Expressivity Analysisfor PL -Languages

Manfred Jaeger

Aalborg University, Fredrik Bajers Vej 7E, DK-9220 Aalborg

Kristian Kersting
Luc De Raedt

JAEGER@CS.AAU.DK

KERSTING@INFORMATIK.UNI-FREIBURG.DE
DERAEDT@INFORMATIK.UNI-FREIBURG.DE

University of Freiburg, Georges-Koehler-Allee, Building 079, D-79110 Freiburg

Abstract

We propose a framework for analyzing the ex-
pressivity of probabilistic logical languages.

1. Introduction

Many different languages for representing probabilistic-
logical (pl) models have been proposed over the last
decade. Among them are Prism models [9], Stochastic
Logic Programs (SLPs) [6], Relational Bayesian networks
(RBNSs) [3], Probabilistic Relation Models (PRMs) [1],
Bayesian Logic Programs (BLPs) [5], Markov Logic Net-
works (MLNSs) [8], and many others.

There now is considerable interest in gaining a better un-
derstanding of the relationships between these languages,
and translations between them have been investigated [7,
10, 4, 2]. These works focus on pairwise comparisons
between languages and do not establish a general, robust
framework for comparing pl-languages. In this paper we
propose the outlines of a general conceptual framework for
analysing expressivity of pl-languages.

Our approach is based on several premises: first, we take
the position that an expressivity comparison should be
grounded in a common semantic framework for the lan-
guages under investigation, so that expressivity can be for-
malized by the ability of a language to capture certain mod-
els. Second, we propose that the comparison should fo-
cus on relatively basic versions of the different languages.
They will typically embody the particular strengths and
weaknesses of a representation paradigm more clearly than
language variants that have been extended in various ways.
The point to bear in mind is that a result “L is less expres-
sive than L’” may well be more interesting than a result “L
is at least as expressive as L'”, because it may very well
be accompanied by a result “L is more efficient (for a re-
stricted class of tasks) than L’”. Finally, it should be em-
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phasized that a pure expressivity analysis should be seen
only as a first step on which investigations of complexity
and learnability then can be built.

2. An Expressivity Framework

PL-languages define probabilistic models, i.e. prob-
ability distributions over some state space. As a
first unifying convention, we assume that the state
space is generated by a set of random variables
that can be written in the syntactic form of ground
atoms, e.g. blood_pressure(tom), sister(susan,tom), geno-
type(mother (tom)),. .. These random variables take values
in finite sets of states that are associated with the rela-
tion symbol, e.g. states(genotype)={ AA, Aa, aa}. At this
point we do not consider continuous variables. We call any
assignment of states to the set of all ground atoms con-
structible over a given vocabulary S of relation, function
and constant symbols a Multi-valued Herbrand interpreta-
tion, denoted MVHI(S). A probabilistic-logical model is
a probability distribution over the multi-valued Herbrand
interpretations of a given vocabulary.

If we take the foregoing definitions, and restrict attention to
vocabularies without function symbols, then any pl-model
can be represented by a discrete Bayesian network. On
the other hand, all pl-languages can encode Bayesian net-
works. This seems to imply that all pl-languages and dis-
crete Bayesian networks are equally expressive. In order
to see why the solution to our expressivity problem does
not reduce to this simple (and unsatisfactory) answer, we
have to look more closely at how pl-languages represent
pl-models: the power and usefulness of these languages de-
rives from the fact that they encode pl-models in a modular
fashion, which separates the specification of a particular,
(non-probabilistic) domain structure from the specification
of the actual probabilistic relationships. This separation is
most clearly expressed in PRMSs, where the specification of
the skeleton structureis distinguished from the actual prob-
abilistic model, and in RBNs, where the specification of an
input structureis distinguished from the specification of the
actual RBN model. Basically the same distinction is repre-
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sented by the partitioning of a BLP into its extensional and
intensional part.

Adopting database terminology, we base our analysis on
the view that models represented in an pl-language can
be decomposed into an extensional and an intensional
part, where the intensional part contains the generic, high-
level probabilistic model, and the extensional part contains
specific (typically non-probabilistic) domain information.
When translating one pl-language into another, we will re-
quire that the translation preserves the modularity of the
representation. Figure 1 illustrates the situation: a model
M in a language L consists of a pair (Mint, Mex) repre-
senting the intensional and extensional parts of the rep-
resentation. It defines a distribution P = P(Mint, Mex)
on MVHIs. To represent M in another language L’ as a
model (M, Mg), We have to find two separate transla-
tions tint, tex for the intensional and extensional parts.
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Figure 1. Trandations and Embeddings

The translations have to preserve the semantics of the
model M. It will usually not be the case that M represents
a distribution over exactly the same multi-valued Herbrand
interpretations as M, because the translation will often in-
volve a change of vocabulary (e.g. from a non-binary to a
binary encoding). Thus, we cannot require that the distribu-
tion P defined by M is equal to the distribution P’ defined
by M’. All that we can (and should) require is that P can
be embedded in P’ in the sense of the following definition.

Definition 2.1 Let P, P’ be probability distributions over
MVHI(S), respectively MVHI(S). An embedding of P in
P’ isamapping h : MVHI(S) — 2MVHI(S") gych that for
eachw € MVHI(S): P(w) = P’'(h(w)).

When P is embedded in P’ (written P < P’) then every
probabilistic query one can pose for P can be answered by
computing the solution to a transformed query for P’. The
existence of an embedding in the sense of Definition 2.1
is a very strong condition, and sometimes we also need to
consider weakened forms: the equality P(w) = P’(h(w))
may not be required pointwise for every w € MVHI(.S), but
only for a restricted class of subsets W C MVHI(SS). Such
a weakened condition then represents the fact that model
M and M’ are only equivalent with respect to a restricted
class of probabilistic queries.

Putting things together, we obtain a formal definition for a
partial expressivity order.

Definition 2.2 Language L' is at least as expressive as L,
L= LI, if FtintV Mint It ext V- Mext

P(MintaMext)jp(tint(Mint)atext(Mext))

This definition refines the situation depicted in Figure 1 by
allowing the translation te¢ to depend on the intensional
part of the current model. This asymmetric treatment of in-
tensional and extensional translations reflects the fact that
the intensional part is the core of the model, and that exten-
sional parts are just an “add-on” to an intensional specifi-
cation.

3. First Results and Future Work

It has been shown how MLNs can be embedded in
RBNSs [4]. This result can be expressed in our framework
as MLN =< RBN. Building on previous results, we next
plan to investigate the exact relationships of (functor-free
versions) of Prism, RBNs, PRMs, BLPs and MLNs in
our framework. This always requires to first identify the
extensional and intensional parts in the various represen-
tations. For some languages this is straightforward and
un-ambiguous. For other languages (e.g. Prism) this is not
quite as easy. Another issue that has to be addressed is the
exact correspondence between combination, as used e.g.
in RBNs and BLPs, and aggregation as used in PRMs.
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