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Abstract rules or transitions) may contain variables and as such make
. . . . : abstractionof many specificgroundedrules or transitions.
MOt'\t’alted by the m_tetre?jt in relat|onalll remforcet- This allows one to compactly represent complex domains.
{nenf earlr)mg, WIT (Ijnl ro ucﬁvla l?ovg répresenia-  gecondly, because of this abstraction, the number of parame-
lon orrrli?Dll\s/er,Pca (':\h to.gltca tar K)/IV EC'SSn pro- ters (such as rewards and probabilities) in the model is signif-
grams ( s), thatintegrates Markov Decision oo iy reduced. This in turn allows - in principle - to speed

Processes with Logic Programs. Using LOMDPS =, o n 4 simplify the learning because one can learn atthe
one can compactly and declaratively represent stractlevel rather than at thgroundlevel.

complex relational Markov decision processes. o i . :

Within this framework we then develop a theory Many fascinating machine .Iearnmg techmqu.es have.been

of reinforcement learning in which abstraction (of developed under the name reinforcement learning (RL) in the

states and actions) plays a major role. The frame- context of MDPs over the last few decades,[@‘qtton and

work presented should provide a basis for further ~ Barto, 1998. Recently, there has also been an increased at-

developments in relational reinforcement learning. tention for dealing with _relatlonal representations and objects
in reinforcement learning, see elpzeroskiet al, 2001;

) Finneyet al, 2004 Many of these works have taken a practi-
1 Introduction cal perspective and have developed systems and experiments

In the past few years, there has been a lot of work on exthat Operate_ in relational Worlds. At the heart of these SyS-
tending probabilistic and stochastic frameworks with abil-tems there is often a function approximator (often a logical
ities to handle objects, see e.ppndersonet al, 2002; decision tree) that is able to assign values to sets of states
Dzeroskiet al, 2001; Friedmaet al, 1999; Kersting and De and to sets of state—action pairs. So far, however, a theory
Raedt, 2001; Kerstingt al, 2003; Muggleton, 1996 From  that explains why this approach works seems to be lacking.
an inductive logic programming or relational learning point The second and most important contribution of this paper is
of view, these approaches are upgrades of propositional re@ first step into the direction of such a theory. The theory is
resentations towards the use of relational or computationg?ased on a notion of abstract states and abstract policies rep-
logic representations. Various successes in this direction haygsented by logical expressions. An abstract state represents a
been reported_ |ndee[ﬁriedmamt al, 1999 and[Kersting set of concrete states and an abstract pOllcy is then a function
and De Raedt, 200upgrade Bayesian networkdiuggle-  from abstract states to actions. All ground states represented
ton, 1996 upgrades stochastic context free grammphs; DY the same abstract state are essentially assigned the same
dersoret al, 2009 and[Kerstinget al, 2003 upgrade (hid- ~ action. This is akin to what happens with (relational) rein-
den) Markov models. forcement learning using (logical) decision tréBzeroskiet

The first contribution of this paper is the introduction of al., 2001, where each leaf of the decision tree represents an
a novel representation formalism, callegical Markov de- ~ abstract state and where states classified in the same leaf ob-
cision programiLOMDPs), that combine®larkov decision tain the Same.value or a.C.tlon. Within the LOMDP framework
processesvith computational logic. The result is a flexible abstract policies can easily be represented. The abstract value
and expressive framework for defining MDPs that are abldunction (assigning values to abstract states or state action
to handle structured objects as well as relations and fund?airs) is defined as the average values of the states or state
tors. For MDPs, such a framework grounded in computa&ction pairs they represent. We will show that these abstract
tional logic, was still missing. OnlyBoutilier et al, 200]  Value functions cannot in general be learned using traditional
report on combining MDPs with Reiter's situation calculus. MDP methods. This in turn provides some new insights into
However, as we argue in Sectignit is more complex and relational reinforcement learning approaches.
model-free reinforcement learning techniques have yet not We proceed as follows. After introducing some mathemati-
been addressed within this framework. LOMDPs share - witlcal preliminaries in Sectiop, we present the LOMDP frame-
the other upgrades of propositional representations - two adwvork in Section3. Section4 defines abstract policies and
vantages. First, logical expressions (in the form of clausesshows how to compute the value of an abstract policy. This
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results in the LQ learning algorithm presented in Section our optimality criterion, i.e., future rewards are discounted by
The algorithm is experimentally evaluated in SectionBe- 0 < )\ < 1. The value of a policyr can be shown to be
fore concluding, we discuss related work. Vi(z) =32, o er P [r + A - Vz(2")]. The value ofr at

o ) any initial statez can be computed by solving this system of
2 Preliminaries linear equations. A policyr is optimal if V. (z) > V. (2)

As logic programs and Markov decision processes will bg©F @ll z € S and policiest’. A (stationary) nondeterministic
used throughout this paper as the underlying mathematic&C!iCy 7 maps a state to a distribution over actions. The value
concepts, we now briefly introduce their key concepts. of 7 is then the expectation according to this distribution.

2.1 Logic 3 Logical Markov Decision Programs

A first-order alphabeﬁ} is a set of relation SymbOIE with The |Ogica| Componentof a MDP Corresponds to &-
arity m > 0, and a set of functor symbofswith arityn > 0. pite state automatoriThis is essentially a propositional rep-

If n = Othent is called a constant, i = O thenpis calleda  resentation because the state and action symbols are flat, i.e.
proposition. Amatomr (t4, ..., t,) is arelation symbat fol-  not structured. The key idea underlyifagical Markov deci-

lowed by a bracketed-tuple of termst; . A termis avariable  sjon programgLOMDPS) is to replace these flat symbols by
Vv or a functor symbol immediately followed by a bracketed apstract symbols.

n-tuple of termst;, i.e., £(t4,...,ty) . A conjunction is a _ . . . .
set of atoms. A conjunctiod is said to be&f-subsumed by a Def|n|t|o_n 1. An abstract state is a conjunctidf of Ioglpal .
conjunctionB, denoted byd <, B, if there exists a substitu- &0MS, i-€., a logical query. In case of an empty conjuction,
tion § such thatBf C A. A term, atom or claus& is called e Writed.

groundwhen it contains no variables. Tineost general uni-  Abstract states represent sets of states. More formally, we
fier (MGU) for atomsa andb is denoted bymgu(a,bd). The  have that a state is a (finite) conjunction of ground facts
Herbrand basef ¥, denoted a&by, is the set of all ground over the alphabek, i.e. a logical interpretation, a subset
atoms constructed with the predicate and functor symbols inf the Herbrand base. In the blocks world, one possible

the alphabekt. state Z is on(a,b), on(b,fl),bl(a),bl(b),cl(a),cl(fl)
. whereon(a, b) denotes that objeetis onb, c1(a) states that
2.2 Notation a is clear,bl(a) denotes thak is a block, andf1 refers to

Atoms are written in lower case, set of of atoms in upper the floor. An abstract staté is e.g.on(X,Y), b1(Y), b1(X).
caseA, and sets of sets of atoms in bold, upper cAseTo It represents all states (over the given aIph;&E))ethat have
highlight thata (resp.A and A) may not be ground (i.e. it two blocks on one another. Formally, speaking, we have that

may contain variables), we will write (resp.A andA). an abstract staté represents all state® for which there
exists a substitutio such thatZé C Z. Let S(Z) denote

2.3 Markov Decision Processes this set of states. The substitution in the previous example is

A Markov decision process (MDP) is a tupldl = {X/a,Y/b}. By now we are able to define abstract transitions.

(5,A,T,)) . To avoid ambiguities, we will sometimes in- Definition 2. An abstract transitiorl’ is an expression of
dex the elements bjI. Here, S is a set of system states, o formm "2 B whereP(T) := p € [0,1], R(T) :=
i.e. propositions. The agent has available a finite set of ac: o [0, 1], a is an abstract action, anébody(T) := B and
tions A(z) C A for each state € S which cause stochas- head('f) .— T are abstract states. '

tic state transitions. For eachz’ € S anda € A(2) ’ R
there is a transitio” in T which is an expression of the We assuméd’ to be range-restricted, i.@ars(H) C vars(B),
form 2 <Z™% 2. The transition denotes that with probability anc:;}”ar.s(?) < t‘.’arS(B)' Soéhattﬁn abstratct ttrzt:msmlon_Fﬁlles
P(z,a,z’) := p actiona causes a transition to statewhen on the information encoded In the current state only. The se-

executed in state. We have for each € S anda € A(z) ~ Mantics of an abstract transitibare:

that) g P(z,a,2') = 1. For a transition the agent gains If the agent is in a state, such thafB <, Z, then
an expected next rewaid(z, a, 2’) := r. In case that the re- it will go to the stateZ’ := [Z \ B6] U HO with
ward functionR is probabilistic (mean value depends on the probability p when performing actiond receiving
current state and action only) the MDP is calteshdetermin- an expected next reward of

istic, otherwisedeterministic In this paper, we only consider pq jjjystration purposes, consider the following abstract

MDPs with stationary transition probabilities and stationary,ransition. which moves blockfrom Y to the floor with prob-
bounded rewards. ability 0.9:

A (stationary) deterministic policyr : S — A is a set
of expressions of the form < 2 for eachz € S where
a € A(s). It denotes a particular course of actions to be
adopted by an agent, with(z) := a being the action to We implicitly assume that an abstract action has some precon-
be executed whenever the agent finds itself in statd/e  gitions
assume an infinite horizon and also that the agent accumu- 2pjease note that we employ functor-free examples throughout
lates the rewards associated with the states it enters. To conhe paper for the sake of simplicity. Abstract stafesactionsA,
pare policies, we use the expected total discounted reward asd transitiondl' can include functors. All proofs remain valid.

0.9:—1mv_£1(X)
T

on(X, £1), c1(X)cl(Y) on(X,Y), cl(X)
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Applied to stateExp mv_£1 (A mv_£1l (A)

) mv (A, C)

on(a,b), on(b, f1), on(c, £1), /—\\ stacks
A c A

c1(a), cl(c),bl(a), b1(b), bl(c) 2 S

the abstract transition tells us that when we exenutél(a)

the successor state will be % 7, T, oot
on(a, fl),on(b,f1),on(c, 1), @ ®)
cl(a), cl(b),cl(c),bl(a),bl(b), bl(c) Figure 1: The two underlying patterns of the blocks world.

with probability0.9 gaining a reward of-1. One can see that Figure (a) shows the situation that there are at least two stacks
this implements a kind of first-order variant of probabilistic of height> 0. Figure (b) shows the situation that there is only
STRIPS operator, cfHanks and McDermott, 1994 one stack left. The serrated cuts indicate th@tesp.C) can

As LOMDPs typically consist of a sé' of multiple ab-  be on top of some other block or on the floor.
stract transitions there are two constraints to be imposed in
order to obtain meaningful LOMDPSs. First, Btbe the set of
all bodies of abstract state transitions in the LOMDP (modulo

variable renaming). FdB € B, let A(B) denote the set of Before giving the semantics of LOMDPs, let us also illus-
all abstract actions such thati <=2 B is in the LOMDP. trate LOMDPs on thetackexample from the blocks world:

We require 1 absorb  «200@bsOTb  pcorb.
VB € B,Va € A(B P(T)=1.0. (1 2. on(A,fl),cl(A), o
®)>. bod;fTT“)ﬁ;B, () @) on(C,D),c1(C), «2XTEmA L (A,B), c1(A),
. - e cl(B on(C, D), c1(C).
This condition guarantees that all abstract successor stateg. on(A, C) cl(gx)) (¢.D), €1(C)
are specified when executing an abstract action in an ab- on(C7D)7c1(C)’ 0.9:—1mv(4,C) on(A, B), c1(A)
stract state and that their probabilities sumltaSecondly, e Cl(B)’ on(C’D)’ Cl(c)’
we need a way to cope with contradicting transitions and re- 1.0:20:sto0p S
. Lo 1i—l:a : absorb «———  on(A,B),cl(4),
wards. Indeed, consider the two transitishs——— 4 and b1(B)

g L722 ¢ and stateZ = {d, £}. The problem with these . e
transitions is that the first transition says that if we executdf the transition probabilities do not sum fo0 for an ab-
a in Z we will go with probability1 to stateZz’ = {e,f}  stract action then there is an additional abstract transition for

whereas the second assigns a probability tf stateZ” = staying in the current abstract state. In order to understand
{d,g}. There are essentially two ways to deal with this situ-the LOMDPstack one has to understand the abstract states
ation. On the one hand, one might want to combine the twdéhat govern the underlying patterns of the blocks world, cf.
transitions and assign a probability @f to bothZ’ and Z” Figure 1. Two abstract states (the artificidlsorb state ex-

for Z. On the other hand, one might want to have only onecluded) together with the order in which they are presented
of rule of fire. In this paper, we take the second approacifover all possible state action patterns because we can take
because this allows us to consider the transitions more indédvantage of symmetry in the blocks world. Transitloan-
pendently of one another. This in turn will simplify learning codes the absorbing state. Transitiarand3 cover the cases
and yields locally interpretable models. We assume a total o Which there are (at least) two stacks. Finally, transition
der= over all action-body pairs ifi and do a forward search encodes the situation that there is only one stack, i.e. our
among the pairs stopping with the first matching body such agoal statestack Here,on(A,B), c1(A),b1(B) are only used

in Prolog’. From now on, we assuniB to be ordered w.r.t. 10 describe the preconditions o (A, B): the floor cannot be

<. We will give an example after the next definition. moved. When performing actionv(a, b) in stateExp (see
By now we are able to formally define logical Markov de- above) only abstract transitionsis firing. Similar, we can
cision programs. easily encode thenstackgoal.

Note that we have not specified the number of blocks. The
LOMDP represents all possible blocks worlds using asly
abstract transitions, i.6.2 probability and reward parame-
ters, whereas the number of parameters of a propositional
system explodes: fat blocks there ar&3 states, foi7 blocks
37.663 states, and fot0 blocks58.941.091 states, resulting

3We chose a total order for the sake of simplicity. A partial orderiN @ even higher number of transitions.
< among the pairs s.t. the set of pairs is well-founded, i.e., every de- )
scending chain of elements w.r.is finite, actually suffices. Then, ~ The semantics of LOMDPs are as follows.
thg conflict resolqtion strategy is to .sglect only those apstrgct tranTheorem 1. Every LOMDPM = (3, A, T, \) specifies a
sitions whose action-body pair is minimal. An e_xample is given in e orate MDPM (M) = (S, A, T, \).
[Kerstinget al., 2003 where a kind of subsumption (or generality)
relation amongB is employed. All theorems can be adapted accord-Proof sketch: Let hby, C hby be the set of all ground
ingly. atoms built over abstractates predicates, and labs, C

Definition 3. A logical Markov decision process (LOMDP)
is atupleM = (X, A, T, \) whereX is a logical alphabet,
A, is a set of abstract actiondT is a finite set of abstract
state transitions based on actionsM and0 < A < lisa
discount factor, such thgt.) holds.
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hby, be the set of all ground atoms built over abstractreward taken over all states [i]. Therefore, the expected
action names. Now, construdvI(IM) from MM as fol- discounted reward, if abstract poliayis used and the system
lows. The countable state st consists of all finite sub- isin abstract stat&, is defined to be
sets ofhbs,. The set of actionA(Z) for stateZ € S is

N

. k . _

B <y Z} . We have thatA(Z)| < o holds. The probability ~ V«(L) = lim B | Ex {Z A revilZe =2 }
P(Z,a,Z") of a transition inT from Z to another state’ k=1
after performing an actioa is the probability value associ-
: : - . duced byr. The inner expectatiof,. is conditioned on the
in . If there is no abstract transition connectidgand 2, Do e =
the probability is zero. The bounded rewards are constructeﬁyStem being in statéf € 5 at timet, denoted byz, = Z.
he outer expectatiofir,) runs over all elements ¢L]. The

)

given by A(Z) ={a8|H L2 B e T minimal (W.rt.<),
ated to the unique abstract transition matchifigi, and 2/ wherer; denotes the value at timeof the reward received
normalized by the number of transitions of the fafft <~ Z w.r.t. M(IM) when following the ground level policy in-

in a similar way but are not normalized. O L
From Theorem 1 antPuterman, 1994, Theorem 6.Ritfol- series in (2) converges absolutely for the same reasons as for
i MDPs. Thus, the limit and the expectations are interchange-
lows that: able in (2):
Corollary 1. For every LOMDP, there exists an optimal pol-
icy (for the ground states). oo
k
Finally, LOMDPs generalize finite MDPs. Va(L) = By | Ex {Z AN Ze = Z} 3)
Proposition 1. Everyfinite MDP is a propositional LOMDP =t
in which all relation symbols have arity. The abstract) function is defined analogously. Now, an ab-
L. stract policyr is discount optimal at abstraction levél for
4 Abstract Policies fixed A wheneverVy (IL) > V(L) for all L. € IL and ab-

Theorem 1 states that every LOMOM specifies a discrete Stract policiesr” at abstraction level. Note, that optimality
MDP M (IM). Furthermore, Corollary 1 guarantees that theredt abstraction level does not imply optimality at the level
exists an optimal policyr for MDP M(IM). Of course, this  Of ground states. This is because an abstract policy specifies
policy is extensional or propositional in the sense that it specthe expected behaviour of a set of ground states. The problem
ifies for each ground state separately which action to executéS Now to compute the value functiar..

Specifying such policies for LOMDPs with large state spaces LetM = (X, A, T, \) be a LOMDP, and letr be an ab-

is cumbersome and learning them will require much effort.stract policy at abstraction lev@l = {L,,...,L,,}. Con-
Therefore, we introducabstract policiesr which intention-  sider the finite MDPL = ({l1, ..., }, AL, T1, A) wich is
ally specify the action to take for an abstract state (or sets ofonstructed as follows.

states). Construction: Both IL andIB (the set of bodies iffT) in-
Definition 4. An abstract policyr overY is a finite set of duce partitiong[IL,], ..., [L,,]} (resp.{[B1], ..., [B,]}) of
decision rules of the form «— IL wherea is an abstract Smw) because both are ordered. The statorresponds to
action andL is an abstract state [IL;]. Furthermore, all ground states belongingltg] N [By]

have the same set of possible transitions. In other words,

The meaning of a decision rute<— L is that . ;
¢ - [L;] N [Bg] forms an equivalence class. Now, there is a tran-

if the agent_ls in a state’ _such thatl. <4 Z then sitionT" € Ty, from statel; to I; when doing actior with
the agent will perform actiond, denoted byr(Z). probability
Usually, 7 consists of multiple decision rules. We apply the
same conflict resolution technique as for abstract transitionsp(lha’ 1;) = Z u([B)|[L3]) - p - (L] |S(H))
i.e. we use a total ordex among the decision rules. Let ' [y '
L = {Ly,...,L,,} be the set of bodies in (ordered w.r.t. He——BeT

<). We call IL the abstraction levelof 7. We assume that
IL covers all possible states of the LOMDP. This togethe
with the total order guarantees tfiatforms a partition of the

Here, (X [Y') is a probability function. The valug(X|Y’)
for X, Y C Smqawm) is the probability that a randomly se-

states. The equivalence clasg®s), . .., [I.,,,] induced byl lected ground state iif is an element oK . BecauseVI(M)
are inductively defined bylL,| = S(IL;), and fori > 2 induces a unique probability distribution over all ground

1 _ il : - _ statesy is uniquely specified. This follows from Theorem 1.
[L;] = S(L;) \ U;=; [L;]. BecauséL generally does not co Clearly,

incide withIB the following proposition holds.

Proposition 2. Any abstract policyr specifies anondeter- Z P(l;,a,l;)=1.
ministic policy = at the level of ground states. 1

Let M be a LOMDP and leM(IM) be the induced MDP.

We define the expected rewardlbfe IL to be the expected The intuition behind P(l;,a,l;) is that it specifies
P(L;, a,1L;) for the corresponding abstract states. The prob-

“We assume that is applicable irL. abilistic rewardR(l;, a, ;) depends only ofy andA, and can
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be chosen s.t. its mean value equals 9: Take actioru, observer and successor staf#
10: LetlL € IL (resp.I’ € IL) be the unique
R(li,a) = > P(li,a,l;) - R(li,a,1;) . O abstract state matchirig (resp.Z’)
l; 11: = (1 + visits, (L, a))

~

As the underlying MDRM(IM) is not known, the problem 122 QM a)n = (1 - an) - Qn-1(L,2)

specified byl appears to a learner to have a non-Markovian, +ay, - (r+ X - maxa Qn-1(IL/,a"))

nature. Consider the following LOMDRI Set := Z'andn :=n +1
14: Until Z is terminal
) 1.0:0.0:a
1. 9 —— pa
2. () LoE o Here,visits, (IL, a) is the total number of times the abstract

Lo00a state — abstract action pAair has been visited up to and in-
’ cluding then-th iteration.Q(LL, a),, is the approximation of

and the abstraction levéll = {p, q,0}. The induced MDA.  Q(LL,a) after n iterations. To select an actiom we first

will assign the same probabilities and rewards to the transiprobabilistically select an abstract actianin a statel. so

tions froml, to I; and fromis to [;. Consequently, the values that the probabilityP(a|LL) of selectiona is proportional to

for [, andl; are the same il as the next state is the same @(]L, A)n, €.9.

namelyl;, butIM assigns different values to both. =

The example shows that a learner followifighas im- T@n(L,a)
perfect and incomplete perception of the statesvbflM). P(all) = W (4)
This is interesting becaude corresponds to leafs of a first J

prder Eiecisiqn tree used in relational reinforcement learmgyith 7 > 0. This is common irQ) learning. Then, we select
ing _[Dz_erosk|et al, 2001. Unf_ortunately, complete observ- uniformly among all possible ground action given #yand
ability is necessary for learning methods based on MDPsg geta.

Thus in general, we must use techniques for solypiagially

observableMDPs, see e.g[KaerIing_et al, 1994. In the _ Let us now argue that LQ learning converges with re-
present paper, we follow the most naive approach to deal witQect 101, Each selection of a ground staf selects a
partially observability, namely ignoring it. That is, we treat unique statd; in L. Likewise, when we have observefi
the induced MDFL as if it would be the correct underlying ihis uniquely specifies a state. The rewards are stochas-
MDP. tic, but they depend or anda only. Therefore, the con-

. vergence theorem for Q-learning for finite (nondetermin-
5 LQ-Learning istic) MDPs applies tdL, cf. [Watkins and Dayan, 1992;
In principle, any known algorithm for computing an optimal Jaakkoleet al, 1994. Moreover, it might be the case that LQ

policy for I can be used. There are only two complications./€&rning can do even better. The equalify(L;) = Vx(li)
First, the probability function: is not given. This problem S€€ms to hold if for each legal trace bfwe can find a le-
can however be solved using stochastic iterative dynamig@! trace withinM(IM). Due to the abstraction, LQ learning

programming, i.e. model-free approaches. Second, we gehould generalize well even in unseen ground states.
not want to construckL. Instead, we directly want to udk. )
Below, we sketch LQ learning, which learns thefunction 6 EXxperiments

of L using this idea combined with traditionél learning. We implemented LO learnina using the Prolod svstem
Similar, other methods such as MC, SARSA and aCtor-CritiCSiCStusg.Q.O. our ta(gk was t% Iearr? an abstra?:t golicy

methods can be adapted. for the stack LOMDP (see above). This task was moti-
vated by the experiments in relational reinforcement learning

3 p

Logical Q Learning (RRL) [DZeroskiet al., 2001 and by the fact that the blocks
1:LetIL be an abstraction level world is the prototypical toy domain requiring relational rep-
2:Initialize @o(lL, a) arbitrarily for eachL € IL resentations. One of the key differences with the experiments
3:n=1 reported by[DZeroskiet al., 2001 is that we exclusively use
4:Repeat(for each episode) the standard predicates, c1, andbl. [DZeroskiet al, 2001

5 Initialize ground state? € Sy also_needed to make use of several background knowledge
6: Repeat(for each step in episode) predicates such asbove, height of stacks as well as sev-

7: Choose action in Z based or@ . cf (4) eral dlr_ectlves. to the inductive logic programming funcfu(.)n

8 Leta be the abstract action cornres’pondingzto approximator in order to be able to learn adequate policies.

Another difference to our approach is that RRL induces the
5A nondeterministic MDP can be converted into a determin-T€l€vant abstract states automatically using a regression tree

istic one. Maximizing the expected future reward depends only€arner.
on the expected reward in each state, and not on the prob- The discount factor wa$.9, and the temperaturé' to

ability distribution over rewards. In our cas&(l;,a,l;) = select an action was increased by04 each epoch start-
Z}H pra p([B]|[L;:]) - p - w([L;]|S(H)) - r would do. ing with 1.0. Therefore, the agent favors exploration during
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early states of learning, then gradually shifts towards a strat- Rerunning the experiments with a simpler abstract Q func-
egy of exploration. We randomly generati@iblocks world  tion, omitting the first four abstract values, yields threstack-
states for4 blocks, 20 for 6 blocks, 30 for 8 blocks, and  stackpolicy, too, but the learning epochs were faster pro-
50 for 10 blocks using the procedure described[®faney ceeded due to the higher abstraction.

and Thébaux, 200[L Note that for10 blocks a propositional

MDP would have to represemi8.941.091 states of which 7 Related Work

3.628.800 states are goal states. Then, we ran LQ learning o
these starting states in order6, 8 and10 blocks. The initial

Q function was

QNithin reinforcement learning (RL), there is currently a
significant interest in using rich representation languages.
[Finneyet al, 2003 investigated propositionalization meth-
ods in relational domains. They experimentally studied the

on(4,B),on(C,D), on(E, £1), _ intermediate language dkictic representation€DRs). DRs
@ ({ c1(A),c1(C), c1(E),b1(B), b1(D) }’mVﬂ(A)) 00 avoid enumerating the domain by using variables such as
on(A,B), on(C, D), on(E, £1), the-block-on-the-floor Although DRs have led to impres-
Q ({ c1(), ¢1(C), c1(E), b1(B), b1(D) },mv(kc)) = 0.0 sive result§McCallum, 1995; Whitehead and Ballard, 1991
’ ’ ' ' [Finney et al, 200Q’s results show that DR may also de-
0 on(A,B),on(C,D), on(E, £1), av(A,E) | = 0.0 grade learning performance within relational domains. Ac-
cl(A), c1(C), cl(E),bl(B),b1(D) [’ ’ " cording to[Fin[ney et al, 2004, Rﬁelational reinforcement
learning(RRL) [DZeroskiet al., 2001 is one way to effective
Q ({ Cl‘g%ﬁ?g&‘;nﬁig’g?g’ fbll)h)) } ,mv(E, A)) = 0.0 learning in domains with objects. RRL is a combination of RL
’ ’ ’ ’ and inductive logic programming (ILHAMuggleton and De
@ ({on(A,B),on(C,D), c1(A),c1(C)}, mv_£1(4)) = 0.0 Raedt, 199} The key idea is that th@ function is approxi-
Q ({on(A,B),on(C,D), c1(A), c1(C)},mv(4,C)) = 0.0 mated usingla relelltional regression tree Iiarn;ar.l A(;thoughI the
_ experimental results are interesting, RRL has failed to explain
@ ({on(4,B), on(E, £1), c1(A), c1(E)},mv£1(4)) = 0.0 — in theoretical terms — why RRL works. Some new insights
Q ({on(A,B), on(E, £1), c1(A), c1(E)}, mv(A, E)) = 0.0 on this have been obtained.
Q ({on(A,B),on(E,£1),c1(A),c1(E)},mv(E,A)) = 0.0 From a more general point of view, our approach is closely

Q ({on(A,B), c1(A)}, stop) = 0.0 related todecision theoretic regressiofDTR) [Boutilier et
Q ({c1(4), c1(B)},mv(A, B)) = 0.0 al., 200d. Here, state spaces are char_act_erlzed _b_y a num-
’ ’ ’ ' ber of random variables and the domain is specified using
where we omitted thebsorb state in front. The whole ex- logical representations of actions that capture the regularities
periment was repeategtimes (including sampling the start- in the effects of actions. Because ‘existing DTR algorithms
ing states). In alb runs, the learned policy (which is optimal are all designed to work witppropositionalrepresentations

at the given abstraction level) was: of MDPs’, [Boutilier et al,, 2001 proposedirst order DTR
which is a probabilistic extension of Reitesguation calcu-
£1(a on(A,B),on(C,D), on(E, £1), lus. The language is certainly more expressive than that of
mv._ —

B
) él( ,c1(C), c1(E). LOMDPs. However, it is also much more complex. Further-
more,[Boutilier et al, 2001 assume that the model is given
mv£1(A) «—  on(AB),on(C,D),cl(A), c1(C). whereas in the present paper traditional model-free learning
mv(E,A) — on(A,B),on(E,£1),c1(4), c1(E). methods have been apply.
mv(A,B) «  cl(A),cl(B). The idea of solving large MDP by a reduction to an equiv-
L . __alent, smaller MDP is also discussed e.g[Dearden and
_ The leamned policy is interesting for many reasons. Firstg, sijier, 1997; Givanet al, 2003; Ravindran and Barto
it uniquely specifies a deterministic policy for ground stateso00g. However there, onl); finite MDPs and no relational
Secondr, itis well k”OWF‘ in the planning communianey or first order representations have been investigated. Further-
and Thebaux, 2001 It is calledunstack-staclstrategy be- o6 “there has been great interest in abstraction on other

fevels than state spaces. Abstraction over tiwttonet al,,

is at worst twice the optimal. Thirdnstack-staclperfectly  5tions and time. This research is orthogonal and could be
generalizes to all other blocks worlds, no matter how manyapplied to LOMDPs in the future

blocks there are. Finally, it cannot be learned in a proposi-

tional setting because here the optimal policy would encodgvith up t0 10 blocks using RL related techniques. However,

the optimal number of moves. he i | . o
RRL has learned another policy (“move a block to the high-itngo'rrgg?gtuecﬁgifg?ﬁ;ﬂ?nm;mam dependent and does not
S

est stack”) than LQ learning. However, as argued above, thi
policy can only be described using additional backgroun .
predicates, which are not needed in our approach. We belie Conclusions

that RRL would have difficulties in learning the unstack-stackWe have presented a representation framework that integrates
policy using only the predicates, c1 andbl. Markov decision processes with logic programs. This frame-

Finally, [Baum, 1999 reports on solving blocks worlds
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work allows one to compactly and declaratively represent
complex (relational) Markov decision processes. Using func-
tors they might even be infinite. Furthermore, we have intro- ference on Uncertainty in Atrtificial Intelligence (UAI-Q2)
duced abstract policies for LOMDPs and studied their prop- 2002.

erties. We have shown that their value functions cannot gen- . :

erally be learned using MDP techniques. However, the egFr;i%m:ritfgflf';g?_gea’;lﬁir']:r'e?g)zr;)‘ilil‘s'ti(?fé?;irézl 'fnoglgé'ls
periments with a simple upgrade of Q-learming have shown InT. f)ean editorProceng:ngs of the Sixteenth Interna-'
that even naive strategies to handle partially observability can tional Joint Conferences on Artificial Intelligence (IJCAI-

sometimes work. The authors hope that this framework will
be useful as a starting point for further theoretical develop- ag)afrﬁgﬁﬁ 1300-1309, Stockholm, Sweden, 1999. Morgan

ments in relational reinforcement learning.

very well: Deictic representation in reinforcement learn-
ing. In Proceedings of the Eighteenth International Con-

[Givanet al, 2003 R. Givan, T. Dean, and M. Greig. Equiv-
alence notions and model minimization in Markov deci-
sion processedtrtificial Intelligence 2003. (in press).

[Hanks and McDermott, 1994S. Hanks and D. V. McDer-
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