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Abstract

We present a perspective and challenges for
Relational Reinforcement Learning (RRL).
We first survey existing work and distinguish
a number of main directions. We then high-
light some research problems that are intrin-
sically involved in abstracting over relational
Markov Decision Processes. These are the
challenges of RRL. In addition, we describe
a number of issues that will be important
for further research into RRL. These are the
challenges for RRL and deal with newly aris-
ing issues because of relational abstraction.

1. Introduction

There has been much progress in reinforcement learn-
ing and Markov decisions processes recently. Several
basic algorithms have been proposed and their behav-
ior is relatively well understood today, cf. (Sutton &
Barto, 1998). This has led to an increased interest
into the effects of generalization and introduced new
challenges. One of them concerns the use of reinforce-
ment learning in relational domains in which one can
generalize over objects and relations (Kaelbling et al.,
2001). Even though a number of relational reinforce-
ment learning (RRL) algorithms has been developed,
the problem is still not well understood and a theory
seems to be lacking. Progress has been made in model-
based approaches as well, but many open problems and
challenges remain.

In this position paper, we provide a perspective on
the challenges of RRL, based on existing techniques in
the literature and insights from previous work. After
an initial overview of the field, we highlight challenges
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of RRL, i.e. the intrinsic problems that have to be
tackled by RRL systems. After that we point to chal-
lenges for RRL, i.e., new challenges that arise because

of relational abstraction, and which require a theory of
RRL to be developed.

2. Modeling Relational MDPs

Relational Reinforcement Learning differs from tra-
ditional MDP-based research in that the underlying
MDP is now factored into relational atoms. Solving
these Relational Markov Decision Processes (RMDP)
involves the use of logical languages to abstract over
relational states and actions, and the definition of ab-
stract value functions and policies. Some progress was
made on an intermediate level using deictic represen-
tations (Finney et al., 2002) but in the current paper
we focus on purely relational representations.

Conceptually, one can view the (ground) RMDP as the
semantics of the logical representation level which we
name the g-level and the r-level, respectively.

2.1. Relational Markov Decision Processes

The basic ingredients of an RMDP are a set of pred-
icates P and a domain of constants C. Furthermore,
one needs a set of action predicates A. The Herbrand
base HBP“C is the set of all ground atoms which can be
constructed from P and C. The set of all states S’ then
consists of the powerset of HBP“®. Usually there is an
implicit logical background theory ¥ that excludes il-
legal states, and thus the state space S of the RMDP
is {s € S’ | ¥ |= s}. Similarly, an action space A can
be defined based on A and C.

A relational MDP is now defined by the tuple
(S, A, T,R) where T : S x A x S — [0,1] a transi-
tion function and R : S x A x S — [0,1] a reward
function. Modeled in this way, we have essentially a
discrete MDP, but the size of the state space grows ex-
ponentially faster than propositionally factored MDPs.



As an example, based on the predicates on/2 and
cl/1, the domain {a,b,c,d,e,floor} and the action
set move/2 we can define the blocks world containing
5 blocks with |S| = 501 legal states.

2.2. Many routes lead to Abstraction

The g-level consists of the ground RMDP. Associated
with this level are optimal state (V*) and state-action
(Q*) value functions and optimal policies 7*. However,
because of the large sizes of the g-level some level of
abstraction is needed, i.e. the r-level. In developing
techniques for solving RMDPs one can (Van Otterlo,
2002) upgrade existing propositional techniques to the
relational case or extend existing (agent) logics with
utilities. Various logical languages can be employed
such as Horn logic, situation calculus and description
logic. For example, consider the following abstract pol-
icy for a blocks world. It optimally encodes the policy
for reaching states where on(a, b) holds:

onTop(X,b) — move(X, floor)

onTop(Y,a) — move(Y, floor)

cl(a),cl(b) — move(a,b)

on(a,b) — noop
Thus, the goal in research on RMDPs is finding an (op-
timal) policy #* : S — A on an abstract level. Because
learning the policy in the ground RMDP is not an op-
tion, various routes can be taken in order to find 7*.
One can first construct abstract value functions and
deduce a policy from that. One might also inductively
learn the policy from optimal ground traces. Overall,
one can distinguish between three main approaches.

The first one is the inductive route. The common fac-
tor of these approaches is that they use ground samples
to learn abstract policies and value functions. The first
paper introducing Relational Reinforcement Learning
(RRL) (Dzeroski et al., 1998) used a relational regres-
sion tree to learn an abstract Q-function from sampled
traces. Later this approach was extended to the on-
line T'G-algorithm (Driessens et al., 2001), which de-
vises an on-line structural regression tree learner. Re-
lated to this approach, Cole et al. (2003) employ the
higher-order logic tree learner ALKEMY to learn Q-
functions. The relational instance based (RIB) learner
(Driessens & Ramon, 2003) and the graph kernel-based
(Gértner et al., 2003) approach developed in the RRL
setting both inductively learn @Q-functions from sam-
pled traces. However, these approaches do not use
general-purpose logical languages, but use distance-
and kernel-based generalization using distance mea-
sures for structured representations. Recent work
based on description logic used samples generated by a
planning algorithm to inductively learn abstract poli-
cies directly and was later incorporated into an approz-

imated policy iteration framework (Yoon et al., 2002;
Fern et al., 2003). All these approaches are character-
ized by: (1) they implement different forms of succes-
sive abstraction, i.e. an abstract model is used to gen-
erate biased samples from the underlying RMDP and
the abstract model is altered based on them, (2) they
can — to some extent — be cast in the learning from
interpretations approach known from inductive logic
programming (ILP) (Muggleton & De Raedt, 1994)
and (3) they aim at approzimative abstractions.

The second route is deductive. The ground work for
this direction was laid by Dietterich and Flann (1997)
who showed that value backups can be generalized to
multiple states in propositional MDPs by reversing the
action operators. The first approach for RMDPs was
symbolic dynamic programming (SDP) by Boutilier
et al. (2001). In SDP a situation calculus abstraction
of an RMDP is used and logical regression is employed
within a walue iteration algorithm on the r-level. In
this way, value backups can be performed on abstract
states, thereby updating sets of states of the under-
lying RMDP. The use of a very expressive logic did
not permit an efficient computational algorithm yet.
Recent work (Kersting et al., 2004) shows REBEL, a
relational upgrade of the Bellman backup operator.
REBEL uses a constraint logic language that is simpler
than situation calculus and regression is employed to
devise a relational value iteration algorithm. Overall,
the deductive approaches can be characterized by: (1)
they are model-based, (2) they aim at exact solutions,
(3) logical reasoning methods such as regression and
theorem proving are used to compute abstractions and
(4) they are not sample-based, i.e. all computation is
done at the r-level.

A very recent approach by Gretton and Thiébaux
(2004) strikes a middle-ground between these ap-
proaches. It is related to SDP in the sense that a
situation calculus specification of an RMDP is used.
However, instead of fully implementing value iteration,
the approach uses a number of logical regression steps
after which the obtained abstraction level is used in an
inductive way for further generalization.

Finally, there is the modeling route. Recent ap-
proaches show that the r-level can be modeled to de-
fine useful abstractions a priori. Kersting and De
Raedt (2003) define the Logical MDP (LOMDP) which
is an abstraction over RMDPs and uses Q-learning on
this fixed, abstract model. Van Otterlo (2004) defines
the CARCASS which is an RL-based abstraction for
RMDPs. By learning a transition model, prioritized
sweeping can be used over the logical abstraction to
speed up learning. Morales (2003) introduces an a



priori abstraction of RMDPs based on separate state
and action spaces and uses ()-learning over the ab-
straction. Guestrin et al. (2003) uses probabilistic
relational models and models class-based value func-
tions assuming fixed relations. These approaches all
model an abstraction over the underlying RMDP and
use samples to learn parameters of these structures.

3. Challenges of RRL

When employing logical languages for abstraction over
RMDPs a number of structural learning tasks natu-
rally arises. To some extent, many of them can be
cast in ILP terms. However, the intrinsic probabilis-
tic nature of (R)MDPs, and also the notion of con-
cept drift in RL approaches demand new techniques
to deal with them. The growing field of probabilistic
logic learning (De Raedt & Kersting, 2003) provides
many new techniques for tackling these challenges. We
will now mention some of the learning tasks for RRL
and possible techniques.

1. Structural models. Relational abstractions
can be used to model various substructures, and each
of them can — in principle — be learned. Although
Guestrin et al. (2003) used PRMs for modeling the
domain, many more probabilistic relational models ex-
ist which have not been considered in the context of
RRL. Relational upgrades of Bayesian networks, hid-
den Markov models and other probabilistic logic rep-
resentation formalisms could be useful (cf. (De Raedt
& Kersting, 2003)).

la. Value functions. Abstract value functions can
abstract state or state-action value functions. For ex-
ample, V(on(X, floor)) denotes that all states in which
there is some block on the floor, get a value of 10. Some
relational regression techniques have been used (e.g.
in the inductive approaches). In general they can be
upgraded versions of RL-based regression algorithms
(e.g. (Driessens et al., 2001)) or adapted for use in
RRL (e.g. (Driessens & Ramon, 2003)). Overall, it is
necessary to develop relational regression algorithms
that can handle concept drift.

1b. Action definitions. Action learning
can be very useful to obtain an abstract model
of the underlying MDP (Khardon, 1999; Pasula
et al., 2004). For example, the action definition

on(x,Y), c1(x),c1(z) <™ c1(x), c1(Y), on(X, 2)
states that applying move(X,Y) can be performed if X
and Y are both clear and that in the resulting state X is
on Y. In some domains, one can also consider learning
preconditions only. Once an action model is learned,
deductive techniques can be used to learn value func-

tions. This combination with model-learning has not
yet been explored. The associated reward function too
may be learned.

1lc. MDP Abstraction. Relational abstractions can
also be defined over substructures of the underlying
MDP itself, e.g. see the modeling approaches. For ex-
ample, {c1(X), on(X, Z), c1(Y), (move(X,Y),move(Y,X))}
represents an abstract state with two abstract actions.
The modeling approaches have defined such abstrac-
tions but they have not yet been learned.

1d. Policies. A policy assigns an action to each state.
An abstract policy can consist of a set of rules, each ab-
stracting a set of state-action pairs. Standard ILP can
be used on optimal state-action pairs but in general
the policy is induced from an abstract value function.
In some cases this is a simple maximization process but
the learning from entailment ILP setting (Muggleton
& De Raedt, 1994) can be used as well. In general,
most approaches use a strict (decision-list style) pol-
icy representation. An interesting approach would be
to replace this by a set of (possibly overlapping) prob-
abilistic rules.

2. Parameters. Tasks 1a, 1b, 1c and 1d deal with
structural learning tasks. However, most structures
contain parameters. The inductive approaches usu-
ally solve both problems together whereas the mod-
eling approaches focus on the parameter estimation.
By adding structure learning mechanisms to the lat-
ter one, iterative 2-phase learning algorithms can be
developed separating structure and parameter learn-
ing, i.e. in an approximated policy iteration fashion.
This would make it easier to analyze abstraction lev-
els and use problem dependent learning algorithms for
structure and parameters separately.

3. Hierarchy. In a hierarchical task, abstraction
is not only performed on the structure of the cur-
rent state, but also on the structure of the task. In
this case, one can abstract action sequences (e.g. sub-
policies) but also necessary subgoals needed to achieve
the goal. Logical abstractions naturally allow parame-
terized subpolicies, something that happens on a more
ad-hoc fashion in propositional approaches. Hierar-
chical approaches are also related to the connection
between learning and reasoning. Using learned task
hierarchies in plan libraries with corresponding reason-
ing mechanisms in logic-based agent architectures can
be seen as bridging the gap between learning and rea-
soning (Van Otterlo et al., 2003). Hierarchical meth-
ods and the combination of learning and reasoning are
open problems in the field of RRL.



4. Challenges for RRL

Next to the challenges of RLL there are the challenges
for RRL. These arise in the new setting of (logical)
abstraction over RMDPs.

4.1. A Theory of RRL

The development of theoretical insights has not kept
pace with empirical work. There exists a number of ex-
perimental approaches, each targeting a specific learn-
ing task or domain. However, development of theo-
ries on how and why some methods work, are almost
absent for RRL. Some work has started in the mod-
eling approaches to identify useful concepts that can
be transferred to the inductive approaches, such as ab-
straction levels. From a logical point of view, the de-
ductive approaches are more amenable to formal anal-
ysis, but because the inductive approaches are based
on the same semantics the g-level both may benefit.

4.1.1. EXPLORING ABSTRACTION LEVELS

Depending on the complexity of the logic used, var-
ious abstraction levels can be defined, even over in-
finite domains, e.g. (Kersting et al., 2004). If the
abstraction level is too general, we might introduce
partial observability (Van Otterlo, 2004). Various log-
ical connectives and quantifiers give more representa-
tional powers to abstraction levels — and are especially
useful for the deductive approaches but this in turn
influences learning possibilities for the inductive ap-
proaches. The properties of the abstraction levels in-
fluence the (im)possibility of learning optimal policies.

Abstraction levels can be homogeneous or inhomoge-
neous (Givan et al., 2003; Kim & Dean, 2003). Cur-
rent deductive approaches aim at exact solutions and
keep their abstractions value-homogenous. However,
abstractions obtained in inductive approaches might
be more compact and more eligible for generalization
to other domains. The connection to related work on
adaptive resolution in propositional systems was only
made by (Driessens et al., 2001) by upgrading a propo-
sitional tree learner based on state-splitting. Related
work in model-free and model-based state-splitting can
be exploited to develop similar techniques for rela-
tional representations. Splitting (and merging) state
descriptions in relational languages, is more complex
than in the propositional case though. Splitting in
the joint state-action space is not considered much in
the propositional case where usually the state space is
partitioned and the action set is kept separate. For
RMDPs it the joint space is more important because
of variables connecting states and actions.

Comprehensibility of learned abstractions is one of the
promises of RRL. Although relational rules can be
more comprehensible than e.g. the weights of a neural
network, there are some trade-offs: consider the fol-
lowing abstraction in the blocks world:

(1) on(a,A),cl(a),on(b,B),on(X,b),cl(X),X # a

(2) on(a,A),on(X,a),cl(X),on(b,B),cl(b),X #b

(3) on(a, A), on(b,a), cl(b)

(4) on(a,A), on(X, a), c1(X), on(b,B), cl(b)
The abstraction levels {1,2,3} and {1,4} are logi-
cally equivalent. From a minimum description length
(MDL) point of view, the latter is preferred. However,
most humans will overlook that in (4) variable X can
unify with b. But if we have to visually inspect 100
rules or 10, less rules are preferred. So, although logi-
cal representations may yield comprehensible abstrac-
tions, there are important trade-offs to be considered.

The abstractions currently used are of the aggregation,
or averaging (Gordon, 1995) type. So far, ezact ver-
sions of this are used. However, more robust (and
possibly more compact) abstractions could be explored
using soft aggregation, where the abstractions are over-
lapping and aggregation is probabilistic in nature.

Yet another dimension is action abstraction. Because
action abstractions are usually (syntactically) depen-
dent on state or precondition descriptions, state and
action abstractions are more tightly connected than
in propositional representations. The consequences of
this for modeling abstraction levels has not been ad-
dressed explicitly.

4.1.2. PROOFS OF CONVERGENCE

Convergence analysis is an important issue. So far,
this issue has not been approached for RRL. Relational
abstraction is essentially a form of function approz-
imation, for which — especially in model-free learn-
ing — convergence guarantees are scarce. However,
given the fact that general relational abstraction can
be viewed as averaging (Gordon, 1995) useful bounds
might be computed for fixed abstraction levels. How-
ever, given the fact that most inductive approaches
are of the adaptive resolution kind, i.e. the abstrac-
tion level changing during the learning process, it is
largely open how to approach convergence in these
contexts. In general we have to distinguish between
structural convergence, i.e. obtaining a stable abstrac-
tion level and value convergence within an abstraction
level. Not converging on the structural level does not
have to exclude computing an optimal policy (Kersting
et al., 2004). For the deductive approaches one could
use stochastic bisirmulation approaches (Givan et al.,
2003) to asses the difference of the r-level to the g-



level. The use of action abstraction in general breaks
many existing convergence proofs and is perhaps the
most important open problem.

4.1.3. COMPLEXITY TRADE-OFFS

The trade-off between more powerful abstractions and
the increased cost of manipulating relational struc-
tures should be investigated. For some classes of prob-
lems propositionalization might be more efficient in
terms of computation, memory or sample complexity.
It is interesting to study how the relation between r-
level and g-level changes if the latter grows, possibly
to infinite size. Furthermore, using more expressive
logics such as situation calculus enables more power-
ful abstraction (lower space complexity) but it comes
with an increased cost of manipulating and learning
them. Comparing propositional and first-order lan-
guages in terms of MDP-specific criteria, such as num-
ber of episodes, number of value backups and the rel-
ative sizes of value functions and policies are interest-
ing and mostly absent. For the inductive approaches
the number of needed samples is important, whereas
in the deductive approaches the cost of manipulating
expressions is an important issue (e.g. theorem prov-
ing). Combinations of deduction and induction such as
(Gretton & Thiébaux, 2004) are interesting in this re-
spect. Furthermore, being able to reason about expe-
rience might help solve partially observable problems.
These kind of problems have not been approached in
RRL yet.

4.2. Values vs. Policies

The overall goal RRL is to learn an abstract policy
#*. All current methods are value-based '. However,
whereas the relational structure of the value function
can be large (or infinite), a corresponding optimal pol-
icy can be very compact, by generalizing over objects
and values. As an example, consider (part of) the
value function for the goal on(a, b) in the blocks world
as shown in figure 1. The structure of the value func-
tion is relatively complex, and might need an infinite
number of abstract states. However, even in infinite
worlds, an optimal policy can be stated as the very
short decision list from section 2.2. Additionally, it
can be learned from a small part of the value function.
Recent work has shown that for induction of finite poli-
cies background knowledge can actually be a necessity,
and not a mere feature (Kersting et al., 2004). The
use of background knowledge enables new ways of ab-
straction and it has not been analyzed explicitly yet.

'even the work by e.g. (Yoon et al., 2002) that uses
planning heuristics for sampling
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Figure 1. Parts of the abstract value function for the goal
on(a,b) after 10 iterations (Kersting et al., 2004). F; can
be a block or the floor.

Optimal value functions may have infinite range and
can be heavily shattered. This creates difficulties es-
pecially for model-free learners such as RRL. But also
deductive approaches are hindered by the explosion of
the value partition. For that reason, it is also inter-
esting to consider direct policy learning. There are at
least three interesting directions to explore: (1) Up-
grading policy gradient techniques to the relational
case seems a promising direction. Related are gen-
eralized expectation mazimization (GEM) approaches.
In both cases however, the problem of how to param-
eterize abstract policies to derive necessary gradients
should be solved. (2) The use of evolutionary algo-
rithms (EA) has proved very efficient in standard RL,
e.g. evolution of neural networks is a powerful way of
obtaining neural networks representing control poli-
cies. Also related is genetic programming. (3) As
was done for learning first-order action models (Pasula
et al., 2004) and policies (Yoon et al., 2002) supervised
learning abstractions can be done using ILP methods.
For this direction, suitable contexts for obtaining op-
timal samples or traces should be explored. It is in-
teresting to analyze the policy vs. value trade-off in
the relational setting and to also see whether approxi-
mative and probabilistic approaches are the answer to
shattered value functions.

4.3. Exploring Generalization

Because relational formalisms abstract over objects, it
is tempting to learn policies in small domains and ap-
ply them to larger domains. However, in probabilistic
domains, due to the domain size this might not work.
Guestrin et al. (2003) give insight into a restricted
case but in general, it is an open problem to deter-
mine when generalization can be applied.



Consider for example a blocks world with probabilistic
actions. Assume that one of the outcomes of move(X, Y)
is that block X is moved onto somewhere else (i.e. not
on Y). An abstract n-steps-to-go value function gener-
alizes no matter how many blocks there are. However,
if we consider a blocks world where this outcome is to
move onto some other block, it depends on how many
blocks there are and how many stacks, i.e. the proba-
bility distribution over the next states depends on this
(and so may be the reward). In such a context, the
value function is dependent on the number of blocks.
In some contexts, even the policy may depend on the
domain size. In other words, upgrading learned value
functions or even policies to larger domains might not
always be valid. Insight is needed into when upgrad-
ing from small problem instances (RMDPs) is appli-
cable. As shown by Kersting et al. (2004), sometimes
background knowledge might solve the policy induction
problem, but also here insight is needed how and when
to apply this. Overall, changing the semantics, i.e. the
g-level, by adding domain elements might be harmful
to the r-level and analysis is needed, especially for the
infinite case.

4.4. Proofs of Soundness & Completeness

For the r-level, many different logical formalisms can
be (and have been) employed, such as Horn logic and
description logics. It is important to provide mappings
between these frameworks for comparison purposes.
Also important are representation theorems: when in-
ducing or defining an abstraction level, one has to
consider the relation between g-level and r-level. For
the deductive approaches, soundness of the reasoning
process and simplification of expressions is important,
e.g. REBEL uses domain constraints to enforce this.
The modeling approaches too have to ensure that the
models they define corresponds to a correct underly-
ing g-level. For the inductive approaches, complete-
ness is more an issue. Induced structures should be
rich enough to model the underlying g-level.

4.5. More Real-World Applications

A final important issue is convincing (real-life) appli-
cations. The blocks world is used in most studies, but
it should be viewed upon as analogously to genetics
— a Drosophila. Other applications are logistics do-
mains and computer games such as Digger, Tetris and
FreeCraft. In order to more fully show the benefits of
relational representations for MDPs, one should solve
larger, problems for which existing, propositional al-
gorithms are insufficient.

Taking inspiration from the field of probabilistic logic

learning, webmining and bio-informatics applications
are challenging domains due to their size and their in-
trinsically relational structure. RRL upgrades of RL
Webspiders (Rennie & McCallum, 1999) would be very
interesting. Other domains in which learning and rea-
soning could be combined are interesting, for exam-
ple in multi-agent contexts. Here, many interesting
problems can be explored, such as communication and
cooperation. Agents in these contexts are often mod-
eled in terms of first-order languages, whereas usually
behavior learning is performed using propositional lan-
guages or ad-hoc methods are applied to connect learn-
ing to the structural representations of knowledge.

5. Conclusion

Relational reinforcement learning aims at tackling one
of the central open questions in machine learning and
artificial intelligence, namely reasoning and acting in
richly structured domains. At the heart of all chal-
lenges arising in relational reinforcement learning lies
the trade-off between exploration and exploitation of
abstraction levels. To accumulate a lot of reward, the
learning system must ezploit the best experienced ab-
straction level. However, to discover better action se-
lections for the future, it must explore new abstraction
levels. For these matters we need a theory of RRL.
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