
Airblue: A System for Cross-Layer Wireless Protocol
Development

Man Cheuk Ng, Kermin Elliott Fleming, Mythili Vutukuru, Samuel Gross,
Arvind, and Hari Balakrishnan

CSAIL, Massachusetts Institute of Techonology
{mcn02,kfleming,mythili,sgross,arvind,hari}@csail.mit.edu

ABSTRACT
Over the past few years, researchers have developed many cross-
layer wireless protocols to improve the performance of wireless
networks. Experimental evaluations of these protocols have been
carried out mostly using software-defined radios, which are typ-
ically two to three orders of magnitude slower than commodity
hardware. FPGA-based platforms provide much better speeds but
are quite difficult to modify because of the way high-speed designs
are typically implemented. Experimenting with cross-layer pro-
tocols requires a flexible way to convey information beyond the
data itself from lower to higher layers, and a way for higher lay-
ers to configure lower layers dynamically and within some latency
bounds. One also needs to be able to modify a layer’s processing
pipeline without triggering a cascade of changes. We have devel-
oped Airblue, an FPGA-based software radio platform, that has all
these properties and runs at speeds comparable to commodity hard-
ware. We discuss the design philosophy underlying Airblue that
makes it relatively easy to modify it, and present early experimen-
tal results.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design – Wireless communication

General Terms
Architecture, design, experimentation.

Keywords
Wireless, Software-Defined Radio, Airblue, Bluespec, cross-layer.

1. INTRODUCTION
In recent years, researchers have developed a large and grow-

ing set of protocols and algorithms to improve the throughput and
capacity of wireless networks. These schemes span the physical
(PHY), MAC, and network layers of the protocol stack. Some ex-
amples include interference cancellation [1], ZigZag decoding [2],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS ’10, October 25-26, 2010, La Jolla, CA, USA
Copyright 2010 ACM 978-1-4503-0379-8/10/10 ...$10.00.

Conflict Maps (CMAP) [3], the SoftPHY interface [4, 5, 6], Sam-
pleWidth [7], Analog Network Coding [8], MIXIT [9], VWID [10],
ODS [11], and SWIFT [12].

A common theme in all these schemes is that they embody some
form of cross-layer design, i.e., additional information is passed
from lower to higher layers and higher layers exercise some con-
trol over lower-layer decisions. For example, the SoftPHY inter-
face [5] extends the receiver PHY to send to higher layers confi-
dence information about each bit’s decoding, so that those layers
can perform better error recovery [4], bit rate adaptation [6], di-
versity routing [9], and so on. In fact, even the simple example
of using the receiver’s signal-to-noise ratio (SNR) to determine a
transmit bit rate is an example of PHY-MAC cross-layer informa-
tion. Given the strong real-world interest in high-speed wireless
networks, we expect a significant amount of continuing research in
the area of cross-layer protocols.

The effort required to implement any high-performance wireless
protocol from scratch is enormous. Therefore, one would like to
start from a base implementation of, say, 802.11. The problem
with this approach is that commodity hardware implementations
offer no opportunity for making changes while the Software De-
fined Radios, like GNUradio [13], do not offer sufficient perfor-
mance for cross-layer experiments. Platforms like WARP [14] and
SORA [15] can provide high speeds but are still quite difficult to
modify for cross-layer experiments, as we show later. In this paper
we identify two properties that are essential for modular refinement,
i.e., the ability to make changes in one module of a system without
having to understand or make changes to the rest of the modules
in the system. These properties are latency-insensitivity and data-
driven control. We believe that if the base protocol implementation
does not have these properties, then it is quite difficult to modify for
cross-layer protocol implementation. The need for these properties
also shows up in pure software implementations on multicores.

In this paper we describe Airblue, an FPGA-based wireless plat-
form designed especially for cross-layer experimentation. It sup-
ports speeds comparable to commodity 802.11 hardware but is de-
signed with modular refinement in mind. Airblue is also designed
to pass additional information up from the PHY layer to the MAC
layer using annotated streams and to let the MAC reconfigure the
PHY in sub-microseconds. The main contributions of this paper
are (i) a working system built using sound design principles with
unique capabilities for cross-layer experimentation, and (ii) a set
of preliminary results to show that several important mechanisms
needed for cross-layer protocols can be implemented efficiently.
Paper organization: We first present related work in §2. Then,
we discuss several concrete examples of cross-layer protocols (§3),
and identify three requirements for each protocol: the information
that needs to be conveyed from the lower to higher layers; the dy-



namic reconfiguration of the lower layer required by higher layers;
and the modules in the PHY or link layers that need to be changed
substantially. In §4, we discuss the properties an implementation
must have for modular refinement, regardless of whether it is im-
plemented in hardware or software. In §5, we describe the Airblue
platform and our implementation of the 802.11 physical and link
layers. In §6, we describe the modifications we made to the base
implementation to implement various cross-layer protocols. We
discuss the limitations of Airblue in §7, and conclude in §8.

2. RELATED WORK
A variety of platforms have been proposed in the past few years

to facilitate the development of new wireless protocols. These plat-
forms span the entire design space of hardware and software imple-
mentations of the PHY and MAC. On one end of the spectrum are
Software Defined Radio (SDR) platforms such as GNURadio [13]
and Vanu [16], which provide the flexibility required to modify all
the layers of the stack. An SDR usually consists of an RF front-end
connected to a commodity PC through a peripheral IO interface,
with all the processing starting from the application layer down to
the baseband being done on the PC.

However, SDRs are bandwidth-limited by the CPU on a PC and
do not scale easily to handle commercial throughputs. One there-
fore has to apply more sophisticated parallel programming tech-
niques on multicores. This is the approach adopted in the SORA
platform [15], which augments the SDR architecture with a more
capable FPGA and applies a variety of application-specific par-
allel programming techniques to achieve throughput comparable
to 802.11 hardware. It stores pre-computed waveforms of time-
critical data such as the acknowledgment frames, so as to meet the
stringent protocol timing requirements. This implementation is im-
pressive, but is not convenient for developing new protocols for
several reasons. First, the designer of a new protocol must man-
ually re-partition the software blocks to multiple CPU cores and
the time-critical protocol portions to the FPGA, even after modi-
fying a small number of blocks. In a recent paper by the devel-
opers [17], when the authors change the 802.11b PHY to perform
more complicated decoding, the PHY no longer meets 802.11 tim-
ing when running on a single core. They admit that further opti-
mizations that exploit the computational power of additional cores
are required to meet the performance target. Second, it is impos-
sible to achieve microsecond-latency communication between the
MAC and the PHY, making it hard to implement several cross-layer
mechanisms that require such communication (e.g., sending chan-
nel quality feedback from the PHY in the link-layer ACK). As an
aside, SORA also has a form-factor concern: an 8-core PC would
be much larger than is convenient for mobile experiments.

Another example of extensions to SDRs is work by Nychis et
al. [18] which proposes a modular MAC architecture that is flex-
ible to implement the MAC of various protocols. They demon-
strated the effectiveness of their approach by modifying the GNU-
Radio platform which involved moving the computation of the
time-critical MAC functionality onto the front-end FPGA, to al-
low high-speed implementation of some (not all) MAC protocols.
However, their system cannot achieve realistic throughputs of many
Mbps because the PHY processing is still done in software.

In general, FPGA-based PHYs provide a good trade-off between
programmability and low latency. Although a design running on an
FPGA is typically slower than its Application-Specific Integrated
Circuit (ASIC) counterpart, it outperforms the corresponding soft-
ware implementation by two orders of magnitude. FPGAs leverage
fine-grain parallelism and are fast enough for most experiments.

The closest example to our work is Rice WARP [14], a tightly

coupled system consisting of a software MAC and a PHY base-
band implemented on an FPGA. The baseband PHY is imple-
mented as Verilog blocks generated using Xilinx System Gener-
ator in Simulink [19, 20, 21]. WARP provides a library of param-
eterized modules that can be assembled using the graphical user
interface of Simulink. A chief difficulty in using WARP, as we ex-
plain in §4, is that its hardware PHY is not designed with modular
refinement in mind. As a result, implementing protocols that re-
quire PHY modifications can only be carried out by experienced
users with a deep understanding of the whole design. Nevertheless,
WARP can be easily modified to develop protocols that require only
modifications to the software MAC.

There is a rich history of network and transport layer proto-
cols implemented as composable collections of software process-
ing modules. For example, Click [22] provides the ability to write
and configure network processing elements easily. However, such
systems do not address the issues that arise in designing the PHY
and MAC layers of the network stack, which are more computa-
tionally intensive.

All platforms mentioned above lie on different points of the per-
formance and flexibility trade-off curve: they either trade flexibility
for high performance or vice versa. Airblue differs from previ-
ous works in the sense that that it is a high-performance platform
which is also flexible. The enabling factor is the architecture of
Airblue which follows two design principles: latency-insensitivity
and data-driven control. These two principles allow developers to
perform localized modifications without requiring changes to the
rest of the system. Note that these design principles are platform-
independent and can be used to develop high-performance and
modular implementations on other FPGA platforms such as SORA
or WARP.

3. CROSS-LAYER PROTOCOLS
The research literature has many examples of cross-layer wire-

less protocols, which are characterized by the use of information
from higher or lower layers to achieve performance gains. Con-
ceptually, most of these ideas can be implemented by extending
existing standards like 802.11. We survey some examples of such
protocols in this section, and identify the cross-layer interaction re-
quirements as well as the modifications needed on top of an 802.11
implementation. The examples are summarized in Figure 1.
Interference cancellation: Interference cancellation is a popular
technique at the physical layer to decode multiple transmissions
simultaneously. ZigZag [2] combats interference by using two in-
stances of two collided packets, the second instance comes from a
retransmission, to recover each of the individual packets. Imple-
menting ZigZag requires new decoding logic in the 802.11 PHY,
and some exchange of information between MAC and PHY. For
example, the ZigZag decoder in the PHY must know the MAC ad-
dress of the sender while it is decoding a packet, in order to track
the sender-specific frequency offset and compensate for it.1

Error recovery: Improving error recovery algorithms and mod-
ifying them to suit application requirements can greatly increase
application throughput. We consider two examples. Most link lay-
ers in wireless data networks retransmit entire frames on even a
single bit error. In contrast, the PHY in partial packet recovery
(PPR) [4] computes and exports per-bit confidence information or
SoftPHY hints, using which the link layer identifies and requests
a retransmission of only those bits with low confidence. Unequal
error protection (UEP) [23] is another example of a technique that

1This way of implementing ZigZag is different from the descrip-
tion in [2], which does not attempt to preserve layering.



Protocols Lower-to-Higher Layer Higher-to-Lower Layer PHY/MAC Modifications
Information Configurations

ZigZag channel characteristics sender MAC identity New PHY decoder
PPR per-bit confidences sub-packet retransmission Replacing the hard-decision decoder

with a soft-decision decoder
UEP symbol-level encode/decode

RBAR per-packet SNR estimates link-layer feedback to sender Calculate per-packet SNR
SoftRate per-bit confidences link-layer feedback to sender Replacing the hard-decision decoder

with a soft-decision decoder
CMAP link-layer feedback to sender, Early MAC header decode

quick switch rx-to-tx
FARA per-carrier SNR estimates link-layer feedback to sender, Calculate per-carrier SNR

per-carrier modulation

Figure 1: Examples of cross-layer protocols and their implementation requirements.

modifies the standard error recovery algorithms. It is known that
an application’s throughput and loss rate requirements can be bet-
ter met by allowing the application to control the mapping from
the data payload to the PHY modulation and coding. For example,
video applications may be able to tolerate some bit errors as long
as the high-priority bits in the video stream are encoded robustly.
With UEP, the application specifies the priority of bits in a pay-
load to the lower layers, and triggers a reconfiguration of the PHY
modulation and coding schemes multiple times within a packet.
Bit rate adaptation: Wireless physical layers today can transmit
data at multiple different bit rates by varying the modulation and
coding of the transmission. Many bit rate adaptation protocols use
PHY information to quickly estimate the channel quality and pick
a “good” bit rate. For example, the MAC in RBAR [24] uses per-
packet SNR estimates from the receiver PHY to pick the bit rate
for the next packet. Alternatively, SoftRate [6] picks the bit rate
using estimated bit error rate (BER) computed by per-bit SoftPHY
Hints. AccuRate [25] uses per-symbol dispersions computed in the
PHY demodulator to estimate channel quality and pick transmit
bit rates. In all these protocols, the PHY at the receiver passes
up extra information (e.g. SNR estimates, SoftPHY hints, symbol
dispersions) to the MAC, and an appropriate feedback is sent to the
MAC at the sender in a link-layer feedback frame. The transmitter’s
MAC then reconfigures the PHY to transmit at the suitable bit rate.
Concurrent transmissions: The popular Carrier Sense Multi-
ple Access (CSMA) MAC protocol avoids transmission when the
senders senses a busy channel. In contrast, the CMAP MAC proto-
col [3] uses additional information about who is transmitting on the
channel. With this information, a CMAP node can send its packet
if its transmission will not significantly interfere with the ongo-
ing one. CMAP can be implemented efficiently using two cross-
layer primitives. First, the PHY streams the MAC-layer header
as soon as it is received, enabling the MAC to identify the sender
and receiver of an ongoing transmission before the transmission
completes. Second, if the MAC believes that its transmission does
not interfere with the ongoing transmission, the MAC instructs the
PHY to quickly stop receiving the ongoing transmission and switch
to transmit mode.
Variable width channel allocation: Some MAC protocols allo-
cate channel resources not only in the time dimension but also
in the frequency dimension. For example, FARA [26] allocates
frequencies to each user based on the SNR estimates over vari-
ous sub-bands to a particular user, because different users might
see different fading effects over the transmission frequency band.
Other research [27, 10] allocates disjoint frequency bands to dif-

encoder interleaver

(a) LS - The interleaver connected to an encoder assumes a valid
input is written into the register every clock cycle.

encoder interleaver

(b) LI - The downstream interleaver waits for input to arrive via a
FIFO from the upstream encoder.

Figure 2: An example to contrast latency-sensitive (LS) and
latency-insensitive designs (LI).

ferent senders to mitigate interference, with the width of the chan-
nel depending on the received signal strength from the sender. In
all these protocols, the PHY needs to communicate per-subchannel
signal quality information up to the MAC layer for each packet.
The MAC must be able to instruct the PHY to send and receive
data over a particular subset of the available frequencies.

4. IMPLEMENTATION CHALLENGES
The previous section outlined the enhancements required to a

base implementation to implement various cross-layer protocols.
The degree of difficulty in making these changes depends largely
on what the base system provides and how it is implemented. At
one extreme, if the base system is implemented with a rich set of
interfaces and parameters, the implementation of a new protocol
may just be a matter of setting some configuration parameters. At
the other extreme, the system may be implemented in such a way
that changing one module may require a deep understanding of the
whole implementation, and trigger adjustments to many other mod-
ules. If the effort required to implement a new protocol is substan-
tial, then the platform is not appropriate for cross-layer protocol
experimentation. In this section, we discuss the design decisions
of high-performance physical layer designs that directly affect our
ability to modify them.

4.1 Latency-insensitive Designs
Consider an encoder in a hardware PHY that applies an error-

correcting code to a stream of bits, and feeds the resulting bits into



an interleaver that shuffles the bits, as shown in Figure 2(a). Sup-
pose the encoder writes a symbol once every clock cycle into a
register, which the interleaver reads in the next cycle. Now sup-
pose a designer modifies the encoder to use a more complicated
code that requires two clock cycles to encode the bits instead of
one. This modification to the encoder compromises the correctness
of the interleaver, which must now be modified to account for the
fact that its input comes in only every other cycle. The problem gets
harder if the error-correction code takes a variable amount of time.
Such designs where modules implicitly make assumptions about
the latencies of the other modules are called latency-sensitive de-
signs. The biggest problem in modifying latency-sensitive designs,
for example, in Rice WARP [14], is that it is difficult to know the
assumptions of the original designer by examining the design. Fur-
thermore, experience strongly suggests that it is practically impos-
sible to document all such assumptions in a real-world design.

Modules in latency-insensitive designs, on the other hand, do not
make assumptions about the latencies of the other modules in the
pipeline — a data transfer occurs only when the upstream mod-
ule has produced enough data and the downstream module is ready
to consume it. To execute modules in parallel, finite-sized FIFO
queues are added between modules. Figure 2(b) shows how the
designs in Figure 2(a) can be made latency-insensitive by adding
FIFOs. Latency-insensitive designs are in general easier to mod-
ify than latency-sensitive designs. However, converting a latency-
sensitive design into a latency-insensitive design is quite difficult
after the fact because the designer’s latency assumptions are not
known. Latency-insensitive designs have a further benefit that they
make it easy to independently tune various modules for higher
performance, without exacerbating the verification problem of the
complete design.
Latency-insensitivity in software implementations: The issue of
latency-insensitivity shows up quite differently in software because
software is almost never written to describe clock-cycle by clock-
cycle behavior. Programmers write software to process events as-
suming that the underlying machinery (e.g., processors, caches,
I/O) is fast enough to do the required work in time. If the under-
lying machinery is not fast enough, then the implementer has two
choices: buying faster machinery or optimizing the programs.

Optimizations in performance-critical systems are done gener-
ally in two ways. First, there are algorithmic optimizations to
take advantage of machine specific microarchitecture. For ex-
ample, data structures might be modified to fit into a particular
cache line size. Second, one can apply static thread scheduling
and static resource allocation techniques to achieve efficient mul-
tiplexing of the underlying machine resources. The allocation is-
sue is further complicated in current multicore systems: proces-
sors may be multiplexed by allocating separate cores to separate
threads, but the programmer has essentially no control over shared
resources like caches and on-chip networks. This lack of control in-
troduces the possibility of unpredictable interactions between dif-
ferent code components, and often causes high variability in per-
formance. Highly tuned systems are very brittle with respect to
performance — small changes in a single module can have a deep
effect on the performance of the whole system. For example, in-
creasing the size of a data structure or changing a code path in
a single module can ripple through the system causing a cascade
of unexpected cache misses in other performance critical modules.
Sometimes unforeseen performance changes can be caused by just
switching to a newer compiler version. In systems with tight timing
requirements, like WiFi, the delays may be unacceptable, forcing
the programmer down the painful path of modifying large portions
of the system to regain lost performance. In short, such systems,

mapper

Data Control

Modulation

(a) Input data bits and
corresponding modu-
lation must arrive to-
gether at the mapper,
which modulates data
into PHY symbols.

A

Abort signal

B

(b) When aborting the reception of
a packet at the PHY, new data
should not be sent into the
pipeline until reconfiguration is
complete at all the modules.

Figure 3: The problem of synchronization between control and
data when reconfiguring a lower layer.

even though they are written in software, are often unmodifiable in
practice.

Modifications of pipelines with static scheduling and static re-
source allocation also cannot be undertaken without a deep under-
standing of the system. Because it is practically impossible to doc-
ument every assumption that goes into a high-performance imple-
mentation, parallel software wireless platforms like SORA are hard
to modify.

Until now, we have considered only the problem of executing
a set of independent tasks on a multiplexed substrate. Achieving
high performance in the context of communicating processes with
shared data is even more difficult. Consider the relatively simple
sub-component of an OFDM pipeline shown in Figure 2. If both
the Encoder and the Interleaver execute sequentially, i.e., in one
thread, then the correctness would not be affected by the changes
in the code of either module. Pipeline scheduling, i.e., how often
we switch from Encoder to Interleaver, is done statically and is part
of the user code. Furthermore, information is usually passed from
one module to another via shared memory using pointers. But if,
for performance reasons, we want to execute the Encoder and the
Interleaver in parallel, then accesses to the shared data structures
(FIFO queues) have to be coordinated using locks. Since locks are
expensive, software solutions minimize locking by doing coarse-
grained synchronization.

For robust and modular software implementations, data should
be passed from one module to another as messages via message-
passing ports, rather than shared memory. This way, a module can
modify the (local) data without having to lock it. The message-
passing protocol needs to guarantee that the recipient has enough
buffer before the producer sends data. The scheduling has to be
dynamic enough to deal with variable processing times. Unfortu-
nately, dynamic scheduling of modules to processors requires pro-
hibitively high communication and synchronization between pro-
cessors under current multicore architectures.

4.2 Synchronizing Data and Control
Cross-layer protocol stacks require new ways of reconfiguring

the lower layers at runtime, unlike standard commercial imple-
mentations in which specific configurations and control paths are
embedded in the design. The commands from the higher layer to
trigger reconfiguration are usually referred to as “control” to distin-
guish them from the actual data through the pipeline.

Consider the mapper module shown in Figure 3(a), which takes a
data input (a group of bits to map into a PHY symbol) and a control
input (the modulation that determines the mapping). For the map-
per to function correctly, the modulation control should arrive at the
same time as the data bits it applies to. Sometimes the reconfigura-
tion affects several modules and has to affect them in a coordinated



mapper

Modulation

(a) The modulation con-
trol and data bits ar-
rive together along the
same input at the map-
per.

A

Abort response

B

Abort token

(b) Aborting a reception is accom-
plished by forwarding an abort
token along the datapath and
withholding the data after the to-
ken until reconfiguration is com-
plete and a response is received.

Figure 4: Examples illustrating data-driven control.

way. For example, the CMAP MAC protocol requires rapid switch-
ing from receive to transmit, where the ongoing reception must be
aborted and all modules must prepare to transmit. For correct op-
eration, transmit data should be sent along the pipeline only when
all the modules have finished processing the control signal to abort
and flush (Figure 3(b)).

Why is synchronization a hard problem when one wishes to add
a new control? In typical hardware designs, the processing laten-
cies of the different blocks are computed a priori and control is de-
signed to be sent to each block just in time for the data; as a result,
synchronization between the control and data is implicit. Although
such designs can achieve high performance because one need not
expend circuitry to handle synchronization, they are also hard to
modify. Adding new control requires a careful understanding of
the latencies of all the modules in the pipeline. Therefore, we use a
different solution: data-driven control.

With data-driven control, messages between blocks contain both
control information and the set of data values the control must op-
erate on. Control tokens are embedded into the datapath along with
the data, and are not modified by blocks that do not need to act
on them as the message flows through the pipeline. The control
information is stripped off when the message leaves the pipeline.
Control tokens can be interspersed with data at any granularity, en-
abling us to pass control with every bit or groups of bits, or per-
packet. This approach incurs the overhead of extra hardware cir-
cuitry to pass and identify control tokens through the datapath, but
allows protocol designers to modify the structure of pipelines or
refine any individual block easily without worrying about retiming
the controls. Figure 4 shows an implementation of the examples in
Figure 3 with data-driven control.

The concept of data-driven control is neither new to hardware
systems nor to software systems. For example, packet trans-
missions in wormhole networks use header-flits (controls) to re-
serve buffers of each node along the paths until all the following
body-flits (data) pass through that node. Another example is that
Click [22] uses “packet annotations” to couple control and data to-
gether. The notion is also used in SDR-based systems [18].

4.3 Passing Information to Higher Layers
Information from lower to higher layers may be passed at any

granularity—once per bit, once per group of bits, or once per
packet. As one may expect, passing new information along the
pipeline faces an association problem similar to that between con-
trol and data discussed in §4.2. Meeting stringent latency require-
ments when passing up information is also a challenge because
most network stacks assume that the higher layers act on data at the
granularity of a frame at a time and only after the lower layer fin-
ishes its processing for the entire frame. This coarse granularity of
processing can be attributed to the prohibitive cost of fine-grained

Figure 5: Airblue hardware.

Soft

Processor

UART

D
e
vic

e
 In

te
rfa

c
e

Radio

DAC

ADC

Gain 

Circuit

Baseband

without

Viterbi

CSMA

MAC

Debug Interface

PC

FPGA

40 MHz 25 MHz 20 MHz

Viterbi

Figure 6: AirBlue system architecture.

communications in software.
To pass information between layers in a timely manner, we pro-

pose using a streaming interface between the layers. For example,
when the MAC and PHY are both implemented in hardware, the
PHY can send up bits to the MAC as they are decoded, instead of
waiting for the complete frame to be received. This way, the MAC
can receive and act on PHY information in a timely manner. Extra
information along the streaming interface can be passed up using
annotations. An annotation is additional information that is sent in-
band along with the data. For example, when the PHY computes
per-bit SoftPHY hints, the hints are pushed through the datapath
along with the corresponding bits.

5. THE AIRBLUE PLATFORM
Our platform presently consists of a MAC and PHY imple-

mented on an FPGA. In the future, we plan to integrate these layers
with the higher layers of the networking stack by either exposing
the FPGA as a network device on a Linux PC or by implementing
the higher layers in software on the FPGA. The Airblue MAC and
PHY are both highly configurable and easy to modify, while run-
ning at speeds comparable to commodity 802.11 hardware. We
achieve these properties by rigorously following the two design
principles, latency-insensitivity and data-driven control, described
in the previous section. In this section, we first describe the hard-
ware and software components of Airblue and then present some
performance results.

5.1 Airblue Hardware
Figure 6 shows a block diagram of the system. The system is



Scrambler
FEC

Encoder
Interleaver Mapper

Pilot/Guard
Insertion

IFFT/FFT

CP
Insertion

Header
Decoder

FEC
Decoder

De-
Interleaver

De-
Mapper

Channel
Estimator

Synchronizer

TX
Controller

De-
Scrambler

RX 
Controller

Device
Interface

MAC

Baseband Processor

A/D

Radio

TX Pipeline RX Pipeline

Figure 7: OFDM baseband data flow in Airblue.

divided into three clock domains at 20 MHz, 25 MHz and 40 MHz
respectively. The Device Interface, clocked at 20 MHz, provides
a generic interface between the digital baseband and the RF front-
end.

There are three blocks—the Baseband Processor, the MAC Unit
and the Debug Interface—in the 25MHz clock domain. The Base-
band Processor implements the PHY, converting digital bitstreams
to digital baseband signal during transmission and performing the
inverse during reception. The MAC Unit controls when the Base-
band Processor can transmit or receive and implements an ac-
knowledgment protocol. The Debug Interface collects internal
state of other blocks and communicates this state to the host PC.

The Soft Processor, running at 40 MHz, handles off-chip com-
munications. In the future, we plan to use the Soft Processor to
execute the software implementing the protocol layers above the
MAC layer.

5.2 Baseband Processing on FPGA
Our baseband design (shown in Figure 7) uses a set of open-

source modules from an OFDM workbench [28] that targets ASICs
(not FPGAs). The library was written in Bluespec [29], a high-level
design language that compiles into Verilog and can be further trans-
lated into FPGA, ASIC or software implementations using other
tools. All modules in the library are latency-insensitive.

In developing new protocols, users may have to modify the base-
band modules in Airblue for the following reasons.
New features: A module may have to be modified to provide ad-
ditional features. Modifications can be as simple as exposing some
internal state of a module to other modules, or can be substantial
modifications needed to implement new algorithms like computa-
tion of SoftPHY hints (see §6.2).
Algorithmic modifications: Users may need to replace under-
performing algorithms with more sophisticated ones. For exam-
ple, the channel estimator in the original library turned out to be
inadequate because it had never been tested with a real radio. It
performed minimal phase tracking and no magnitude scaling, and
had to be re-implemented using an algorithm that performed both.
Performance tuning: A module may have to be modified to meet
tighter throughput or latency constraints. Modifications normally
involve exploiting more parallelism in an algorithm or improving
data movement between modules. For example, we increased the
per-cycle throughput of the original FEC Decoder twice to com-
pensate for performance loss due to the lower clock frequency in
FPGAs as compared to ASICs.
FPGA-specific optimizations: Some hardware structures targeted
for ASIC implementations do not map well onto the FPGAs and

have to be modified to meet resource usage and timing require-
ments. A typical example involves mapping register banks onto
more dense SRAM-like resources. Conversely, the FPGA contains
primitive resources, like multipliers, that enable the development
of more robust and efficient algorithms.

5.3 Hardware Streaming MAC
The MAC is responsible for determining when the baseband

sends or receives data. A typical MAC transmits frames received
from the baseband, and reacts on receiving a frame by, say, sending
an ACK back to the source.

Airblue’s MAC has two important properties that enable it to
support a larger range of protocols than traditional MACs. First, the
MAC is implemented in hardware with dedicated low-latency chan-
nels to the baseband. This approach allows the MAC and the base-
band to communicate large amount of data back and forth with tight
latency. Second, it communicates with the baseband in a streaming
manner, i.e., at the granularity of bytes instead of frames, enabling
the MAC to start processing data from the baseband as soon as it is
decoded. These two properties are necessary for the implementa-
tion of cross-layer protocols that require the MAC and the baseband
to frequently communicate with each other in a timely manner.

The architectures of the MACs can differ vastly depending on
their access policies. For example, a MAC implementing CSMA
will look completely different from a MAC implementing time
division multiple access (TDMA). Airblue provides an 802.11-
compliant CSMA MAC, as shown in Figure 8, that is modular
enough to facilitate the implementation of derivative MAC proto-
cols.

5.4 Radio Device Interface
To send and receive on-air signals, the baseband must commu-

nicate with external devices like DACs, ADCs, gain circuits (see
Figure 8). A challenging implementation problem is that many of
these components are latency-sensitive. For example, if we change
the gain, it takes a certain number of cycles before the correct gain
is reflected in the incoming samples. To make matters worse, com-
ponents implementing the same functions from different vendors
have different timing characteristics. To keep the baseband flexible,
we abstract the physical platform as a pair of bidirectional FIFOs to
which the baseband can connect. From the baseband’s perspective,
the incoming FIFO provides radio samples from the physical radio
receiver and the outgoing FIFO sends samples to the physical radio
transmitter.

5.5 Development Environment



Radio
Control

Radio Dev Ifc

AGC

Radio

Speculative
Buffer

MAC

TX Retry

CRCRX/TX
Control

Baseband
Processor

A/D

Figure 8: AirBlue’s MAC and Radio Device Interface. Our MAC consists of (i) RX/TX Control, which handles the 802.11 transmission
control protocol, including packet acknowledgments and inter-frame timings; (ii) TX Retry, which buffers the transmitted packet
until it is acknowledged; (iii) CRC, which handles CRC checksums of outgoing and incoming packets; and (iv) Speculative Buffer,
which stores incoming packets until their CRC checks pass. Radio Device Interface consists of (i) Automatic Gain Control (AGC),
which ensures received signals cover the full dynamic range of the ADC; and (ii) Radio Control, which configures the DAC, ADC,
and RF circuits.

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 2 4 6 8 10 12 14 16 18 20
SNR (dB)

B
E

R

Theoretical Measured

Figure 9: BER vs. SINR for 12 Mbps.

Airblue has been developed using Intel’s architect’s workbench
(AWB), an open source design management tool [30]. AWB pro-
vides a plug-n-play environment with a graphical interface for
configuring, building, and running FPGA/software co-designs. It
allows users to pick the implementation of each module in the
pipeline from a list of valid implementations. AWB also facilitates
the debug process because any system-level testbench can be used
to test new modules by mixing-and-matching different implemen-
tations of other modules. This methodology has been shown to be
effective in producing new designs rapidly [31].

While on-air operation is the end goal of Airblue, simulation is
crucial to evaluate and debug the implementation. Airblue provides
a synthetic channel simulator for this purpose. Users can connect
multiple transceivers to the channel simulator and simulate AWGN
and fading environments. To accelerate long testbenches that in-
volve millions of packets, part of the design itself can be compiled
and run on FPGA, which effectively turns Airblue into a hardware/-
software co-emulation platform.

5.6 Baseline Performance
We have implemented an 802.11g transceiver capable of sending

data at the 6, 9, 12, 18, and 24 Mbps bit rates. We have also imple-
mented various cross-layer mechanisms on Airblue, as described in
§6.

0

5

10

15

20

25

128 256 512 1024 2048
Packet Size (Bytes)

Th
ro

ug
hp

ut
 (M

bp
s)

6 Mbps

9 Mbps

12 Mbps

18 Mbps

24 Mbps

Figure 10: Throughput with different packet sizes.

Airblue’s throughput and latency: To understand Airblue’s per-
formance better, we evaluated the baseline 802.11 implementation
using a pair of nodes, one configured as a transmitter and the other
as a receiver. We used two topologies. To assess the SINR vs.
BER (Bit-Error Rate) performance, we attached one node to a mo-
bile platform and wheeled it around to vary the SINR. For all other
throughput experiments, we fixed the nodes at a distance of 1 m.
All experiments were performed in an RF-noisy office environ-
ment.

Figure 9 shows the SINR vs. BER plot for the 12 Mbps data
rate. Each point in the graph represents the BER and the SINR
values of 1000 temporally contiguous packets. We also plot the
theoretical BER versus SINR values, which we computed using
MATLAB’s implementation of an optimum synchronizer, channel
estimator, PSK/QAM demodulator, and Viterbi decoder. As seen
from Figure 9, the SINR versus BER of the receiver follows the
general exponential trend predicted by the theoretical model. Our
measured performance is worse than the theoretical value by a few
dB. For example, at a BER of 10−4, the receiver’s performance is
worse by around 6 dB. Other data rates exhibited similar SINR vs.
BER behavior.

We also measured Airblue’s throughput at different packet sizes.
Figure 10 plots the receiver throughput as a function of packet size,
at bit-rates up to 24 Mbps. The measured SINR for the environment



Module LoC Logic Regs RAM DSP
Elms

FFT 1051 5577 8530 32 32
Receiver 4833 29622 22921 99 89
Synchronizer 1561 8958 7442 72 66
Channel Est. 762 4926 4709 25 23
Viterbi 1070 3361 2756 0 0
Demapper 276 9527 1646 0 0
Deinterleaver 97 2358 2071 0 0
Transmitter 1167 9348 7487 0 0
Cyclic Prefix 165 1064 2756 0 0
Pilot 95 2864 2805 0 0
Mapper 159 2201 1401 0 0
Interleaver 176 863 681 0 0
MAC 2022 2139 1693 0 0
Device I/F. 1761 3321 2756 0 0
System Total 17250 54320 43776 142 123

Figure 11: Lines of code (LoC) and synthesis results of our
802.11a/g transceiver: the physical implementation used on the
FPGA was obtained using Synplicity Synplify Pro 9.4 for syn-
thesis and Altera Quartus Fitter 8.0 for place and route. These
results exclude support circuitry like the soft processor.

in which this experiment was run was 16 dB. So, the BER at all bit-
rates was less than 10−6 (Figure 9). For all bit-rates, we achieve
the maximum throughput when transmitting large packets, as ex-
pected. The throughput decreases gradually for smaller packets,
as the preamble and packet header overheads increase. Our proto-
type is able to meet various 802.11g timing specifications like turn-
ing around from receiving a packet to transmitting an ACK within
25 µs2. On average, the power consumption of the whole platform
is 5 Watts throughout the experiment.
Program size: The total number of lines of Bluespec source code
in our implementation is 17,250. Of this, 19.1% (3,288 lines) pro-
vides the arithmetic library used across the design, 40.9% (7,051
lines) implements various parameterized modules in the baseband
PHY, 10.2% (1,761 lines) implements the device interface that con-
trols the RF front-end, and 11.7% (2,022 lines) implements the
MAC. The remaining 18.1% (3,128 lines) describes the top-level
of our 802.11 design by instantiating the modules with the right
parameters and connecting them together. Compiling our code
with the Bluespec compiler results in 202,672 lines of RTL Ver-
ilog, which is more than 10 times the size of our source code.
Synthesis results: Synthesis results for our transceiver are pre-
sented in Figure 11. The transmitter is smaller than the receiver,
because more complex algorithms are employed by the receiver to
combat channel distortions. The synchronizer and the channel es-
timator are two of the most complex blocks in the receiver (loosely
reflected by the lines of code), although neither is the largest block
in terms of logic elements. These blocks would have used a lot
more resources if there were no built-in multiplier units in the
FPGA.
Overhead of latency-insensitive designs: We quantified the over-
head of latency-insensitive (LI) designs due to extra buffering and
control logic. For this purpose, we rewrote the Channel Estimator
module in the baseband PHY in a latency-sensitive (LS) manner
using registers only. The LS design operates iteratively over its in-

2802.11g requires that the ACK is transmitted within a slot time
(9 µs) after the SIFS duration (16 µs).

Hardware Resource Latency- Latency-
sensitive insensitive

Logic Elements 5137 5438 (5.9%)
Storage Elements 2356 2429 (3.1%)

Figure 12: Comparing the cost of latency-sensitive vs. latency-
insensitive implementations of the Channel Estimator. The
numbers in parentheses show the overhead percentage in-
curred by the latency-insensitive design.

Baseband
Processor

Interceptor Device
Interface

A/D

Radio

MAC

Figure 13: An interceptor module in the MAC to enable easy
modifications to the standard CSMA MAC.

put and output buffers, and assumes that adjacent modules sample
those registers at the appropriate clock cycles. We picked this block
for evaluation because its ratio of computation elements to storage
elements is representative of other blocks in our design. Figure 12
shows that the LI design requires 5.9% more logic elements for
the control logic of the FIFOs and 3.1% more storage elements to
keep track of the occupancy of the FIFOs than the LS design. We
consider this overhead to be quite acceptable for the ease of adding
new functionality.

6. EXPERIMENTS WITH AIRBLUE
In this section, we show how one can modify the MAC and PHY

in Airblue to implement mechanisms that are useful for cross-layer
protocols. The experiments below will demonstrate that Airblue
provides both flexibility (comparable to a full software radio) and
high performance (comparable to a hardware implementation). We
target two relatively new, promising protocols proposed in the wire-
less community: CMAP [3] and SoftRate [6]. We chose these pro-
tocols because they have not been demonstrated in a high perfor-
mance implementation, and because they cover a broad range of
modifications required by cross-layer protocols. The main results
in this section are summarized in Figure 14.

6.1 Sending Per-packet Feedback
We modify Airblue to send per-packet feedback from the re-

ceiver PHY to the receiver MAC, and subsequently to the MAC
layer at another node via the link-layer ACK frame. This mech-
anism is useful for a variety of cross-layer MAC protocols, e.g.,
to send SNR or BER estimates for bit rate adaptation [24, 6]. We
consider the specific example of sending the sum of SoftPHY hints
(described in §6.2) as channel quality feedback, but the results de-
scribed here broadly apply to sending other types of feedback as
well.

The streaming interface between the PHY and the MAC deliv-
ers SoftPHY hints and data bits to the MAC as they are decoded at
the PHY. We add a new module to the MAC, called the intercep-
tor, which sits between the baseband PHY and the CSMA MAC, as



Section Experiment Results
§6.1 Sending per-packet feed-

back.
Modified to generate link-layer ACK with channel quality feedback in 22.12 µs, meeting
802.11a timing requirement, in 20 lines of code.

§6.2 Computing and exporting
SoftPHY hints.

Replaced the Viterbi decoder with the soft output BCJR decoder that computes SoftPHY
hints. This modification increases the receiver pipeline processing latency from 8.28 µs
to 16.36 µs, but does not affect throughput. The latency-insensitive nature of the design
ensures that the modifications are limited to the modules that compute and export SoftPHY
hints.

§6.3 Decoding MAC header
during reception.

MAC-layer information starts streaming up to the MAC in 16.36 µs after transmission.
Implemented in 43 lines of code.

§6.4 Runtime reconfigurations
through interrupts.

The MAC can interrupt and reconfigure the receiver pipeline in 11.12 µs. Implemented in
115 lines of code.

Figure 14: Experiments to implement cross-layer mechanisms with Airblue in §6. Most timing results presented are within the
typical ranges expected in wireless standards like 802.11, making Airblue suitable for running realistic experiments. Moreover, all
modifications except the implementation of SoftPHY hints are less than 1% of the project’s code base, signifying the flexibility of the
platform.

Scrble
FEC

Enc
Intr Map

Plt

Ins

FFT

IFFT

CP

Ins

Hdr

Dec

FEC

Dec

De-

Intr

De-

Map

Ch

Est
Sync

TX

Ctrl

De-

Scrble
RX 

Ctrl

Device

Ifc
MAC

Baseband Processor

A/D

Radio

Header
Decoder

FEC
Decoder

De-
Scrambler

BCJR instead of Viterbi

SoftPHY hints passing

Figure 15: Modifications to the baseband PHY pipeline to com-
pute and export SoftPHY hints.

shown in Figure 13. The interceptor provides a composable func-
tionality to the MAC, by augmenting its function without requir-
ing modification to the MAC itself. In this case, the interceptor
snoops the data exchanged between the PHY and the MAC, com-
puting the running sum of the per-bit SoftPHY hints exposed by the
PHY in the same clock cycle that they arrive at the MAC. The final
feedback is ready 16.32 µs after the packet transmission completes,
the receiver pipeline processing latency when computing SoftPHY
hints (see §6.2).

After the feedback is ready, it takes the MAC a further 3 µs to
check the CRC on the packet and decide whether to send the link-
layer ACK or not. If the MAC decides to send an ACK frame, the
interceptor modifies the initial ACK frame, embedding feedback in
the payload of the ACK as the ACK streams through the interceptor.
This operation has no impact on the ACK latency. Finally, it takes
the PHY transmitter another 2.8 µs to transmit the first OFDM sym-
bol over the air after it receives the transmit request, for a total of
22.12 µs (16.32 + 3 + 2.8) to send a link-layer ACK embedding
feedback. To put this delay in perspective, 802.11a stipulates that
the link-layer ACK must be transmitted within a slot time (9 µs) af-
ter the SIFS duration (16 µs), and our implementation comfortably
meets this requirement.

All of the changes described above to the interceptor were per-
formed in under 20 lines of code. The latency-insensitive nature of

Figure 16: SoftPHY hints of a 64-byte packet, and the positions
of bit errors.

Airblue allows protocol designers to easily implement extensions
to the 802.11 link layer using the interceptor module without delv-
ing into the details of the original MAC implementation. Note that
sending variable per-packet feedback in the link-layer ACK while
meeting microsecond timing constraints is practically impossible
to do in software-only network stacks such as SORA [15], which
require at least many tens of microseconds to pass information be-
tween the software MAC and the hardware radio front-end.

6.2 Computing SoftPHY Hints
We now describe how we modify the PHY in Airblue to compute

SoftPHY hints, a mechanism used by some cross-layer protocols
discussed in §3. This experiment illustrates the ease with which one
can modify the processing pipeline of a layer in Airblue to add new
functionality. We use a recently proposed technique [6] to compute
SoftPHY hints: the log likelihood ratio (LLR) of a decoded bit
being 1 or 0. This ratio increases with the probability that the bit
has been decoded correctly.

The implementation of Airblue described in §5 uses a hard out-
put Viterbi algorithm that only computes the output bits in a packet
and not the LLRs. We replaced this decoder with a modified imple-
mentation of the BCJR algorithm [32], capable of computing LLRs
for each output bit, as shown in Figure 15. Figure 16 shows the
SoftPHY hints computed from our decoder for a 64-byte packet at



the 6 Mbps rate, along with the positions of bit errors. One can see
from the figure that low SoftPHY hints are strongly correlated with
bit errors, demonstrating the correctness of our implementation.

We implemented the new decoder in 815 lines of new code,
reusing several components from our Viterbi implementation.
Because BCJR examines multiple backwards paths through the
packet, the BCJR decoder has a longer pipeline latency than the
Viterbi decoder, increasing our receiver pipeline processing latency
from 8.28 µs to 16.36 µs, equivalent to an addition of 202 cycles
at the 25 MHz baseband clock. However, this large change in la-
tency of decoder did not affect the correctness of any other module
in the pipeline, due to the latency-insensitive nature of our design.
Although the processing latency increases due to SoftPHY compu-
tation, the throughput of the PHY pipeline is unaffected because
both decoders are capable of decoding 1 bit per cycle.

To export SoftPHY hints from the PHY to the MAC, we pass the
hints along with the data by simply extending the data types of the
interfaces between the modules downstream to the decoder to hold
a 9-bit SoftPHY hint in addition to the data bit. This implementa-
tion required changing 132 lines of code in the Header Decoder and
Descrambler, as shown in Figure 15. Note that our implementation
requires the communication bandwidth between the PHY and the
MAC to be widened from 8 bits to 80 bits per cycle at 25 MHz. This
is both reasonable and easy to implement because both the PHY
and the MAC are implemented in hardware, which gives us flex-
ibility to adjust the communication width to meet the bandwidth
requirement. Had the MAC been implemented in software, this
modification may have been been impossible if there were insuffi-
cient communication bandwidth between the MAC and the PHY.

6.3 Decoding MAC Header During Packet
Reception

We saw in §3 that some cross-layer protocols like ZigZag and
CMAP depend on knowing the MAC-layer source and destination
addresses before the packet reception completes. We now illustrate
the usefulness of our streaming MAC-PHY interface in exchanging
such information quickly between the two layers.

802.11 packets typically consist of two headers, one for the MAC
and one for the PHY. While receiving samples, the PHY must first
decode its header to know which modulation and coding to use to
decode the MAC header, then reconfigure the pipeline accordingly
before the MAC header can be decoded. To avoid this additional
delay of reconfiguring the pipeline before MAC-layer information
can be passed up, we modify the packet format in our implemen-
tation to send the time-critical portions of the MAC header at the
lowest bit rate just after the PHY header,3 and the rest of the MAC
header at the higher payload rate. Note that sending the MAC-layer
information at the lowest rate has the beneficial effect of increasing
its reliability, thereby improving protocol performance. We imple-
mented this mechanism by modifying just 43 lines of code in the
TX Controller and Header Decoder modules in Figure 7 and the
Interceptor module in Figure 13. In the new implementation, the
streaming interface at the PHY now passes up this portion of the
MAC header in the same clock cycle that it is decoded. Therefore,
the MAC can have the information it needs in 16.36 µs after packet
reception starts — the receiver pipeline processing latency.

If one were to transmit the entire MAC header at the payload rate,
then the MAC header would incur an additional latency of 11.8 µs,
due to the additive latency of the PHY header decoder. Even this
larger delay is small compared to the typical packet duration and
3We transmit the 8 LSBs of the source and destination MAC ad-
dresses and some parity bits in 2 OFDM symbols at the 6 Mbps
base rate.

dwarfs the latency of passing information from hardware PHY to a
software MAC.

6.4 Runtime Reconfiguration through Inter-
rupts

In this experiment, we measure the latency of reconfiguring the
PHY to abort ongoing reception and switch to transmit mode. This
mechanism is useful in CMAP, where the MAC must first receive
the headers of the ongoing transmission, and then switch to transmit
mode if its pending transmission does not conflict with the ongoing
transmission. This experiment shows that Airblue allows higher
layers to interrupt and reconfigure lower layers at runtime with very
small delays.

We implemented the reconfiguration in this experiment using the
request-response mechanism for performing coordinated reconfig-
urations (§4.2). The Interceptor in the MAC first sends an abort
request to the head of the receiver pipeline (RX Controller in Fig-
ure 7). The controller then injects a special “abort token” into the
pipeline and discards the remaining received data. Every module
that receives the token flushes the state of the packet it was receiv-
ing before. When the abort token reaches the end of the pipeline,
the RX Controller sends a response to the Interceptor to indicate
the completion of the abort. By resetting the state of the receiver
pipeline, the correctness of future receptions is guaranteed. It is
then safe for the MAC to initiate a new transmission.

Implementing the abort mechanism described above required
changing 115 lines of code in the controller at the head of the
pipeline, and did not require modifications to any other modules in
the baseband PHY. The simplicity of this modification was the re-
sult of our stream control mechanism in the pipeline — the pipeline
modules expect a control token which demarcates the tail of the
packet. We inject an abort token by sending a tail of packet control
token.

The measured delay between the abort request and response at
the MAC is equal to the time it takes for the abort token to travel
along the pipeline from the RX Controller to the end, which is equal
to 3.04 µs when using the Viterbi decoder and 11.12 µs when using
the BCJR decoder. These latencies could be improved by reimple-
menting the decoder modules to support a faster flush. Once again,
we note that such quick reconfigurations of the PHY by the MAC
cannot be performed if either the MAC or the PHY is implemented
in software.

7. DISCUSSION
In the previous section, we showed that novel wireless protocols

can be implemented within the Airblue framework. However, Air-
blue is not amenable to implementing all wireless protocols. By
nature, FPGA implementations trade some performance for recon-
figurability. As a result, an FPGA implementation will not perform
as well as an ASIC implementation. Although we are confident that
Airblue can run recently deployed wireless protocols like 802.11n
with some augmentation, proposed protocols operating at above 10
Gbps will probably be out of reach of the FPGAs for the foresee-
able future.

Airblue is a predominately hardware system. Designing high-
performance hardware for a complicated function requires devel-
opers to manually extract the parallelism existing in the underlying
algorithm and then express it in a parallel hardware language. Air-
blue does not free developers from this effort. Therefore, designing
high-performance blocks in the PHY, like the BCJR decoder, is still
a challenge in Airblue. However, we believe that our architecture
is considerably easier to modify than other experimental wireless
systems. For less parallel blocks, like the MAC, modifications are



more straightforward because they approach sequential program-
ming.

8. CONCLUSION
Cross-layer protocols require new features and functions in var-

ious layers of the networking stack, a systematic way of passing
additional information from lower layers to higher layers, and a
fast way of controlling lower layers from higher layers. A develop-
ment platform is not suitable for cross-layer protocol experimenta-
tion unless changes to the base protocols to implement such mech-
anisms can be made easily. In this paper, we have discussed why
the base protocols must be implemented in a latency-insensitive
manner and must pass control in a data-driven manner to be modi-
fiable by others. We have built a wireless experimentation platform
called Airblue, which adheres to these design principles. In con-
trast, current platforms like SORA and WARP do not follow these
design principles, and hence, are difficult to use for cross-layer ex-
periments.

Through the implementation of a variety of relatively complex
protocol changes, we have demonstrated that Airblue is easy to
modify and that, when modified, it meets the performance require-
ments of current wireless protocols. In particular, we can easily
modify the platform to send per-packet feedback, implement new
decoding algorithms, and perform runtime reconfigurations of the
pipeline, all while meeting 802.11 timing requirements. We be-
lieve that such changes cannot be done as concisely on any existing
platform. We are currently developing the next generation Airblue
platform featuring a larger FPGA with MIMO support.

Acknowledgments
We thank John Ankcorn, Jamey Hicks, and Gopal Raghavan at the
Nokia Research Center for their guidance, Quentin Smith and Ra-
makrishna Gummadi at MIT for assistance in implementation, and
Nabeel Ahmed at MIT and Kirtika Ruchandani of IIT Madras for
their helpful comments. This project is funded by NSF under grants
CNS-0721702, CCF-0541164, and CCF-0811696, and was previ-
ously supported in part by Nokia.

9. REFERENCES
[1] D. Halperin, T. Anderson, and D. Wetherall, “Taking the Sting out of

Carrier Sense: Interference Cancellation for Wireless LANs,” in
MobiCom’08, (San Francisco, CA), 2008.

[2] S. Gollakota and D. Katabi, “ZigZag decoding: Combating hidden
terminals in wireless networks,” in SIGCOMM’08, (Seattle, WA),
2008.

[3] M. Vutukuru, K. Jamieson, and H. Balakrishnan, “Harnessing
Exposed Terminals in Wireless Networks,” in NSDI’08.

[4] K. Jamieson and H. Balakrishnan, “PPR: Partial Packet Recovery for
Wireless Networks,” in SIGCOMM’07.

[5] K. Jamieson, The SoftPHY Abstraction: from Packets to Symbols in
Wireless Network Design. PhD thesis, MIT, Cambridge, MA, 2008.

[6] M. Vutukuru, H. Balakrishnan, and K. Jamieson, “Cross-Layer
Wireless Bit Rate Adaptation,” in SIGCOMM’09.

[7] T. Moscibroda, R. Chandra, Y. Wu, S. Sengupta, and P. Bahl,
“Load-aware spectrum distribution in wireless LANs,” in IEEE
ICNP, 2008.

[8] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless
interference: analog network coding,” in SIGCOMM’07, (Kyoto,
Japan), 2007.

[9] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard, “Symbol-Level
Network Coding for Wireless Mesh Networks,” in SIGCOMM’08,
(Seattle, WA), 2008.

[10] R. Gummadi, R. Patra, H. Balakrishnan, and E. Brewer, “Interference
avoidance and control,” in Hotnets-VII, (Calgary, Canada), 2008.

[11] R. Gummadi and H. Balakrishnan, “Wireless Networks Should
Spread Spectrum Based On Demands,” in Hotnets-VII, (Calgary,
Canada), 2008.

[12] H. Rahul, N. Kushman, D. Katabi, C. Sodini, and F. Edalat,
“Learning to share: narrowband-friendly wideband networks,” in
SIGCOMM’08, (Seattle, WA, USA), 2008.

[13] “The GNURadio Software Radio.”
http://gnuradio.org/trac.

[14] “Rice university wireless open-access research platform (WARP).”
http://warp.rice.edu.

[15] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang, H. Wu,
W. Wang, and G. M. Voelker, “Sora: High Performance Software
Radio Using General Purpose Multi-core Processors,” in NSDI’09,
(Boston, MA), 2009.

[16] “Vanu software radio.” http://www.vanu.com.
[17] K. Tan, H. Liu, J. Fang, W. Wang, J. Zhang, M. Chen, and G. M.

Voelker, “SAM: Enabling Practical Spatial Multiple Access in
Wireless LAN,” in MOBICOM’09.

[18] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and P. Steenkiste,
“Enabling MAC Protocol Implementations on Software-defined
Radios,” in NSDI’09, (Boston, MA), 2009.

[19] Xilinx System Generator. http://www.xilinx.com/ise/
optionalprod/systemgenerator.htm.

[20] Altera DSP Builder.
http://www.altera.com/products/prd-index.html.

[21] Synplicity Synplify DSP. http:
//www.synplicity.com/products/synplifydsp/.

[22] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click Modular Router,” ACM TCS, vol. 18, no. 3, 2000.

[23] W. Ji, Y. Chen, M. Chen, and Y. Kang, “Unequal error protection
based on objective video evaluation model,” in MobiMedia’07,
(Nafpaktos, Greece), 2007.

[24] G. Holland, N. Vaidya, and P. Bahl, “A Rate-Adaptive MAC Protocol
for Multihop Wireless Networks,” in MOBICOM’01, (Rome, Italy),
2001.

[25] S. Sen, N. Santhapuri, R. R. Choudhury, and S. Nelakuditi, “CBAR:
Constellation Based Rate Adaptation in Wireless Networks,” in
NSDI’10, (San Jose, CA), 2010.

[26] H. Rahul, F. Edalat, D. Katabi, and C. Sodini, “Frequency-Aware
Rate Adaptation and MAC Protocols,” in MobiCom’09, (Beijing,
China), 2009.

[27] R. Chandra, R. Mahajan, T. Moscibroda, R. Raghavendra, and
P. Bahl, “A case for adapting channel width in wireless networks,” in
SIGCOMM’08, (Seattle, WA), 2008.

[28] M. C. Ng, M. Vijayaraghavan, G. Raghavan, N. Dave, J. Hicks, and
Arvind, “From WiFI to WiMAX: Techniques for IP Reuse Across
Different OFDM Protocols,” in MEMOCODE’07.

[29] Bluespec Inc. http://www.bluespec.com.
[30] “Architect’s Workbench.” http://asim.csail.mit.edu/

redmine/projects/show/awb.
[31] N. Dave, M. C. Ng, M. Pellauer, and Arvind, “Modular Refinement

and Unit Testing,” in MEMOCODE’10.
[32] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of

linear codes for minimizing symbol error rate,” IEEE TIT, vol. 20,
no. 2, 1974.


