
Distributed Relational State Representations for
Complex Stochastic Processes ?

Ingo Thon1 and Kristian Kersting2

1 Katholieke Universiteit Leuven, Department of Computer Science
Celistijnenlaan 200A, 3001 Heverlee, Belgium

ingo.thon@cs.kuleuven.be
2 Massachusetts Institute of Technology, Computer Science and Artificial Intelligence

Laboratory, 32 Vassar St, Cambridge, MA 02139, USA
kersting@csail.mit.edu

Abstract. Several promising variants of hidden Markov models (HMMs)
have recently been developed to efficiently deal with large state and
observation spaces and relational structure. Many application domains,
however, have an apriori componential structure such as parts in mu-
sical scores. In this case, exact inference within relational HMMs still
grows exponentially in the number of components. In this paper, we pro-
pose to approximate the complex joint relational HMM with a simpler,
distributed one: k relational hidden chains over n states, one for each
component. Then, we iteratively perform inference for each chain given
fixed values for the other chains until convergence. Due to this struc-
tured mean field approximation, the effective size of the hidden state
space collapses from O(nk) to O(n).

1 Introduction

In recent years, Statistical Relational Learning (SRL) has emerged as an ac-
tive research subfield of Machine Learning. It is a relatively young research field
that deals with machine learning and data mining in relational domains where
observations may be missing, partially observed, and/or noisy. So far, however,
surprisingly few SRL approaches have been developed for modeling dynamic do-
mains, i.e., domains with temporal and/or sequential aspects. One reason might
be that time is not simply another relation. The algorithmic complexity for gen-
eral purpose, dynamic SRL approaches easily explodes and becomes intractable
in practice if quite strong assumptions are not made such as low branching fac-
tors to keep tractability (Sanghai et al., 2003). Another alternative way to keep
dynamic SRL approaches tractable is to lift simple dynamic probabilistic mod-
els, which naturally restrict the dynamics of the domain, to relational models.
? An earlier version of this work appeared as 4-pages extended abstract in the elec-

tronic working notes of the 5th International Workshop on Mining and Learning with
Graphs (MLG’07), August 1–3, 2007, Universita degli Studi di Firenze, Florence,
Tuscany, Italy. In the present paper, we report for the first time on experimental
results.
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Fig. 1. Factored HMMs. (Left) a factorial HMM: independent processes Xi (ovals) are
coupled through a single, joint output sequence Yi (boxes). (Right) Weakly coupled
HMMs: processes Xi (ovals) weakly interact to generate independent output sequences
Yi (boxes), one for each process.

This approach has been followed by Anderson et al. (2002) and by Kersting et al.
(2006), who lifted (hidden) Markov models to the relational case. Hidden Markov
models (HMMs) (Rabiner, 1989) itself are extremely popular for modeling dy-
namic domains. Application areas include computational biology, user modeling,
speech recognition, empirical natural language processing, and robotics.

Many application domains, however, have an apriori componential structure
such as parts in musical scores. In this case, exact inference within relational
HMMs still grows exponentially in the number of components due to the combi-
natorial nature of the state space. In the propositional case, this ’curse of compo-
sitionality’ has been successfully addressed by a number of factored HMMs such
as factorial HMMs (Ghahramani & Jordan, 1997) and mixed-memory Markov
models (Saul & Jordan, 1999). Here, the (hidden) state is factored into multiple
state variables and is therefore represented in a distributed manner. Moreover,
the distributed nature allows to devise an efficient variational approximation by
(weakly) decoupling the state variables. The main contribution of the present
work is to show how to lift this idea to the relational case.

We proceed as follows. After briefly reviewing factored HMMs in the next
Section, we will introduce weakly-couple relational HMMs (wcrHMMs) in Sec-
tion 3. Section 4 then presents a structured mean field approximation for efficient
inference within wcrHMMs. Before concluding, we will experimentally evaluate
this approach.

2 Factored Hidden Markov Models

Consider modeling string quartets. A violin has a pitch range from g until a4
this corresponds to four octaves denoted by the number, each with 12 semi tones
denoted by a letter and an optional modifier. For example, g corresponds to the
8th note of the zeros octave. Therefore, a string quartet can play (4 · 12)4 ≈
5 · 106 combinations of notes (even more including double stops and flageolets).
This number also corresponds to the required number of hidden state in an
HMM modeling a string quartet. This is clearly an intractable state space. An
alternative is to decompose the string quartet state space into four separate



state variables, namely one for each instrument. This results in a much smaller
number of states per state variable, namely, only 48 values.

This decomposition is exactly the idea underlying factored HMMs. Figures 1
and 1 show two instances of factored HMMs, which represent extreme points
of the factored HMM spectrum: factorial HMMs and coupled HMMs. Unfortu-
nately, only decomposing the state variables does not make exact inference and
learning algorithms tractable (Ghahramani & Jordan, 1997). The decomposi-
tion, however, paves the way for an approximative inference algorithm, which is
cubic in the number of hidden state variables. The basic idea is that each object
(instrument) represented by a (hidden) state variable chooses its next state only
based on the current joint state, i.e., independent of the next state of the other
state variables. This assumption together with making a structured mean field
approximation allows us to show in the remainder of this text that the exponen-
tial runtime complexity drops from O(n2k) to O(k3n2) for one transition, where
k is the number of random variables and n is the domain size of the random
variables even in the relational case.

Why are we interested in the relational case? Reconsider our string quartet
examples. The number of states for each (hidden) state variable is still very high
compared to the number of state variables: 48 vs. 4. So, why not factorizing
even further? Well, decomposing the state for one instrument into two random
variables – one for the note and one for the octave – we would encode that
changing the semitone and the octave are independent of each other. Now assume
that one instrument transitions from the note 12th one halftone up. The next note
will be the first note but also one octave higher, which is wrong. Nevertheless,
as we will argue in the next section, there are (context-specific) independencies
among the state variables, which we would like to employ for fast inference.

3 Weakly-Coupled Relational Hidden Markov Models

In a factored HMM, each hidden state consist of a vector of unstructured sym-
bols. These symbols are the joint state of a set Xt of random variables Xt =
X1,t, . . . , Xn,t at each time t. With the term chain we refer to the set

⋃
t Xi,t

representing the same object over time. The random variables Xt are carrying
the information of the history over to the next state at time point t + 1. As an
example for a state consider:

basso 1 0︸ ︷︷ ︸
X1,t

, alto 1 1︸ ︷︷ ︸
X2,t

, tenor 1 1︸ ︷︷ ︸
X3,t

, soprano 2 1︸ ︷︷ ︸
X4,t

The state says that the instrument basso plays the first note of the octave zero
at time point t represented by X1,t. We will call such a statement ground state
and the combination of ground states for each Xi,t at time t a joint ground
state. Using ground states only, a traditional factorial HMMs requires to specify
the conditional probability distribution (CPD) P (Xi,t+1|Xi,t) for each possible
state value combination. Even in our simple examples this CPD consist of 2304



abstract state


body:
guard:

note(V oice, Note, Octave)
note(Other, Note, Octave2) ∧Other 6= V oice.

head: → note(V oice, Note, Octave2)

Fig. 2. An abstract transition (probability value omitted) of a weakly-coupled rela-
tional HMM. Capitalized words denote placeholders (for ground properties of the state)
to share knowledge across set of states by means of unification.

entries. Additionally the hidden state values can only depend via the output. For
coupled HMMs, things get even more worse. Now the number of parameters also
grows exponential in the number of chains. Our string quartet example, would
require to specify roughly 2.5 · 108 parameters. This is clearly intractable.

In contrast, relational HMMs allow to aggregate sets of ground states together
by using logical atoms. The above example rewritten in logical notation would
be

note(basso, 1, 0)︸ ︷︷ ︸
X1,t

, note(alto, 1, 1)︸ ︷︷ ︸
X2,t

, note(tenor, 1, 1)︸ ︷︷ ︸
X3,t

, note(soprano, 2, 1)︸ ︷︷ ︸
X4,t

Now for instance, note(V oice, Note,Octave) refers to all ground states, in which
an instrument V oice plays any note Note in any octave Octave. Where capital-
ized words denote variables and ground states are states where every variable
is replaced by a constant value. This abstraction in turn allows to compactly
encode the probabilistic information. In the following, we will extend relational
HMMs to the weakly-coupled case.

Weakly-coupled relational HMMs are the factored variant of logical HMMs (Ker-
sting et al., 2006). Consequently, the state of the system at each time step is a
set of ground atoms (one for each chain) and not only a single ground atom. An
abstract state consists of two components: a body (the state of a single chain)
and a guard.

Definition 1. An abstract state {B,ϕ} consists of a body B and a guard
ϕ. A body is a logical atom and specifies the set of all subsumed ground states
for a chain. A mapping θB of the variables (placeholders) in B to objects in
the domain (constants) instantiates the abstract state B to a ground state. The
guard is a conjunction of logical atoms. It describes how one object is related to
other objects in a state. The guard applied to a joint state also induces one or
more mappings θϕ,i.

Thus, whereas the body corresponds to an abstract state in the sense of relational
HMMs (Kersting et al., 2006) and in turn specifies the properties of states of
a single random variable, the guard defines properties and relations, among all
random variables. As we will see below, an abstract transition fires only if the
guard is true. This can always be checked as the systems is at each time in exactly
one state, i.e., one ground atom per chain. To break ties among matching abstract
states, we assume the set of abstract states to be totally ordered according to
some arbitrary order.



As an example, consider the abstract state shown in Fig. 2. Its meaning is
that two different instruments (V oices) play the same note. First, the body says
that there is a voice, which is playing some note. Then, the guard makes sure
that there is another voice playing the same note. Note that we assume that
the system is at each point in time in a particular joint ground state, i.e., we
can match each placeholder (such as V oice, Other, etc.) to a domain element
(constant). This variable mapping can in turn be used to specify a probability
distribution over the next states, i.e., over the states the system can transits to.
Following Kersting et al. (2006), we specify a distribution over possible successor
states as follows.

Definition 2. An abstract transition is an expression of the following form:

p :: {B,ϕ} → H

where p is a probability value, {B,ϕ} denotes an abstract state, and H is a logical
atom. An abstract transition belongs to exactly one abstract state. Note that the
variables appearing in the body and the guard can be used in the head. In this
way, we can share knowledge across individual chains.

Figure 2 shows an example for an abstract transition. It states that the instru-
ment playing V oice takes over the octave of the another instrument (if the guard
is true in the current joint state). If there are multiple true groundings of the
guard, as Other = soprano and Other = alto when determining the abstract
state for X1 in the example, we select uniformly among them. Multiple successor
states, i.e., free variables in the head are dealt with in the same way as for logical
HMMs, namely by assuming a selection distribution µ(a|A) mapping atoms A
to ground atoms a.

Definition 3. A selection distribution µ(a|A) defines for every logical atom
A and every ground atom a the probability that a will be a ground instance of A.

Additionally to the transition distribution there has to be a way to define
the prior distribution π over the joint ground states. To this end, we assume
a finite set of expressions of the form p :: {H1, . . . ,Hn}, i.e., one atom Hi per
chain. Then, using the selection distribution, we define

π({h1, . . . , hn}) = P (X0 = {h1, . . . , hn}) = α
∑

p::{H1,...,Hn}∈π
p·

∏n

i=1
µ(hi|Hi)

where α is a normalization constant. Note, however, that this is not the only
way one can imagine to specify a prior over joint ground states and any of them
will work fine with our inference procedure we will introduce below.

The only thing left is the definition of the sensor model, i.e., the probability
model for making observations.

Definition 4. A sensor model is a set of expressions of the form

p :: S1, . . . , Sm → O

where the Si and O are logical atoms.



Each time an observation rule fires ( assuming the same conflict resolution rule as
for abstract transition rules) in a joint ground state, we make the corresponding
observation (grouding free variables using the selection distribution µ).

Putting everything together results into the definition of a weakly-coupled
relational HMMs.

Definition 5. A weakly-coupled relational HMM (wcrHMM) consists
of a set of totally ordered abstract states, sets of abstract transitions for every
abstract state, a selection distribution µ, a initial state distribution π, a set of
observations.

A long the lines of Kersting et al. (2006), one can prove that every wcrHMM
defines a unique probability distribution.

Theorem 1. A weakly-coupled relational HMM defines a time discrete stochas-
tic process 〈Xt〉t. The induced probability measure over the Cartesian product
over all random variables exists and is unique for each t > 0 and in the limit
t→∞.

To see this, note that every wcrHMM with a finite number of chains can be
translated into a logical HMM: one basically computes the Cartesian product of
all abstract states and the resulting abstract transitions.

The proof of Theorem 1 provides us with a general way to do inference and
learning within wcrHMMs: compile the wcrHMM into a logical HMMs and
use the inference techniques developed for logical HMMs (Kersting & Raiko,
2005; Kersting et al., 2006). This approach, however, typically scales as n2,
where n is the number of hidden state. In practice, exact inference is therefore
limited to relational HMMs with relative small state spaces.

4 Structured Mean Field Approximation

Mean field theory provides an alternative perspective on inference. The intuition
behind mean field is that in dense graphs each node is subject to influences
from many other nodes. Assuming that each influence is rather weak and that
the total influence is roughly additive, the law of large number suggest that
each node should be roughly characterized by its mean value. Indeed, the mean
value is unknown, but it is related to the mean values of the other nodes. For
Bayesian networks and HMMs, it has been found that the mean value of a given
node is obtained additively ¿from the mean values of the nodes in its Markov
blanket (Saul & Jordan, 1996). For weakly-coupled HMMs, however, we can do
even better. Each chain individually is tractable. Thus, we can improve the mean
field approximation by decoupling only the variables across the chains. This is
called a structured mean field approach. Whenever the chains are only loosely
coupled, we would expect this approximation to be quite accurate.

This basically leads to relational variants of Saul and Jordan (1999)’s chain-
wise inference procedures for mixed-memory Markov models, which all follow the
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Fig. 3. Probabilistic information employed by the chainwise Viterbi algorithm to com-
pute a transition probability for chain having all other chain fixed: (a) the probability
to reach the last state, (b) the transition probability of chain i, (c) the observation
probability, (d) the transition probability of the other chain from t to t + 1 given that
chain i is at t in xi.

same principle and are akin to the hard EM. Let us illustrate this for the Viterbi
algorithm, i.e., for computing the most-likely joint state sequence xi,0:T given a
sequence of observations o1:T . First, an initial guess is made for the Viterbi path
x

(0)
i,0:T of each component relational HMM i, for instance by running the Viterbi

algorithm for logical HMMs for each chains separately ignoring the inter-chain
dependencies. This is done by ignoring the guard. Then, a chainwise Viterbi
algorithm is applied, in turn, to each of the relational HMMs. The chainwise
Viterbi computes the optimal path of hidden x

(l)
i,0:t states through the ith chain

given fixed values x
(l−1)
j,0:t of the last iteration for the hidden states of the other

chains. This is essentially again the Viterbi algorithm for logical HMMs but it
uses a modified transition probability:

δ(x(l)
i,t |o1:t) = maxxi,t−1 δ(x(l)

i,t−1|o1:t−1) (a)

P (x(l)
i,t |x

(l−1)
1:i−1,t−1, x

(l)
i,t−1, x

(l−1)
i+1:n,t−1) (b)

P (ot|x(l−1)
1:i−1,t, x

(l)
i,t , x

(l−1)
i+1:n,t) (c)∏

j=1:n\i

P (x(l−1)
j,t+1|x

(l−1)
1:i−1,t, x

(l)
i,t , x

(l−1)
i+1:n,t) (d)

where, cf. Figure 3, (a) is the probability to reach the last state, (b) is the
transition probability of chain i, (c) is the observation probability, and (d) is the
transition probability of the other chain from t to t + 1 given that chain i is at
t in x

(l)
i,t . After the chainwise Viterbi has been applied once to each chain, we

iterate the cycle until convergence. The complete procedure rcViterbi is given
in Algorithm 1. One complete cycle of Algorithm 1 can be computed in time
O(k3n2) instead of the original O(n2k).



Algorithm 1 rcViterbi: Relational chainwise Viterbi
1: procedure update-path(x0:T , o1:T , x0:T , i)
2: px,0 ← π(x1,0 . . . x1,i−1, x, x0,i+1 . . . x0,n) . init px,0. In general, px,i stores the

probability of the most likely path for o1:t, which ends in x.
3: for all t ∈ [1 . . . T ] do
4: for all x do
5: px,t ← 0 . init px,t, i.e., the probability of being in x at t
6: end for
7: for all x′ with px′,t−1 > 0 do . Consider only states reachable at t− 1
8: {B, ϕ} ← abstract state matching x1,t−1 . . . x1,i−1, x

′, xt−1,i+1 . . . xt−1,n

9: θB ← mgu of x′ and B . Ground the variables in the body
10: for all θϕ s.t. ϕθBθH contains no free variable and is true in state

x1,t−1 . . . x1,i−1, x
′, xt−1,i+1 . . . xt−1,n do

11: for all p :: {B, ϕ} → H do . For all abstract successors of x′

12: pnew ← 0
13: for all groundings x of HθBθϕ do . For all ground successors,

compute modified transition probilities (lines 13 – 21)
14: pa ← px′,t−1

15: pb ← p · µ(x|A)
16: pc ← 0
17: for all pO :: S1, . . . , Sm → O s.t. S1 . . . , Sm is true in

x1,t−1 . . . x1,i−1, x
′, xt−1,i+1 . . . xt−1,n do

18: pc ← pc + pOµ(o, O)
19: end for
20: pd ← 1
21: for all j < n and j 6= i do
22: pd ← pd · P (xt+1,j |x1,t . . . x1,i−1, x, xt,i+1 . . . xt,n)
23: end for
24: pnew ← pnew · pa · pb · pc · pd

25: if pnew > px,t then. If more likely, set as current best path
26: px,t ← pnew

27: pred(x, t)← x′

28: end if
29: end for
30: end for
31: end for
32: end for
33: end for
34: x← arg maxx px,T . Extract the computed Viterbi path.
35: for t=T-1. . . 0 do
36: xi,t ← pred(x, t)
37: x← xi,t

38: end for
39: end procedure

5 Experimental Demonstration

To demonstrate the relational chainwise Viterbi algorithm, consider the vacuum
world of Russell and Norvig (1995) as depicted in Figure 4 for the case of 4
rooms.



Fig. 4. Illustration of the Vacuum world we used to demonstrate rcViterbi. Here we
assume 4 rooms which are arranged in a circle. The robot is in the upper-left room.

Example 1. In the Vacuum world, there are n rooms and a single robot. The
robot has two actions to choose from: walking (w) and cleaning (c). Rooms X
and Y are connected via door(X, Y), which the robot can use to walk from X to
Y. If the robot is in a Room and cleaning, the room will be clean (clean(Room))
with a chance of 90% after the cleaning action. A clean room will stay clean in
any case and a dirty room (dirty(Room)) will also stay dirty by default if not
performing the cleaning action. The action the robot chooses correspond with
probability 0.8 to the true state of the current room. In other words, the robot
is not always able to determine the current state of the room correctly. The
observation at every time consists of the position of the robot and dirt level of
the room. This information is only with a probability 0.75 correct. In the other
cases either the position of the robot is wrong or the dirt level or both.

To model the Vacuum world as a wcrHMM, we treated robot(Room, Action),
clean(Room), and dirty(Room) as abstract chain. The rooms as well as the topo-
logical information among them, i.e., door(X, Y), is provided apriori as determin-
istic background knowledge. Then the Vacuum world can be modeled as follows:

0.9 :: clean(X)← dirty(X) {robot(X, c)}
0.1 :: dirty(X)← dirty(X) {robot(X, c)}
1.0 :: dirty(X)← dirty(X) {}
1.0 :: clean(X)← clean(X) {}
0.8 :: robot(X, c)← robot(X, ) {door(X, Y ) ∧ dirty(X)}
0.2 :: robot(Y, w)← robot(X, ) {door(X, Y ) ∧ dirty(X)}
0.2 :: robot(X, c)← robot(X, ) {door(X, Y ) ∧ ¬dirty(X)}
0.8 :: robot(Y, w)← robot(X, ) {door(X, Y ) ∧ ¬dirty(X)}

Based on this model, we compared the exact and the chainwise relational Viterbi
algorithms. More precisely, for an increasing number of rooms (3, 4, . . . , 8), we
randomly sampled 40 observation sequences of length 10. For each sequence we
then ran both algorithms to compute the most-likely hidden state sequence. The
mean field approach was set to spend 4 iterations per element in the interpreta-
tion.
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Fig. 5. Experimental results on the vacuum world domain averaged over 40 sequences:
(a) qualitative comparison, (b) running time comparison. The results show that the
structured mean field approximation achieves a performance, which is competitive with
the exact inference approach, but it is several orders of magnitude faster.

The experimental results are summarized in Figures 5(a) and 5(b). As one can
see in Figure 5(a), the chainwise Viterbi approach yields close approximations
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Fig. 6. Scatter-plots of the 40 experiment made for every problemsize. This shows
that the results are in most cases equally good. In the other cases the solutions are still
reasonable.

of the true probabilities. It is, however, an order of magnitude faster, cf. Figure
5(b), as predicted by the theory: the exact viterbi algorithm is exponential in
the number of rooms as the number of possible hidden states grows exponential
in the number of rooms. The quantitative results were as follows:

#rooms
# of paths with 3 4 5 6 7 8
same probabilities 28 18 17 20 22 27
0% < log range ≤ 5% 1 3 3 3 3 3
5% < log range ≤ 10% 3 6 7 1 3 1
subtotal (absolute/relative) 32/.8 27/.67 27/.67 24/.6 28/.7 31/.77
> 10% log range 8 13 13 16 12 9
total 40 40 40 40 40 40

Thus, in most cases both algorithms output a path with the same probability.
In the cases in which the estimated path rcViterbi is suboptimal, the solution
is still reasonable.
This is also illustrated in the scatter-plots in Figure 6.

To summarize the experiments demonstrate that rcViterbi achieves com-
parable performance as the exact approach but is several orders of magnitudes
faster.



6 Conclusions

We introduced weakly coupled relational HMMs (wcrHMMs). Based on a dis-
tributed, abstract state representation, we then developed a structured mean
field approximation for efficient, approximative inference. First experiments have
shown that the approximation works well in practice. This experiments have also
shown, that the exact algorithm is intractable even in the simple cases, because
of the exponential growth of the runtime in the size of the interpretations. To
the best of our knowledge, the inference procedure is the first application of
a variational method within SRL. Investigating this connection for other SRL
approaches is an interesting direction for future research as it paves the way
towards general relational, variational Bayes methods.
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