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Abstract. The need to measure sequence similarity arises in informa-
tion extraction, music mining, biological sequence analysis, and other
domains, and often coincides with sequence alignment: the more similar
two sequences are, the better they can be aligned. Aligning sequences
not only shows how similar sequences are, it also shows where there are
differences and correspondences between the sequences.
Traditionally, the alignment has been considered for sequences of flat
symbols only. Many real world sequences such as protein secondary struc-
tures, however, exhibit a rich internal structures. This is akin to the
problem of dealing with structured examples studied in the field of in-
ductive logic programming (ILP). In this paper, we propose to use well-
established ILP distance measures within alignment methods. Although
straight-forward, our initial experimental results show that this approach
performs well in practice and is worth to be explored.

1 Introduction

Sequential data are ubiquitous and are of interest to many communities. Such
data can be found in virtually all application areas of machine learning including
computational biology, user modeling, speech recognition, empirical natural lan-
guage processing, activity recognition, information extractions, etc. Therefore,
it is not surprising that sequential data has been the subject of active research
for decades. One of the many tasks investigated is that of sequence alignment.
Informally speaking, a sequence alignment is a way of arranging sequences to
emphasize their regions of similarity. Sequence alignments are employed in a va-
riety of domains: in bioinformatics they are for instance used to identify similar
DNA sequence, to produce phylogenetic trees, and to develop homology models
of protein structures; in empirical language processing, they are for instance used
for automatically summarizing, paraphrasing, and translating texts.

Most of the alignment approaches assume sequences of flat symbols. Many
sequences occurring in real-world problems such as in computational biology,
planning, and user modeling, however, exhibit internal structure. The elements
of such sequences can be seen as atoms in a relational logic. The application of
traditional alignment algorithms to such sequences requires one to either ignore
the structure of the atoms, which results in a loss of information, or to take all
possible combinations of arguments into account, which leads to a combinatorial
explosion in the number of parameters.



The main contribution of the present paper is a general approach to align re-
lational sequences, i.e., sequences of ground atoms. In particular, we propose to
use well-established ILP distance measures within traditional alignment meth-
ods. Although straight-forward, our preliminary experimental results show that
this approach performs well in practice and is worth to be explored.

We proceed as follows. After briefly reviewing alignment algorithms in Sec-
tion 2, we discuss relational sequences and relational distance measures in Sec-
tion 3. Before concluding, we present experimental results.

2 Sequence Alignment Algorithms

Alignment plays a major role in analyzing biological sequences. Consider e.g. the
protein fold recognition problem, which is concerned with how proteins fold in
nature, i.e., their three-dimensional structures. This is an important problem as
the biological functions of proteins depend on the way they fold. Given a sequence
of an unknown protein (query sequence) all approaches work in principle in a
similar fashion: they scan an existing database of amino acids sequences (from
more or less known proteins) and extract the most similar ones with regard to
the query sequence. The result is usually a list, ordered by some score, with
the best hits at the top of this list. The common approach for biologists, is to
investigate these top scoring alignments or hits to conclude about the function,
shape, or other features of query sequence.

One of the earliest alignment algorithm is that for global alignment by
Needleman and Wunsch in 1970 [15]. The algorithm is based on dynamic pro-
gramming, and finds the alignment of two sequences with the maximal overall
similarity w.r.t. a given pairwise similarity model. In the biological domain, this
similarity model is typically represented by pair-wise similarity or dissimilarity
scores of pairs of amino acids. These scores are commonly specified by using a
so-called similarity matrix, like the PAM [3] or BLOSUM [6] families of sub-
stitution matrices. The scores, or costs, associated with a match or mismatch
between two amino acids, reflect to some extent the probability that this change
in amino acids might have occurred over time of evolution.

More precisely, the Needleman-Wunsch algorithm proceeds as follows: ini-
tially, for two sequences of length m and n, a matrix with m + 1 columns and
n + 1 rows is created. The matrix then is filled with the maximum score as
follows:

Mi,j = max


Mi−1,j−1 + Si,j : a match or mismatch
Mi,j−1 + w : a gap in the first sequence
Mi−1,j + w : gap in the second sequence

(1)

where Si,j is pairwise similarity of amino acids and w reflects a linear gap (insert
step) penalty. The overall score of the alignment can be found in cell Mm,n.

To calculate the best local alignment of two sequences, one often employs
the Smith-Waterman local alignment algorithm [19]. The main difference in this



algorithm when compared to the Needleman-Wunsch algorithm, is that all nega-
tive scores are set to 0. When visualizing the resulting alignment matrix, strands
of non negative numbers correspond to a good local alignment. For both algo-
rithms versions using affine gaps costs exist, i.e. one employs different kind of
gap costs for opening a gap or for extending one. To discourage the splitting of
connected regions due the enforcement of a gap in the middle of the alignment,
commonly extra gaps are allowed to be inserted at the end and at the beginning
at either no additional costs or relatively low costs (padding costs).

In general, the alignments resulting from an global or local alignment, show
then the more conserved regions between two sequences. To enhance the de-
tection of these conserved regions, commonly multiple sequence alignments are
constructed. Given a number of sequences belonging to the same class, i.e. in
biological terms believed to belong to the same family, fold, or are otherwise
somehow related, alignments are constructed aligning all sequences in one sin-
gle alignment, a so-called profile. A common approach for the construction of a
multiple alignment is a three step approach: First, all pairwise alignments are
constructed. Second, using this information as starting point a phylogenetic tree
is created as guiding tree. Third, using this tree, sequences are joined consecu-
tively into one single alignment according to their similarity. This approach is
known as the neighbour joining approach [18].

A good overview of alignment algorithms, including construction of multiple
alignments and the generation of phylogenetic trees, can be found in Durbin et
al. [4].

3 Alignment of Sequences of Relational Objects

The alignment algorithms discussed in the previous section assume a given sim-
ilarity measure Si,j . Typically, this similarity measure is flat because the consid-
ered sequences consist of flat symbols. Many sequences occurring in real-world
problems such as in computational biology, planning, and user modeling, how-
ever, exhibit internal structure. The elements of such sequences can elegantly be
represented as objects in a relational logic (see e.g. [13] for an introduction to
logic). For example, the secondary structure of the Ribosomal protein L4 can be
represented as

st(null, short), he(h(right, alpha), long), st(plus, short), . . . ,

representing helices of a certain type and length, he(HelixType,Length), and
strands of a certain orientation and length, st(Orientation,Length). The sym-
bols st, null, short, he, h, . . . have an associated arity, i.e., number of argu-
ments such as st/2, he/2, and h/2 having arity 2, and plus/0, 1/0, . . . having
arity 0. A structured term is a placeholder or a symbol followed by its argu-
ments in brackets such as h(right, X), medium, and he(h(right, X), medium). A
ground term is one that does not contain any variables such as st(null, short),
he(h(right, alpha), long), . . ..



Relational sequence alignment simply denotes the alignment of sequences
of such structured terms. More precisely, let x = x1, . . . , xn, n > 0, and y =
y1, . . . , ym, m > 0, two sequences of logical objects and d(i, j) a similarity mea-
sure indicating the score of aligning object xi with object yj . Then, the global
alignment problem seeks to find the match with highest score of both sequences in
their entirety. The local alignment problem seeks to find the subsequence match
with highest score.

Indeed, the only required task needed is to define the similarity measure Si,j

in Equation (1). We propose to use one of the many distance measures developed
within ILP [14]. As en example, consider one of the most basic measures proposed
by Nienhuys-Cheng [16]. It treats ground structured terms as hierarchies, where
the top structure is most important and the deeper, nested sub-structures are less
important. Let S denote the set of all symbols, then Nienhuys-Cheng distance
d is inductively defined as follows:

∀c/0 ∈ S d(c, c) = 1
∀p/n, q/m ∈ S : p/n 6= q/m d(p(t1, . . . , tn), q(s1, . . . , sm)) = 0
∀p/n ∈ S d(p(t1, . . . , tn), p(s1, . . . , sn)) = 1

2n

∑n
i=1 d(ti, si)

To solve the corresponding relational alignment problem, we simply set Si,j =
1−d(xi, yi) in Equation (1). For sequences of more complex logical objects such
as interpretations and queries, a different, appropriate similarity function has to
be chosen. We refer to Jan Ramon’s PhD Thesis [17] for a nice review of them.

4 Preliminary Experiments

Our intention here is to investigate to which extent relational sequence alignment
is useful in real-world data sets. More precisely, we investigated the following
two questions: (Q1) Does the Nienhuys-Cheng measure provide better and more
interesting alignments of sequences than a propositional one? (Q2) Is it possible
to use relational sequence alignment for prediction purposes? To this aim, we
implemented the alignment method and the Nienhuys-Cheng distance measure in
Python. In the following, we will describe some preliminary experiments carried
out to investigate Q1 and Q2 and present their results.

4.1 Alignment of Protein Sequences

Here, we considered as real-world application the same data set as by Gutmann
and Kersting [5], representing the five most populated folds in the SCOP class
Alpha and beta proteins (a/b). The examples are sequences of secondary struc-
ture elements of proteins which are similar in their three dimensional shape, but
in general do not share a common ancestor (i.e. are not homologous). We have
performed the experiments on the complete set of example proteins, as well as
on a subset of proteins which do not share more than 40 per cent amino acid se-
quence identity (cut 40). This subset was generated using the ASTRAL database
for the SCOP version 1.63 1. Overall, there are 2082 example sequences.
1 http://astral.berkeley.edu/scopseq-1.63.html



Seq4 - - he r a m st n m he r a m he r a m st p s he r a s he r a l st p l
Seq3 he r a l he r 3 s he r a l st n s he r a s he r a m st p s he r a l st p s he r a s
Seq2 he r 3 s st n s he r a m st n m - - - - - -
Seq1 st n m st p m he r a l - st p m he r a m st p s he r a m st p s he r a s

(a) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(b) ∗ ∗ he(r,a,∗) ∗ ∗ ∗ ∗ ∗ ∗ ∗

Seq4 - - he(r,a,m) st(n,m) he(r,a,m) he(r,a,m) st(p,s) he(r,a,s) - -
Seq3 he(r,a,l) he(r,3,s) he(r,a,l) st(n,s) he(r,a,s) he(r,a,m) st(p,s) he(r,a,l) st(p,s) he(r,a,s)
Seq2 he(r,3,s) st(n,s) he(r,a,m) st(n,m) he(r,3,s) he(r,a,l) st(p,m) he(r,a,l) - -
Seq1 st(n,m) st(p,m) he(r,a,l) st(p,m) - he(r,a,m) st(p,s) he(r,a,m) st(p,s) -

(c) ∗ ∗ he(r,a,∗) st(∗,∗) ∗ he(r,a,∗) st(p,∗) he(r,a,∗) ∗ ∗

Table 1. An alignment of four sequences using (a) the flat, (b) the back-
translated flat, and (c) the relational approach. All symbols are abbreviated
and the original alignment is truncated. The relational approach captures the
conserved region much better than the flat ones as shown by the lgg-consensus
sequences denoted in bold.

To answer question Q1 we aligned sequences from one fold into a multi-
ple alignment. Here we used the global alignment algorithm Needleman-Wunsch
with affine gap penalties and seek to find conserved regions, i.e. subsequences
in the multiple alignment, which express close similarity over all examples. The
question of finding the appropriate gap costs in computational Biology is com-
monly answered by a trial and error approach. Here, we have solely concentrated
on global alignments with affine gap costs using low padding costs. We have ar-
bitrarily chosen the following gap costs: gap opening cost 1.5, gap extention cost
0.5, and padding cost 0.25.

To visualize the conserved regions, we have extracted the consensus sequence
in form of the lgg (least general generalization) of all atoms in each particular
position in the multiple alignment. An example of such a multiple alignment and
the consensus sequence can be found in Table 4.1 (c). Clearly, the consensus
sequence reflects a conserved region of the four sequences.

The complete alignment possessed two conserved regions with a number
of mismatches and gaps between. These conserved regions were not discov-
ered when treating the sequence propositionally, i.e., each structured symbol
st(null, short) is treated as a flat symbol st null short. In this case, using
the Nienhuys-Cheng distance, only exact matches and pure mismatches are pos-
sible. Because none of the aligned flat symbols matches exactly, the resulting
consensus sequence consist only of variables ∗, cf. Table 4.1 (a). Even, when
treating each of the aligned flat symbols as structured symbols again, the lgg
consensus sequence does reveal much information, cf. Table 4.1 (b). This affir-
matively answers Q1.

The more informative consensus sequences, however, come at an expense:
even apparent unrelated sequences get higher similarity scores. For instance,
in our data set, we found sequences from different folds, where the relational
alignment score is 4.75 times higher than the flat one. This could explain the



slightly lower predictive accuracy of the relational approach: a 10-fold cross-
validated nearest neighbour classification (k=7) yielded 90.17% accuracy for the
relational and 93.86% accuracy for the flat alignment approach for the complete
dataset.

In any case, the predictive performances themselves are interesting. They are
comparable to more sophisticated statistical relational learning results on similar
data: LoHHMs 74.0% [8], Fisher kernels 84% [9], CRFs 92.96% [5]. This tends
to affirmatively answer Q2.

For the cut 40 subset, i.e. proteins in the five most populated classes not
sharing more than 40 % amino acid sequence identity, the predictive performance
decreases substantially for both representations: for the flat representation to
74.33 % and for the relational to 68.01 %. The reason for the decrease are
obviously in the missing of close homologues in the cut 40 subset.

4.2 Alignment of Natural Language Sentences

Automatically paraphrasing sentences is of great practical importance for text-
to-text NLP systems. Applications include text summarization and translation.
For this task, Barzilay and Lee [1] proposed to use multiple (propositional)
sequence alignment within clusters of similar sentences. Consider the following
five sentences adapted from the example given by Barzilay and Lee:

1. A purple latex balloon blew himself up in a southern city Wednes-
day, bursting two other balloons and deforming 27.

2. A latex balloon blew himself up in the area of Freiburg, on Sunday,
bursting itself and disfiguring seven balloons.

3. A latex balloon blew himself up in the coastal resort of Cuxhaven,
bursting three other balloons and deforming dozens more.

4. A purple latex balloon blew himself up in a garden cafe on Saturday,
bursting 10 balloons and deforming 54.

5. A latex balloon blew himself up in the centre of Berlin on Sunday,
bursting three balloons as well as itself and disfiguring 40.

The underlined sub-structures show the conserved regions computed by a propo-
sitional sequence alignment using the same gap costs as in the protein exper-
iment; the bold parts denote the conserved regions of the relational sequence
alignment; and italic parts denote the use of lggs. The relational representation
allows to encode additional information for each sentences. In particular, we used
Brill’s rule-based part of speech tagger, cf. [2], which is one of the most widely
used tools for assigning parts of speech to words, to annotate each word with its
part of speech tag. This yielded sequences such as

dt(a), jj(purple), nn(latex), nn(balloon), vbd(blew), prp(himself), in(up),
in(in), dt(a), jj(southern), nn(city), nnp(wednesday), comma, vbg(bursting),

cd(two), jj(other), nns(balloons), cc(and), vbg(deforming), cd(27)



Decreasing the gap opening costs to 0.5 resulted in

1. A purple latex balloon blew himself up in a southern city Wednes-
day , bursting two other balloons and deforming 27.

2. A latex balloon blew himself up in the area of Freiburg, on Sunday ,
bursting itself and disfiguring seven balloons.

3. A latex balloon blew himself up in the coastal resort of Cuxhaven,
bursting three other balloons and deforming dozens more.

4. A purple latex balloon blew himself up in a garden cafe on Saturday ,
bursting 10 balloons and deforming 54.

5. A latex balloon blew himself up in the centre of Berlin on Sunday ,
bursting three balloons as well as itself and disfiguring 40.

In both cases, the consensus regions of the propositional sequence alignments
are proper sub-regions of the relational ones. This affirmatively answers Q1.

5 Related Work and Conclusions

Surprisingly few works investigated sequences of complex objects. Ketterlin [11]
considered the clustering of sequences of complex objects but did not employ
logical concepts. Likewise, Weskamp et al. [21] proposed an alignment algorithm
for graphs. Lee and De Raedt [12] and Jacobs [7] introduced ILP frameworks for
reasoning and learning with relational sequences. Recently, Tobudic and Wid-
mer [20] used relational instance-based learning for mining music data, where
sequential information is employed. To the best of our knowledge, however, the
present paper proposes the first alignment approach for relational sequences,
i.e., sequences of logical objects. The preliminary experimental results indicate
that the relational sequences alignment reveals useful information in practice for
different domains. That they are indeed more informative has been recently con-
firmed by Kersting and Karwath [10] using an information-theoretic, empirical
argument on the protein data set.

The approach presented suggests a very interesting line of future research,
namely to address the alignment of more complex logical objects such as interpre-
tations, i.e., graphs. This has interesting applications e.g. in activity recognition,
music mining, and plan recognition.
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