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Use of structural priors

• “The use of structural priors when learning BNs has received

only little attention in the learning community.”

(Langseth & Nielsen, 2003)

• “The standard priors over network structures are often used

not because they are particularly well-motivated, but rather

because they are simple and easy to work with. In fact, the

ubiquitous uniform prior over structures is far from uniform

over [Markov equivalence classes]”

(Friedman & Koller, 2003)
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Exploiting experts

“. . . in the context of knowledge-based systems, or indeed in any

context where the primary aim of the modeling effort is to predict

the future, [uniform] prior distributions are often inappropriate;

one of the primary advantages of the Bayesian approach is that

it provides a practical framework for harnessing all available re-

sources including prior expert knowledge.”

(Madigan et al, 1995)
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The problem with experts

“Notwithstanding the preceding remarks, eliciting an informa-

tive prior distribution on model space from a domain expert is

challenging.” (Madigan et al, 1995)
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Hard constraints

• Imposing a total ordering on variables or blocks

• Limiting the number of parents

• Banning/requiring specific edges.
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Assuming link independence

pr(M) ∝
∏

e∈EP
pr(e)

∏
e∈EA

(1− pr(e))

(Buntine, 1991; Cooper & Herskovits, 1992;

Madigan and Raftery, 1994)
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Edit distance from prior network

Let M differ from the expert’s prior network by δ arcs, then

pr(M) = cκδ

(≈ Madigan and Raftery, 1994; Heckerman et al, 1995)
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Priors over CART trees

• A Bayesian CART algorithm. Denison et al, Biometrika 1998

• Bayesian CART model search. Chipman et al, JASA 1998

“Instead of specifying a closed-form expression for the tree prior,

p(T ), we specify p(T ) implicitly by a tree-generating stochastic

process. Each realization of such a process can simply be con-

sidered a random draw from this prior. Furthermore, many spec-

ifications allow for straightforward evaluation of p(T ) for any T

and can be effectively coupled with efficient Metropolis-Hastings

search algorithms . . . ” (Denison et al)
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A graphical-model-generating stochastic process
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Stochastic logic programs implement model-generating

stochastic processes

1. Write a logic program which defines a set of models:

• BN is a Bayesian network if . . .

• ∀BN : bn(BN)← digraph(BN) ∧ acyclic(BN)

• bn(BN) :- digraph(BN), acyclic(BN).

2. Add parameters to define distribution over models to get a

stochastic logic program (SLP).
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SLPs for MCMC

• The tree gives a natural neighbourhood structure to the

model space . . .

• . . . which we exploit to construct a proposal distribution based

on the prior.
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The proposal mechanism

1. Backtrack one step to the most recent choice point in the
probability tree

2. We then probabilistically backtrack as follows: If at the top
of the tree stop. Otherwise backtrack one more step to the
next choice point with probability pb.

3. Once we have stopped backtracking choose a new leaf/model
M∗ from the choice point by selecting branches according to
their probabilities attached to them. However, in the first
step down the tree we may not choose the branch that leads
back to the current leaf/model M i.
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Bouncing around the tree
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The acceptance probability

If M∗ is a failure then α(M i, M∗) = 0 else:

α(M i, M∗) = min

{
p
(n∗−ni)
b

1− pi

1− p∗
P (D|M∗)
P (D|M i)

,1

}
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Better mixing with a cyclic transition kernel

• We cycle through the values pb = 1− 2−n, for n = 1, . . . ,28,

• so that on every 28th iteration, there is a high probability of

backtracking all the way to the top of the tree.
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It works . . . eventually!
M p̂4 p̂5 p̂6 p

BN22 0.668 0.690 0.704 0.702
BN20 0.176 0.150 0.145 0.146
BN19 0.144 0.152 0.143 0.145
BN4 0.007 0.005 0.005 0.005
BN5 0.002 0.001 0.002 0.002
BN1 0.001 0.001 0.001 0.001
BN14 0 0 0 0
BN10 0.001 0 0 0
BN11 0 0 0 0

Estimated (p̂i) and actual (p) posterior probabilities for the nine
most probable 3-node BNs in BNTREE.

p̂i is the estimated probability after 10i iterations.
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Real evaluation

• Generate 2295 datapoints from the Asia BN

• 783,702,329,343 BNs in model space

• Run MCMC for 500,000 iterations (no burn-in)

• Runtimes: 24 minutes - 55 minutes

• 2 runs for each ‘setting’: compare observed probabilities
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Real evaluation - OK results
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Real evaluation - hmmm
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Markov equivalence classes

bn(RVs,BN) :-

skeleton(RVs,Skel),

essential_graph(Skel,Imms,EG), %could stop here

bn(EG,Imms,BN),

top_sort(BN,_). %check for cycles

Way too many failures!
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Logic program transformation

member(X,[X|_]).

member(X,[_|T]) :- member(X,T).

member(X,[X,_,_]).

?- member(X,List),List=[_,_,_] member(X,[_,X,_]).

member(X,[_,_,X]).

Bristol 17/10/03

20



SLP transformation for more efficient sampling

1/2 : member(X,[X|_]).

1/2 : member(X,[_|T]) :- member(X,T).

4/7 : member(X,[X,_,_]).

?- member(X,List),List=[_,_,_] 2/7 : member(X,[_,X,_]).

1/7 : member(X,[_,_,X]).

Bristol 17/10/03

21



What about R?

• R calls C calls Prolog

• Where does the prior live? as an R object?

• The data should eventually be an R dataframe

• Begin with R as a ‘wrapper’.
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