
Logical Markov Decision Programs and the
Convergence of Logical TD(λ)

Kristian Kersting and Luc De Raedt

Institute for Computer Science, Machine Learning Lab
Albert-Ludwigs-University, Georges-Köhler-Allee, Gebäude 079,

D-79110 Freiburg i. Brg., Germany
{kersting,deraedt}@informatik.uni-freiburg.de

Abstract. Recent developments in the area of relational reinforcement
learning (RRL) have resulted in a number of new algorithms. A theory,
however, that explains why RRL works, seems to be lacking. In this pa-
per, we provide some initial results on a theory of RRL. To realize this,
we introduce a novel representation formalism, called logical Markov de-
cision programs (LOMDPs), that integrates Markov Decision Processes
(MDPs) with Logic Programs. Using LOMDPs one can compactly and
declaratively represent complex MDPs. Within this framework we then
devise a relational upgrade of TD(λ) called logical TD(λ) and prove con-
vergence. Experiments validate our approach.

1 Introduction

In the past few years, there has been a lot of work on extending probabilistic and
stochastic frameworks with abilities to handle objects and relations, see [6] for
an overview. From an inductive logic programming or relational learning point
of view, these approaches are upgrades of propositional representations towards
the use of relational or computational logic representations.

The first contribution of the present paper extends this line of research to-
wards decision making. We introduce a novel representation formalism, called
logical Markov decision programs (LOMDPs), that combines MDPs with logic
programming. The result is a flexible and expressive framework for defining
MDPs that are able to handle structured objects as well as relations. For MDPs,
such a framework, grounded in computational logic, has been missing. Only [4]
report on combining MDPs with Reiter’s situation calculus. However, it is more
complex, and model-free reinforcement techniques have not yet been addressed.
LOMDPs share - with the other upgrades of propositional representations - two
advantages. First, logical expressions (in the form of clauses, rules or transitions)
may contain variables and as such make abstraction of many specific grounded
transitions. This allows one to compactly represent complex domains. Secondly,
because of this abstraction, the number of parameters (such as rewards and
probabilities) is significantly reduced. This in turn allows one - in principle - to
speed up and simplify the learning because one can learn at the abstract rather
than at the ground level.

Many fascinating machine learning techniques have been developed under
the name reinforcement learning (RL) in the context of MDPs over the last
few decades, cf. [30]. Recently, there has also been an increased attention for
dealing with relational representations and objects in RL, see e.g. [10, 13]. Many
of these works have taken a practical perspective and have developed systems
and experiments that operate in relational worlds. At the heart of these systems
there is usually a function approximator (often a logical regression tree) that is
able to assign values to sets of states and to sets of state–action pairs. So far,
however, a theory that explains why this approach works seems to be lacking.
The second contribution of the present paper is a first step in the direction of
such a theory. The theory is based on a notion of abstract states and abstract
policies represented by logical expressions. An abstract state represents a set of
concrete states and an abstract policy is then a function from abstract states to
actions. All ground states represented by the same abstract state are essentially
assigned the same action. This is akin to what happens with relational RL using
logical regression trees (RRL-RT) [10] 1, where each leaf of the regression tree
represents an abstract state and where states classified in the same leaf obtain
the same value or action. The convergence result presented is, to the best of our
knowledge, the first presented in the context of relational reinforcement learning.

We proceed as follows. Mathematical preliminaries are reviewed in Section 2.
The LOMDP framework is introduced in Section 3. Section 4 defines abstract
policies, and Section 5 introduces the general framework of generalized relational
policy iteration to learn abstract policies. In Section 6, we devise LTD(λ) for
evaluation abstract policies. LTD(λ) is experimentally validated in Section 7.
Before concluding, we discuss related work.

2 Preliminaries

In this section, we introduce some of the basic terminology of relational logic
and MDPs, cf. [14] and [30].

Logic: A first-order alphabet Σ is a set of relation symbols r with arity
m ≥ 0, and a set of functor symbols f with arity n ≥ 0. If n = 0 then f is called
a constant, if m = 0 then p is called a proposition. An atom r(t1, . . . , tm) is a
relation symbol r followed by a bracketed n-tuple of constants or variables. A
conjunction is a set of atoms. A substitution θ = {V1/t1, . . . , Vn/tn} {X/tex},
is an assignment of terms ti to variables Vi. A conjunction A is said to be θ-
subsumed by a conjunction B, denoted by B ≤θ A, if there exists a substitution θ
such that Bθ ⊂ A. A term, atom or clause E is called ground when it contains no
variables, i.e., vars(E) = ∅. A substitution θ is the most general unifier mgu(a, b)
of atoms a and b iff. a = bθ and for each substitution θ′ s.t. a = bθ′, there exists
a substitution γ such that θ′ = θγ. The Herbrand base of Σ, denoted as hbΣ , is
the set of all ground atoms constructed with the predicate and functor symbols
in the alphabet Σ.

1 RRL is sometimes used as short hand for Džeroski et al.’s approach. To distinguish
it from relational reinforcement learning we will use RRL-RT as short hand.

Notation: Atoms are written in lower case a, sets of atoms in upper case A,
and sets of sets of atoms in bold, upper case A. To highlight that a (resp. A, A)
may not be ground, we will write � (resp.

�
, �).

Markov Decision Processes (MDP): A MDP is a tuple M = (S,A,T, λ).
Here, S is a set of system states. The agent has available a finite set of actions
A(z) ⊆ A for each state z ∈ S which cause stochastic state transitions. For each

z, z′ ∈ S and a ∈ A(z) there is a transition T in T, i.e., z′
p:r:a
←−−− z. The tran-

sition denotes that with probability P (z, a, z′) := p action a causes a transition
to state z′ when executed in state z. For each z ∈ S and a ∈ A(z) it holds∑

z′∈S P (z, a, z′) = 1. The agent gains an expected next reward R(z, a, z′) := r
for each transition. If the reward function R is probabilistic (mean value de-
pends on the current state and action only) the MDP is called nondeterministic,
otherwise deterministic. In this paper, we only consider MDPs with stationary
transition probabilities and stationary, bounded rewards. A (stationary) deter-
ministic policy π : S 7→ A is a set of expressions of the form a ← z for each
z ∈ S where a ∈ A(z). It denotes a particular course of actions to be adopted
by an agent, with π(z) := a being the action to be executed whenever the agent
is in state z. We assume an infinite horizon and also that the agent accumulates
the rewards associated with the states it enters. Future rewards are discounted
by 0 ≤ λ < 1. The value of a policy π is the solution of the following system of
linear functions Vπ(z) =

∑
z′

p:r:a
←−−−z∈T

p · [r + λ · Vπ(z′)]. A policy π is optimal

if Vπ(z) ≥ Vπ′(z) for all z ∈ S and policies π′. A (stationary) nondeterministic
policy π maps a state to a distribution over actions. The value of π is then the
expectation.

3 Logical Markov Decision Programs

The logical component of a MDP is essentially a propositional representation
because the state and action symbols are flat. The key idea underlying logi-
cal Markov decision programs (LOMDPs) is to replace these flat symbols by
abstract symbols.

Definition 1. An abstract state is a conjunction � of logical atoms, i.e., a log-
ical query. In case of an empty conjuction, we write ∅.

Abstract states represent sets of states. More formally, a state Z is a (finite)
conjunction of ground facts over the alphabet Σ, i.e. a logical interpretation, a
subset of the Herbrand base. In the blocks world, one possible state Z is on(a, b),
on(b, fl), bl(a), bl(b), cl(a), cl(fl) where on(a, b) denotes that object a is on
b, cl(a) states that a is clear, bl(a) denotes that a is a block, and fl refers
to the floor. An abstract state � is e.g. on(X, Y), bl(Y), bl(X). It represents all
states (over the given alphabet Σ) where a block X is on top of another block Y.
Formally speaking, an abstract state � represents all states Z for which there
exists a substitution θ such that � θ ⊆ Z. Let S(�) denote this set of states. The
substitution in the previous example is {X/a, Y/b}. By now we are able to define
abstract transitions.

Definition 2. An abstract transition T is an expression of the form � p:r: �
←−−− �

where P(T) := p ∈ [0, 1], R(T) := r ∈ R, � := act(T) is an abstract action, and
body(T) := � and head(T) := � are abstract states.

We assume T to be range-restricted, i.e., vars(�) ⊆ vars(�), and vars(�) ⊆
vars(�), so that an abstract transition relies on the information encoded in the
current state only. The semantics of an abstract transition2 are:

If the agent is in a state Z, such that � ≤θ Z, then it will go to the
state Z ′ := [Z \ � θ] ∪ � θ with probability p when performing action � θ
receiving an expected next reward of r.

For illustration purposes consider the following abstract transition, which moves
block X from Y to the floor with probability 0.9:

on(X, fl), cl(X)cl(Y)
0.9:−1:mv fl(X)
←−−−−−−−−−− on(X, Y), cl(X)

Applied to the state Exp, which is

on(a, b), on(b, fl), on(c, fl), cl(a), cl(c), bl(a), bl(b), bl(c),

the abstract transition tells us that mv fl(a) leads to

on(a, fl), on(b, fl), on(c, fl), cl(a), cl(b), cl(c), bl(a), bl(b), bl(c)

with probability 0.9 gaining a reward of −1. One can see that this implements
a kind of first-order variant of probabilistic STRIPS operators.

As LOMDPs typically consist of a set � of multiple abstract transitions there
are two constraints to be imposed in order to obtain meaningful LOMDPs. First,
let � be the set of all bodies of abstract state transitions in the LOMDP (modulo
variable renaming). For � ∈ � , let

�
(�) denote the set of all abstract actions

� such that � p:r: �
←−−− � is in the LOMDP. We require

∀ � ∈ � ,∀ � ∈
�

(�)
∑

T∈ � ,

body(T)= � ,

act(T)= �
P(T) = 1.0. (1)

This condition guarantees that all abstract successor states are specified when
executing an abstract action in an abstract state and that their probabilities sum
to 1. Secondly, we need a way to cope with contradicting transitions and rewards.

Indeed, consider the transitions e
1:−1:a
←−−−− d, g

0.5:−2:a
←−−−−− f and e

0.5:−2:a
←−−−−− f, and

state Z = {d, f}. The problem with these transitions is that the first transition
says that if we execute a in Z we will go with probability 1 to state Z ′ = {e, f}
whereas the last two ones assign a probability of 0.5 to state Z ′′ = {d, g} and
state Z ′′′ = {d, e}. To ensure that only one abstract state is firing (d or f), we
assume a total order ≺ over all pairs of actions and rules bodies that appear
in � and apply a conflict resolution similar to Prolog. We do a forward search

2 We implicitly assume that an abstract action has some preconditions.

�� ����������������������

A C

floor

A

(b)(a)

stacks
of
blocks

mv(A,C)mv_fl(A) mv_fl(A)

Fig. 1. The two underlying patterns of the blocks world for stacking. (a) There are at
least two stacks of height > 0. (b) There is only one stack left (the goal state). The
serrated cuts indicate that A (resp. C) can be on top of some other block or on the
floor.

among the pairs stopping with the first matching one. For instance for Z = {d, f}
only the first abstract transition fires whereas for state e, f the last two abstract
transitions fire.

By now we are able to formally define LOMDPs.

Definition 3. A logical Markov decision process (LOMDP) is a tuple � =
(Σ,

�
, � , λ) where Σ is a first-order alphabet,

�
is a set of abstract actions, �

is a finite set of abstract state transitions based on actions in
�

, and 0 ≤ λ < 1
is a discount factor, such that (1) holds.

Before giving the semantics of LOMDPs, let us also illustrate LOMDPs on the
stack example from the blocks world where the goal is to move all blocks on one
single stack. For the sake of simplicity, we assume that all variables denote to
different objects 3:

1: absorb
1.0:0.0:absorb
←−−−−−−−− absorb.

2:
on(A, fl), cl(A),

on(C, D), cl(C),cl(B)
0.9:−1:mv fl(A)
←−−−−−−−−−−

on(A, B), cl(A),
on(C, D), cl(C).

3:
on(A, C), cl(A),
on(C, D), cl(B)

0.9:−1:mv(A,C)
←−−−−−−−−−

on(A, B), cl(A),
on(C, D), cl(C).

4: absorb
1.0:20:stop
←−−−−−−− on(A, B),cl(A).

If the transition probabilities do not sum to 1.0 for an abstract action then there
is an additional abstract transition for staying in the current abstract state.
In order to understand the LOMDP stack, one has to understand the abstract
states that govern the underlying patterns of the blocks world, cf. Figure 1. Two
abstract states (the artificial absorb state excluded) together with the order in
which they occur cover all possible state action patterns in the blocks world 4.
Furthermore, stack is an episodic task, i.e., it ends when reaching the goal state.
In RL, episodic tasks are encoded using absorbing states which transition only to
themselves and generate only zero rewards. Transition 1 encodes the absorbing

3 This can be achieved by e.g. adding diff(X, Y) to denote that X and Y are different.
4 We assume that we start in a legal blocks world. Therefore, floor will not be moved.

state. Transitions 2 and 3 cover the cases in which there are (at least) two
stacks. Finally, transition 4 encodes the situation that there is only one stack,
i.e. our goal state stack. Here, on(A, B), cl(A), bl(B) are only used to describe the
preconditions of mv(A, B): the floor cannot be moved. When performing action
mv(a, b) in state Exp (see above) only abstract transition 3 and the omitted
abstract transition for staying in the state are firing. Similar, we can easily encode
the unstack goal. Note that we have not specified the number of blocks. The
LOMDP represents all possible blocks worlds using only 6 abstract transitions,
i.e. 12 probability and reward parameters, whereas the number of parameters of
a propositional system explodes, e.g., for 10 blocks there are 58, 941, 091 states.

Although, as the following theorem shows, the semantics of LOMDPs are
also uniquely specified in the case of functors, we will focus in this paper on
functor-free LOMDPs. In this case, the induced MDP M(�) is finite.

Theorem 1. Every LOMDP � = (Σ,
�

, � , λ) specifies a discrete MDP
M(�) = (S,A,T, λ).

Proof sketch: Let hbs
Σ ⊂ hbΣ be the set of all ground atoms built over abstract

states predicates, and let hba
Σ ⊂ hbΣ be the set of all ground atoms built over

abstract action names. Now, construct M(�) from � as follows. The countable
state set S consists of all finite subsets of hbs

Σ . The set of actions A(Z) for state

Z ∈ S is given by A(Z) ={ � θ| � p:r: �
←−−− � ∈ � minimal w.r.t. ≺ , � ≤θ Z} . We

have that |A(Z)| < ∞ holds. The probability P (Z, a, Z ′) of a transition in T
from Z to another state Z ′ after performing an action a is the probability value
p associated to the unique abstract transition matching Z, a, and Z ′ normalized
by the number of transitions of the form Z ′′

a
←− Z in � . If there is no abstract

transition connecting Z and Z ′, the probability is zero. The bounded rewards
R(Z, a, Z ′) are constructed in a similar way but are not normalized. ut

From Theorem 1 and [27, Theorem 6.2.5] it follows that for every LOMDP,
there exists an optimal policy (for ground states). Finally, LOMDPs generalize
(finite) MDPs because every (finite) MDP is a propositional LOMDP in which
all relation symbols have arity 0.

4 Abstract Policies

Theorem 1 states that every LOMDP � specifies a discrete MDP M(�). The
existence of an optimal policy π for MDP M(�) is guaranteed. Of course, this
policy is extensional or propositional in the sense that it specifies for each ground
state separately which action to execute. Specifying such policies for LOMDPs
with large state spaces is cumbersome and learning them will require much effort.
Therefore, we introduce abstract policies π, which intentionally specify the action
to take for an abstract state (or sets of states).

Definition 4. An abstract policy π over Σ is a finite set of decision rules of
the form � ← � , where � is an abstract action and � is an abstract state 5 and
vars(�) ⊆ vars(�) .

5 We assume that � is applicable in � .

�� ��
�� ��

�� 	�	�	�	�	�	�	�		�	�	�	�	�	�	�	

�
�
�
�
�
�
�

�
�
�
�
�
�
�

[3]

A

B

mv(E,A)

E

[4]

mv(A,B)

BA

A

B

C

D

E

mv_fl(A)

[1] [2]

A

B

C

D

mv_fl(A)

A

B

stop

[5]

Fig. 2. The decision rules of the unstack-stack policy. In the figure, the decision rules
are ordered from left to right, i.e., a rule fires only if no rule further to the left fires.

Usually, π consists of multiple decision rules. We apply the same conflict reso-
lution technique as for abstract transitions. This means we assume a total order
≺π among the decision rules in π and do a forward search stopping with the
first matching decision rule such as in Prolog. Consider for instance the following
unstack-stack abstract policy:

〈1〉 mv fl(A)← on(A, B), on(C, D), on(E, fl),cl(A), cl(C), cl(E).
〈2〉 mv fl(A)← on(A, B), on(C, D), cl(A), cl(C).
〈3〉 mv(E, A)← on(A, B), on(E, fl), cl(A), cl(E).
〈4〉 mv(A, B)← cl(A), cl(B).
〈5〉 stop← on(A, B), cl(A).

where we omitted the absorb state in front and statements that variables refer
to different blocks. For instance in state Exp (see before), only decision rule 〈3〉
would fire. The policy, which is graphically depicted in Figure 2, is interesting
for several reasons.

1. It is close to the unstack-stack strategy which is well known in the planning
community [29]. Basically, the strategy amounts to putting all blocks on the
table and then building the goal state by stacking all blocks from the floor
onto one single stack. No block is moved more than twice. The number of
moves is at most twice the number of blocks.

2. It perfectly generalizes to all other blocks worlds, no matter how many blocks
there are.

3. It cannot be learned in a propositional setting because here the optimal ,
propositional policy would encode the optimal number of moves.

The meaning of a decision rule � ← � is that

if the agent is in a state Z such that � ≤θ Z, then the agent performs
action � θ with uniform probability, i.e., 1/

∑
� ← � ∈π | {θ′ | � ≤θ′ Z} |,

denoted by π(Z).

Let � = { � 1, . . . , � m} be the set of bodies in π (ordered w.r.t. ≺π). We call
� the abstraction level of π and assume that it covers all possible states of the
LOMDP. This together with the total order guarantees that � forms a partition
of the states. The equivalence classes [� 1], . . . , [� m] induced by � are inductively

defined by [� 1] = S(� 1), [� i] = S(� i)\
⋃i−1

j=1[� j], for i ≥ 2. Because � generally
does not coincide with � , the following proposition holds.

Generalized Relational Policy Improvement

Generalized Policy Improvement

Vπ

π ← refine(π) π ← greedy(V)

Refinement

Evaluation

V ← V π

Improvement

Fig. 3. Generalized relational policy iteration which accounts for different abstraction
levels. It is an upgrade of generalized policy iteration for traditional reinforcement
learning as illustrated in [30]. greedy denotes the greedy policy computed from the
current value function, see [30].

Proposition 1. Any abstract policy π specifies a nondeterministic policy π at
the level of ground states.

5 Generalized Relational Policy Iteration

The crucial question is now, how to learn abstract policies? According to Sutton
and Barto [30], almost all reinforcement learning systems follow the so called
generalized policy iteration (GPI) scheme shown in Figure 3. It consists of two
interacting processes: policy evaluation and policy improvement. Here, evaluating
a policy refers to computing the value function of the current policy, and policy
improvement refers to computing a new policy based on the current value func-
tion. Indeed, GPI cannot directly be applied to learn abstract policies. Different
abstraction levels have to be explored. Thus, one needs an additional process
which we call policy refinement. The resulting generalized relational policy im-
provement (GRPI) scheme is illustrated in Figure 3.

Generally speaking, policy refinement traverses the space of possible abstract
policies. To do so, one can apply ILP techniques [24, 11]. For instance, we can
refine the unstack-stack policy by adding a refined variant of decision rule 〈1〉,

〈0〉 mv fl(A)← on(A, B), on(C, D), on(D, floor), on(E, fl), cl(A), cl(C), cl(E).

One can, however, do even better. When we have a model of the domain, it
can be e.g. used to score different refinements (e.g. measuring the influence of
a refinement of one state on the remaining state [25, 22]). If we do not have a
model of the domain, we can employ the experience we already have, i.e., the
states visited. This approach is followed by Džeroski et al. [10] within RRL-RT.
To implement the policy refinement, Džeroski et al. employ logical regression
trees for (abstract state-action) value function approximations. Starting with
some initial abstraction level, RRL then integrates evaluation, improvement,
and refinement in that it uses episodes to build a regression tree. Thus, RRL-RT
can be seen as an instance of GRPI.

Empirically, RRL-RT has been proven to work very well on a wide range of
domains such as blocks world and Digger. In the present paper, we will provide a

first step in explaining why it works so well. More precisely, we will focus on the
relational evaluation problem within GRPI approaches and prove convergence
for an upgrade of TD(λ).

6 Logical TD(λ)

The relational evaluation problem considers how to compute the state-value func-
tion V π for an arbitrary abstract policy π. In this paper, we focus on model-free
approaches. Model-free approaches do not know the reward and the transition
functions in advance when computing the value of an abstract policies from
experiences 〈Xt, at, Yt, rt〉. Furthermore, in contrast to traditional model-free
approaches, maintaining values for all states of the underlying MDP M(�) is
not feasible.

The basic idea to come up with a relational evaluation approach is to de-
fine the expected reward of � ∈ � to be the average expected value for all the
states in [�]. This is a good model because if we examine each state in [� i],
we make contradictory observations of rewards and transition probabilities. The
best model is the average of these observations given no prior knowledge of the
model. Unfortunately, it has been experimentally shown that (already model-
based) reinforcement learning with function approximation does not converge in
general, see e.g. [5]. Fortunately, this does not hold for averagers. To prove con-
vergence, we reduce the “abstract” evaluation problem to the evaluation problem
for M(�) = (S,A,T, λ) with state aggregation (see e.g. [17, 28, 22]) with respect
to [� 1], . . . , [� m]. For ease of explanation, we will focus on a TD(0) approach 6,
see e.g. [30]. Results for general TD(λ) can be obtained by applying Tsitsiklis
and Van Roy’s results [32].

Algorithm 1 sketches logical TD(0). Given some experience following an ab-

stract policy π, LTD(0) updates its estimate V̂ of V . If a nonterminal state is
visited, then it updates its estimate based on what happens after that visit. In-
stead of updating the estimate at the level of states, LTD(0) updates its estimate
at the abstraction level � of π.

To show convergence, it is sufficient to reduce LTD(0) to TD(0) with soft
state aggregation [28]. The basic idea of soft state aggregation is to cluster the
state space, i.e., to map the state space S into clusters c1, . . . , ck. Each state
s belongs to a cluster ci with a certain probability P (ci|s). The value function
then is computed at the level of clusters rather than states. Logical TD(0) is
a special case of soft state aggregation. To see this recall that the abstraction
level � partitions the state space S. Thus, one can view the abstract states
in � as clusters where each state Z ∈ S belongs to only one cluster [���], i.e.,
P ([���] | Z) = 1 if Z ∈ S([�]); otherwise P ([���] | Z) = 0. Furthermore, the
state set S and the action set A of M(�) are finite, and the agent is following

6 A similar analysis can be done for model-based approaches. Gordon [17] showed
that value iteration with an averager as function approximator converges within a
bounded distance from the optimal value function of the original MDP.

1: Let π be an abstract policy with abstraction level �
2: Initialize bV0(�) arbitrarily for each � ∈ �
3: repeat (for each episode)
4: Initialize ground state Z ∈ SM(�)

5: repeat (for each step in episode)
6: Choose action a in Z based on π as described in Section 4, i.e.,

i. select first decision rule � ← � in π which matches according to ≺π ,
ii. select a uniformally among induced ground actions.

7: Take action a, observe r and successor state Z ′ as described in Section 3, i.e.,

a. select with probability p abstract transition � p:r: � ′

←−−−− � in �
where (� ′, �) matches (a, Z) first according to ≺,

b. select Z ′ uniformally among all induced successor states.
8: Let � ′ ∈ � be the abstract state first matching Z ′ according to ≺π

9: bV (�) := bV (�) + α · (r + λ · bV (� ′)− bV (�))
10: Set Z := Z ′

11: until Z is terminal
12: until converged or some maximal number of episodes exceeded

Algorithm 1: Logical TD(0) where α is the learning rate and V̂ (�) is the
approximation of V (�).

a nondeterministic policy. Therefore, the assumptions of the following Theorem
are fulfilled.

Theorem 2 (adopted from Singh et al. [28], Corollary 2). TD(0) with
soft state aggregation applied to M(�) while following a policy π converges with
probability one to the solution of the following system of equations: ∀ � i ∈ � :
V ([� i]) =

∑

Z∈S

Pπ(Z | [� i])

Rπ(Z) + λ

∑
�

j∈
�

Pπ(Z, [�]j)V ([� j])

 (2)

From this, it follows that LTD(0) converges, i.e. LTD(0) applied to a LOMDP
� while following an abstract policy π at abstraction level � converges with
probability one to the solutions of the system of equations (2).

Note that for arbitrary abstraction levels, while Theorem 2 shows that LTD(0)
learning will find solutions, the error in the (ground) state space will not be zero
in general. Equation (2) basically states that an abstract policy π induces a
process L over [� 1], . . . , [� m] whose transition probabilities and rewards for a
state [� i] are averages of the corresponding values of the covered ground states
in M(�), see also [20]. Due to that, the process L appears to a learner to have
a non-Markovian nature. Consider the following LOMDP

1: q
1.0:0.0:a
←−−−−−p, q 2: ∅

1.0:1.0:a
←−−−−−p and 3: p

1.0:0.0:a
←−−−−−∅.

and the abstraction level � = {p, q, ∅}. Here, L will assign the same probabil-
ities and rewards to the transitions from [q] to [p] and from [∅] to [p], namely

the ones of transition 3. Consequently, the values for [q] and [∅] are the same
in L as the next state is the same, namely [p]. M(�), however, assigns differ-

ent values to both as the following traces show: q
1.0:0.0:a
−−−−−→p, q

1.0:1.0:a
−−−−−→q . . . and

∅
1.0:0.0:a
−−−−−→p

1.0:0.0:a
−−−−−→∅ . . . Nevertheless, LTD(0) converges at the level of � and can

generalize well even for unseen ground states due to the abstraction.
To summarize, Theorem 2 shows that temporal-difference evaluation of an

abstract policy converges. Different policies, however, will have different errors
in the ground state space. In the context of GRPI (see Section 5), this suggests
to use refinement operators to heuristically reduce the error in the ground state
space. Applied on RRL-RT, this reads as follows.

1. Because each logical regression tree induces a finite abstraction level, temporal-
difference evaluation of a fixed regression tree converges.

2. Relational node/state splitting (based on the state sequences encountered so
far) is used to heuristically reduce the error in the ground state space.

7 Experiments

Our task was to evaluate abstract policies within the blocks world. This task was
motivated by the experiments in relational reinforcement learning (RRL) [10]
and by the fact that the blocks world is the prototypical toy domain requiring
relational representations. In contrast to the experiments reported by [10] on
RRL, we exclusively use the standard predicates on, cl, and bl. [10] also needed
to make use of several background knowledge predicates such as above, height
of stacks as well as several directives to the first-order regression tree learner.
Another difference to our approach is that RRL induces the relevant abstract
states automatically using a regression tree learner. Our goal, however, was not
to present an overall GRPI system but to put the following hypotheses to test:

H1 LTD(0) converges for finite abstraction levels.
H2 Using LTD(0), abstract policies can be compared.
H3 LTD(0) works for actions with multiple outcomes.
H4 Relational policy refinement is needed.
H5 Variance can be used as a heuristic state-splitting criterion.

We implemented LTD(0) using the Prolog system YAP-4.4.4. All experiments
were run on a 3.1 GHz Linux machine and the discount factor λ was 0.9, and
the learning rate α was set to 0.015. We randomly generated 100 blocks world
states for 6 blocks, for 8 blocks, and for 10 blocks using the procedure described
by [29]. This set of 300 states constituted the set Start of starting states in all
experiments. Note that for 10 blocks a traditional MDP would have to represent
58, 941, 091 states of which 3, 628, 800 are goal states. The result of each exper-
iment is an average of five runs of 5000 episodes where for each new episode
we randomly selected one state from Start as starting state. For each run, the
value function was initialized to zero. Note that in all experiments, the abstract
policies and value functions apply no matter how many blocks there are.

0 1000 2000 3000 4000 5000

0

5

10

15

20

(a) unstack−stack

Episodes

V
al

ue

〈4〉 〈3〉

〈1〉

〈2〉 〈5〉

0 1000 2000 3000 4000 5000

−5

0

5

10

15

20

(b) modified unstack−stack

Episodes

V
al

ue

〈4〉

〈3〉

〈2〉

〈1〉

〈5〉

Fig. 4. Learning curves for TD(0) on the evaluation problem (a) for the unstack-stack
policy and (b) for the modified unstack-stack policy. The predicted values are shown
as a function of number of episodes. These data are averages over 5 reruns; the error
bars show the standard deviations.

Experiment 1: Our task was to evaluate the unstack-stack abstract policy for
the stack LOMDP, both introduced above. The results are summarized in Fig-
ure 4 (a) and clearly show that hypothesis H1 holds. The learning curves show
that the values of the abstract states converged, i.e., LTD(0) converged. Note
that the value of abstract state 〈5〉 remained 0. The reason for this is that, by
accident, no state with all blocks on the floor was in Start. Furthermore, the
values converged to similar values in all runs. The values basically reflect the
nature of the policy. It is better to have a single stack than multiple ones. The
total running time for all 25000 episodes was 67.5 seconds measured using YAP’s
build-in statistics(runtime,).

Experiment 2: In reinforcement learning, policy improvement refers to computing
a new policy based on the current value function. In a relational setting, the
success of, e.g., computing the greedy policy given an abstract value function
depends on the granularity of the value function. For instance, based on the last
value function, it is not possible to distinguish between mv fl(A) and mv(A, B) as
actions in decision rule 〈1〉 because both would get the same expected values.
To overcome this, one might refine the abstraction level (see experiment 5) or
evaluate different policies at the same abstraction level.

In this experiments, we evaluated a modified “unstack-stack” policy in the
same way as in the first experiment. It differed from the “unstack-stack” policy
in that we do not perform mv fl(A) but move(E, A) in the decision rule 〈1〉. The
results are summarized in Figure 4 (b). Interestingly, the values of abstract states
〈1〉 and 〈2〉 dropped from approximately 5 to approximately −4. This shows that
unstack-stack is preferred over this policy. Furthermore, the total running time of
all 25000 episodes increased to 97.3 seconds as the average length of an episode
increased. This clearly shows that hypothesis H2 holds.

0 1000 2000 3000 4000 5000

0

5

10

15

20

Episodes

V
al

ue

(a) multiple outcomes

〈4〉 〈3〉

〈1〉

〈2〉 〈5〉

0 1000 2000 3000 4000 5000

0

5

10

15

20

(b) unstack

Episodes

V
al

ue

Fig. 5. Learning curves for TD(0) on the evaluation problem for the unstack-stack
policy where (a) the actions of the underlying LOMDP have multiple outcomes and
(b) the underlying LOMDP encoded the unstack problem. The predicted values are
shown as a function of number of episodes. These data are averages over 5 reruns; the
error bars show the standard deviations.

Experiment 3: We reran the first experiment where the underlying LOMDP now
encoded that mv fl and mv have multiple outcomes. For action mv fl(A, fl),
block A may fall on C, and for action mv(A, C) the block A may fall on the floor
fl. Again, LTD(0) converged as Figure 5 (a) shows. This shows that hypotheses
H3 holds.

Experiment 4: We reran the first experiment, i.e., we evaluated the unstack-
stack policy, but now the underlying LOMDP encoded the unstack problem.
Again, LTD(0) converged as Figure 5 (b) shows. The running time over all
25000 episodes, however, increased to 317.7 seconds as the underlying LOMDP
was more complex. This shows that hypothesis H1 holds.

Experiment 5: Finally, we investigated on(a, b) as goal. The underlying LOMDP
was

absorb
1.0:20:stop
←−−−−−− on(a, b).

on(A, fl), cl(A), on(C, D), cl(C), cl(B)
0.9:−1:mv fl(A)
←−−−−−−−−−− on(A, B), cl(A), on(C, D), cl(C).

on(A, C), cl(A), on(C, D), cl(B)
0.9:−1:mv(A,C)
←−−−−−−−−− on(A, B), cl(A), on(C, D), cl(C).

on(A, floor), cl(A), cl(B)
1.0:−1:mv(A,floor)
←−−−−−−−−−−−− on(A, B), cl(A).

assuming that all variables denote to different objects and absorb omitted. If
the transition probabilities do not sum to 1.0 then there is an additional ab-
stract transition for staying in the current abstract state. Following the same
experimental setup as in the first experiment but using a step size α = 0.5, we
evaluated two different policies, namely 〈a〉 − 〈e〉, 〈l〉 and 〈a〉 − 〈l〉 where

0 1000 2000 3000 4000 5000

0

2

4

6

8

10

12

14

16

18

20

Episodes

V
al

ue

(a) restricted policy

〈a〉 〈b〉

〈d〉 〈l〉

0 1000 2000 3000 4000 5000

0

5

10

15

20

(b) all decision rules

Episodes

V
al

ue

〈a〉

〈b〉

〈d〉

〈j〉

〈l〉

Fig. 6. Learning curves for TD(0) on the evaluation problem for the on(a,b) policy
where the underlying LOMDP encoded the on(a,b) goal. The predicted values are
shown as a function of number of episodes. These data are averages over 5 reruns; the
error bars show the standard deviations; only state with a non zero value are shown
(note that we used a finite set of starting states only). (a) Policy restricted to 〈a〉−〈e〉
and 〈l〉. (b) All decision rules 〈a〉 − 〈l〉.

〈a〉 stop← on(a, b).
〈b〉 mv(a, b)← cl(a), cl(b), on(a, B).
〈c〉 mv fl(b)← cl(b), on(a, C), on(b, a).
〈d〉 mv fl(A)← cl(b), cl(A), on(a, C), on(A, a).
〈e〉 mv fl(A)← cl(a), cl(A), on(a, C), on(A, b).
〈f〉 mv fl(A)← cl(A), on(a, D), on(b, a), on(A, b).
〈g〉 mv fl(b)← cl(b), on(a, C), on(b, D), on(D, a).
〈h〉 mv fl(a)← cl(a), on(a, C), on(C, b).
〈i〉 mv fl(a)← cl(A), on(a, D), on(A, b).
〈j〉 mv fl(A)← cl(b), cl(A), on(a, C), on(A, D), on(D, a).
〈k〉 mv fl(A)← cl(a), cl(A), on(a, C), on(A, D), on(D, b).
〈l〉 mv fl(A)← cl(A), on(A, D).

In both cases, LTD(0) converged as Figure 6 shows. The running time over all
25000 episodes was 4.85 seconds (〈a〉 − 〈e〉, 〈l〉) and 6.7 seconds (〈a〉 − 〈l〉). In
both experiments, state 〈l〉 was exceptional. It obeyed a higher variance than
the other states. The reason is that it acts as a kind of “container” state for all
situations which are not covered by the preceding abstract states. In the refined
policy, all added states showed low variances. Thus, we may iterate and refine
〈l〉 even more. The experiments show that hypotheses H1, H4, and H5 hold
and supports the variance-based state-splitting approach taken in RRL-RT [10].

8 Related Work

Within reinforcement learning (RL), there is currently a significant interest in
using rich representation languages. Kaelbling et al. [19] and Finney et al. [13]
investigated propositionalization methods in relational domains, namely deictic
representations (DRs). DRs avoid enumerating the domain by using variables
such as the-block-on-the-floor. Although DRs have led to impressive results [23,
34], Finney et al.’s results show that DR may degrade learning performance
within relational domains. According to Finney et al. relational reinforcement
learning such as RRL-RT [10] is one way to effectively learning in domains
with objects and relations. The Q-function is approximated using a relational
regression tree learner. Although the experimental results are interesting, RRL-
RT did not explain, in theoretical terms, why it works. We provide some new
insights on this.

Furthermore, the present work complements Kersting and De Raedt’s [20]
and Van Otterlo’s [33] approaches. In [20], Kersting and De Raedt report on
experiments with a relational upgrade of Q-learning. Van Otterlo devised a re-
lational prioritized sweeping approach. Both works, however, do not consider
convergence proofs.

The LOMDP formalism is related to Poole’s independent choice logic [26]. In-
dependent choice logic makes the dependencies among the probabilities explicit,
but does not consider the learning problem.

From a more general point of view, our approach is closely related to decision
theoretic regression (DTR) [3]. State spaces are characterized by a number of
random variables and the domain is specified using logical representations of
actions that capture the regularities in the effects of actions. Because ‘existing
DTR algorithms are all designed to work with propositional representations of
MDPs’, Boutilier et al. [4] proposed first order DTR which is a probabilistic
extension of Reiter’s situation calculus. The language is certainly more expressive
than that of LOMDPs. However, it is also much more complex. Furthermore,
Boutilier et al. assume that the model is given whereas in the present paper
model-free learning methods have been applied.

Using a model-based approach, Yoon et al. [35] introduced a method for
generalizing abstract policies from small to large relational MDPs employing de-
scription logics. The method has been extended [12] to an approximated policy
iteration. Guestrin et al. [18] specify relationally factored MDPs based on prob-
abilistic relational models [15] but not in a reinforcement learning setting. In
contrast to LOMDPs, relations do not change over time. This assumption does
not hold in many domains such as the blocks world.

The idea of solving large MDP by a reduction to an equivalent, smaller
MDP is also discussed e.g. in [7, 16]. However there, no relational or first order
representations have been investigated. Kim and Dean [22] investigate model-
based RL based on non-homogenous partitions of propositional, factored MDPs.
Furthermore, there has been great interest in abstraction on other levels than
state spaces. Abstraction over time [31] or primitive actions [8, 1] are useful ways

to abstract from specific sub-actions and time. This research is orthogonal and
could be applied to LOMDPs in the future.

Finally, Baum [2] reports on solving blocks worlds with up to 10 blocks using
RL related techniques. However, the language is domain-dependent and is not
based on logic programming.

9 Conclusions

We have introduced a representation that integrates MDPs with logic programs.
This framework allows one to compactly and declaratively represent complex (re-
lationally factored) MDPs. Furthermore, it allows one to gain insights into rela-
tional reinforcement learning approaches. More precisely, we introduced abstract
policies for LOMDPs and generalized relational policy iteration (GRPI) which is
a general scheme for learning abstract policies. Because abstract policies basi-
cally introduce state aggregation, they can be evaluated using simple upgrades
of (propositional) reinforcement learning methods such as TD(λ)-learning. Con-
vergence has been proven and experimentally validated.

Such convergence guarantees are important because recent results on exact
relational value iteration (RVI) [21] show that RVI can require an infinite ab-
straction level, i.e., an infinite logical regression tree in order to converge to exact
values. Here, approximative approaches such as LTD(λ) are useful, as they allow
one to cut the regression tree at any level and to estimate the best values one
can achieve at that abstraction level (cf. experiment 5). In other words, approx-
imation is not only an interesting feature, but in some cases also a necessity for
successful relational reinforcement learning.

The authors hope that the presented framework will be useful as a starting
point for further theoretical developments in RRL. Of interest are: real-world
applications; extending the language by e.g. negation and ∀-quantification; un-
ordered abstract transitions; MDP-specific relational state splitting rules; ap-
plying Gordon’s convergence results to RRL-RT with k-nearest-neighbour [9] (if
possible); and to prove convergence of logical Q-learning [20]. The last point
seems to be challenging as it also introduces action aggregation. Nevertheless,
initial experiments [20] show that logical Q-learning performs well.

Acknowledgments The authors are deeply grateful Bob Givan for valuable
discussions on the paper and its topic. The authors would also like to thank
Martijn Van Otterlo for fruitful discussions on the topic. Also many thanks to
the anonymous reviewers whose comments helped to improve the paper. The
research was supported by the European Union IST programme, contract no.
FP6-508861, Application of Probabilistic Inductive Logic Programming II.

References

1. D. Andre and S. Russell. Programmable reinforcement learning agents. In Advances
in Neural Information Processing Systems 13, pages 1019–1025. MIT Press, 2001.

2. E. B. Baum. Towards a Model of Intelligence as an Economy of Agents. Machine
Learning, 35(2):155–185, 1999.

3. C. Boutilier, T. Deam, and S. Hanks. Decision-Theoretic Planning: Structural
Assumptions and Computational Leverage. JAIR, 11:1–94, 1999.

4. C. Boutilier, R. Reiter, and B. Price. Symbolic Dynamic Programming for First-
order MDPs. In Seventeenth International Joint Conference on Artificial Intelli-
gence (IJCAI-01), pages 690–700, Seattle, USA, 2001.

5. J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: safely
approximating the value function. In Advances in Neural Information Processing
Systems, volume 7, 1995.

6. L. De Raedt and K. Kersting. Probabilistic Logic Learning. ACM-SIGKDD Ex-
plorations: Special issue on Multi-Relational Data Mining, 5(1):31–48, 2003.

7. R. Dearden and C. Boutilier. Abstraction and approximate decision theoretic
planning. Artificial Intelligence, 89(1):219–283, 1997.

8. Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value
function decomposition. Journal of Artificial Intelligence Research, 13:227–303,
2000.

9. K. Driessens and J. Ramon. Relational Instance Based Regression for Relational
Reinforcement Learning. In Proceedings of the Twelfth International Conference
on Machine Learning, pages 123–130, Washington DC, USA, 2003.

10. S. Džeroski, L. De Raedt, and K. Driessens. Relational reinforcement learning.
Machine Learning, 43(1/2):7–52, 2001.

11. S. Džeroski and N. Lavrač. Relational Data Mining. Springer-Verlag, 2001.

12. A. Fern, S. Yoon, and R. Givan. Approximate policy iteration with a policy
language bias. In Proceedings of the Neural Information Processing Conference
(NIPS), 2003.

13. S. Finney, N. H. Gardiol, L. P. Kaelbling, and T. Oates. The thing that we tried
didn’t work very well: Deictic representation in reinforcement learning. In Pro-
ceedings of the Eighteenth International Conference on Uncertainty in Artificial
Intelligence (UAI-02), 2002.

14. P. Flach. Simply logical: intelligent reasoning by example. John Wiley and Sons
Ltd., 1994.

15. N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational
models. In Proceedings of the Sixteenth International Joint Conferences on Artifi-
cial Intelligence (IJCAI-99), pages 1300–1309, Stockholm, Sweden, 1999. Morgan
Kaufmann.

16. R. Givan, T. Dean, and M. Greig. Equivalence notions and model minimization
in Markov decision processes. Artificial Intelligence, 147:163–224, 2003.

17. G. J. Gordon. Stable fitted reinforcement learning. In Advances in Neural Infor-
mation Processing, pages 1052–1058. MIT Press, 1996.

18. C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing Plans to New
Environments in Relational MDPs. In Proceedings of International Joint Confer-
ence on Artificial Intelligence (IJCAI-03), Acapulco, Mexico, 2003.

19. L. P. Kaelbling, T. Oates, N. H. Gardiol, and S. Finney. Learning in worlds with
objects. In Working Notes of the AAAI Stanford Spring Symposium on Learning
Grounded Representations, 2001.

20. K. Kersting and L. De Raedt. Logical markov decision programs. In Working
Notes of the IJCAI-2003 Workshop on Learning Statistical Models from Relational
Data (SRL-03), pages pp. 63–70, 2003.

21. K. Kersting, M. Van Otterlo, and L. De Raedt. Bellman goes Relational. In
Proceedings of the Twenty-First International Conference on Machine Learning
(ICML-04), Banff, Alberta, Canada, July 4-8 2004. (to appear).

22. K.-E. Kim and T. Dean. Solving factored mdps using non-homogeneous partitions.
Artificial Intelligence, 147:225–251, 2003.

23. A. K. McCallum. Reinforcement Learning with Selective Perception and Hidden
States. PhD thesis, Department of Computer Science, University of Rochester,
1995.

24. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19(20):629–679, 1994.

25. R. Munos and A. Moore. Influence and Variance of a Markov Chain : Application to
Adaptive Discretization in Optimal Control. In Proceedings of the IEEE Conference
on Decision and Control, 1999.

26. D. Poole. The independent choice logic for modelling multiple agents under un-
certainty. Artificial Intelligence, 94(1–2):7–56, 1997.

27. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, 1994.

28. S. P. Singh, T. Jaakkola, and M. I. Jordan. Reinforcement learning with soft state
aggregation. In Advances in Neural Information Processing 7, pages 361–268. MIT
Press, 1994.

29. J. Slaney and S. Thiébaux. Blocks World revisited. Artificial Intelligence, 125:119–
153, 2001.

30. R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, 1998.

31. R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: a frame-
work for temporal abstraction in reinforcement learning. Artificial Intelligence,
112:181–211, 1999.

32. J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with
function approximation. IEEE Transactions of Automatic Control, 42:674–690,
1997.

33. M. Van Otterlo. Reinforcement Learning for Relational MDPs. In Proceedings of
the Annual Machine Learning Conference of Belgium and the Netherlands, 2004.

34. S. D. Whitehead and D. H. Ballard. Learning to perceive and act by trial and
error. Machine Learning, 7(1):45 – 83, 1991.

35. S. Yoon, A. Fern, and R. Givan. Inductive policy selection for first-order MDPs.
In Proceedings of the International Conference on Uncertainty in Artificial Intel-
ligence (UAI), 2002.

