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Abstract. There have been two major approaches for classification of networked
(linked) data. Local approaches (iterative classification) learn a model locally
without considering unlabeled data and apply the model iteratively to classify
unlabeled data. Global approaches (collective classification), on the other hand,
exploit unlabeled data and the links occurring between labeled and unlabeled data
for learning. Naturally, global approaches are computationally more demanding
than local ones. Moreover, for large data sets, approximate inference has to be
performed to make computations feasible.
In the present work, we investigate the benefits of collective classification based
on global probabilistic models over local approaches. Our experimental results
show that global approaches do not always outperform local approaches with re-
spect to the classification accuracy. More precisely, the results suggest that global
approaches considerably outperform local approaches only for low ratios of la-
beled data.

1 Introduction

Networked data has a key importance since many real world data can be rep-
resented in networks of data containing nodes. The most typical example of
networked data is the world wide web. Web pages can be modeled as data in-
stances, which are nodes of a directed graph. Hyperlinks give graph character-
istics to billions of web pages, hence, gives us the opportunity to represent the
world wide web as a huge network. The set of scientific publications exhibits
network characteristics, as scientific publications cite each other. Groups of in-
teracting people (social networks), transmission of epidemic diseases are exam-
ples of networked data, where the nodes represent human beings. Recently, there
has been an increasing interest in mining networked data, see i.e. Lise Getoor’s
(2003) overview on link mining.

The problem of labeling networked data can be stated as follows:



Given: An undirected graph (V,E), where E is the set of edges and each node
in V corresponds to a vector of features A1, ..., An, C , where C denotes the
class attribute; the values for the Ai are known for all v ∈ V , but class labels for
C are only known for a proper subset T of V . We will call a node also a data
instance.

Find: The class labels for U := V − T .

Several approaches to solve the networked data labeling problem:

Type 1: The AVL approach to tackling this problem is to treat this as a classical
learning problem, where the nodes L are the examples and the nodes in L
have to be classified (while ignoring E). The traditional AVL approach is,
however, incapable of using the network features. (type 1: AVL approach)

Type 2: The iterative classification scheme (Chakrabarti et. al. 1998, Neville
and Jensen 2000, Macskassy and Provost 2003, Lu and Getoor 2003a) em-
ploys a traditional AVL learner on the nodes in L but enriches the features
A1, ..., An with additional features F1, ..., Fm , which are derived from the
neighborhood of the node in E. Examples of Fi include the existence of a
neighbor of a particular class c. Only the labeled data is employed in learn-
ing, but in contrast to the previous method, the structure of the network is
employed. The resulting classifiers is then iteratively applied on the unla-
beled nodes. (type 2: Iterative Classification)

Type 3: The collective classification (Taskar et al. 2001, Taskar et al. 2002,
Lu and Getoor 2003b) approach treats the problem as a global optimization
problem, in which a particular function, e.g. the maximum likelihood w.r.t.
the overall nodes V , is maximized. In this framework, one typically em-
ploys the Expectation Maximization (EM) algorithm (Dempster et al.,1977)
over the features A1, ..., An, F1, ..., Fm . So, in this framework, both labeled
and unlabeled data are employed, as well as the structure of the network.
(type 3 : Collective Classification)

Here, the approaches are listed according to their complexity:

Type 1 approaches employ less information than type 2, and type 2 less
information than type 3

Consequently, learning of type 3 models can be expected to be computationally
more demanding and algorithmically more complex than learning type 2 and
type 1 approaches. Identifying the cases in which the higher computational costs
of type 3 approaches pay off is an interesting research question.

Our main contribution is such an experimental investigation showing that



the additional complexity of type 3 approaches based on naive Bayes
only pays off for low ratios of labeled data.

This is somewhat surprising as Lu and Getoor (2003b) report that type 3 ap-
proaches based on logistic regression improve the classification/labeling perfor-
mance of type 1 and type 2 approaches for any ratio.

The paper is structured as follows. After reviewing related work, we will
introduce a collective classification algorithm, which makes use of structural
information as well as that from unlabeled nodes to improve the classifica-
tion performance. The algorithm is similar to the one employed by Lu and
Getoor (2003b). Instead of logistic regression, however, we use a Naive Bayes
approach. We will argue that the algorithm can be viewed to learn a global prob-
abilistic model. More precisely, the model can be represented as a Probabilistic
Relational Model (Getoor et al, 2001). Before concluding, we will present our
experimental results. We compare our algorithm with Naive Bayes as baseline
approach (type 1) and iterative Naive Bayes classification (Neville and Jensen,
2000) (type 2).

2 Related Work

In the last few years, there has been a lot of interesting work on labeling net-
worked data. They can be roughly divided into two approaches, iterative classi-
fication and collective classification. We will now discuss each of them in turn.

Influence propagation by Iterative Classification: Collective inference can be
traced back to Chakrabarti et al. (1998). Based on collective inference, they
employ a local relaxation labeling algorithm, in a sub-graph around the entity
to be classified. Computations of the probability distributions are based on the
naive bayes classifier.

Neville and Jensen (2000) present an iterative classification algorithm for
relational data. They introduce the concept of dynamic attributes, whose val-
ues are subject to change, according to the classification results. For the task
of predicting the company type in a relational corporate data set, one exam-
ple of dynamic attribute might be the dominating type of the companies that
the owner of a particular company owns. A naive bayes classifier is employed,
which is trained on fully labeled data. The trained classifier is eventually used
iteratively to label unseen examples. Neville and Jensen report an improvement
of approximately 12 % in the accuracy.

Macskassy and Provost (2003) introduce Relational Neighborhood classifier
(RN), which classifies the entities of a graph. RN starts with a partially labeled
graph and completes labels by simply computing the weighted counts of each



class among the neighbors (weighted with the weight of the edge for each neigh-
bor) and by selecting the class that gives the maximum weighted count. There
is also an iterative version of the RN classifier, which repeatedly applies RN
classification as its inner loop until convergence.

Collective Classification approaches: Getoor et. al.(2001) develop a probabilis-
tic relational model (PRM) to classify web pages. The PRMs are extensions of
Bayesian networks, which were developed for relational databases. PRMs are
expressive enough to compute the influence of the labels and the words on the
hyperlinked web pages on the label of another web page.

Taskar et. al. (2002) employ relational Markov networks for collective clas-
sification tasks. A relational Markov Network defines undirected dependen-
cies and joint distributions for relational databases. When unrolled, a relational
Markov network instantiates a Markov network, which defines the dependen-
cies among the entities and their attributes. Similar to the PRMs, learning the
Markov networks is based on the expected count of the values for each attribute.
Inference is performed with belief propagation as in the PRMs.

Lu and Getoor (2003b) present an EM like algorithm employing logistic
regression to make use of link structure for classification of networked data.
They enrich the feature space with the ones from the link structure and employ
iterative learning of a logistic regression classifier.

3 Collective Classification Using the Expectation Maximization
Algorithm

The Expectation Maximization (EM) algorithm is a popular iterative algorithm
to learn the parameters of a probabilistic model in case of missing data. The idea
of using the EM algorithm for learning from unlabeled data is not new. Nigam
et al. (2000) employ the EM algorithm together with the naive bayes classifier
for text classification making use of the unlabeled data. In this work, we extend
the naive bayes-EM algorithm to the relational case, by introducing additional
features from network structure.

3.1 Generation of Second Order Attributes

In order to exploit the network structure, we create second order attributes,
which hold the information about the labels of the neighboring instances. Since
the information about the neighboring labels is not complete due to missing
labels, second order attributes may have missing values. We applied two settings
for second order attribute generation.



Neighboring Labels Our first setting for second order attribute generation is
based on a graphical generative model, which is a Bayesian network. We treat
the attributes and the class labels of the instances as random variables and as-
sume that the attributes of an instance are mutually independent, given its class
label (naive bayes assumption).

Additionally, we assume the existence of a link random variable between
two instances (only if they are linked by an edge). Note that this is only a con-
ceptual random variable, since we know the value of the random variable will
always be ’yes’ (’yes’:if the edge exists and ’no’: if the edge does not exist).
This random variable cannot take the value ’no’, because the link random vari-
ables are not included in the Bayesian network for non-existent edges. Note that
this is not a complete generative probabilistic model, because we discard the
influence of the non-existence of an edge.

(a) (b)

Fig. 1. (a) The underlying probabilistic model (b) Second Order Attribute Generation: Neighbor-
ing Labels

Figure 1 illustrates a mini dataset (b) and the corresponding Bayesian net-
work (a). In the figure a square represents a data instance with its attributes and
class label. Edges between squares stand for links.

From the Bayesian network, we can infer that attributes of the instances are
independent of the attributes of the other instances and the values of the link
random variables are independent of each other, given the class labels. To learn
the parameters of this Bayesian network, we can make use of the fact that the
the parameters will be the same for each link random variable and for the at-
tributes of the each instance. It is, therefore, possible to learn the parameters
for the nodes of the same type together. This idea is analogous to that of PRMs
(Getoor et al., 2001). Learning the parameters of the Bayesian network can be
achieved by flattening the data into a table, with an additional attribute. We call
this attribute ”Neighboring Labels”. We extract all the labels of the neighbor-
ing instances and use these labels as the values of the ”Neighboring Labels”.
Since it is possible that one instance has more than one neighboring instance,



this second order attribute is a multi-set valued attribute. An example of second
order attribute generation with the ”Neighboring Labels” setting is given in Fig-
ure 1b. In this example, for the sake of simplicity, we assume that there are 2
attributes and 3 instances. Squares represent the instances, whereas the connec-
tions between the squares represent the links. In this example ci denote the ith

class label. The flattened table is also shown in the same figure.
With a complete training set, the class dependent attribute probabilities (model

parameters), could be found by counting in this table and they would correspond
to the parameters of the Bayesian network. The parameters for the attribute
nodes (p(vak|cj), where a is an index over attributes, k is an index over val-
ues and j is an index over class labels) would correspond the parameters on the
first order attributes on the table. The Bayesian network parameters of the Link
nodes would correspond the parameters on the second order attribute from the
table, i.e. p(Link =′ yes′|cj , ck) = p(NeighborClass = ck|cj), since links
are undirected.

Fig. 2. Second Order Attribute Generation: Existence Attributes

Existence Attributes The second setting for second order attribute generation
is the generation of the existence attributes. These second order attributes hold
information about existence of links to instances from each class label. For ex-
ample, if instance A has link to an instance, class label of which is cj , then, the
value of the attribute ExistsLinkTo-cj will be yes. Otherwise, the value of this
attribute will be no. Doing so for each class label, the number of classes times
second order attributes are generated. An example second order attribute gener-
ation in this setting is shown in Figure 2. The data is the same as in Figure 1b.
P (there is a link to class cn|cj)).

3.2 Maximum Likelihood Parameters and the EM Algorithm

Our goal is to optimize the parameters of the model globally by finding the max-
imum likely parameters, given the data. According to Bayes’ law, the likelihood
of the parameters can be written as: P (θ|D) = P (D|θ)P (θ)/P (D) .



Dropping P (D) from the expression will not change the maximizing param-
eters since it is not conditional on θ. We assume that the prior probability for
each parameter set is equal. Therefore, we can drop P (θ) from the expression
too. Since the logarithm is a monotonic function, the maximum likely parameter
set is given as follows: θ′ = arg maxθ log(P (D|θ)) .

In our case, all the other nodes of the Bayesian network are independent of
each other if the class labels are given. Therefore, the likelihood of the data can
be written as follows (In a Bayesian network, a node is independent from its
non-descendants given its parents):

P (D|θ) ={
N∏

i=1

P (c(i)|θ)
|A|∏

a=1

P (via|c(i); θ)}

∗ {
|L|∏

l=1

P (c(l1)|c(l2); θ)}
(1)

In the above equation, i is an index over the instances, N is the total number
of instances, a is an index over the attributes, and |A| is the number of attributes.
c(l1) and c(l2) denote the class labels on two sides of a link.

We employ the EM algorithm, since the values of the second order attributes
are partially missing. We introduce the hidden variables zij . i denotes an index
over the instances, and j denotes an index over the classes. The true value of
zij is 1 if instance i belongs to class cj ; 0 otherwise. The computation of the
expected value zij corresponds to finding the probability that the instance i be-
longs to class cj . With the introduction of the hidden variables, the likelihood in
Equation (1), can be rewritten as follows:

P (D|Z; θ) ={
N∏

i=1

|C|∏

j=1

|A|∏

a=0

(P (via|cj ; θ)P (cj |θ))zij}

∗ {
∏

di∈D

∏

dm<di

|C|∏

j=1

|C|∏

n=1

P (Link =′ yes′|cn, cj ; θ)timzijzmn}
(2)

Applying the logarithm yields:

log P (D|Z; θ) ={
N∑

i=1

|C|∑

j=1

|A|∑

a=0

zij log(P (via|cj ; θ)P (cj |θ))}

+ {
N∑

i=1

∑

m<d

|C|∑

j=1

|C|∑

n=1

timzijzmn log P (Link =′ yes′|cn, cj ; θ)}

(3)



In the above equation, i and m are indices over the instances, N is the total
number of instances, j is an index over the class labels, cj is the jth class label,
via is the value of the ath attribute, a is an index over the attributes. tim is defined
as 1 if there is a link between the ith and the mth instances; and 0 else. Note that
P (Link =′ yes′|cn, cj ; θ) = p(cn|cj) = p(cj |cn). The two latter parameters
can be found by counting in the flattened table.

Equation (3) is composed of merely sum of logs and computable in closed
form (Dempster et al, 1977). The expectation and the maximization step of the
algorithm are as follows (The formulas follow our first setting of attribute gener-
ation, which consists of constructing a set valued second order attribute, namely
”Neighboring Labels”):

Expectation

E(k+1)[zij ] = P (classLabel = cj |di, L,E(k)[Z])

= αp(cj)
∏

a

p(via|cj)
∏

u∈Neighbors(i)
(

|C|∑

t=1

E(k)[zut]p(ct|cj))
(4)

In the above equation E(k+1)[zij ] denotes the expected value of the hidden
variable zij at step k+1. di denotes the first order attribute values of the instance
i. L denotes the set of links. E(k)[Z]) stands for the expected values of the
hidden variables at step k. via stands for the value of the ath attribute of instance
i. Please note that the probability is computed under naive bayes assumption that
the attributes are independent of each other. This assumption is also made for
second order attributes as well. p(NeighborClass = ct|cj) = p(ct|cj) is the
probability that an instance from class ct is situated at one side of a link, given
that an instance from cj is situated on the other side. This corresponds to the
probability that the second order attribute value is ct given that class label is cj .

Maximization The maximization step corresponds to the learning the model
classifier parameters based on the expected values of the hidden variables.

p(vak|cj) =
N̂(vak, cj)

N̂(cj)
=

∑N
i E[zij ]δ(va − vak)
∑N

i E[zij ]
(5)

p(cl|ck) =
N̂(ck, cl)

N̂(ck, DontCare)

=

∑N
i=1

∑N
m=1(E[zik]E[zml]tim +E[zil]E[zmk]tim)

∑|C|
j=1

∑N
i=1

∑N
m=1(E[zik]E[zmj ]tim +E[zij ]E[zmk]tim)

(6)



p(cj) =
N̂(cj)

N
=

∑N
i E[zij ]

N
(7)

The maximization step is nothing more than finding the Naive Bayes pa-
rameters by counting. Since the exact counts are missing, the expected counts
are used. δ(va − vak) is defined as 1 if va = vak; 0 else. tim denotes the exis-
tence of a link between the instances i and m. By N̂(ck, cl), we point to the ex-
pected counts of the links, which have class labels ck and cl on its two sides. By
N̂(vak, cj), we point to the expected counts of the instances, the ath attributes of
which have values vak. N denotes the total number of instances. N̂(cj) denotes
the expected count of the instances, which have class labels cj .

– Input: a set of labeled instances T , a set of unlabeled instances U and a set of links L.
– Learn a local naive bayes model on T ignoring the links
– for each node i in U
• for each possible class label cj
∗ compute P (label(i) = cj |Attributes(i)) using the local naive bayes model

• end for
– end for
– repeat
• Learn the Bayesian network parameters (M-Step, Equations (5), (6), (7))
• for each node i in U
∗ for each possible class label cj

· Compute E[zij ] = P (label(i) = cj |di, L, E(k)[Z]) (E-Step, Equation (4))
∗ end for

• end for
– until distributions over possible class labels converge
– for each node i in U
• label(i) := arg maxcj P (label(i) = cj)

– end for
– Output: The labels of the nodes in U

Table 1. The (soft) EM algorithm for collective classification

4 Experimental Results

We compare the performances of type 1 (naive bayes), type 2 (iterative naive
bayes with second order attributes), type 3 (collective classification via the EM,
see table 1) approaches. For type 3, we also implemented a hard version of the



EM algorithm, which finds most likely values of the hidden values instead of
expected values at each iteration. We investigate whether type 3 approach has
a significant improvement on type 2 approach. The type 2 approach uses the
same features (second order features) as the type 3 approaches, but instead of
global optimization, learns from labeled data only and applies the learned model
to unlabeled data iteratively. We also compare type 2 and type 3 approaches to
type 1 approach.

We ran our experiments on three datasets: Gene (KDD-Cup 2001,
http://www.cs.wisc.edu/ dpage/kddcup2001/ ), Cora (McCallum et al, 2000) and
CiteSeer (Lu and Getoor, 2003a) datasets. The Gene dataset contains 1242 ex-
amples. The task is to predict the localization of the protein in the cell (among
15 locations), given values of six attributes (some of which may be missing)
and given the interaction network between proteins. There are 1806 interac-
tions among proteins. The Cora data set contains 4187 examples. The examples
are machine learning papers, which are categorized into seven topics. The Cora
dataset contains 6185 citations. The CiteSeer dataset includes around 3600 com-
puter science papers in six categories as well as 7522 citations. For Cora and
CiteSeer datasets, we used the document frequency pruned dictionaries (Lu and
Getoor, 2003a). The pruned dictionary for Cora has 1400 words and the pruned
dictionary for CiteSeer has 3000 words.

For each data set and for each second order attributes setting, we ran the four
algorithms for different ratios of labeled data, ranging from 0.1 to 0.8 . Each ex-
periment was repeated 5 times. Each time, the instances are randomly initialized
as labeled or unlabeled, according to the probability resulting from labeled data
ratio. For example if the 80 % percent of the data should be labeled, the proba-
bility of any instance being initially labeled is 0.8. We performed paired t-tests
(95% significance level), to assess the significance of outperformances. The re-
sults are presented in Figure 3. With our second order attributes, naive bayes
(type 1) is significantly outperformed by the iterative and collective classifica-
tion algorithms (type 2 and type 3) significantly. Whether type 3 algorithms can
outperform the type 2 algorithm does strongly depend on the labeled data ratio.
If the unlabeled data ratio is equal or below a threshold (0.4-0.5), type 3 algo-
rithms are no more significantly better than the type 2 algorithm (Exception:
Cora Dataset with existence attributes where threshold is 0.7).

Lu and Getoor (2003b) did a similar analysis with an EM-like iterative lo-
gistic regression algorithm. In contrast to our results for Naive Bayes, Lu and
Getoor report that type 3 algorithm improve the predictive performance of type
1 and type 2 approaches for any ratio of labeled data. Explaining the different
results is an open and interesting future research question.



5 Conclusions

We experimentally compared global and local approaches for labeling/classifying
networked data. To do so, we devised a simple global algorithm based on Naive
Bayes and EM making use of labeled and unlabeled data. Our experimental re-
sults suggest that global approaches improve the performance of corresponding
local ones only for low ratios of labeled data.
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Fig. 3. Hard EM and (Soft) EM outperform the Iterative Classification significantly (t-test, 95%)
only below a threshold of labeled data ratio (a) Hard EM threshold = 0.4 , Soft EM threshold
= 0.4 (b) Hard EM threshold = 0.4 , Soft EM threshold = 0.3 (c) Hard EM threshold = 0.3 ,
Soft EM threshold = 0.4 (d) Hard EM threshold = 0.7 , Soft EM threshold = 0.7 (e) Hard EM
threshold = 0.5 , Soft EM threshold = 0.3 (f) Hard EM threshold = 0.6 , Soft EM threshold
= 0.4


