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1 Position Statement
There is a diversity ofprobabilistic-logical models(PLM).
No clear understanding of the relative advantages and limi-
tations of different formalisms and their language concepts
has yet emerged. To overcome this, we propose todown-
gradehighly expressive PLMs. This method has several ad-
vantages: one can profit from existing research on PLMs and
inherit unique semantics, and inference and learning algo-
rithms. Moreover, there is a clear relationship between the
new PLM and its more expressive counterpart. No single ex-
isting approach is devalued.

2 Motivation
In recent years, there has been an increasing interest in
probabilistic-logical models (PLMs). PLMs integrate prob-
ability theory with some first order logic. Traditionally, a
probabilistic formalism like Bayesian networks or hidden
Markov models is selected andupgradedby incorporating
some logic such as entity-relationship (ER) models or Pro-
log. Real-world data applications have shown the potential of
PLMs e.g. in query optimization[Getooret al., 2001], com-
putational biology[Segalet al., 2001; Kerstinget al., 2003]
and web mining[Andersonet al., 2002].

Despite these successes, the field of (learning) PLMs is
quite complex and confusing. PLMs“have been developed
in several related, but different, subareas of artificial intelli-
gence (reasoning under uncertainty, inductive logic program-
ming, machine learning, and knowledge discovery and data
mining)” as stated by Lise Getoor and David Jensen in SRL-
2003’s CFP. Each subarea focuses on its own language con-
cepts. Consider Table 1 which lists a subset of proposed for-
malisms1. The language concepts vary from acyclic to cyclic
models, from logically structured dependencies among ran-
dom variables to states, from finite to continuous random
variables, and from functor-free languages to Prolog. They
each have their respective merits. However, theupgrading
mentality together with concentrating on particular language
concepts makes a general understanding of PLMs and learn-
ing PLMs difficult – if not impossible.

∗This is a position statement for the IJCAI-2003 Workshop on
Learning Statistical Models from Relational Data

1Avi Pfeffers’s interesting PhD thesis provides some more refer-
ences,[Pfeffer, 2000].

3 Downgrading
Downgrading consists of two steps.

(Step 1) Choose a generally applicable (learning) PLM.

The PLM should cover the basic language concepts proposed
in the different scientific subareas:

• Relations among random variables or states to model
uncertainty. This subsumes interesting concepts such as
referential and existential uncertainty.

• Functors allow to consistently encode temporal cor-
relations (dynamic Bayesian networks), complex long
distance correlations (stochastic grammars),named by
structureentities as they are common in semi-structured
data (e.g. XML), and general data structures (lists, trees,
etc). Functors incorporate flexible memory capabilities.

• Finite, discreteandcontinuous random variablesto-
gether provide compact models which are applicable in
a broad field of applications such as classification, clus-
tering, and regression.

• Often, e.g. in computational biology, one is interested
not only to simulate but to gain insight into, and under-
stand the underlying processes. Therefore, PLMs should
be interpretable.

• Learning the PLM should facilitate to define and to spec-
ify both deterministic and probabilisticbackground
knowledge. This not only makes it possible to specify
the huge amount of expert knowledge often available but
also to break complex questions into subtasks still taking
care of dependencies among the subtasks.

It is likely that the very general PLM is prohibitively powerful
for a problem at hand. Therefore,

(Step 2) downgrade it to strike the right balance between ex-
pressivity and learnability.

Compared to upgrading, downgrading has the following
advantages. First, the downgraded PLM inherits unique
semantics, and inference and learning algorithms. Second,
downgrading does not focus on a particular PLM. Instead it
systematically investigates the impact of language concepts.
A general understanding of PLMs and learning PLMs is
likely to emerge.



PLM Probabilistic Formalism Logic
Probabilistic Horn Abduction (PHA)[Poole, 1993] Bayesian Networks Prolog
PRISM[Sato, 1995] Stochastic Grammars Prolog
Stochastic Logic Programs (SLPs)[Muggleton, 1996; Cussens, 2000] Stochastic Grammars Prolog
Probabilistic Logic Programs (PLPs)[Ngo and Haddawy, 1997] Bayesian Networks Prolog
Bayesian Logic Programs (BLPs)[Kersting and De Raedt, 2001] Bayesian Netwoks Prolog
Relational Baysian networks (RBNs)[Jaeger, 1997] Bayesian Networks Relational
Probabilistic Relational Models (PRMs)[Friedmanet al., 1999] Bayesian Networks ER Models
Relational Markov Models (RMMs)[Andersonet al., 2002] Markov Models Relational
Logical Hidden Markov Models (LOHMMs)[Kerstinget al., 2002] Hidden Markov Models Iterative Clauses

Table 1: A collection of probabilistic-logical models together with their underlying probabilistic and logical formalism.

Initial attempts of downgrading have been done. Re-
stricting SLPs to iterative clauses leads in principle to
LOHMMS [Kersting et al., 2002]. [Sato and Kameya,
2001] propose an EM algorithm for parameter estimation of
PRISMs showing that the algorithm exhibits the same com-
plexity for hidden Markov models and stochastic context free
grammars as the specialized counterparts.

4 Related Work
Downgrading is related to work comparing the expressivity
of different PLMs[Kersting and De Raedt, 2001; Jensen and
Neville, 2002]. Furthermore, downgrading is akin to contem-
porary considerations in theinductive logic programmingand
theBaysian networkscommunities. E.g. Kevin Murphy mo-
tivates the development of his MatlabBaysian Network Tool-
boxas follows:“I was fed up with reading papers where all
people do is figure out how to do exact inference and/or learn-
ing in a model which is just a trivial special case of a general
Bayes net, e.g., input-output HMMs, coupled-HMMs, auto-
regressive HMMs. My hope is that, by releasing general pur-
pose software, the field can move on to more interesting ques-
tions”, see http://www.ai.mit.edu/˜murphyk/Software/BNT/bnt.html .
For similar reasons, we initiated a repository for (learning)
PLMs athttp://www.informatik.uni-freiburg.de/˜kersting/plmr/ .
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