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Abstract. Conditional Random Fields (CRFs) currently receive a lot
of attention for labeling sequences. To train CRFs, Dietterich et al. pro-
posed a functional gradient optimization approach: the potential func-
tions are represented as weighted sums of regression trees that are in-
duced using Friedman’s gradient tree boosting method. In this paper,
we improve upon this approach in two ways. First, we identify an expec-
tation selection bias implicitly imposed and compensate for it. Second,
we employ a more sophisticated boosting algorithm based on conjugate
gradients in function space. Initial experiments show performance gains
over the basic functional gradient approach.

1 Introduction

Sequential data are ubiquitous and are of interest to many communities. Such
data can be found in virtually all application areas of machine learning including
computational biology, speech recognition, activity recognition, information ex-
traction. Consider the protein secondary structure prediction problem [10], where
the task is to assign a secondary structure class to each amino acid residue in the
protein sequence. This is an instance of the general sequence labeling problem:
assign labels Y = 〈y1 . . . yn〉 to a sequence X = 〈x1 . . . xn〉 of objects.

One appealing approach to label sequences are Lafferty et al.’s conditional

random fields (CRFs) [6]. They are undirected models encoding the conditional
dependency P (Y |X) and have outperformed HMMs [11] on language processing
tasks such as information extraction and shallow parsing. In contrast to genera-
tively trained HMMs, the discriminatively trained CRFs are designed to handle
non-independent input features such as such as the molecular weight and the
neighboring acids of an amino acid.

The great flexibility to include a wide array of features raises one important
questions: where do the features and the parameters come from? In many practi-
cal situations, even extremely simple undirected models such as the linear-chain
CRFs considered in the present paper models can have severe training costs.
Early approaches built large sets of feature conjunctions according to hand-built,
general heuristics. This can result in extremely large feature sets, with millions
of parameters trained on hundreds of thousands of training examples; parameter



estimation can literally take days [9]. Lafferty et al.’s [6] originally introduced it-
erative scaling algorithm for parameter estimation of a given CRF was reported
to be exceedingly slow. Naive implementations of gradient ascent methods for
maximizing the conditional likelihood P (Y |X) have been proposed but they are
typically quite slow too, because parameters highly interact. Therefore, it is not
surprising that fast and integrated feature induction and parameter estimation
techniques have been proposed.

McCallum’s Mallet system [9] employs the BFGS algorithm, which is a
second-order parameter optimization method that deals with parameter inter-
actions, and induces features iteratively. Starting with a single feature, conjunc-
tions of features are iteratively constructed that significantly increase conditional
log-likelihood if added to the current model. Mallet’s method is akin to the
boosting idea [3] in that it creates new conjunctions (weak learners) based on
a collection of misclassified instances, and assigns weights to the new conjunc-
tions. Indeed, boosting has been applied to CRF-like models [1] and recently
Dietterich et al. [2] presented a boosting approach, which is competitive to Mal-
let. It follows Friedman’s gradient tree boosting algorithm [4], i.e., the potential
functions are represented by sums of regression trees, which are grown stage-wise
in the manner of Adaboost [3]. Each regression tree can be viewed as defining
several new feature combinations, one corresponding to each path in the tree
from the root to a leaf. Thus, the features can be quite complex; even relational
conjunctions [5].

Despite elegancy, good performance, and flexibility, the gradient tree boosting
approach, however, has two drawbacks. First, it imposes an expectation selec-
tion bias. In each boosting iteration, it generates functional gradient training
examples for all possible label-label pairs at a sequence position. Thus, there are
potentially quadratically many more expected than actually observed regression
examples. We propose to quadratically raise the empirical frequency of observed
label-label pairs. Second, only simple gradient ascent is employed so that maxi-
mization in one direction could spoil past maximizations. We propose the use of
a more sophisticated boosting algorithm using conjugate directions. This way,
we incorporate one of Mallet’s major advantages into the functional gradient
boosting approach: second-order information is used to adjust search directions
so that previous maximizations are not spoiled. Experiments show for both mod-
ifications performance gains over the basic functional gradient approach.

We proceed as follows. After briefly reviewing CRFs and Dietterich et al.’s
gradient tree boosting for training them, we show how to account for its expec-
tation selection bias in Section 3. In Section 4, we devise the conjugate gradient
variant. Before concluding, we experimentally evaluate our method in Section 5.

2 Linear-Chain CRFs

CRFs (see [6] for more details) are undirected graphical models that encode
conditional probability distributions using a given set of features. In the present
paper, we will focus on linear-chain CRF models.



Representation: Let G be an undirected graphical model over sets of ran-
dom variables X and Y . For linear-chain CRFs, X = 〈xi,j〉

Ti

j=1 and Y = 〈Yi,j〉
Ti

j=1

correspond to the input and output sequences such that Y is a labeling of an
observed sequence X. Now, they define the conditional probability of a state se-
quence given the observed sequence as P (Y |X) = Z(X)−1 exp

∑T

t=1 Ψt(yt, X) +
Ψt−1,t(yt−1, yt, X), where Ψt(yt, X) and Ψt−1,t(yt−1, yt, X) are potential func-
tions1 and Z(X) is a normalization factor over all state sequences X. Due to
the global normalization by Z(X), each potential has an influence on the overall
probability.

Training: To apply CRFs, one most choose the representation for the po-
tentials Ψt(yt, X) and Ψt−1,t(yt−1, yt, X). Typically, it is assumed that the po-
tentials factorize according to a set of features {fk}, which are given and fixed,
so that Ψ(yt, X) =

∑

αkgk(yt, X) and Ψ(yt−1, yt, X) =
∑

βkfk(yt−1, yt, X) re-
spectively. The model parameters are now a set of real-valued weights αk, βk;
one weight for each feature. Furthermore, one must estimate the weights αk, βk.
To do so, a conditional maximum likelihood approach is typically followed. That
is, the (conditional) likelihood of the training data given the current parameter
Θm−1 is used to improve the parameters. Normally, one uses some sort of gra-
dient search for doing this. The parameter in the next iteration are the current
plus the gradient of the conditional likelihood function: Θm = Θ0 + δ1 + . . .+ δm

where δm = ηm −M ·∂/∂Θm−1

∑

i log P (yi|xi;Θm−1) is the gradient multiplied
by a constant ηm, which is obtained by doing a line search along the gradient.

Training via Gradient Tree Boosting: Dietterich et al.’s non-parametric
approach interleaves both steps. More precisely, one starts with some initial
potential Ψ0, e.g. the zero function, and adds iteratively corrections Ψm = Ψ0 +
∆1 + . . . + ∆m. In contrast to the standard gradient approach, ∆i denotes the
so-called functional gradient, i.e.,

∆m = ηm · Ex,y [∂/∂Ψm−1 log P (y|x;Ψm−1)] .

Since the joint distribution P (x, y) is unknown, one cannot evaluate the expec-
tation Ex,y. Dietterich et al. suggested to evaluate the gradient function at every
position in every training example and fit a regression tree to these derived ex-
amples. More precisely, setting F (yt−1, y,t,X) = Ψ(yt, X) + Ψ(yt−1, yt, X), the
gradient becomes (see [2, 5] for more details),

∂ log P (Y |X)

∂F (u, v, wd(X))
= I(yd−1 ⊆Θ u, yd ⊆Θ v) − P (yd−1 ⊆Θ u, yd ⊆Θ v|wd(X)),

where I is the indicator function, ⊆Θ denotes that u matches/subsumes y, and
P (yd−1 ⊆Θ u, yd ⊆Θ v|wd(X)) is the probability that class labels u, v fit the
class labels at positions d, d − 1. By evaluating the gradient at every known
position in the training data and fitting a regression model to these values, one
gets an approximation of the expectation Ex,y [∂/∂Ψm−1] of the gradient. In

1 A potential function is a real-valued function that captures the degree to which the
assignment yt to the output variable fits the transition from yt−1 and X.



order to speed-up computations, not the complete input X is typically used but
only a window wd(X) = xd−s, . . . , xd, . . . , xd+s, where s is a fixed window size.

In the following, we will present two improvements of the boosting approach.

3 Expectation Selection Bias

Reconsider the functional gradient. The expectation basically consist of two
terms. The first term is the expected value of the potential function under the
empirical distribution and the second term, which arises from the derivative of
the normalization constant Z(X), is the expectation of the potential function
under the current model distribution. Due to the second term, the set S of
generated examples the number K of given classes. For example, if we have 2
classes and 100 training sequences of length 200, then the number of training
examples is 22×200 = 80, 000. For 4 classes, there are already 42×200 = 320, 000
examples. Most of these examples are likely to have never been observed. In the
worst case, for each observed yt−1, yt pair, we additionally generate K2 − 1
expected examples. Thus, the regression tree learner is biased towards reducing
the variance of expected functional gradient training examples.

This suggests to quadratically raise the empirical frequency2 of observed
examples in S. To do so, we augment each functional gradient training example
(((wt(Xi), k

′,∆(k, k′, t)) with an additional frequency weight f . We set f to
K2 − 1 if yt−1 = k′ and yt = k, and to 1.0 otherwise. Furthermore, as we get
more confident of the estimated model with increasing numbers of iterations t,
we impose a decay of f using the inverted logistic function (K2−2) ·exp[−c ·(t−
1)b] + 1, where c and b are constants; in our experiments C = 0.007 and b = 4.
Within the regression tree learner, these weights are treated strictly as example
multipliers. That is, the weighted variance is identical to the same analysis when
the examples are replicated the specific number f of time.

4 Conjugate Direction Boosting

Reconsider the basic gradient-ascent optimization approach. One of the prob-
lems with choosing the step size ηm doing a line search is that a maximization
in one direction could spoil past maximizations. This problem is solved by con-
jugate gradient boosting methods [7, 8]. Conjugate gradient boosting methods
compute so-called conjugate directions d1, d2, . . . in the function space, which
are orthogonal and hence do not spoil previous maximizations. The step size is
estimated along these directions doing line searches.

More precisely, following Li et al.’s notation [7], conjugate gradient boosting
iteratively performs two steps starting with setting the first direction to ∆1:

2 Weighting the empirical frequency has the appealing feature that it does not change
the functional gradient values ∆(k, k′, t). We only enforce a lower prediction variance
over ’observed’ training examples. This nicely fits our intuition that we are more
confident in observed training examples in early iterations.



Algorithm 1 Conjugated Gradient Tree Boosting with line search.

1: function CGTreeBoost(Data, L)
2: for 1 ≤ m ≤ M do . Iterate Functional Gradient
3: S := ∅
4: for 1 ≤ k ≤ K do . Iterate through the class labels
5: S := S∪GenWeightedExamples(k, Data, Fm−1, m) . Generate

examples
6: ∆m :=FitRelRegressTree(S, L) . Functional gradient
7: if m = 1 then
8: d1 = ∆1 . Initial conjugate direction
9: else

10: βm =
〈∆m,∆m−∆m−1〉

〈∆m−1,∆m−1〉
. Polak-Ribiére formula

11: dm = ∆m + βm · dm−1 . Next conjugate direction
12: ηm :=LineSearch(Data, Fm−1, dm) . Line Search along dm

13: Fm := Fm−1 + ηm · dm . Model udpate
14: return FM . Return Potential

1. (Conjugate directions) Given the current gradient ∆m, compute the em-
pirical angle βm between ∆m and ∆m−1 on the training examples. The
current gradient plus the old weighted gradient multiplied by the calculated
angle is added to the current model, dm = ∆m+βm ·dm−1. The angle βm can

be calculated by evaluating the Polak-Ribiére formula βm = 〈∆m,∆m−∆m−1〉
〈∆m−1,∆m−1〉

for each example. Every weighted gradient dm is a linear combination of
the gradients ∆1, . . . ,∆m. It can be shown that dt =

∑m
i=1 βi,m · ∆i where

βm,m = 1 and βi,m =
∏m

j=i+1 βj if i < m.
2. (Line search) Compute the next model Fm by maximizing along the direc-

tion of dm, i.e.

Fm =
∑m

k=1
ηk · dk =

∑m

i=1

(

∑m

j=1
ηj · βi,j

)

∆i .

Training CRFs using conjugate gradient boosting is realized in CGTreeBoost

in Alg. 1. Note that it uses the example weighting scheme discussed in the
previous section. Furthermore, for the sake of simplicity and to stay close to
traditional conjugate gradient for function optimization, we present the model
update step as simply adding a single function. In fact, dm is a linear combination
of all previously computed functional gradients and one needs to keep track of
the βi,m. For a detailed discussion, we refer to [7, 8].

5 Preliminary Experiments

We implemented our approach in Yap 5.1.0 Prolog and investigate the following
two questions: Q1 Can unbiased boosting speed-up the training of CRFs, i.e.,

faster improvements of the objective score, which is the conditional log-likelihood?

Q2 Can conjugate gradient boosting improve the training of CRFs? To answer
both questions, we carried out experiments on two domains, traveling salesman
and protein secondary structure.



act 1 2 3 4 5 6 7 8

city(a) - 7 2 1 10 - - 2
city(b) 11 - 3 - 5 - - -
city(c) 12 8 - - 5 8 10 3
city(d) 13 9 - - 5 8 - 10

Extra

city(a) 22
city(b) 50
city(c) 12
city(d) 10

Fig. 1. Traveling salesman instance used in the experiment.(Left) The map where nodes
denote cities and edges transitions with associated costs. (Middle) Costs of activities.
(Right) Costs of doing an activity fast in one city.

(Traveling Salesman 3) There are n cities and actions A, which can be
done with normal speed or fast. All these actions have different costs. The
task is, given is a sequence of activities a1, . . . , aT , find a sequence of cities
c1, . . . , cT such that the overall costs are minimized. We considered the in-
stance with 4 cities and 8 actions as described in Figure 1. We randomly
generated 100 independent activity sequences of length 15 and searched brute
force for an optimal travel sequence. This yield relational sequences such
as X = 〈act(4, normal), act(1, fast), act(8, normal), act(7, normal), . . .〉 and
Y = 〈city(a), city(d), city(c), city(c), . . .〉. We refer to [5] for more details.

On a random 92/8 training/test split, we ran conjugate gradient tree (CGT)
and gradient tree (GT) boosting with and without (,i.e., ηm = 1.0) line search
on biased and unbiased examples. Figure 2 summarizes the results. As it can
readily be seen, both algorithms overfit on this data set when doing a line search,
cf. Fig 2 (b) and (d). However, compensating for the expectation selection bias,
cf. Fig 2 (d), prevents CGT in contrast to GT from overfitting. Without line
search, cf. Fig 2 (a) and (c), CGT yields better performance than GT. This
affirmatively answers Q2. More over, compensating for the expectation selection
bias, cf. Fig. 2 (c), results in larger improvements in early iterations of CGT
and again prevents CGT from overfitting. This affirmatively answers Q1. The
accuracies on the test set were in the same range across all algorithms.

(Protein Secondary Structure) This propositional data set was originally
published by Qian and Sejnowski [10]. A protein consists of a sequence of amino
acid residues. Each residue is represented by a single feature with 20 possible
values (corresponding to the 20 standard amino acids). There are three classes:
alpha helix, beta sheet, and coil (everything else). There is a training set of 111
sequences and a test set of 17 sequences. We used the same set up as in [5] and
ran several variants of the basic algorithms.

The results summarized in Figure 3 (a) support the results of the first ex-
periment: CGT performs better than GT and unbiased variants better than
biased ones. Although doing a line search did not yield overfitting, unbiased

2 This domain has originally been used in [5] to show that CRFs for sequences of
relational symbols can significantly outperform CRFs for sequences of flat symbols.
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(c) Unbiased / No Line Search (d) Unbiased / Line Search

-150
-120

-90
-60
-30

 0  2  4  6  8  10  12  14  16  18  20

T
es

t S
et

 C
LL

Iterations

 0

-100

-200

-300

-400

-500

-600

-700

T
ra

in
in

g 
S

et
 C

LL

gradient tree boosting w/o line search
conjugate gradient tree boosting w/o line search

-150
-120
-90
-60
-30

 0  2  4  6  8  10  12  14  16  18  20

T
es

t S
et

 C
LL

Iterations

 0

-100

-200

-300

-400

-500

-600

-700

T
ra

in
in

g 
S

et
 C

LL

gradient tree boosting with line search
conjugate gradient tree bossting with line search

Fig. 2. Learning curves on the job scheduling domain. (c, d) compensated for the
expectation selection bias in contrast to (a, b). Cases (b, d) used a line search whereas
(a,c) did not

CGT without line search still achieved the best predictive performance, partic-
ularly compared to the original GT, cf. Figure 3 (b). This affirmatively answers
Q1 and Q2.

6 Conclusions

Training CRFs can be viewed as gradient ascent in function space. In this pa-
per, we devised a novel algorithm for training CRFs, which employs conjugate
directions in function space. Furthermore, we identified an expectation selection
bias when training CRFs and presented an example weighting approach to com-
pensate for it. Preliminary experiments are encouraging: the resulting approach
can indeed perform better than simple gradient tree boosting. To validate this,
further experiments should be conducted.
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Fig. 3. Learning curves on the protein secondary structure domain. (a) Average over
several variants of biased/unbiased and GT/CGT. (b) Predictive accuracies of unbi-
ased CGT and biased GT both w/o line search.
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