2003). Logical Markov de-
cision programs. Proc. of the IJCAI’03 Workshop on
Learning Statistical Models of Relational Data.

Lecoeuche, R. (2001). Learning optimal dialogue manage-
ment rules by using reinforcement learning and induc-
tive logic programming. Proc. of the North American
Chapter of the Association for Computational Linguis-
tics (NAACL). Pittsburgh.

Nienhuys-Cheng, S.-H., & de Wolf, R. (1997). Founda-
tions of inductive logic programming, vol. 1228 of Lecture
Notes in Artificial Intelligence. Springer-Verlag.

Sutton, R., & Barto, A. (1998). Reinforcement learning:
an introduction. Cambridge: The MIT Press.

Van Otterlo, M. (2004). Reinforcement learning for rela-
tional MDPs. Machine Learning Conference of Belgium
and the Netherlands (BeNeLearn’04).


