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Abstract— Navigation is one of the fundamental tasks for a
mobile robot. The majority of path planning approaches has been
designed to entirely solve the given problem from scratch given
the current and goal configurations of the robot. Although these
approaches yield highly efficient plans, the computed policies
typically do not transfer to other, similar tasks. We propose to
learn relational decision trees as abstract navigation strategies
from example paths. Relational abstraction has several interest-
ing and important properties. First, it allows a mobile robot to
generalize navigation plans from specific examples provided by
users or exploration. Second, the navigation policy learned in
one environment can be transferred to unknown environments.
In several experiments with real robots in a real environment
and in simulated runs, we demonstrate the usefulness of our
approach.

I. INTRODUCTION

For various tasks such as delivery, guidance, rescue etc,
mobile service robots need to navigate through the environ-
ment. In the past, the vast majority of navigation approaches
have dealt with solving these problems from scratch during
operation. Whereas such approaches yield highly efficient
paths [1], [2], they typically do not take into account solutions
to similar problems. In addition, these navigation plans cannot
easily be communicated to humans, which makes it hard to
instruct the robot about typical navigation behaviors. In this
paper, we consider the problem of learning abstract navigation
plans for mobile robots by generalizing from navigation paths,
which were successful in previous or similar situations. The
key idea is to utilize labels assigned to the individual places
in the environment and to generalize sequences of these labels
corresponding to the places traversed by the robot while
performing its task.

The problem of planning trajectories of mobile robots has
been studied intensively in the past, as the capability of
effectively planning its motions is “eminently necessary since,
by definition, a robot accomplishes tasks by moving in the
real world” [3]. The different types of planning problems can
coarsely be classified according to the information provided
to the robot. The classical path planning problem is the
situation in which the robot has perfect knowledge about the
environment as well as its starting point and its goal position.
More complex problems emerge when the robot only possesses
partial knowledge. For example, when the location of the target
is unknown, the robot has to search for the target. In situations,
in which the environment is unknown but the target location
is known, D* [4] or LRTA* [5] are popular algorithms to

guide the robot to the goal location. Throughout this paper,
we consider the more complex situation in which the location
of the target point is not given a priori. Such a situation, for
example occurs, when a robot has to find the entrance hall in a
hotel or in a large office building. For such problems, different
algorithms including depth-first search and uninformed LRTA*
(see Koenig [6] for a comprehensive comparison) have been
proposed. Moreover, in most situations the actions of the robot
are non deterministic. Here, approaches based on Markov
decision processes (MDPs) [7] have been proposed [8]. MDPs
provide a sound theoretical framework to deal with uncertainty
related to the robot’s motor and perceptive actions during both
planning and plan execution phases.

Whereas these techniques provide highly elegant and often
also efficient solutions to the corresponding problems, they do
not have the ability to improve their performance by learning
from past experience within similar tasks (e.g., entrance halls
found in other office buildings). Our approach alleviates this
situation by adopting techniques from relational reinforce-
ment learning [9], [10], i.e., reinforcement learning within a
relational representation to learn general search preferences
for navigation problems. More precisely, our technique starts
from a set of specific example navigation plans, which can
either be computed by solving a relational MDP or can be
obtained from a helpful teacher, where it is assumed that a set
of labels can be assigned to each position in the configuration
space of the robot. Such labels can be obtained robustly by
analyzing sensor measurements and their temporal evolution,
see [11], [12]. The observed labels are used to form (relational)
state descriptions of a relational Markov decision process
(RMDP). We then apply relational learning techniques for
generating abstractions. As a result, we obtain a relational
decision tree, which expresses preferences about navigation
actions. These preferences can then be used by the robot to
generate navigation actions. As our experiments show, the
navigation algorithm can deal with noise in the observed labels
and gracefully degrades to random search when the noise level
increases.

In the past few years, relational representations in machine
learning and AI received a lot of attention, see. e.g. [13],
and is known under the name statistical relational learning
(SRL). This appears to be an appropriate time to apply SRL
techniques within robotics. The advantages of the SRL ap-
proach are threefold. First, the learned navigation preferences
can be directly transfered to alternative instances of the same
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Fig. 1. A map of hotel h. The robot in room r5 is supposed to find its way
to the main entrance r1 of the hotel.

navigation problem (e.g., searching for another exit in the
same building). Additionally, they can directly be transferred
from one environment to another one and in this way enable a
robot to efficiently carry out similar navigation tasks in even
unknown environments. Finally, our approach can be applied
to settings in which the example plans are not generated by a
robot but are provided by a human and have no guarantees of
being optimal. This setting is often called behavioral cloning
or learning by imitation. Our experiments show that also in
such cases our approach can be beneficial.

The paper is organized as follows. We first briefly review
MDPs and RMDPs. Then, we show how to learn abstract
navigation policies in the framework of RMDPs, and how to
use them to guide the search of a mobile robot. Section IV
reports on several experiments carried out on a real robot as
well as in simulation, which shows that our approach leads to
efficient navigation plans.

II. MARKOV DECISION PROCESSES

Our running example will be the hotel world where the
task of the robot is to find its way out of an unknown hotel.
Consider hotel h in Figure 1. The mobile robot is in room
r5. At each time, the robot can go from one room to another,
say r5 to r4. The action is probabilistic, i.e., with probability
p the action succeeds and the robot will be in r4, and with
probability 1− p the action fails and the robot stays in r5.

A natural formalism to encode the hotel world are Markov
decision processes (MDPs) [14]. MDPs are tuples M =
〈S,A, T,R〉, where S is a set of states such as r1, r2, . . . , r5,
A is a set of actions such as goto(r5, r4), T : S ×A× S →
[0, 1] a transition model, and R : S×A×S → [0, 1] a reward
model. The set of actions applicable in a state s ∈ S is denoted
A(s). A transition from state i ∈ S to j ∈ S caused by
some action a ∈ A(i) occurs with probability T (i, a, j) and a
reward R(i, a, j) is received, e.g., 10, when entering r5, and
0 otherwise. T defines a proper probability distribution if for
all states i ∈ S and all actions a ∈ A(i):

∑
j∈S T (i, a, j) = 1.

A deterministic policy π : S → A for M specifies which
action a ∈ A(s) to executed when the agent is in state s ∈ S,
i.e. π(s) = a. Given a policy π for M , and a discount factor
γ ∈ [0, 1], which discounts future rewards, the state value
function V π : S → R represents the value of being in a
state following policy π, w.r.t. expected rewards. A policy
π∗ is optimal if V π∗

(s) ≥ V π′

(s) ∀s ∈ S and ∀π′. The
optimal value function is denoted V ∗. One of the standard
techniques for exactly solving MDPs is value iteration (VI).

The VI algorithm assumes that the state space is represented
as a table and can be stated as follows: starting with a value
function V0 over all states, we iteratively update the value of
each state according to

Vt+1(s) = max
a

∑

s′

T (s, a, s′)[R(s, a, s′) + γVt(s
′)] (1)

to get the next (t = 1, 2, 3, . . .). VI is guaranteed to converge
in the limit towards V ∗.

Traditional MDPs and VI as expressed by Equation (1) are
essentially propositional in that each state must be represented
using a separate proposition. Therefore, they are severely lim-
ited in expressiveness and do not really capture the structure of
the underlying class of problems. As a consequence, it is hard
to generalize policies across domains with similar properties.
For instance, propositional policies for the hotel in Figure 1
cannot directly be applied in other hotels.

III. LEARNING RELATIONAL NAVIGATION POLICIES

Relational MDPs (RMDPs, see below) combine relational
logic with MDPs. Using RMDPs, it becomes possible to
generalize such policies even for those cases where the hotels
may possess a varying number of objects (rooms) and relations
(connections) among them.

A. Relational Logic

The hotel world can elegantly be represented using
relational logic. Reconsider hotel h in Figure 1: there
are rooms ro(r1), ro(r2), . . . , ro(r5) which are con-
nected: con(r1, r2), con(r1, r6), con(r2, r3), con(r2, r4),
con(r4, r5), con(r4, r6) together with the symmetric facts.
There are several types of rooms such as horizontal,
hPass(r4), and vertical passages, vPass(r2) and vPass(r6).
Furthermore, there are emergency exits, eExit(r3), and en-
trance halls, main(r1). At each time the robot is in a room,
in(r5), there are several actions the robot can take. One typical
such action is going from a room R into a horizontal passage
H, goto RHP(R, H). With some probability actions might fail,
i.e., the robot stays in the current room. The task for the robot
is to find its way out of a hotel, i.e., to “enter” main(r1).

In relational logic, expressions of the form p(t1, . . . tm),
where a relation symbol p followed by a bracketed m-tuple
of terms ti, are called atoms. A term is either a variable R

or a constant r1. We follow the convention that variables start
with an upper case and constants with a lower case character.

The main idea underlying RMDPs is to replace the propo-
sitional symbols used in MDPs by abstract states. An ab-
stract state is a conjunction Z of logical atoms, i.e., a
logical query and represents a set of states. Consider, e.g.,
the abstract state Z ≡ in(R), con(R, R′), ro(R), ro(R′). It
summarizes situations in which a robot is in a room connected
to another room. An instance z of Z is for example z ≡
in(r5), con(r4, r5), hPass(r4), ro(r4), ro(r5); there exists a
substitution θ such that Zθ ⊆ z. A substitution θ is an
assignment of terms to variables {X1/t1, . . . Xn/tn} where Xi
are variables and all ti are terms. A term, atom or conjunction



is called ground if it contains no variables. Conjunctions are
implicitly assumed to be existentially quantified. A conjunction
A is said to be subsumed by a conjunction B, denoted by
A �θ B, if there exists a substitution θ such that Bθ ⊆ A.

B. Relational Markov Decision Processes

Using these notions from relational logic, we now briefly
review the key ingredients of RMDPs: abstract actions and
abstract rewards. For more details, we refer to [15].

An abstract action1 is a rule H
p:A
←−− B where A is an atom

representing the name and the arguments of the action and
B is an abstract state denoting the preconditions of A. H is
an abstract state and represents the successful outcome of A.
The value p is the probability that the action succeeds. The
semantics of an abstract action are: If the current state b is
subsumed by B, i.e., b �θ B, then taking action A will result
in [b \Bθ]∪Hθ with probability p. With probability 1−p the
action fails, i.e., we stay in b. As an illustration, consider

in(R′), con(R, R′),
hPass(R′), ro(R)
ro(R′), R 6= R

′

0.9:goto RHP(R,R′)
←−−−−−−−−−−

in(R), con(R, R′),
hPassl(R′), ro(R)
ro(R′), R 6= R

′

which describes that a robot is going from room R into a
horizontal passage R′ with probability 0.9. Applied to the
above state z the action goto RHP(r, r′) will yield z′ ≡
in(r4), con(r4, r5), hPass(r4), ro(r4), ro(r5) with probabil-
ity 0.9 and z with probability 0.1.

The abstract reward model specifies the rewards generated
by entering abstract states. It is specified as a finite list of
value rules of the form c ← B were B is an abstract state
and c ∈ R. To any abstract state Z, V assigns the maximal
value c of all matching value rules c ← B to Z as value.
A rule matches if Z �θ B. Consider e.g. 10 ← in(r′) and
0 ← true. It assigns 0 to z but 10 to z′. Using true in the
last value rule assures that all states are assigned a value. This
simple reward model is expressive enough for the hotel world,
which is basically a shortest-path problem: the goal to reach is
main. When main is entered, the process ends. Such episodic
tasks are encoded using so-called absorbing states, which can
be specified by a set of queries, e.g., main(R). In our example,
z is not absorbing but z′ is. In addition, integrity constraints
can be employed to exclude impossible states, cf. [15].

C. Relational Navigation Policies

Let us now discuss how to compute (navigation) policies
from RMDPs. The key observation is that each RMDP induces
a traditional MDP [15], which can be obtained by starting
in some initial ground state and then applying each abstract
transition until no more new ground states can be computed.
Thus, the existence of an optimal policy π for each (resulting)
ground MDP is guaranteed. In the hotel world, a navigation
pattern might be

goto RHP(r5, r4)←
in(r5), hPass(r4), ro(r4),
con(r4, r5), ro(r5), r4 6= r5

(2)

1For the sake of simplicity, we will consider only actions which succeed
or fail and which do not cause any costs. The more general cases are
straightforward.

lowestconnected(R, R′)goto RR(R, R′)goto RHP(R, R′)

background knowledge

vPass(R)

in(R), ro(R)

con(R, R′), hPass(R′)

goto HPVP(R, R′)

goto VPHP(R, R′)goto VPLC(R, R′)

Fig. 2. A relational decision tree representing a relational navigation policy
for the hotel world.

which states that the robot will go to the horizontal passage r4
when it is in room r5. Of course, such policies are extensional
or propositional in the sense that they specify for each ground
state separately which action to execute. Instead, we would
like to learn an abstract policy, which intentionally specifies
the action to take for an abstract state, i.e., for the set of ground
states it makes abstraction from. More formally, an abstract,
i.e., relational navigation policy, is a finite set of relational
navigation rules of the form A← Z where A is an abstract
action and Z is an abstract state. For instance, the relational
navigation rule

goto RHP(R, R′)←
in(R), con(R, R′), hPass(R′)
ro(R), ro(R′), R 6= R′

(3)

abstracts from the specific rooms used in (2).
To learn a relational navigation policy, we start from a set

of traces ti, i.e., ground situation-action sequences that lead to
a goal state. These specific situation-action sequences can be
optimal (for instance, if they were obtained by computing the
optimal policy for a fully known map of the environment) or
not (for instance, if they are provided by a human that shows
the robot how to proceed from a particular initial goal to a goal
state). Whereas the first case could correspond to the situation
where the model is known, the second one corresponds to
a model-free case, and also allows to learn from imitation or
perform what is called behavioral cloning. The key idea is that
each trace ti describes a situation-action sequence, for instance
for leaving a hotel. More precisely, each ti consists of ground
navigation rules such as (2). Each rule describes an interpreta-
tion, in(r5), con(r4, r5), hPass(r4), ro(r4), ro(r5), r4 6= r5,
i.e, a simple enumeration of all ground facts the robot needs to
know – the rooms, the connections among the rooms, the types
of the rooms, i.e., room, horizontal passage, vertical passage,
elevator, etc. – in order to take the associated optimal actions
goto RHP(r5, r4). The task then is to induce a relational nav-
igation policy based on these situation-action pairs that makes
abstraction of the experience provided to the agent. This can be
realized using the learning from interpretations settings well
studied in the field of inductive logic programming [16] where
relational programs are induced from interpretation-class pairs.
One standard approach to employ during generalization are
relational decision trees.

A relational decision tree [17] (see Figure 2) is a binary
decision tree in which each node contains a conjunction such
as in(R), ro(R). Each node captures a logical test, which
either succeeds or fails when applied to a particular state. If



it succeeds, the left subtree is considered; otherwise the right
one. Moreover, nodes may share variables with their ancestor
nodes such con(R, R′), hPass(R′). The test to be performed at
each node consists of its conjunction together with the con-
junctions on the succeeding path from the root to the node for
instance in(R), ro(R), con(R, R′), hPass(R′). Leafs represent
the action to be taken in the abstract state consisting of the
conjunctions along the path to the leaf. For instance, the tree
essentially encodes the relational navigation rule (3) in its left-
most path and also suggests to take action goto RHP(r5, r4) in
state z. To induce the tree, we essentially employ Quinlan’s
well-known C4.5 [18] scheme with the information gain as
splitting criterion, for more details see [17]. To summarize,
our approach works as follows:

1) Observe a number of successful ground state-action
sequences

2) Induce a relational navigation policy in the form of a
relational decision tree from this experience.

The resulting abstract navigation policy typically – as in our
experiments – uses local information only, i.e., the environ-
ment does not need to be completely known.

Indeed, this is akin to explanation-based learning (EBL)
[19], [20], where subsequent to a successful problem solving
session a proof is constructed that explains the success. The
proof is then generalized to a description of states which
can be solved in the same way. In state-space problems
– as we are investigating – proofs correspond to showing
that a sequence of actions achieves a goal and EBL cor-
responds to goal regression over an state-action sequence.
Therefore, it is not surprising that EBL has been used as
generalization algorithm within the Prodigy system [21] to
learn general control rules from specific examples of problem
solving episodes. Later, Dietterich and Flann [22] combined
this idea with reinforcement learning by associating these
generalized state descriptions with values obtained from value
iteration. Subsequently, Boutilier et al. [23] and Kersting et
al. [15] generalized Dietterich and Flann’s approach to rela-
tional domains, i.e., RMDPs. Recently, Mausam and Weld [10]
suggested to approximate the value function by inducing a
relational regression tree from observed traces. Unfortunately,
the relational description of states that share a value becomes
increasingly complex as these states get farther and farther
from the goal while the number of states covered by an abstract
state reduces dramatically. This results in a large number of
value rules. Indeed this has been observed to be the case in
early EBL systems and has been called the utility problem [22].
To avoid this problem, our approach works directly with
state-action sequences and inductively generalizes them into
relational policy trees. At the same time, this has the advantage
that – in contrast to EBL – no model is required, which allows
to apply our techniques onto behavioral cloning.

One particularly interesting case, on which we will focus
in the experiments, is concerned with learning from optimal
state-action sequences. These can actually be generated if the
model, i.e., the RMDP R is fully known. To obtain an optimal

Fig. 3. Map of the real office environment in which the experiments with
our robot were carried out. When the robot was in room ”C”, only three node
labels were observable (black). All other labels as well as the overall topology
of the environment were unknown (gray). The used navigation policies were
learned from different real buildings.

state-action sequence one has to ground the RMDP and then
compute an optimal navigation policy for the resulting MDP
using any MDP solver. Thus, our approach does not face
the utility problem and, thus, typically learn more compact
policies than approaches approximating the value function.

IV. EXPERIMENTS

Our algorithm has been evaluated in experiments carried out
with a real ActivMedia Pioneer 2-DX8 robot equipped with
two SICK laser range finders as well as in simulation. The goal
of the experiments is to demonstrate that the abstract naviga-
tion plans can be used to effectively control a mobile robot to
reach its target location even in unknown environments.

A. Implementation Details

In our current system, we use the system SPUDD [24] to
solve the MDPs and to generate example navigation plans.
We assume that the robot can identify the type of place at
its current location as well as the type of place a door leads
to [11], [12]. We do not require this information to be free of
noise as one of our experiments demonstrates. Under these
assumptions, we perform a forward search guided by the
learned navigation policy. That is, we start in some state and
then determine which action to perform next by evaluating the
relational decision tree on the current state. We perform the
action, observe the next state, and repeat the overall process.
Since relational (navigation) policies are not deterministic, the
system needs to choose among several equally likely actions.
We choose uniformally among all possibilities and put the
ones not chosen in a list AltS. Whenever the robot encounters
a loop or a dead end, it calculates the shortest path from its
current state to every state in AltS and chooses the one with the
shortest distance to the current location. In case AltS is empty,
we put every state connected to an already visited state into
AltS.

B. Navigation in an Office Environment

The first experiments are designed to demonstrate that our
approach results in effective navigation behaviors in real-
world scenarios. The experiments have been carried out with
a real mobile robot in a typical office environment (see
Figure 3). The task of the robot was to find the entrance
hall of the building using a navigation policy that was learned
by abstracting from optimal trajectories calculated given the



Fig. 4. Application of an abstract policy for finding the entrance hall of a building. The robot first leaves the room and enters the corridor (left). Then it
samples randomly and turns right (middle). At the same step in a different experiment, it chose the corridor to its left directly (right).

floor plans of two other buildings. The actual map of the
environment was unknown to the robot and just the labels of
neighboring rooms could be observed. In this experiment, we
provide the labels incrementally when requested by the robot.
In principle, such labels can be obtained by analyzing sensor
measurements and their temporal evolution, see [11], [12].

In the two experiments described here, the robot started
in the upper seminar room, labeled S. According to the
navigation policy, the first action of the robot was to leave
the room and to enter the corridor labeled F . The situation
after carrying out this action together with the part of the
environment observed by the robot thus far is depicted in the
left image of Figure 4. At this point, the navigation policy
outputs two equally likely alternatives: corridor C and hallway
H . In the first experiment, it chose to turn right and enter the
corridor labeled C. Since the place labeled O is not a corridor,
the robot decided to return to F and to choose the alternative
corridor adjacent to F , which was corridor H . From there it
proceeded to the area labeled E, which corresponds to the
entrance hall. The resulting trajectory of the robot is depicted
in the middle image of Figure 4. The rightmost image of
Figure 4 shows the resulting trajectory in case the optimal
corridor H is sampled directly when the robot is in F .

C. Simulation Experiments

To quantitatively evaluate the performance of our approach,
we compared it with the optimal paths as well as real-time
search methods, which interleave planning (via local searches)
and plan execution. A popular real-time search method for
robot navigation in unknown terrain is uninformed LRTA*
with maximum lookahead [5].

We ran several simulation experiments on maps of real
buildings such as the one depicted in Figure 5. From the out-
lines of these buildings we manually generated an annotated
topological map which then was used for calculating paths.
The robot observes the topological map only incrementally.
To evaluate the performance, we randomly chose the starting
locations. These starting locations are indicated by yellow/gray
labels in Figure 5. The goal of the robot in all tasks was to
find the exit of the building as indicated in the figure. On
average, the optimal plan length was 3.1 ± 0.99 (mean ±
standard deviation). Our method achieved 4.9±2.18, whereas
uninformed LRT∗ performed 30.7 ± 18.25 steps to reach the
exit. Thus, our approach required substantially fewer steps than
uninformed LRTA*. Note that in these experiments we count

Fig. 5. Map used for the second set of experiments.

each room visited as a step. More over, LRTA* performed
in no case superior to our approach. This illustrates, that
our approach substantially increases the efficiency of the
resulting navigation plans. At the same time the plans are only
1.8 ± 1.55 steps longer than the optimal plans. In additional
experiments not reported here, a two-sampled t-test revealed
that the improvement obtained by the abstract policy search is
significant on the α = 0.05 level.

D. Behavioral Cloning

One important aspect of our approach is that the training
instances do not need to be the optimal paths. Rather, they can
also be generated by manually sketching possible trajectories.
The final experiment described here has been carried out
to analyze the degradation of the performance in the case
the system has to learn from sub-optimal training instances.
To evaluate this, we performed an experiment in which we
used 20 maps of hotels where each hotel had 15-20 different
areas. In a leave-one-out cross-validation we tested how the
performance of our approach compares to that of the optimal
policy and the real-time search algorithm. The general policy
was learned on 19 maps and than evaluated on the one left out.
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Fig. 6. Normalized success rates (see text) for different maximal steps
allowed to reach the goal (left). Normalized success rates for a varying level
of noise in the observed labels (right).

We performed 5 restarts and started randomly in one of the
areas. Figure 6 shows as performance measure the normalized
success rate of the different approaches which is defined as
1/N

∑N

i=1
l∗/li · r

j
i where N = 20·5 is the number of runs, l∗

is the length of the optimal path, li the length of the path in the
i-th run, and rj

i indicates whether the goal has been reached
within j steps. All differences are significant (two-sampled
t-test, α = 0.05). Again, our approach is substantially better
than uninformed LRTA*. Additionally, the policy learned from
sub-optimal and hand-drawn trajectories is only 10% worse
than the policy learned from optimal trajectories. Note that
we also found that the policy abstracted from hand-drawn
trajectories still yields better paths than manually generated
paths, which where almost 1.8 times longer than the optimal
ones whereas those generated by our algorithm showed only
25% overhead.

E. Observation noise

A robots perception of the world is never perfect. Our
algorithm is able to cope with noisy label observations and
gracefully degrades to uninformed LRTA* when the noise
level increases. We implemented two strategies for dealing
with situations where the belief about place labels has to
be revised. Whereas Strategy 0 always returns to the pre-
vious place when an inconsistent place label was detected,
Strategy 1 stays in the new room, updates the faulty label
information, and continues navigating from there. The right
diagram of Figure 6 shows how the navigation performance
changes with a varying level of observation noise. The results
were obtained from 1470 simulated runs in five hotels. The
noise level specifies the probability with which a label is
observed as a different one. It can be seen in the diagram that
Strategy 1 outperforms Strategy 0 for all noise levels and that
its performance smoothly degrades to the one of uninformed
LRTA* when the noise level approaches 1.

V. CONCLUSIONS

This paper presents a new approach for generating abstract
navigation policies using relational learning. The key idea is
to learn a relational decision tree from sequences of places
traversed by a robot while it carries out its task. The resulting

tree can then be used to guide the search of the robot for the
same and similar tasks. The advantages of our approach are
that relational abstraction allows to generalize from previously
planned paths and to transfer policies across tasks in even
previously unseen environments. This should also be useful
for high level planning tasks such as manipulation or delivery.

Our algorithm has been evaluated in experiments with real
robots as well as in simulation runs. The results demonstrate
that the learned policies are highly efficient and outperform
uninformed LRTA* with maximum lookahead. In experiments
not reported here, the learned policies were even better than
policies provided by humans. Additionally, we have presented
an experiment in which we learn trajectories from sketched
examples provided by users.
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