
Robust 3D Scan Point Classification
using Associative Markov Networks

Rudolph Triebel and Kristian Kersting and Wolfram Burgard
Department of Computer Science, University of Freiburg

George-Koehler-Allee 79, 79108 Freiburg, Germany
Email: {triebel, kersting, burgard}@informatik.uni-freiburg.de

Abstract— In this paper we present an efficient technique to
learn Associative Markov Networks (AMNs) for the segmentation
of 3D scan data. Our technique is an extension of the work
recently presented by Anguelov et al. [1], in which AMNs are
applied and the learning is done using max-margin optimization.
In this paper we show that by adaptively reducing the training
data, the training process can be performed much more efficiently
while still achieving good classification results. The reduction is
obtained by utilizing kd-trees and pruning them appropriately.
Our algorithm does not require any additional parameters and
yields an abstraction of the training data. In experiments with
real data collected from a mobile outdoor robot we demonstrate
that our approach yields accurate segmentations.

I. I

Recently, the problem of acquiring three-dimensional mod-
els using mobile robots has become quite attractive and a
variety of robot systems have been developed that are able to
acquire three-dimensional data using laser range scanners [2]–
[8]. Most of these approaches are focused on the problem of
how to improve the localization of the robot or how to reduce
the huge amount of data by piecewise linear approximations.
In this paper we consider the problem of classifying data
points in three-dimensional range scans into known classes.
The general motivation behind this is to achieve the ability
to learn maps that are annotated with symbolic labels. In the
past, it has been shown that such information can be utilized
to find compact representations of the maps [8], but also
to improve the process of joining partial maps into one big
map, usually called map registration [9], [10]. When using
annotated maps, the registration can be performed by finding
corresponding annotated objects in the partial maps, which is
usually much more effective and reliable compared to finding
correspondences on the raw data level.

The approach we present in this paper to find map anno-
tations or labels is formulated as a supervised learning task.
Given a set of manually annotated data, our system learns a set
of parameters from this map, which are later used to classify a
new and unlabeled map. Throughout this paper, this final step
will be referred to as inference. The parameter learning step
is essentially a maximum likelihood estimation process where
the likelihood of the labels for the given data is maximized.

An important detail of each classification technique is the
way the dependency between labels and data is modeled.
For example, one can assume that the labels only depend on
the local evidence of each data point. This is equivalent to

assuming statistical independence of neighboring data points
and can be found in many applications. However, recent results
show that a higher classification accuracy can be achieved
when considering the problem as a global classification task,
i.e., when we view the data not independently, because the
labeling of a data point is also influenced by the labeling of
other data points in the vicinity of the point in question. This
approach is known as collective classification [11].

One popular approach for the task of collective classification
are Relational Markov Networks (RMNs) [12]. In addition
to the labels of neighboring points, RMNs also consider the
relations between different object classes. E.g., we can model
the fact that two classes A and B are more strongly related to
each other than, say, classes A and C. This modeling is done
on the abstract class level by introducing clique templates [12].
Applying these clique templates to a given data set yields an
ordinary Markov Network (MN). In this unrolled MN, the
result is a higher weighting of neighboring points with labels
A and B than of points labeled A and C. One type of RMNs
for which efficient algorithms for learning and inference are
available, are Associative Markov Networks (AMNs).

RMNs, and in turn AMNs, can be viewed as a method
of viewing the data at a higher level of abstraction. This
abstraction is done in the description of the model and not
in the unrolled MN. Thus, abstraction has been considered
only in the feature space. The main contribution of this paper
is to investigate methods of additional abstraction in AMNs
by utilizing the geometry of the data. As our experiments
demonstrate, this accelerates the training process and does not
decrease the classification performance.

This paper is organized as follows. After discussing re-
lated work in the following section we define our scan-point
classification approach in Section III. Then, we introduce
Markov Random Fields and discuss how they can be used
to utilize the classification of neighboring points to improve
the segmentation. Section V describes the variants of the
learning and inference algorithms used in our current system.
Section VI is concerned with our compact representation of the
data points. Finally, Section VII presents experimental results
illustrating the usefulness of our approach.

II. R W

In the area of mobile robotics many authors have consid-
ered the problem of extracting features from range data. For

example, Buschka and Saffiotti [13] describe a virtual sensor
that is able to identify rooms from range data. Additionally,
Simmons and Koenig, [14] use a pre-programmed routine to
detect doorways from range data. Althaus and Christensen [15]
use line features to detect corridors and doorways. Also several
authors focused on the problem of extracting planar structures
from range scans. For example, Hähnel et al. [16] use a
region growing technique to identify planes. Recently, Liu et
al. [3], Martin and Thrun [17], as well as Triebel et al. [8]
applied variants of the expectation maximization algorithm
(EM) to cluster range scans into planes. Furthermore, there
has been work on employing features extracted from three-
dimensional range scans to improve the scan alignment pro-
cess [9], [10]. The approaches described above either operate
on two-dimensional scans, consider single features such as
planarity, or apply pre-programmed routines to identify the
features in range scans. In a recent work, Mártinez-Mozos et
al. [18] presented an approach that uses features extracted from
a two-dimensional laser range scans and applies the Adaboost
algorithm to identify what type of place the robot is at. This
approach, however, classifies the entire scan and does not label
individual points in range scans.

In the context of learning annotated 3D maps from point
cloud data, the approaches that have been presented previously
differ in the selection of the features to be extracted and in
the learning strategies. For example, spin images have been
introduced as a type of rotation invariant features by Johnson
and Hebert [19]. Ruiz-Correa et al. apply spin images to
recognize deformable shapes [20]. Frome et al. extend spin
images to point descriptors and apply a voting technique to
recognize ojects in range data [21]. Vandapel et al. [22] extract
saliency features based on the eigenvalues of local covariance
matrices and apply EM to learn a Gaussian Mixture Model
classifier. Another object description technique is called shape
distributions and has been applied by Osada et al. [23].

In contrast to these approaches, our algorithm classifies the
data by incorporating knowledge of neighboring data points.
This is modeled in a mathematical framework known as
Markov random fields and improves the segmentation by elim-
inating false classifications. Our approach is an improvement
over the work proposed by Anguelov et al. [1] in the sense
that it adaptively selects data points from the training data
set and uses these points as representatives for neighboring
points. This way, the training data set is reduced in size to an
abstraction of the original range scan. As a result, our approach
requires less complex constraints and, in turn, yields a faster
training phase without decreasing classification rates.

III. S P C

Suppose we are given a set of N scan points p1, . . . , pN

taken from a 3D scene and a set of K object classes
C1, . . . ,CK . The task is now to find a label yi ∈ {1, . . . ,K} for
each scan point pi so that all labels yi, . . . , yN are optimal given
the scan points. By “optimal” we mean that the likelihood
of the labels given the data is maximized. We will see later
how this likelihood is defined. In this paper, the classification

task will be formulated as a supervised learning problem. This
means, there is a set of scan points to which the correct labels
have been assigned by hand, the training set, and a set of
unlabeled points, the test set. The classification process is
divided into two phases: the learning and the inference phases.

A. Feature Extraction

When labeling 3D range data we want to add semantic
information which is independent of the geometry of the input
data. For example, in a setting, where we want to distinguish
window frames from the wall of a building, the window points
may occur in any 3D position. Thus, to be able to divide the
scan points into different classes, we need to extract features
from the input data. We will represent these features as a vector
xi of non-zero values for each scan point pi. The vector of all
feature vectors xi will be denoted as x. Using this notation, we
can formulate the inference problem as finding the set of labels
y that maximizes the conditional probability Pω(y | x), where
ω is a set of parameters defining the underlying probability
density function. If we define ŷ as the vector of correct labels
ŷ1, . . . , ŷN , the learning task can be formulated as finding the
parameters ω that maximize the probability Pω(ŷ | x). In
summary, learning and inference can be written as:

learning: ω∗ = argmaxωPω(ŷ | x) (1)
inference: y∗ = argmaxyPω∗(y | x) (2)

IV. M R F

One possible way to define Pω is to assume a normal
distribution of the features in each class. In this case, ω
consists of the means µk and covariance matrices σk corre-
sponding to each class. Then, the probability Pω(y | x) is
represented as a multi-modal normal distribution where each
mode corresponds to one object class. The learning task is
performed by determining (µk, σk) for k = 1, . . . ,K and the
inference is done by assigning the class label Ck to each xi

for which the corresponding normal distribution N(xi; µk, σk)
is maximal. This method is called Bayes classification [24]
and is applied in various classification tasks.

One problem with the Bayes classifier is that often the
labeling of a data point does not only depend on its local
features, but also on the labeling of nearby data points. For
example, if we consider the local planarity of a scan point as a
feature, it may happen that the class label ‘wall’ is more likely
than the class label ‘door’, although all other scan points in
the vicinity of this point belong to the class ‘door’. Methods
that use the information of neighboring data points are called
collective classification [11]. A popular framework in this
context are Markov Random Fields (MRFs).

A. Description

A Markov Random Field is an undirected graph with a
set of cliques C and a clique potential φc, which is a non-
negative function associated to each c ∈ C. In the context of
classification, we consider conditional MRFs [12] defining the

distribution

P(y | x) =

∏
c∈C φc(xc, yc)∑

y′
∏

c∈C φc(xc, y′c)
(3)

where xc and yc are the features and labels of all nodes in
the clique c. Here, the potential φc is a mapping from features
and labels to a positive value. This value is often called the
compatibility between the features and the labels of the data
points in c. The higher the compatibility is, the more likely it
is that the labels yc are correct for the features xc.

The denominator in equation (3) is called the partition
function, usually denoted Z, and is essentially a sum over all
possible labelings. In all but the simplest cases the calculation
of the partition function constitutes the major problem in the
learning task because of its exponential complexity. We will
later see how learning can be done without calculating Z.

B. Associative Markov Networks

To simplify the problem, the size of the cliques is usually
restricted to be either one or two. This results in a pairwise
MRF, where only node and edge potentials ϕ and ψ are
considered. For a pairwise MRF with the set of edges E =

{(i j) | i < j} equation (3) simplifies to

P(y | x) =
1
Z

N∏

i=1

ϕ(xi, yi)
∏

(i j)∈E
ψ(xi j, yi, y j). (4)

Again, Z denotes the partition function given by Z =∑
y′

∏N
i=1 ϕ(xi, y′i)

∏
(i j)∈E ψ(xi, y′i , y

′
j). Note that in equation (4)

there is a distinction between node features xi ∈ �dn and edge
features xi j ∈ �de . Thus, the number dn of node features and
the number de of edge features is not necessarily the same.

It remains to describe the potentials ϕ and ψ. As mentioned
above, the potentials reflect how well the features fit to the
labels. One simple way to define the potentials is the log-linear
model [25]. In this model, a weight vector wk is introduced
for each class label k = 1, . . . ,K. The node potential ϕ is then
defined so that logϕ(xi, yi) = wk

n ·xi where k = yi. Accordingly,
the edge potentials are defined as logψ(xi j, yi, y j) = wk,l

e · xi

where k = yi and l = y j. Note that there are different weight
vectors wk

n ∈ �dn and wk,l
e ∈ �de for the nodes and edges.

For the purpose of convenience we use a slightly different
notation for the potentials, namely

logϕ(xi, yi) =

K∑

k=1

(wk
n · xi)yk

i (5)

logψ(xi j, yi, y j) =

K∑

k=1

(wk,l
e · xi j)yk

i yl
j, (6)

where yk
i is an indicator variable which is 1 if point pi has

label k and 0, otherwise.
In a further refinement step of our model, we introduce the

constraints wk,l
e = 0 for k , l and wk,k

e ≥ 0. This results in
ψ(xi j, k, l) = 1 for k , l and ψ(xi j, k, k) = λk

i j, where λk
i j ≥ 1.

The idea here is that edges between nodes with different labels
should be penalized over edges between equally labeled nodes.

A pairwise MRF with these restrictions is called an Associative
Markov Network (AMN).

V. L  I  AMN

In this section, we describe how learning and inference
can be done with AMNs according to equations (1) and (2).
In a first step, we reformulate the problem so that, instead
of maximizing Pω(y | x), we maximize log Pω(y | x). The
parameters ω are represented by the weight vectors w =

(wn,we). By plugging in equations (5) and (6), we obtain

max
N∑

i=1

K∑

k=1

(wk
n · xi)yk

i +
∑

(i j)∈E

K∑

k=1

(wk
e · xi j)yk

i yk
j − log Zw(x). (7)

Note that the partition function Z only depends on w and x,
but not on the labels y.

A. Learning

The problem arising in the learning task is that the partition
function Z depends on the weights w. This means that when
maximizing log Pw(ŷ | x) the intractable calculation of Z needs
to be done for each w. However, if we instead maximize the
margin between the optimal labeling ŷ and any other labeling
y defined by

log Pω(ŷ | x) − log Pω(y | x), (8)

the term Zw(x) cancels out and the maximization can be done
efficiently. This method is referred to as maximum margin
optimization. The details of this formulation are omitted here
for the sake of brevity. We only note that the problem is
reduced to a quadratic program (QP) of the form:

min
1
2
‖w‖2 + cξ (9)

s.t. wXŷ + ξ −
N∑

i=1

αi ≥ N; we ≥ 0;

αi −
∑

i j, ji∈E
αk

i j − wk
n · xi ≥ −ŷk

i , ∀i, k;

αk
i j + αk

ji − wk
e · xi j ≥ 0, αk

i j, α
k
ji ≥ 0, ∀i j ∈ E, k

Here, the variables that are solved for in the QP are the weights
w = (wn,we), a slack variable ξ and additional variables αi,
αi j and α ji. Again, we refer to Taskar et al. [25] for details.

B. Inference

Once the optimal weights w are calculated, we can do
inference on an unlabeled test data set. This is done by
finding the labels y that maximize log Pw(y | x). As mentioned
above, Z does not depend on y so that the maximization in
equation (7) can be done without considering the last term.
With the constraints imposed on the variables yk

i this leads to

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 50

 60

 70

 80

 90

 100

le
ar

ni
ng

 ti
m

e
in

 s

co
re

ct
 c

la
ss

ifi
ca

tio
n

in
 %

kd-tree level

learning time
classification rate

Fig. 1. Processing time for the learning task (red with crosses) and
classification rate (green with boxes) for different values of dmax . The left
y-axis is for the time and is shown in log-scale, the right one is for the
classification results.

a linear program of the form

max
N∑

i=1

K∑

k=1

(wk
n · xi)yk

i +
∑

i j∈E

K∑

k=1

(wk
e · xi j)yk

i j (10)

s.t. yk
i ≥ 0, ∀i, k;

K∑

k=1

yi = 1, ∀i

yk
i j ≤ yk

i , yk
i j ≤ yk

j, ∀i j ∈ E, k

Here, we introduced variables yk
i j representing the labels of

two points connected by an edge. The last two inequality
conditions are a linearization of the constraint yk

i j = yk
i ∧ yk

j.

VI. D R

Unfortunately, the learning task we described in the previous
section is computationally expensive in run time as well as
in memory requirement. For each scan point there is one
variable and one constraint in the quadratic program (9).
Furthermore, we have two variables and two constraints per
edge. This results in a large computational effort; Anguelov
et al. [1] report one hour run time for about 30,000 scan
points. Fortunately, in usual data sets, a huge part of the
data is redundant. For instance, to reduce the data set we can
randomly draw a smaller set of scan points from the whole
scan. In our experiments this gives good results. The run time
dropped down from about 20 minutes down to less than a
minute while the detection rate was still around 92%. However,
it is not clear how many samples are necessary to obtain good
detection rates, because this depends on the data set. A scene
with many small objects should not be down-sampled as much
as a scene with only few, big objects. Therefore we reduce the
data adaptively.

A. Adaptive Reduction

The idea of adaptive data reduction is to obtain as much
information as necessary from the training data so that still a
good recognition rate can be achieved. This is dependent on
the data set, so we need an adaptive data structure. One popular

Fig. 2. The resulting AMN after reducing the training data (see fig. 3(a)).
By applying the adaptive reduction, the borders between labeled regions are
emphasized while areas in which the labels do not change are represented in
a higher level of abstraction.

way to adaptively store geometrical data are kd-trees [10].
The way the data is stored in kd-trees is that of a coarse-to-
fine structure: on higher levels of the tree the level of data
abstraction is also higher. By utilizing kd-trees we can reduce
the data set by considering only scan points in the tree that
are stored in leaf nodes up to a given maximum depth dmax.
All points in deeper branches are then merged into a new leaf
node of depth dmax. The data point in this new leaf node is
calculated as the mean of all points from the corresponding
subtree. Apart from the reduction in the data complexity, this
has the advantage of a sampling that is less dependent on the
data density. The only question here is how to select dmax.

To investigate the influence of the maximal tree depth we
ran the recognition process with different values for dmax.
Figure 1 shows the time the training process took and the
corresponding classification rate for each value of dmax. What
can be seen from the figure is that the processing time grows
exponentially whereas the recognition rate does not improve
for dmax higher than 15. For dmax = 15 we obtained a
classification rate of 92.9% while the run time for the training
was only 2.5 minutes. In this case, the training set consisted
of 6558 points.

B. Parameterless Reduction

When using kd-trees to reduce the training data in the
described way, it still remains to find a good value for dmax. As
for the uniform down-sampling, this is dependent on the data
set. In our current system, we therefore modify the reduction
algorithm so that it is parameter-free: We still use a kd-tree to
store the data points, but instead of pruning at a fixed level,
we merge all points in a subtree whenever all of its labels
are equal. The idea here is that for large homogeneous areas,
where all points have the same label, we can assume a higher
level of abstraction as in heterogeneous areas.

Figure 2 shows an example of a training set that was reduced
in this way. The original data set is shown in figure 3(a). The
reduced set consists only of 919 points, while the original scan
contained 16, 917 labeled points. As the next section will show,

Fig. 4. Additional results on two other data sets for the AMN learner with
adaptive data reduction.

training on a data set, which was reduced this way, took only
a few seconds. This is a substantial speed-up without a serious
reduction of the classification performance.

VII. E R

We applied the described classification algorithm to real data
collected with a SICK laser range finder mounted on top of
a pan/tilt unit. The data consisted of 3D outdoor scans from
a building with different kinds of windows. In a first step,
we divided the data into walls by using a plane extraction
algorithm. For each wall we obtained a normal vector n and a
mean point q. Then we extracted all points that had a distance
of at most 0.5m from the planes. In this way we achieve
robustness against noise from the normal vector calculation.

The goal was to classify the scan points into the classes
‘window’, ‘wall’ and ‘gutter’. One of the data sets together
with its manually created labeling is shown in figure 3(a).
It represents one wall of the building with only single-size
windows. For the evaluation we used three different scans of
walls of the building with single- and double-size windows.

A. Feature Extraction

We evaluated different types of features. It turned out that
good results can be achieved with feature vectors that represent
a local distribution of some value. One such distribution we
used in the experiments was that of the cosine of the angles
between the local normal vectors in the vicinity of each
point and the plane normal vector n. For a neighbor p′i of
a given scan point this value is calculated by α := p′i · n. The
distribution over α is represented as a local histogram.

Another set of features was obtained by considering the
distribution of neighbors in front of and behind the wall plane.
To be more precise, at each scan point pi we counted the
number of neighbors p′i so that |p′i · n| > |p · n| + ε where ε
was used as a threshold to get robustness against noise. In our
experiments, ε was set to 0.05m. Accordingly, we counted the
neighbors so that |p′i · n| < |p · n| − ε and |p · n| − ε ≤ |p′i · n| ≤
|p · n| + ε. This way we obtained a histogram with three bins.

The last feature we used was the normalized height of each
scan point. Here, we assumed a maximum scan height hmax

of 15m which is reasonable considering that objects that are
higher than 15m cannot be scanned accurately. For points with
negative height, this feature was set to 0. For all others it was

the quotient of the local height and hmax. This feature was
especially used to distinguish ‘gutter’ from the other classes.

B. Building the Markov Network

An important implementation detail is the way the nodes are
connected in the network. If we take too many neighbors, the
learning and the inference will be less efficient and require
a lot of time. Also, the way in which the connections are
defined has an influence on the classification result. For our
experiments, it turned out that a sampling strategy similar to
the one Anguelov et al. [1] report gives the best results. In
our case, we randomly sample neighbors for each scan point
pi using a Gaussian distribution. Then we connect pi to its
neighbors so that no point is connected to more than three
others. This guarantees that learning and inference can be
carried out efficiently and at the same time provides enough
information from the neighboring points.

C. Evaluation

The experimental results are shown in Figures 3 and 4. For
comparison, we ran a Bayes classification on the same data set,
yet with a different set of features. The reason for this is that in
Bayes classification the features are assumed to be distributed
normally and this did not hold in the case of our features.
The best result we obtained is shown in figure 3(b). It can be
seen that in some regions the classes are locally inconsistent.
Especially in the roof windows, the classification is wrong.
This is because the Bayes classifier only decides locally on
the labels and does not take the neighbors into account.

Figure 3(c), shows the result for the same data set obtained
with the AMN approach. Additionally, figure 4 shows the
results for two other test instances. For solving the QP in the
learning step we used the C++ library OOQP [26].

For quantitative evaluation we labeled one of the test sets
by hand and compared the results with this labeling. We
obtained 85.5% correct classifications for the Bayes classifier
and 93.8% for the AMN with adaptive data reduction. The
computation time for the learning step was between 5 and 7
seconds on a Pentium 4 with 2.8 GHz.

VIII. C  F W

In this paper we presented an approach to segment
three-dimensional range data. Our approach uses Associative
Markov Networks to robustly extract these regions based on
an initial labeling obtained with simple geometric features.
To efficiently carry out the learning phase, we use an adaptive
technique to prune the the kd-tree. This allows us to efficiently
deal with even large data sets. Thereby, the robustness of the
segmentation process is maintained.

Our approach has been implemented and tested on data
acquired with an outdoor-robot equipped with a laser range
finder mounted on a pan/tilt unit. In complex data sets con-
taining outer walls of buildings, our approach has successfully
been applied to the task of finding a segmentation into walls,
windows, and gutters. In a comparison experiment we could

(a) Training data (b) Bayes classifier (c) AMN + adaptive reduction

Fig. 3. (a): Data set used for training. The black points are unlabeled and are not considered in the training process. (b): Classification result using Bayes
classification. Especially at the borders between classes the classification is poor. (c): Result using AMN and adaptive data reduction.

furthermore demonstrate that our approach yields more robust
classifications than the Bayes classifier.

The data reduction technique presented here is motivated
by the idea of finding geometrical abstractions for the training
data. This assumes that by the abstraction no information about
the mapping between features and labels is lost in the learning
step. In our experiments this was never the case. However,
there can be cases where this assumption is violated, especially
when the features of points inside a class are distributed very
sparsely. This problem is subject to ongoing investigations.

A

This work was partially supported by the European Union
IST programme, contract no FP6-508861, Applications of
Probabilistic Inductive Logic Programming 2, and by the
German Federal Ministry of Education and Research (BMBF)
under contract number 01IMEO1F.

R

[1] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz,
and A. Ng, “Discriminative Learning of Markov Random Fields for
Segmentation of 3D Range Data,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2005.

[2] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3D mapping,” in
Proc. of the IEEE International Conference on Robotics & Automation
(ICRA), 2000.

[3] Y. Liu, R. Emery, D. Chakrabarti, W. Burgard, and S. Thrun, “Using
EM to learn 3D models with mobile robots,” in Proceedings of the
International Conference on Machine Learning (ICML), 2001.

[4] A. Nüchter, H. Surmann, and J. Hertzberg, “Planning robot motion for 3d
digitalization of indoor environments,” in Proc. of the 11th International
Conference on Advanced Robotics (ICAR), 2003.

[5] C. Früh and A. Zakhor, “3D model generation for cities using aerial
photographs and ground level laser scans,” in Proc. of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR), 2001.

[6] O. Wulf, K. Arras, H. Christensen, and B. Wagner, “2d mapping of
cluttered indoor environments by means of 3d perception,” in Proc. of
the IEEE International Conference on Robotics & Automation (ICRA).

[7] A. Georgiev and P. Allen, “Localization methods for a mobile robot in
urban environments,” vol. 20, no. 5, pp. 851–864, 2004.

[8] R. Triebel and W. Burgard, “Using hierarchical EM to extract planes
from 3d range scans,” in Proc. of the IEEE International Conference on
Robotics & Automation (ICRA), 2005.

[9] ——, “Improving simultaneous localization and mapping in 3d using
global constraints,” in Proc. of the Twentieth National Conference on
Artificial Intelligence (AAAI), 2005.

[10] A. Nüchter, O. Wulf, K. Lingemann, J. Hertzberg, B. Wagner, and
H. Surmann, “3d mapping with semantic knowledge,” in RoboCup
International Symposium, 2005.

[11] S. Chakrabarti and P. Indyk, “Enhanced hypertext categorization using
hyperlinks,” in Proc. of the ACM SIGMOD, Seattle, Washington, 1998.

[12] B. Taskar, P. Abbeel, and D. Koller, “Discriminative probabilistic models
for relational data,” in Eighteenth Conference on Uncertainty in Artificial
Intelligence (UAI02), Edmonton, Canada, August 2002.

[13] P. Buschka and A. Saffiotti, “A virtual sensor for room detection,” in
Proc. of Intern. Conf. on Intelligent Robots and Systems (IROS), 2002.

[14] S. Koenig and R. Simmons, “Xavier: A robot navigation architecture
based on partially observable markov decision process models,” in
Artificial Intelligence and Mobile Robots, D. Kortenkamp, R. Bonasso,
and R. Murphy, Eds. MIT Press, 1998.

[15] P. Althaus and H. Christensen, “Behaviour coordination in structured
environments,” Advanced Robotics, vol. 17, no. 7, pp. 657–674, 2003.

[16] D. Hähnel, W. Burgard, and S. Thrun, “Learning compact 3d models
of indoor and outdoor environments with a mobile robot,” Robotics and
Autonomous Systems, vol. 44, pp. 15–27, 2003.

[17] C. Martin and S. Thrun, “Online acquisition of compact volumetric maps
with mobile robots,” in IEEE International Conference on Robotics and
Automation (ICRA). Washington, DC: ICRA, 2002.

[18] O. M. Mozos, C. Stachniss, and W. Burgard, “Supervised learning of
places from range data using adaboost,” in Proc. of Intern. Conference
on Robotics and Automation (ICRA), 2005.

[19] A. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3d scenes,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, no. 5, pp. 433–449, 1999.

[20] S. Ruiz-Correa, L. G. Shapiro, M. Meila, and G. Berson, “Discrimi-
nating deformable shape classes,” in Advances in Neural Information
Processing Systems (NIPS), 2004.

[21] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik, “Recognizing
objects in range data using regional point descriptors,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2004.

[22] N. Vandapel, D. Huber, A. Kapuria, and M. Hebert, “Natural terrain
classification using 3-d ladar data,” in IEEE International Conference
on Robotics and Automation, 2004.

[23] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Matching
3d models with shape distributions,” in Shape Modeling International,
Genova, Italy, 2001.

[24] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Elsevier
Academic Press.

[25] B. Taskar, V. Chatalbashev, and D. Koller, “Learning Associative Markov
Networks,” in Twenty First International Conference on Machine Learn-
ing, 2004.

[26] E. M. Gertz and S. J. Wright, “Object-oriented software for quadratic
programming,” ACM Transactions on Mathematical Software, no. 29,
pp. 58–81, 2003.

