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Abstract

Motivated by the interest in relational reinforce-
ment learning, we introduce a novel representa-
tion formalism, called logical Markov decision pro-
grams (LOMDPs), that integrates Markov Decision
Processes with Logic Programs. Using LOMDPs
one can compactly and declaratively represent
complex relational Markov decision processes.
Within this framework we then develop a theory
of reinforcement learning in which abstraction (of
states and actions) plays a major role. The frame-
work presented should provide a basis for further
developments in relational reinforcement learning.

1 Introduction
In the past few years, there has been a lot of work on ex-
tending probabilistic and stochastic frameworks with abil-
ities to handle objects, see e.g.[Anderson et al., 2002;
Džeroskiet al., 2001; Friedmanet al., 1999; Kersting and De
Raedt, 2001; Kerstinget al., 2003; Muggleton, 1996]. From
an inductive logic programming or relational learning point
of view, these approaches are upgrades of propositional rep-
resentations towards the use of relational or computational
logic representations. Various successes in this direction have
been reported. Indeed,[Friedmanet al., 1999] and[Kersting
and De Raedt, 2001] upgrade Bayesian networks,[Muggle-
ton, 1996] upgrades stochastic context free grammars,[An-
dersonet al., 2002] and[Kerstinget al., 2003] upgrade (hid-
den) Markov models.

The first contribution of this paper is the introduction of
a novel representation formalism, calledlogical Markov de-
cision programs(LOMDPs), that combinesMarkov decision
processeswith computational logic. The result is a flexible
and expressive framework for defining MDPs that are able
to handle structured objects as well as relations and func-
tors. For MDPs, such a framework grounded in computa-
tional logic, was still missing. Only[Boutilier et al., 2001]
report on combining MDPs with Reiter’s situation calculus.
However, as we argue in Section7, it is more complex and
model-free reinforcement learning techniques have yet not
been addressed within this framework. LOMDPs share - with
the other upgrades of propositional representations - two ad-
vantages. First, logical expressions (in the form of clauses,

rules or transitions) may contain variables and as such make
abstractionof many specificgroundedrules or transitions.
This allows one to compactly represent complex domains.
Secondly, because of this abstraction, the number of parame-
ters (such as rewards and probabilities) in the model is signif-
icantly reduced. This in turn allows - in principle - to speed
up and simplify the learning because one can learn at theab-
stract level rather than at thegroundlevel.

Many fascinating machine learning techniques have been
developed under the name reinforcement learning (RL) in the
context of MDPs over the last few decades, cf.[Sutton and
Barto, 1998]. Recently, there has also been an increased at-
tention for dealing with relational representations and objects
in reinforcement learning, see e.g.[Džeroski et al., 2001;
Finneyet al., 2002] Many of these works have taken a practi-
cal perspective and have developed systems and experiments
that operate in relational worlds. At the heart of these sys-
tems there is often a function approximator (often a logical
decision tree) that is able to assign values to sets of states
and to sets of state–action pairs. So far, however, a theory
that explains why this approach works seems to be lacking.
The second and most important contribution of this paper is
a first step into the direction of such a theory. The theory is
based on a notion of abstract states and abstract policies rep-
resented by logical expressions. An abstract state represents a
set of concrete states and an abstract policy is then a function
from abstract states to actions. All ground states represented
by the same abstract state are essentially assigned the same
action. This is akin to what happens with (relational) rein-
forcement learning using (logical) decision trees[Džeroskiet
al., 2001], where each leaf of the decision tree represents an
abstract state and where states classified in the same leaf ob-
tain the same value or action. Within the LOMDP framework
abstract policies can easily be represented. The abstract value
function (assigning values to abstract states or state action
pairs) is defined as the average values of the states or state
action pairs they represent. We will show that these abstract
value functions cannot in general be learned using traditional
MDP methods. This in turn provides some new insights into
relational reinforcement learning approaches.

We proceed as follows. After introducing some mathemati-
cal preliminaries in Section2, we present the LOMDP frame-
work in Section3. Section4 defines abstract policies and
shows how to compute the value of an abstract policy. This
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results in the LQ learning algorithm presented in Section5.
The algorithm is experimentally evaluated in Section6. Be-
fore concluding, we discuss related work.

2 Preliminaries
As logic programs and Markov decision processes will be
used throughout this paper as the underlying mathematical
concepts, we now briefly introduce their key concepts.

2.1 Logic
A first-order alphabetΣ is a set of relation symbolsr with
arity m ≥ 0, and a set of functor symbolsf with arity n ≥ 0.
If n = 0 thenf is called a constant, ifm = 0 thenp is called a
proposition. Anatomr(t1, . . . , tm) is a relation symbolr fol-
lowed by a bracketedn-tuple of termsti. A termis a variable
V or a functor symbol immediately followed by a bracketed
n-tuple of termsti, i.e., f(t1, . . . , tn) . A conjunction is a
set of atoms. A conjunctionA is said to beθ-subsumed by a
conjunctionB, denoted byA ≤θ B, if there exists a substitu-
tion θ such thatBθ ⊂ A. A term, atom or clauseE is called
groundwhen it contains no variables. Themost general uni-
fier (MGU) for atomsa andb is denoted bymgu(a, b). The
Herbrand baseof Σ, denoted ashbΣ, is the set of all ground
atoms constructed with the predicate and functor symbols in
the alphabetΣ.

2.2 Notation
Atoms are written in lower casea, set of of atoms in upper
caseA, and sets of sets of atoms in bold, upper caseA. To
highlight thata (resp.A andA) may not be ground (i.e. it
may contain variables), we will writea (resp.A andA).

2.3 Markov Decision Processes
A Markov decision process (MDP) is a tupleM =
(S, A,T, λ) . To avoid ambiguities, we will sometimes in-
dex the elements byM. Here,S is a set of system states,
i.e. propositions. The agent has available a finite set of ac-
tions A(z) ⊆ A for each statez ∈ S which cause stochas-
tic state transitions. For eachz, z′ ∈ S and a ∈ A(z)
there is a transitionT in T which is an expression of the
form z′

p:r:a←−−− z. The transition denotes that with probability
P (z, a, z′) := p actiona causes a transition to statez′ when
executed in statez. We have for eachz ∈ S anda ∈ A(z)
that

∑
z′∈S P (z, a, z′) = 1. For a transition the agent gains

an expected next rewardR(z, a, z′) := r. In case that the re-
ward functionR is probabilistic (mean value depends on the
current state and action only) the MDP is callednondetermin-
istic, otherwisedeterministic. In this paper, we only consider
MDPs with stationary transition probabilities and stationary,
bounded rewards.

A (stationary) deterministic policyπ : S 7→ A is a set
of expressions of the forma ← z for eachz ∈ S where
a ∈ A(s). It denotes a particular course of actions to be
adopted by an agent, withπ(z) := a being the action to
be executed whenever the agent finds itself in statez. We
assume an infinite horizon and also that the agent accumu-
lates the rewards associated with the states it enters. To com-
pare policies, we use the expected total discounted reward as

our optimality criterion, i.e., future rewards are discounted by
0 ≤ λ < 1. The value of a policyπ can be shown to be
Vπ(z) =

∑
z′

p:r:a←−−−z∈T
p · [r + λ · Vπ(z′)]. The value ofπ at

any initial statez can be computed by solving this system of
linear equations. A policyπ is optimal if Vπ(z) ≥ Vπ′(z)
for all z ∈ S and policiesπ′. A (stationary) nondeterministic
policy π maps a state to a distribution over actions. The value
of π is then the expectation according to this distribution.

3 Logical Markov Decision Programs
The logical componentof a MDP corresponds to afi-
nite state automaton. This is essentially a propositional rep-
resentation because the state and action symbols are flat, i.e.
not structured. The key idea underlyinglogical Markov deci-
sion programs(LOMDPs) is to replace these flat symbols by
abstract symbols.

Definition 1. An abstract state is a conjunctionZ of logical
atoms, i.e., a logical query. In case of an empty conjuction,
we write∅.
Abstract states represent sets of states. More formally, we
have that a stateZ is a (finite) conjunction of ground facts
over the alphabetΣ, i.e. a logical interpretation, a subset
of the Herbrand base. In the blocks world, one possible
state Z is on(a, b), on(b, fl), bl(a), bl(b), cl(a), cl(fl)
whereon(a, b) denotes that objecta is onb, cl(a) states that
a is clear,bl(a) denotes thata is a block, andfl refers to
the floor. An abstract stateZ is e.g.on(X, Y), bl(Y), bl(X).
It represents all states (over the given alphabetΣ) that have
two blocks on one another. Formally, speaking, we have that
an abstract stateZ represents all statesZ for which there
exists a substitutionθ such thatZθ ⊆ Z. Let S(Z) denote
this set of states. The substitution in the previous example is
{X/a, Y/b}. By now we are able to define abstract transitions.

Definition 2. An abstract transitionT is an expression of
the formH

p:r:a←−−− B whereP(T) := p ∈ [0, 1], R(T) :=
r ∈ [0, 1], a is an abstract action, andbody(T) := B and
head(T) := H are abstract states.

We assumeT to be range-restricted, i.e.,vars(H) ⊆ vars(B),
andvars(a) ⊆ vars(B), so that an abstract transition relies
on the information encoded in the current state only. The se-
mantics of an abstract transition1 are:

If the agent is in a stateZ, such thatB ≤θ Z, then
it will go to the stateZ ′ := [Z \Bθ] ∪ Hθ with
probability p when performing actionaθ receiving
an expected next reward ofr.

For illustration purposes2, consider the following abstract
transition, which moves blockX fromY to the floor with prob-
ability 0.9:

on(X, fl), cl(X)cl(Y)
0.9:−1:mv fl(X)←−−−−−−−−−− on(X, Y), cl(X)

1We implicitly assume that an abstract action has some precon-
ditions

2Please note that we employ functor-free examples throughout
the paper for the sake of simplicity. Abstract statesZ, actionsA,
and transitionsT can include functors. All proofs remain valid.
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Applied to stateExp

on(a, b), on(b, fl), on(c, fl),
cl(a), cl(c), bl(a), bl(b), bl(c)

the abstract transition tells us that when we executemv fl(a)
the successor state will be

on(a, fl), on(b, fl), on(c, fl),
cl(a), cl(b), cl(c), bl(a), bl(b), bl(c)

with probability0.9 gaining a reward of−1. One can see that
this implements a kind of first-order variant of probabilistic
STRIPS operator, cf.[Hanks and McDermott, 1994].

As LOMDPs typically consist of a setT of multiple ab-
stract transitions there are two constraints to be imposed in
order to obtain meaningful LOMDPs. First, letB be the set of
all bodies of abstract state transitions in the LOMDP (modulo
variable renaming). ForB ∈ B, letA(B) denote the set of
all abstract actionsa such thatH

p:r:a←−−− B is in the LOMDP.
We require

∀B ∈B,∀a ∈ A(B)
∑

T∈T,
body(T)=B,
act(T)=a

P(T) = 1.0. (1)

This condition guarantees that all abstract successor states
are specified when executing an abstract action in an ab-
stract state and that their probabilities sum to1. Secondly,
we need a way to cope with contradicting transitions and re-

wards. Indeed, consider the two transitionse
1:−1:a←−−−− d and

g
1:−2:a←−−−− f, and stateZ = {d, f}. The problem with these

transitions is that the first transition says that if we execute
a in Z we will go with probability1 to stateZ ′ = {e, f}
whereas the second assigns a probability of1 to stateZ ′′ =
{d, g}. There are essentially two ways to deal with this situ-
ation. On the one hand, one might want to combine the two
transitions and assign a probability of0.5 to bothZ ′ andZ ′′

for Z. On the other hand, one might want to have only one
of rule of fire. In this paper, we take the second approach
because this allows us to consider the transitions more inde-
pendently of one another. This in turn will simplify learning
and yields locally interpretable models. We assume a total or-
der≺ over all action-body pairs inT and do a forward search
among the pairs stopping with the first matching body such as
in Prolog3. From now on, we assumeB to be ordered w.r.t.
≺. We will give an example after the next definition.

By now we are able to formally define logical Markov de-
cision programs.
Definition 3. A logical Markov decision process (LOMDP)
is a tupleM = (Σ,A,T, λ) whereΣ is a logical alphabet,
A, is a set of abstract actions,T is a finite set of abstract
state transitions based on actions inA, and0 ≤ λ < 1 is a
discount factor, such that(1) holds.

3We chose a total order for the sake of simplicity. A partial order
≺ among the pairs s.t. the set of pairs is well-founded, i.e., every de-
scending chain of elements w.r.t.≺ is finite, actually suffices. Then,
the conflict resolution strategy is to select only those abstract tran-
sitions whose action-body pair is minimal. An example is given in
[Kerstinget al., 2003] where a kind of subsumption (or generality)
relation amongB is employed. All theorems can be adapted accord-
ingly.
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Figure 1: The two underlying patterns of the blocks world.
Figure (a) shows the situation that there are at least two stacks
of height> 0. Figure (b) shows the situation that there is only
one stack left. The serrated cuts indicate thatA (resp.C) can
be on top of some other block or on the floor.

Before giving the semantics of LOMDPs, let us also illus-
trate LOMDPs on thestackexample from the blocks world:

1: absorb
1.0:0.0:absorb←−−−−−−−− absorb.

2: on(A, fl), cl(A),
on(C, D), cl(C),

0.9:−1:mv fl(A)←−−−−−−−−−− on(A, B), cl(A),
cl(B) on(C, D), cl(C).

3: on(A, C), cl(A),
on(C, D), cl(C),

0.9:−1:mv(A,C)←−−−−−−−−− on(A, B), cl(A),
cl(B) on(C, D), cl(C).

4: absorb
1.0:20:stop←−−−−−−− on(A, B), cl(A),

bl(B).

If the transition probabilities do not sum to1.0 for an ab-
stract action then there is an additional abstract transition for
staying in the current abstract state. In order to understand
the LOMDPstack, one has to understand the abstract states
that govern the underlying patterns of the blocks world, cf.
Figure 1. Two abstract states (the artificialabsorb state ex-
cluded) together with the order in which they are presented
cover all possible state action patterns because we can take
advantage of symmetry in the blocks world. Transition1 en-
codes the absorbing state. Transitions2 and3 cover the cases
in which there are (at least) two stacks. Finally, transition4
encodes the situation that there is only one stack, i.e. our
goal statestack. Here,on(A, B), cl(A), bl(B) are only used
to describe the preconditions ofmv(A, B): the floor cannot be
moved. When performing actionmv(a, b) in stateExp (see
above) only abstract transitions4 is firing. Similar, we can
easily encode theunstackgoal.

Note that we have not specified the number of blocks. The
LOMDP represents all possible blocks worlds using only6
abstract transitions, i.e.12 probability and reward parame-
ters, whereas the number of parameters of a propositional
system explodes: for4 blocks there are73 states, for7 blocks
37.663 states, and for10 blocks58.941.091 states, resulting
in an even higher number of transitions.

The semantics of LOMDPs are as follows.

Theorem 1. Every LOMDPM = (Σ,A,T, λ) specifies a
discrete MDPM(M) = (S, A,T, λ).
Proof sketch: Let hbs

Σ ⊂ hbΣ be the set of all ground
atoms built over abstractstates predicates, and lethba

Σ ⊂

65



hbΣ be the set of all ground atoms built over abstract
action names. Now, constructM(M) from M as fol-
lows. The countable state setS consists of all finite sub-
sets ofhbs

Σ. The set of actionsA(Z) for stateZ ∈ S is
given by A(Z) ={aθ|H p:r:a←−−− B ∈ T minimal (w.r.t.≺) ,
B ≤θ Z} . We have that|A(Z)| <∞ holds. The probability
P (Z, a, Z ′) of a transition inT from Z to another stateZ ′

after performing an actiona is the probability valuep associ-
ated to the unique abstract transition matchingZ, a, andZ ′

normalized by the number of transitions of the formZ ′′
a←− Z

in T. If there is no abstract transition connectingZ andZ ′,
the probability is zero. The bounded rewards are constructed
in a similar way but are not normalized.
From Theorem 1 and[Puterman, 1994, Theorem 6.2.5] it fol-
lows that:

Corollary 1. For every LOMDP, there exists an optimal pol-
icy (for the ground states).

Finally, LOMDPs generalize finite MDPs.

Proposition 1. Everyfinite MDP is a propositional LOMDP
in which all relation symbols have arity0.

4 Abstract Policies
Theorem 1 states that every LOMDPM specifies a discrete
MDP M(M). Furthermore, Corollary 1 guarantees that there
exists an optimal policyπ for MDP M(M). Of course, this
policy is extensional or propositional in the sense that it spec-
ifies for each ground state separately which action to execute.
Specifying such policies for LOMDPs with large state spaces
is cumbersome and learning them will require much effort.
Therefore, we introduceabstract policiesπ which intention-
ally specify the action to take for an abstract state (or sets of
states).

Definition 4. An abstract policyπ over Σ is a finite set of
decision rules of the forma ← L wherea is an abstract
action andL is an abstract state4.

The meaning of a decision rulea← L is that

if the agent is in a stateZ such thatL ≤θ Z then
the agent will perform actionaθ, denoted byπ(Z).

Usually,π consists of multiple decision rules. We apply the
same conflict resolution technique as for abstract transitions,
i.e. we use a total order≺ among the decision rules. Let
L = {L1, . . . ,Lm} be the set of bodies inπ (ordered w.r.t.
≺). We callL the abstraction levelof π. We assume that
L covers all possible states of the LOMDP. This together
with the total order guarantees thatL forms a partition of the
states. The equivalence classes[L1], . . . , [Lm] induced byL
are inductively defined by[L1] = S(L1), and for i ≥ 2,
[Li] = S(Li) \

⋃i−1
j=1[Lj ]. BecauseL generally does not co-

incide withB the following proposition holds.

Proposition 2. Any abstract policyπ specifies anondeter-
ministic policyπ at the level of ground states.

LetM be a LOMDP and letM(M) be the induced MDP.
We define the expected reward ofL ∈ L to be the expected

4We assume thata is applicable inL.

reward taken over all states in[L]. Therefore, the expected
discounted reward, if abstract policyπ is used and the system
is in abstract stateL, is defined to be

Vπ(L) = lim
N→∞

E[L]

[
Eπ

{
N∑

k=1

λkrt+k|Zt = Z

}]
(2)

whereri denotes the value at timei of the reward received
w.r.t. M(M) when following the ground level policyπ in-
duced byπ. The inner expectationEπ is conditioned on the
system being in stateZ ∈ S at timet, denoted byZt = Z.
The outer expectationE[L] runs over all elements of[L]. The
series in (2) converges absolutely for the same reasons as for
MDPs. Thus, the limit and the expectations are interchange-
able in (2):

Vπ(L) = E[L]

[
Eπ

{ ∞∑
k=1

λkrt+k|Zt = Z

}]
. (3)

The abstractQ function is defined analogously. Now, an ab-
stract policyπ is discount optimal at abstraction levelL for
fixed λ wheneverVπ(L) ≥ Vπ′(L) for all L ∈ L and ab-
stract policiesπ′ at abstraction levelL. Note, that optimality
at abstraction levelL does not imply optimality at the level
of ground states. This is because an abstract policy specifies
the expected behaviour of a set of ground states. The problem
is now to compute the value functionVπ.

LetM = (Σ,A,T, λ) be a LOMDP, and letπ be an ab-
stract policy at abstraction levelL = {L1, . . . ,Lm}. Con-
sider the finite MDPL = ({l1, . . . , lm}, AL,TL, λ) wich is
constructed as follows.

Construction: BothL andB (the set of bodies inT) in-
duce partitions{[L1], . . . , [Lm]} (resp.{[B1], . . . , [Bn]}) of
SM(M) because both are ordered. The stateli corresponds to
[Li]. Furthermore, all ground states belonging to[Li] ∩ [Bk]
have the same set of possible transitions. In other words,
[Li] ∩ [Bk] forms an equivalence class. Now, there is a tran-
sition T ∈ TL from stateli to lj when doing actiona with
probability

P (li, a, lj) :=
∑

H
p:r:a←−−−B∈T

µ([B]|[Li]) · p · µ([Lj ]|S(H))

Here,µ(X|Y ) is a probability function. The valueµ(X|Y )
for X, Y ⊂ SM(M) is the probability that a randomly se-
lected ground state inY is an element ofX. BecauseM(M)
induces a unique probability distribution over all ground
states,µ is uniquely specified. This follows from Theorem 1.
Clearly, ∑

lj

P (li, a, lj) = 1 .

The intuition behind P (li, a, lj) is that it specifies
P (Li,a,Lj) for the corresponding abstract states. The prob-
abilistic rewardR(li, a, lj) depends only onli andA, and can

66



be chosen5 s.t. its mean value equals

R(li, a) :=
∑
lj

P (li, a, lj) ·R(li, a, lj) .

As the underlying MDPM(M) is not known, the problem
specified byL appears to a learner to have a non-Markovian
nature. Consider the following LOMDPM

1: q
1.0:0.0:a←−−−−− p, q.

2: ∅ 1.0:1.0:a←−−−−− p.

3: p
1.0:0.0:a←−−−−− ∅.

and the abstraction levelL = {p, q, ∅}. The induced MDPL
will assign the same probabilities and rewards to the transi-
tions froml2 to l1 and froml3 to l1. Consequently, the values
for l2 and l3 are the same inL as the next state is the same
namelyl1, butM assigns different values to both.

The example shows that a learner followingL has im-
perfect and incomplete perception of the states ofM(M).
This is interesting becauseL corresponds to leafs of a first
order decision tree used in relational reinforcement learn-
ing [Džeroskiet al., 2001]. Unfortunately, complete observ-
ability is necessary for learning methods based on MDPs.
Thus in general, we must use techniques for solvingpartially
observableMDPs, see e.g.[Kaelbling et al., 1996]. In the
present paper, we follow the most naive approach to deal with
partially observability, namely ignoring it. That is, we treat
the induced MDPL as if it would be the correct underlying
MDP.

5 LQ-Learning
In principle, any known algorithm for computing an optimal
policy for L can be used. There are only two complications.
First, the probability functionµ is not given. This problem
can however be solved using stochastic iterative dynamic
programming, i.e. model-free approaches. Second, we do
not want to constructL. Instead, we directly want to useL.
Below, we sketch LQ learning, which learns theQ function
of L using this idea combined with traditionalQ learning.
Similar, other methods such as MC, SARSA and actor-critic
methods can be adapted.

Logical Q Learning
1:LetL be an abstraction level
2: Initialize Q̂0(L,a) arbitrarily for eachL ∈ L
3:n=1
4:Repeat(for each episode)
5: Initialize ground stateZ ∈ SM(M)

6: Repeat(for each step in episode)
7: Choose actiona in Z based on̂Qn−1, cf. (4)
8: Leta be the abstract action corresponding toa

5A nondeterministic MDP can be converted into a determin-
istic one. Maximizing the expected future reward depends only
on the expected reward in each state, and not on the prob-
ability distribution over rewards. In our case,R(li, a, lj) :=∑
H

p:r:a←−−−B∈T µ([B]|[Li]) · p · µ([Lj ]|S(H)) · r would do.

9: Take actiona, observer and successor stateZ ′

10: LetL ∈ L (resp.L′ ∈ L) be the unique
abstract state matchingZ (resp.Z ′)

11: αn := (1 + visitsn(L,a))−1

12: Q̂(L,a)n := (1− αn) · Q̂n−1(L,a)
+αn · (r + λ ·maxa′ Q̂n−1(L′,a′))

13: SetZ := Z ′ andn := n + 1
14: Until Z is terminal

Here,visitsn(L,a) is the total number of times the abstract
state – abstract action pair has been visited up to and in-
cluding then-th iteration.Q̂(L,a)n is the approximation of
Q(L,a) after n iterations. To select an actiona, we first
probabilistically select an abstract actiona in a stateL so
that the probabilityP (a|L) of selectiona is proportional to
Q̂(L,a)n, e.g.

P (a|L) =
T Q̂n(L,a)∑
j T Q̂n(L,aj)

(4)

with T > 0. This is common inQ learning. Then, we select
uniformly among all possible ground action given bya and
Z to geta.

Let us now argue that LQ learning converges with re-
spect toL. Each selection of a ground stateZ selects a
unique stateli in L. Likewise, when we have observedZ ′,
this uniquely specifies a statelj . The rewards are stochas-
tic, but they depend onZ and a only. Therefore, the con-
vergence theorem for Q-learning for finite (nondetermin-
istic) MDPs applies toL, cf. [Watkins and Dayan, 1992;
Jaakkolaet al., 1994]. Moreover, it might be the case that LQ
learning can do even better. The equalityVπ(Li) = Vπ(li)
seems to hold if for each legal trace ofL we can find a le-
gal trace withinM(M). Due to the abstraction, LQ learning
should generalize well even in unseen ground states.

6 Experiments
We implemented LQ learning using the Prolog system
Sicstus-3.9.0. Our task was to learn an abstract policy
for the stack LOMDP (see above). This task was moti-
vated by the experiments in relational reinforcement learning
(RRL) [Džeroskiet al., 2001] and by the fact that the blocks
world is the prototypical toy domain requiring relational rep-
resentations. One of the key differences with the experiments
reported by[Džeroskiet al., 2001] is that we exclusively use
the standard predicateson, cl, andbl. [Džeroskiet al., 2001]
also needed to make use of several background knowledge
predicates such asabove, height of stacks as well as sev-
eral directives to the inductive logic programming function
approximator in order to be able to learn adequate policies.
Another difference to our approach is that RRL induces the
relevant abstract states automatically using a regression tree
learner.

The discount factor was0.9, and the temperatureT to
select an action was increased by1.004 each epoch start-
ing with 1.0. Therefore, the agent favors exploration during
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early states of learning, then gradually shifts towards a strat-
egy of exploration. We randomly generated10 blocks world
states for4 blocks, 20 for 6 blocks, 30 for 8 blocks, and
50 for 10 blocks using the procedure described by[Slaney
and Thíebaux, 2001]. Note that for10 blocks a propositional
MDP would have to represent58.941.091 states of which
3.628.800 states are goal states. Then, we ran LQ learning on
these starting states in order4, 6, 8 and10 blocks. The initial
Q function was

Q

({
on(A, B), on(C, D), on(E, fl),

cl(A), cl(C), cl(E), bl(B), bl(D)

}
, mv fl(A)

)
= 0.0

Q

({
on(A, B), on(C, D), on(E, fl),

cl(A), cl(C), cl(E), bl(B), bl(D)

}
, mv(A, C)

)
= 0.0

Q

({
on(A, B), on(C, D), on(E, fl),

cl(A), cl(C), cl(E), bl(B), bl(D)

}
, mv(A, E)

)
= 0.0

Q

({
on(A, B), on(C, D), on(E, fl),

cl(A), cl(C), cl(E), bl(B), bl(D)

}
, mv(E, A)

)
= 0.0

Q ({on(A, B), on(C, D), cl(A), cl(C)}, mv fl(A)) = 0.0
Q ({on(A, B), on(C, D), cl(A), cl(C)}, mv(A, C)) = 0.0

Q ({on(A, B), on(E, fl), cl(A), cl(E)}, mv fl(A)) = 0.0
Q ({on(A, B), on(E, fl), cl(A), cl(E)}, mv(A, E)) = 0.0
Q ({on(A, B), on(E, fl), cl(A), cl(E)}, mv(E, A)) = 0.0

Q ({on(A, B), cl(A)}, stop) = 0.0
Q ({cl(A), cl(B)}, mv(A, B)) = 0.0

where we omitted theabsorb state in front. The whole ex-
periment was repeated5 times (including sampling the start-
ing states). In all5 runs, the learned policy (which is optimal
at the given abstraction level) was:

mv fl(A) ← on(A, B), on(C, D), on(E, fl),
cl(A), cl(C), cl(E).

mv fl(A) ← on(A, B), on(C, D), cl(A), cl(C).
mv(E, A) ← on(A, B), on(E, fl), cl(A), cl(E).
mv(A, B) ← cl(A), cl(B).

The learned policy is interesting for many reasons. First,
it uniquely specifies a deterministic policy for ground states.
Second, it is well known in the planning community[Slaney
and Thíebaux, 2001]. It is calledunstack-stackstrategy be-
cause it amounts to putting all misplaced blocks on the table
and then building the goal state by stacking all blocks from
the floor onto one single stack. The total number of moves
is at worst twice the optimal. Third,unstack-stackperfectly
generalizes to all other blocks worlds, no matter how many
blocks there are. Finally, it cannot be learned in a proposi-
tional setting because here the optimal policy would encode
the optimal number of moves.

RRL has learned another policy (“move a block to the high-
est stack”) than LQ learning. However, as argued above, this
policy can only be described using additional background
predicates, which are not needed in our approach. We believe
that RRL would have difficulties in learning the unstack-stack
policy using only the predicateson, cl andbl.

Rerunning the experiments with a simpler abstract Q func-
tion, omitting the first four abstract values, yields theunstack-
stack policy, too, but the learning epochs were faster pro-
ceeded due to the higher abstraction.

7 Related Work
Within reinforcement learning (RL), there is currently a
significant interest in using rich representation languages.
[Finneyet al., 2002] investigated propositionalization meth-
ods in relational domains. They experimentally studied the
intermediate language ofdeictic representations(DRs). DRs
avoid enumerating the domain by using variables such as
the-block-on-the-floor. Although DRs have led to impres-
sive results[McCallum, 1995; Whitehead and Ballard, 1991],
[Finney et al., 2002]’s results show that DR may also de-
grade learning performance within relational domains. Ac-
cording to [Finney et al., 2002], Relational reinforcement
learning(RRL) [Džeroskiet al., 2001] is one way to effective
learning in domains with objects. RRL is a combination of RL
and inductive logic programming (ILP)[Muggleton and De
Raedt, 1994]. The key idea is that theQ function is approxi-
mated using a relational regression tree learner. Although the
experimental results are interesting, RRL has failed to explain
– in theoretical terms – why RRL works. Some new insights
on this have been obtained.

From a more general point of view, our approach is closely
related todecision theoretic regression(DTR) [Boutilier et
al., 2000]. Here, state spaces are characterized by a num-
ber of random variables and the domain is specified using
logical representations of actions that capture the regularities
in the effects of actions. Because ‘existing DTR algorithms
are all designed to work withpropositionalrepresentations
of MDPs’, [Boutilier et al., 2001] proposedfirst order DTR
which is a probabilistic extension of Reiter’ssituation calcu-
lus. The language is certainly more expressive than that of
LOMDPs. However, it is also much more complex. Further-
more,[Boutilier et al., 2001] assume that the model is given
whereas in the present paper traditional model-free learning
methods have been apply.

The idea of solving large MDP by a reduction to an equiv-
alent, smaller MDP is also discussed e.g. in[Dearden and
Boutilier, 1997; Givanet al., 2003; Ravindran and Barto,
2002]. However there, only finite MDPs and no relational
or first order representations have been investigated. Further-
more, there has been great interest in abstraction on other
levels than state spaces. Abstraction over time[Suttonet al.,
1999] or primitive actions[Dietterich, 2000; Andre and Rus-
sell, 2001] are useful ways to abstract from specific sub-
actions and time. This research is orthogonal and could be
applied to LOMDPs in the future.

Finally, [Baum, 1999] reports on solving blocks worlds
with up to10 blocks using RL related techniques. However,
the introduced language is domain-dependent and does not
incorporate logic programming.

8 Conclusions
We have presented a representation framework that integrates
Markov decision processes with logic programs. This frame-
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work allows one to compactly and declaratively represent
complex (relational) Markov decision processes. Using func-
tors they might even be infinite. Furthermore, we have intro-
duced abstract policies for LOMDPs and studied their prop-
erties. We have shown that their value functions cannot gen-
erally be learned using MDP techniques. However, the ex-
periments with a simple upgrade of Q-learning have shown
that even naive strategies to handle partially observability can
sometimes work. The authors hope that this framework will
be useful as a starting point for further theoretical develop-
ments in relational reinforcement learning.
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