
BlueSSD: An Open Platform for Cross-layer Experiments
for NAND Flash-based SSDs

Sungjin Lee1, Kermin Fleming2, Jihoon Park1, Keonsoo Ha1, Adrian Caulfield3

Steven Swanson3, Arvind2, and Jihong Kim1

School of CSE1 CSAIL2 Department of CSE3

Seoul National University Massachusetts Institute of Technology University of California, San Diego

{chamdoo,promar2,air21c,jihong}@davinci.snu.ac.kr {kfleming,arvind}@csail.mit.edu {acaulfie,swanson}@cs.ucsd.edu

Abstract: In this paper we describe BlueSSD, an
open platform for exploring hardware and software for
NAND flash-based SSD architectures. We introduce
the overall architecture of BlueSSD from a hardware
and software perspective and briefly explain our de-
sign methodology. Preliminary evaluation shows that
BlueSSD delivers performance comparable to commer-
cially available SSDs.

1. Introduction

With continuing improvements in both capacity
and price, NAND flash-based solid-state drives (SSDs)
are becoming increasingly popular in a variety of sys-
tems ranging from embedded devices to enterprise
servers. Over the past few years, a considerable num-
ber of studies have been conducted on designing stor-
age architectures and firmware techniques [1]. How-
ever, the evaluation and verification of such designs has
typically been performed in software simulation, rais-
ing the usual simulation issues of modelling speed and
fidelity.

The picture for SSD prototyping grows even more
cloudy in the future. Flash devices have already reached
20nm, and manufacturers have already begun to sug-
gest that, to meet disk-scaling estimates, multi-level
flash cells (MLC), which permit the encoding of sev-
eral bits per cell, will have to be exploited to provide
higher density. However, the performance degradation
encountered in using multi-level flash is well-known:
MLC flash is both slower and has a higher bit-error rate
than single level cell (SLC) flash. Thus, developers of
flash disks are faced with a somewhat difficult challenge
– how to improve performance and reliability of SSDs
while dealing with an increasingly unreliable substrate.

It is likely that the solutions to the density problems
will require some hardware acceleration. Compression
techniques reduce the raw data stored on the disks, im-
proving density. Error correction seeks to increase disk
reliability, at the cost of decreasing density. The inter-
play of these and other similar operations is not clear.
However, it is likely that hardware acceleration, by it-
self, will not provide a complete solution. The file sys-
tem layer may contain information which can improve
the performance of the hardware layer. For example,
the file system may flag files that it believes will com-
press well. Therefore, careful attention must be paid
to the co-design problem to enable the development of
cross-layer protocols.

In this paper, we present an open development plat-

form for flash-based SSDs, calledBlueSSD, which is
based on an FPGA prototyping system. Our primary
goal is to develop a generic infrastructure for design-
ing, implementing, and evaluating hardware/software
components efficiently. BlueSSD provides a software
framework for developing flash firmware on top of a
user-modifiable hardware platform. Hardware compo-
nents of BlueSSD are developed using Bluespec [2], a
high-level hardware description language that supports
fast prototyping, especially as compared to Verilog and
VHDL. BlueSSD provides the first open-source, flash-
enabled infrastructure to the community.

2. Solid State Drives

SSDs seek to emulate traditional hard disk drive
(HDD) technology while providing higher performance
at a lower operating power. Like its predecessor, the
solid state drive provides traditional read and write op-
erations on logical pages of data, typically a few kilo-
bytes in size. SSDs however, have a few key operational
differences which require the introduction of a sepa-
rate, specialized software, known as the flash translation
layer (FTL), to maintain the abstraction of the HDD.
This layer allows production file systems to seamlessly
interface with the underlying SSD substrate.

The major difference between flash and disk re-
sides in the write operation. Flash technology does
not support re-writes in-situ. Rather, due to the phys-
ical properties of flash cells, a block in flash must be
erased before it can be rewritten. Although the SSD
write operation is relatively fast, the erase operation
takes a long time and operates over a block comprised
of many pages, rather than on a single page. Thus, to
erase a block, all pages with live data within a block
must be copied somewhere else. These properties of the
SSD yield the two most important functions of the FTL.
First, because logical blocks in the SSD change physical
location frequently, a mapping problem exists, which
must be solved by the FTL. Second, due to the coarse
granularity of the erase operation, erasure-on-write is
impractical. Thus, the FTL must take care of producing
writable pages off-line, so that a pool of pages is always
available for writing. This process, which involves eras-
ing pages and copying their live content elsewhere, is
known as garbage collection, and exposes many inter-
esting architectural trade-offs, particularly since flash
chips have a finite number of erase-write cycles in their
useful lifetime.

Beneath the FTL lies the SSD controller. Imple-

in
ria

-0
04

94
14

3,
 v

er
si

on
 1

 - 
22

 J
un

 2
01

0
Author manuscript, published in "WARP - 5th Annual Workshop on Architectural Research Prototyping (2010)"

http://hal.inria.fr/inria-00494143/fr/
http://hal.archives-ouvertes.fr


���

�����	
��������

���

�
��
��

�
��
�
�

�
��
��

��
	���
����

��������

����	�����	�
����	� �	! 

��"	�����	�

� �	��
�	
 

�
��
�
�

#$�%&	��'�

����

��(����	�����

 �����

��������

Figure 1: The overall architecture of BlueSSD.

mented in hardware, this layer translates the commands
of the FTL into a series of operations, typically involv-
ing the transfer of data from memory to the flash, but
possibly also involving other compute-intensive data
transformations, like compression or error correction.
This layer may also introduce some fine-grained re-
ordering of operations according to their data depen-
dencies. For example, the controller may allow reads
to bypass outstanding erase and write operations, pro-
vided that no data dependencies are violated.

At the bottom of the SSD stack are the physical
devices, an amalgamation of flash chips wired together
on a set of shared buses. The buses are operated in-
dependently by separate, relatively simple finite state
machines.

3. BlueSSD

3.1. BlueSSD Hardware

Figure 1 shows the overall architecture of
BlueSSD. BlueSSD is based on the Zarkov system [3],
an SSD prototype developed by UCSD, and is extended
to provide more efficient and flexible hardware/software
design environment. BlueSSD is built on top of the Xil-
inx XUPV2P FPGA board [4] and the custom flash stor-
age daughter board shown in Figure 4 (see Appendix).
The flash daughter board holds up to 32 flash packages
and up to four identical buses. Each of the four buses on
the daughter board consists of up to 8 packages and up
to 16 chip-enables. The bus supports eight 1- or 2-chip
enable packages or four 4-chip enable packages. Cur-
rently, the board is populated with 32 1GB MLC flash
parts, each with a single chip enable.

The flash controller of BlueSSD is implemented
in the FPGA fabric using a combination of a Bluespec
wrapper and modified bus controllers from Zarkov. The
PowerPC 405 (PPC 405) on the XUP board runs the
Linux 2.6.25.3 kernel [5] that is used as a platform for
firmware such as a flash translation layer (FTL). The
DRAM memory is used to store data for both system

software and also the hardware system. The 100Mb
Ethernet controller allows us to transfer data from/to the
PC host system.

3.2. Hardware Design Methodology

The major issue in developing extensible hardware
is interface definition. This problem is particularly im-
portant in the context of BlueSSD because we expect
users to extend its hardware and software functionality
in parallel. In typical hardware designs, designers are
free to choose whatever wire semantics and timing they
like. For example, a wire involved in notifying a user of
some status could be pulsed once or held at a level until
the status changes. This diversity greatly increases the
burden of modification to the system, since each inter-
face must be understood in detail.

BlueSSD handles the problem of imprecise inter-
face definition by relying on the Bluespec program-
ming language. Bluespec automatically generates sig-
nals noting when interfaces may be activated. In
BlueSSD, all interfaces generating state updates are
request-response and rely on Bluespec to generate cor-
rect signalling. Thus, designers are freed from the task
of understanding sub-interfaces completely – the bur-
den of determining when an interface may be activated
is placed upon the designer of the interface, not the user
of the interface.

We further simplify the interfaces in BlueSSD by
adopting a latency insensitive design style, which has
been used to facilitate modular refinement in a several
large systems [6] [7]. Our modules are not permitted to
make timing assumptions about when their inputs will
be ready. For example, our memory controller does not
begin a write transaction until it has received the data for
the transaction, because it cannot assume that streaming
data will be provided at a sufficient rate. This enables
users to develop code in an incremental manner, since
any new module need only befunctionallycorrect. La-
tency insensitivity is also critical in evaluating different
SSDs architectures, since we may freely alter the per-
formance of system peripherals, like memory, without
affecting the functional correctness of BlueSSD.

Finally, we provide a set of abstractions for inter-
facing with system resources. For example, in our cur-
rent system, the controller hardware accesses system
memory via a multiplexed DMA engine. Components
of BlueSSD which utilize the memory are presented
with one of two abstractions, either a streaming burst
memory interface or a BRAM-like single word memory
interface; the plumbing for these interfaces is generated
automatically by the compiler. Users of the memory
abstractions are unaware of the underlying multiplex-
ing, beyond observing performance degradation in the
case of contention. We provide similar abstractions for
inter-hardware communication and for debugging.

3.3. Debugging

The full BlueSSD system makes use of a produc-
tion Linux file system and a full FTL. However, de-

in
ria

-0
04

94
14

3,
 v

er
si

on
 1

 - 
22

 J
un

 2
01

0



��������	
������

��������	���
��	������

�������������

���
��	
������

�	
�����
 �����	�

�������
��	���
��

��������
������
��

��������	����

���������� ���

Figure 2: The overall structure of the flash firmware.

bugging a hardware system in the context of complex
software system is difficult. To ease the task of hard-
ware designer, we provide multiple debugging systems
of varying functionality and complexity. For general de-
bugging, we provide a direct, independent, and extensi-
ble interface to the hardware controller from a host PC.
To facilitate this interface, we have ported the AWB [8]
hardware development system to the XUPV2. We make
use of the debugging facilities offered in that tool, such
as soft connections, to add debug logic at various points
in the controller, without modifying the external inter-
face of the controller. We have found this particularly
useful in collecting run-time statistics and in debugging
deadlocks.

Although the host debugging interface is general,
it is impossible to achieve 100MB/s bandwidth over
a serial link. For high-speed testing, we provide a
processor-based driver with a light-weight library for
exercising the SSD. Since this configuration lacks an
OS interface, it cannot be used to evaluate real work-
loads, but it can be used to collect performance statis-
tics on a wide range of synthetic performance bench-
marks. We find that data on the raw performance of the
SSD hardware collected from this system is more accu-
rate, as interference from the software system is almost
completely eliminated.

3.4. SSD Software

In designing BlueSSD, one of our goals is to pro-
vide a flexible software infrastructure so that several
flash management schemes can be employed with min-
imal modifications to the existing software system. To
achieve this goal, the software of BlueSSD is con-
structed with a layered design emphasizing modularity
at each level.

Figure 2 shows the overall structure of the flash
firmware, which is composed of three layers: a de-
vice driver for the flash controller, a host interface, and
a flash translation layer (FTL). The device driver pro-
vides the interface for the FTL to access the flash con-
troller and provides the upper layer with several low-
level functions that perform page read, page write, and
block erase operations. The driver layer also notifies
the FTL of interrupts from the flash controller, signify-
ing the completion of operations. This interface permits
the implementation of a wide range of FTL schemes.

The host interface layer is responsible for the com-

munication between the host system (e.g., PC) and
BlueSSD. More specifically, it receives I/O commands
and data, and then transfers them to the FTL. After a
request has been processed, the interface layer sends a
response to the host system along with data read from
flash memory, if it is a read request. The host interface
layer is intended to abstract host communications, so
that we may migrate freely between host communica-
tion protocols without modifying other firmware.

The FTL plays a major role in determining the
overall performance of BlueSSD. The FTL has been
developed with three components: a flash manager, an
address translator, and a garbage collector. The flash
manager processes I/O requests passed from the host
interface layer, translating addresses and copying data
to and from the hardware controller. The flash man-
ager maintains semaphores for each flash chip, prevent-
ing concurrent requests to the same flash chip. These
semaphores are updated by the device driver upon in-
terrupts, thereby avoiding the overhead of polling.

The address translator is responsible for translat-
ing logical addresses from the host system to the phys-
ical address space of the flash controller. Currently, the
translator uses a page-level mapping between logical
and physical memory. Although page-level mapping re-
quires a huge mapping table, it is highly flexible, mak-
ing it easy for us to evaluate the maximum performance
BlueSSD achieves under a variety of hardware configu-
rations. To maximize the parallelism of multiple buses
and chips, the address translator assigns a physical page
address in zigzag order. For instance, if there existn
buses andk chips per bus, the address translator allo-
cates physical pages to incoming logical pages from 0th
chip of 0th bus to (k-1)th chip of (n-1)th bus. This ap-
proach spreads requests evenly among buses and chips,
improving performance and assisting in wear-leveling.

Because flash pages are write-once, each time a
page of data is overwritten in the SSD, the old page
becomes invalid since it contains stale data. As in-
valid pages accumulate, they must be reclaimed by the
garbage collector to provide free space for writing new
data. In BlueSSD, the default garbage collector is in-
voked when a certain flash chip has no free space to
store incoming data. Upon invocation, the garbage col-
lector selects the block with the largest number of in-
valid pages in the target flash chip and copies any valid
pages in that block to a specially reserved free block in
the same chip. After copying these pages, the garbage
block is erased and replaces the reserved free block for
the next garbage collection iteration. The empty pages
of the former reserved free block are now available for
writing new data. Finally, the mapping table is updated
to reflect changes in flash memory.

4. Preliminary Results

We have measured the overall throughput of
BlueSSD while varying the number of buses and chips
under a simple synthetic benchmark, which sends se-

in
ria

-0
04

94
14

3,
 v

er
si

on
 1

 - 
22

 J
un

 2
01

0



� � � �

�

��

��

��

��

��

��

��

�	
�� �	
��� �	
��� �	
���

������	��	�����

�
�
��
�
�
�

�
�	
��
�
��
�

���	������	��	
���	��	���

(a) Write throughput (MB/s)

� � � �

�

��

��

��

��

���

���

���

��	
�� ��	
�� ��	
�� ��	
��

�������������

�


��
�
�


�
�
��
��
�
�
�

�
������������	
���������

(b) Read throughput (MB/s)

����

�����

����

	��


� ��� �� ��� ��� ��� ��� ���

���������� �������� �����

	���� ��������!���"#

(c) Breakdown of response time (usec)

Figure 3: I/O performance of BlueSSD.

quential read and write requests to the flash daughter
board. The current version of BlueSSD interacts with
the host system (e.g., PC) through an Ethernet-based
interface. Due to the narrow bandwidth of this con-
nection, it is difficult to measure the maximum perfor-
mance that BlueSSD accomplishes. To solve this prob-
lem, our evaluations have been performed using modi-
fied flash firmware, which generates FTL I/O requests
directly. Finally, a special programming method [9] was
used for writing data to the MLC chips to achieve SLC-
like performance.

Figure 3 shows the throughput of BlueSSD using
various combinations of buses and chips, ranging from
1 to 4 buses and 1 to 4 chips. The performance of
BlueSSD increased in proportion to the number of buses
and chips, allowing BlueSSD to handle more I/O re-
quests in parallel. When four buses and four flash chips
per bus were used, BlueSSD achieved throughput close
to 60MB/s write bandwidth and 110MB/s read band-
width. This performance is comparable to that of Sam-
sung’s 1.8-inch SLC SSD (MCCOE64G8MPP-0VA),
which exhibits 80MB/s for a write and 100MB/s for a
read.

To analyze the performance in detail, we also ex-
amined the breakdown of the response time taken for
reading or writing a single page from or to the flash
daughter board when four buses and four chips are used.
In Figure 3(c), the system bus is the time consumed by
transferring data through PLB and the firmware repre-
sents the time taken to execute the firmware. The flash
is the time for data to be read from or written to the flash
board by the flash controller. The firmware and the sys-
tem bus, which cannot process more than one I/O re-
quest simultaneously, accounted for a small portion of
the total elapsed time. The flash controller consumes
the majority of time, but this overhead can be mitigated
by executing multiple requests in parallel.

5. Conclusion

This work presents BlueSSD, an open platform
for NAND flash-based SSDs, which provides a com-
plete hardware/software environment for flash research.
Preliminary results show that BlueSSD delivers suffi-
cient performance for academic research. We are cur-
rently researching dynamic, hardware-accelerated com-

pression schemes and conducting a comparative study
of FTL algorithms.

We also plan to improve the BlueSSD hardware.
To obtain a larger FPGA and higher host bandwidth, we
plan to migrate the current BlueSSD to a newer board
based on the Xilinx Virtex 5 LX110T [10], which sup-
ports the PCI-E interface.

Acknowledgments: This work was supported by the
National Research Foundation of Korea (NRF) funded
by the Ministry of Education, Science and Technol-
ogy (No. R0A-2007-000-20116-0 and R33-2009-000-
10095-0). The ICT at Seoul National University and
IDEC provided research facilities for this study. This
work was also supported in part by the Brain Korea
21 Project in 2010. The MIT portion of this work
was funded by the National Science Foundation (Grant
#CCF-0541164). Research at USCD was funded by the
National Science Foundation (Grants NSF0811794 and
NSF0643880).

References

[1] N. Agrawal et al., “Design Tradeoffs for SSD Performance,” In
Proceedings of the USENIX Annual Technical Conference, pp.
57-70, 2008.

[2] Bluespec Inc., http://www.bluespec.com.
[3] A. M. Caulfield et al., “Gordon: Using Flash Memory to Build

Fast, Power-Efficient Clusters for Data-Intensive Applications,”
In Proceedings of the International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems, pp. 217-228, 2009.

[4] Xilinx Inc., “Virtex-II Pro Development System,”
http://www.xilinx.com/products/devkits/XUPV2P.htm.

[5] Linux From Scratch, http://www.linuxfromscratch.org/lfs/.
[6] M. C. Ng et al., “From WiFi to WiMAX: Techniques for High-

Level IP Reuse across Different OFDM Protocols,” InProceed-
ings of the International Conference on Formal Methods and
Models for Codesign, pp. 71-80, 2007.

[7] K. Fleming et al., “H.264 Decoder: A Case Study in Multiple
Design Points,” InProceedings of the International Conference
on Formal Methods and Models for Codesign, pp. 165-174,
2008.

[8] J. S. Emer et al., “Asim: A Performance Model Framework,”
IEEE Computer, Vol. 35, No. 2, 2002.

[9] S. Lee et al., “FlexFS: A Flexible Flash File System for MLC
NAND Flash Memory,” InProceedings of the USENIX Annual
Technical Conference, pp. 115-128, 2009.

[10] Xilinx Inc., “XUPV5-LX110T Development System,”
http://www.xilinx.com/univ/xupv5-lx110t.htm.

in
ria

-0
04

94
14

3,
 v

er
si

on
 1

 - 
22

 J
un

 2
01

0



APPENDIX

Figure 4: The Zarkov hardware platform. The flash daughter board is on the left with the XUP on the right.

in
ria

-0
04

94
14

3,
 v

er
si

on
 1

 - 
22

 J
un

 2
01

0


