
H.264 Decoder: A Case Study in Multiple Design Points

Kermin Fleming, Chun-Chieh Lin,
Nirav Dave, Arvind

MIT - CSAIL
Cambridge, MA

{kfleming,ragnarok,ndave,arvind}@csail.mit.edu

Gopal Raghavan,
Jamey Hicks

Nokia Research Center - Cambridge
Cambridge, MA

{gopal.raghavan,jamey.hicks}@nokia.com

Abstract:
H.264, a state-of-the-art video compression standard, is

used across a range of products from cell phones to HDTV.
These products have vastly different performance, power
and cost requirements, necessitating different hardware-
software solutions for H.264 decoding. We show that a de-
sign methodology and associated tools which support syn-
thesis from high-level descriptions and which allow mod-
ular refinement throughout the design cycle, can share the
majority of design effort across multiple design points. Us-
ing Bluespec SystemVerilog, we have created a variety of
designs for the H.264 decoder tuned to support decod-
ing at resolutions ranging from QCIF video (176 × 144
@15 frames/second) to 1080p video (1280 × 1080)p @60
frames/second) in a 180nm process. Some of these design
points require major transformations of pipelining to in-
crease performance or to reduce area. We also explore sev-
eral common design issues surrounding memory structures,
such as caches and on-chip vs. off-chip memories.

We believe the design methodology used in this paper
is directly applicable to many IP blocks involving algorith-
mic specifications. The same design capabilities also per-
mit rapid microarchitecture exploration and changes in RTL
late in the design process even in non-algorithmic IP blocks.

1 Introduction
The explosion of mobile device market has caused an in-

crease in the need for fast and low-power applications like
video encoding, decoding, and image manipulation. The
high demand for complex mobile applications offers a num-
ber of new opportunities for ASIC development, since hard-
ware solutions may consume one hundredth to one thou-
sandth of the power consumed by a software solution.

These new application areas require detailed domain
specific knowledge, making it difficult for hardware design-
ers, who often lack the requisite expertise, to estimate the
effect a microarchitectural modification will have on the
price, power, or performance of a total design until large
portions of the design have been completed. This behav-
ioral uncertainty also applies to the performance require-
ments of individual blocks – implementation of other com-
ponents can change the available design budgets in unex-
pected ways. A given feature, such as video decoding,

needs to be implemented for a wide variety of products at
different price, performance, and power design points, de-
pending on the target application and market. The question
is how best to produce these different designs.

One way to create hardware designs at multiple points
on the power-performance scale is to build a very-parallel
high-performance design and then apply frequency-voltage
scaling to tune the design to the desired behavior. While this
strategy undoubtedly produces very low power designs in
current technologies, it ignores economic reality: reducing
the silicon area of a chip directly impacts the cost of the
chip. For parts shipping in very high volumes, cost per unit
is a major engineering factor. Since reducing area involves
reusing circuits and exploiting less parallelism, exploring
the area-power trade-off is of great commercial importance.

It is desirable to adopt a methodology which allows the
designer to modify designs late in the design cycle and
which facilitates creating derivative designs from common
pool of source code. The key capability to support such
a methodology is a set of tools that automatically generate
high-quality circuits from high-level descriptions and a set
of design principles conducive to rapid design refinement.

To our knowledge no current industrial methodology is
able to offer sufficient flexibility late in the design process.
In Verilog and other RTL based development processes,
designers are forced to commit to a number of decisions
early in the design process, particularly in relation to inter-
module communication and coordination. Any change to
the datapath that affects control logic requires a significant
effort and exacerbates the already onerous verification pro-
cess. In most companies RTL changes late in the design
cycle are prohibited by the management unless no other
workaround is possible.

SystemC and other C-based languages offer flexibility in
writing design descriptions, which designers exploit exten-
sively to develop early hardware models upon which soft-
ware can be developed. However, designers sometimes ex-
perience difficulty in getting SystemC or its variants to rep-
resent/generate the hardware they desire. Either the final
hardware designs cannot be expressed at all or unnatural
phrasings are required to express the design in manner that
enables the tool chain to infer appropriate hardware. In our
experience, the tools for hardware synthesis from SystemC

and other C-based languages are not competitive with tradi-
tional synthesis tools for Verilog.

Bluespec, a relatively new language for hardware design,
has the properties necessary to support late design changes.
Its type system supports polymorphism and higher order
functions, both of which are needed for naturally express-
ing parameterized designs. It offers a model of concurrency
based on guarded atomic actions, which ensures that all de-
sign behaviors can be understood in terms of a sequence
of atomic actions on the state. Thus, if an atomic action
takes longer as a consequence of the refinement, the re-
sulting design is still guaranteed to be correct. Bluespec
supports modules with guarded interfaces which provide a
sound way of connecting modules without having to expose
internal properties of the modules. Most importantly, Blue-
spec compiler offers the ability to synthesize high-quality
circuits in a “push-button” manner. Several studies have
shown that it is possible to create designs in Bluespec very
quickly and once a design is working, to modify its parts to
gain much deeper insights into the cost and effectiveness of
sub-blocks [2, 4, 14].

In this paper we will explore the effectiveness of our
design methodology in the development of an H.264 de-
coder, a modern video CODEC. We strictly enforce latency-
insensitive design principles to give both the compiler and
the user more leeway in implementation decisions regarding
each module. In some cases, latency insensitive design may
introduce area and throughput overhead above a function-
ally equivalent latency sensitive design. If necessary, once
a good architecture is found timing-sensitive optimizations
can be applied as a further refinement. In our design, we
have found no need for such low-level optimizations. We
discuss the initial implementation of H.264 which took less
than a man-year to develop and which showed relatively
good performance (25 frames per second for 720p). We will
show how modular refinement permitted us to make archi-
tectural changes to our initial design allowing us to decode
1080p resolution video streams at greater than 60 fps. We
discuss the insights provided by these architectural trans-
formations.

Organization: We begin with an overview of H.264 de-
coder in Section 2 and discuss its important blocks. We
then describe our initial implementation in Bluespec and
show the synthesis results in Section 3. In Section 4, we
discuss three significant modifications of our initial design.
A new pipeline structure for the deblocking filter is de-
scribed in Subsection 4.1; the effect of separating chroma
and luma calculations on the pipelines is discussed in Sub-
section 4.2; the effect of introducing caches is discussed in
Subsection 4.3; and finally our development of a low area
decoder is discussed in Subsection 4.4. For each change we
show the synthesis results. In Section 5 we discuss some
of the implementations of H.264 that have been reported in
literature. Finally, we present our conclusions in Section 6.

NAL
Unwrap

Entropy
Decoder

Inv. Quant.
Transformation

Intra-Prediction

Inter-Prediction
X Deblock

Filter

Buffer
Control

Ref.
Frames

Scale/YUV2RGB

Figure 1. H.264 Decoder Block Diagram

2 The H.264 CODEC
The H.264 Advanced Video CODEC is an ITU standard

for encoding and decoding video with a target coding effi-
ciency twice that of H.263 and with comparable quality to
H.262 (MPEG2) [6, 15]. H.264 enables PAL (720 × 576)
resolution video to be transmitted at 1Mbit/sec. Like other
video coding standards, H.264 specifies how to reconstruct
video from a bit stream but does not specify how to encode
video. H.264 shares many of the techniques used in other
video CODECs and adds new variations of these techniques
to improve coding efficiency.

The computational requirements of decoding H.264
video vary depending on video resolution, frame rate, and
level of compression used. At the low end, mobile phone
applications favor videos encoded in the QCIF format
(176 × 144) at 15 frames per second. At the high end
of the spectrum, HD-DVD videos are encoded at 1080p
(1920× 1080) at 60 frames per second.

H.264 reconstructs video at the granularity of 16 × 16
pixel macroblocks, which may be further subdivided in
some decoding steps. H.264 uses two main techniques to
reduce the number of bits necessary to encode video. In-
traprediction predicts macroblocks in a frame from other
previously-decoded spatially-local macroblocks in the same
frame. Interprediction predicts macroblocks from indexed
macroblocks in previously decoded frames. Within a coded
frame, slices, or groups of macroblocks, may be intrapre-
dicted, interpredicted from the previous frame, or interpre-
dicted from multiple reference frames. Figure 1 shows a
block diagram of our H.264 decoder.

The H.264 standard defines several profiles, which use
different combinations of compression features. Our design
is targeted for the simplest H.264 profile, the baseline pro-
file. We implement all features of the baseline profile, with
the exception of flexible macroblock ordering and arbitrary
slice ordering, two seldom used data-resilience features.
NAL Unwrap: The Network Adaptation Layer (NAL) in-
terprets sequences of bits and finds and marks the stream

with the coarse grain packeting information. The NAL also
extracts high-level control information and passes it down-
stream to subsequent blocks.
Entropy Decoder: The H.264 CODEC uses variable-
length entropy coding to encode integers. H.264 uses
two techniques for this: CAVLC(Context Adaptive Vari-
able Length Coding) and CABAC(Context Adaptive Binary
Arithmetic Coding). Both techniques feature context-aware
bit-mappings that vary during decoding. CABAC produces
better compression but its complicated probability models
makes it more computationally intensive.
Inverse Transformation and Quantization: H.264, like
many video CODECs, represents data via a fixed predic-
tion, based on previously decoded image data, coupled with
a residual error value representing the difference between
the fixed prediction and the original image. This greatly
enhances compression, since the prediction modes can be
concisely expressed. In H.264 error-correction residual can
be either 4 × 4 or 8 × 8 pixels (previous standards used
only 8× 8 blocks). Since residual data exhibits high spatial
entropy, H.264 employs a lossy, low-pass discrete cosine
transform to develop a compact representation of the resid-
ual values. H.264 also allows variable quantization of DCT
coefficients to enhance coding density.
Intraprediction: Video frames have a high amount of
spatial similarity. Intraprediction use previously decoded,
spatially-local macroblocks to predict the next macroblock.
Intraprediction works well for low-detail images.
Interprediction: In video, frames nearby in time have only
small differences. Interprediction attempts to capitalize
on this similarity by encoding macroblocks in the current
frame using a reference to a macroblock in a previous frame
and a vector representing the movement that macroblock
took to a 1

4 pixel granularity. The decode uses an interpola-
tion process known as motion compensation to generate the
prediction value. Fractional motion vectors are interpolated
from multiple previous macroblocks.
Deblocking Filter: Since lossy compression used to en-
code pixel blocks in H.264, decoding errors appear most
visibly at the block boundaries. To remove these visual ar-
tifacts, the H.264 CODEC incorporates a smoothing filter
into its encoding loop. However, not all inter-block discon-
tinuities are undesirable; edges in the original image may
naturally occur on block boundaries. H.264 incorporates
fine-grained filter control to preserve these edges.
Buffer Control: H.264 does not require interpredicted im-
ages to depend on temporally-local, temporally-ordered im-
ages. Rather, frames can be predicted from previously de-
coded frames corresponding to frames far in the past or fu-
ture of the video. Buffer control maintains a set of previ-
ously decoded frames and is responsible for handling the in-
stream requests to access (e.g.,delete, prediction logic reads,
writes from deblocking) these frames in its store.

We note in passing that H.264 decoding entails a large
amount of computation (as many as 30 8-bit or 16-bit fixed-

module mkH264(IH264);
// Instantiate the modules
NalUnwrap nalunwrap <- mkNalUnwrap();
EntropyDec entropydec <- mkEntropyDec();
InverseTrans invtrans <- mkInverseTrans();
Prediction pred <- mkPrediction();
DeblockFilter deblock <- mkDeblockFilter();
BufferControl bufctrl <- mkBufferControl();
// Internal connections
mkConnection(nalunwrap.ioout, entropydec.ioin);
mkConnection(entropydec.ioout_InvTrans,

invtrans.ioin);
mkConnection(entropydec.ioout, pred.ioin);
mkConnection(invtrans.ioout,pred.ioin_InvTrans);
mkConnection(pred.ioout, deblock.ioin);
mkConnection(pred.mem_client_buffer,

bufctrl.inter_server);
mkConnection(deblock.ioout, bufctrl.ioin);
// Interface to input generator
interface ioin = nalunwrap.ioin;
// Interface for output
interface ioout = buffercontrol.ioout;

endmodule

Figure 2. H.264 Top Level in Bluespec
point multiplies per pixel). Most of these computations take
place in four blocks – Inverse Quantization, Inter- and Intra-
prediction and the Deblocking filter.

3 Initial Design
References for advanced video CODECs, such as H.264,

are available in two forms: a textual standard definition doc-
ument that spells out basic algorithms, data formats, rate re-
quirements, etc. and a software reference implementation
that captures the functionality of the CODEC [6, 7]. Ref-
erence implementations rarely meet performance require-
ments and tend to be poorly organized due to the large num-
ber of contributing developers. In the case of H.264, the ref-
erence implementation is an enormous eighty-thousand line
C code[7]. Worse than this verbosity, reference codes typi-
cally do a poor job of elucidating the dataflow relationships
between the various components of the algorithm. Never-
theless, reference implementations and other high-level im-
plementations (such as ffmpeg [5]) play an important role
both in the verification of other implementations and in de-
bugging of the specs themselves.

The initial design of H.264 in Bluespec SystemVer-
ilog (BSV) was done by Chun-Chieh Lin [9] in approxi-
mately one man-year. This was a remarkable achievement
given that Lin started with an English description of the
CODEC [6] and 20k lines of C code extracted from FFM-
PEG [5]. This C code proved to be worthless for hardware
development but with some modifications it played a crucial
role in verification.

3.1 Coding in Bluespec SystemVerilog
Lin’s implementation closely models the block diagram

for the CODEC shown in Figure 1. To keep the design
as flexible as possible each block was organized to sup-
port latency-insensitive communications. Figure 2 shows
the Bluespec implementation of the top-level module of the

Frontend Version Speedup Area Post-route
(mm2) Clock Period

Original Frontend 1.00 0.34 6.47 ns
Zero Encoding 2.63 0.33 6.40 ns

2-Stage Exp-Golomb 2.82 0.28 5.96 ns
(a) Frontend Refinement Results (NAL and Entropy decoder)

Version Speedup Area Post-route
(mm2) Clock Period

Original Full 1.00 5.44 11.82 ns
Wider FIFOs 1.69 5.32 12.31 ns
FIFO Sizing 1.88 5.45 11.86 ns

(b) Initial Full Design Refinement Results

Module Lines Gates PAR Area Normalized Critical
of Code (mm2) Area Path

mkBufferControl 970 36365 .34 0.05 N/A
mkDeblockFilter 786 291447 2.74 0.40 N/A
mkEntropyDec 1656 34323 .32 0.05 N/A
mkInverseTrans 702 41865 .39 0.06 N/A
mkPrediction 2189 316169 2.97 0.43 N/A
Total 9375 730822 6.88 1.00 13.41 ns

(c) Lin’s Final Design Code Size, Gate Count, and Post Place-and-Route Area

Figure 3. Lin’s Initial Design[9]

H.264 decoder. Each block corresponds directly to a single
Bluespec module. These modules have well-defined inter-
faces consisting of methods through which all inter-module
communication takes place. For each communication chan-
nel in the CODEC design two methods were written: one
in the sender which handles the work the sender needed to
do to send data, and one which did the corresponding work
for the receiver. By connecting these two together using
the mkConnection statement we can succinctly represent
these connections.

Memory Interfaces: Many of the blocks in the design need
some amount of local memory not shared by other blocks.
It is not clear a priori if these memories should be kept lo-
cal or combined into a single off-chip memory. To sup-
port both of these possible organizations, memories were
represented as out-of-block modules with delay-insensitive
request/response interface. This made it possible to later
merge some of the memories with the local module and re-
organize the rest as a shared memory whose arbitration was
outside of the main pipeline.

Verification Methodology: To verify the design, unit test-
ing of individual modules was performed using the modified
C reference codes. To facilitate unit testing, we made use of
the special connections (e.g.,mkSniffedConnection)
at different locations of the design which allow packet sniff-
ing. Data collected was compared against similarly instru-
mented versions of references codes.

Synthesis Methodology: Synthesis results were obtained
using Synopsys Design Compiler targeting the Tower
180nm ASIC library. Place-and-route was done using the
Cadence Encounter. Designs were verified using post-
synthesis simulation. The reported area does not include
on-chip or off-chip memory resources. We present post-
synthesis gate-level simulation power numbers collected
from Sequence PowerTheater.

3.2 Lin’s Optimizations:
Once the front end of the design, from NAL unwrap to

entropy decoder, was completed, Lin improved some as-
pects of the design. These results are shown in Figure 3(a)
and described in the following paragraphs. Speedup was
calculated by dividing the time needed to decode the test
videos in the improved design by the time needed for the
first working version of the design.
Performance Effects of Data Representation: Discrete
Cosine Transform tends to produce non-zero coefficients
for low frequency components only. As a result, CAVLC
decoding typically generates long sequences of consecu-
tive zero sample values when decoding DCT coefficients.
Initially each of these zeros was represented as a single
“element” in the output stream, meaning every zero had a
fixed cycle-cost to handle. By switching to a scheme with
simple run-length coding for consecutive zeros between the
CAVLC and the inverse transformation block, we were able
to dramatically improve the throughput of the earlier part
of the decoding pipeline. Not only does this improve the
speed, but simplifies the hardware needed to decode the in-
put stream as the stream naturally produces multiple zeros
concurrently. In our experiments, the frontend (the NAL
unwrapping unit and entropy decoder) showed more than
2.5 times speedup in video decoding times [9].
Exp-Golomb Decoding Refinement: Exp-Golomb Codes
are variable length integer codes used in entropy decoding.
In H.264, Exp-Golomb code words can range in size from
1 to 33 bits. To implement this, we initially constructed a
large single-cycle function which could handle up to 33 in-
put bits. This implementation had a high area cost. Most
Exp-Golomb codewords are much smaller than the worst
case size. To reduce the overall cost, we replaced the single-
cycle function with two parallel versions: a smaller single-
cycle block capable of only handling the smaller code words
(up to 16-bits), and a multi-cycle block which took two cy-
cles to find the larger code words. By using these blocks

in tandem, we were able to substantially reduce circuit area
and improve the critical path with almost no degradation in
cycle-level performance. This tranformation also allow us
to reduce the required buffing of the input bitstream from
65 bits down to 33 bits.

Once the full H.264 specification was implemented, Lin
explored a number of variants. These results are shown
in 3(b) and described in the following paragraphs.
Widening FIFOs: Originally only one pixel-wide sam-
ple element could be stored in the stream FIFOs between
blocks. However, many processes in H.264 operate on 4-
pixel wide elements at a time by definition or have no data
dependencies between consecutive pixels and so may op-
erate on larger data aggregations in parallel. Augmenting
the pipeline to handle four pixel wide data elements nearly
doubled the throughput of the entire system while adding
comparatively little area.
FIFO Buffer Sizing for Runtime Performance: Rate
matching the throughput of modules in H.264 is quite diffi-
cult a priori, since each module is doing completely differ-
ent work with it’s own unique input-output timings. Adding
more inter-module buffering helps alleviate the jitter across
modules by letting the producer build up “work credits”
with respect to the consuming module. In such latency in-
sensitive designs, one can increase the size of FIFO buffers
connecting successive modules without affecting the func-
tional correctness.

Except for the buffer feeding into the deblocking filter
increasing the sizes of buffers had negligible effects on the
performance. The initial deblocking filter design exhibited
bursty consumption of its input, meaning that for small sizes
the queue would possibly empty before new data could be
reentered. Increasing the size of the FIFO smoothed out
this burstiness. As we shall see later, after pipelining the
deblocking filter, this interaction stopped being a bottleneck
and a smaller FIFO size could be used.

4 Design Changes
In this section we review a few major architectural

changes made after the completion of Lin’s final design.
These changes were done in only a few man-months of ef-
fort by Fleming, with neither guidance from the original de-
signer nor any domain-specific knowledge.

4.1 Reorganizing the Deblocking Filter
As seen in Figure 3(c), the deblocking filter takes 40% of

the total area of the original design. Thus, it was the natural
starting place for Fleming’s refinements.

The H.264 standard is specified by a set of sequential
processing steps. While this sequential style makes the
specification easier to understand, following the specifica-
tion directly ignores many opportunities parallelism in a
hardware implementation. Some examples that we have al-
ready discussed, such as widening the pixel processing data
path to exploit data parallelism are well known in the H.264

Left Macroblock
(64x32)

Current Macroblock
(64x32)

Above Macroblock
(16x32)

Filter Filter

Filter Filter

Above Block
Data to
External
Storage

Above Block
Data from
External
Storage

Prediction
Input

Deblocked
Output

Figure 5. Original Deblocking Filter Design

literature [11]. We now discuss an example of extracting
non-trivial pipeline parallelism from the H.264 standard by
analyzing the data dependecies implied by the standard’s
sequential specification.

At a high-level, the deblocking filter applies an 8-pixel
filter across each row and column of each 16 × 16 pixel
macroblock, with a four-pixel shift between filter applica-
tions. Thus, each pixel is filtered four times, twice hori-
zontally and twice vertically. The H.264 standard specifies
the deblocking filter application ordering depicted in Fig-
ure 4(a). The original implementation of the deblocking
filter, depicted in Figure 5, followed this ordering exactly.

Even if a complete edge (four filtration applications) is
filtered every cycle, 32 cycles are required to process each
macro block. Worse, the filter application ordering exhibits
poor locality across the macroblock. The top left 4 × 4
pixel block is processed first, but 15 filtration steps are ap-
plied to other non-local blocks before the top left block is
vertically filtered. This poor temporal locality means that
an entire macroblock must be stored within the deblocking
filter, making macroblock streaming difficult. To improve
throughput, we inserted a macroblock pipeline stage in the
form of a deep FIFO buffer immediately before our original
deblocking filter. The storage requirements of this deblock-
ing filter implementation, which follows the H.264 specifi-
cation closely, were enormous, as shown in Figure 3(c).

To refine the deblocking filter, we examined the dataflow
graph implied by the specification of the deblocking filter,
shown in Figure 4(b), and then construct an implementa-

1

3

2

4

5

7

6

8

9 10

11 12

13 14

15 16

17 18 19 20

21 22 23 24

25 26 2827

29 30 3231

Above

L
ef

t

(a) H.264 Deblocking Filter Mac-
roblock Edge Filtration Ordering

1

1

2

2

3

3

4

4

1 2

1 2

3 4

3 4

3 4 5 5

4 5 6 6

5 6 77

6 7 88

Above

L
ef

t

(b) Filter Edge Dependencies

1

3

2

4

5

7

6

8

9 10

11 12

13 14

15 16

3 4 8 9

5 6 10 11

13 14 1918

15 16 2120

Above

L
ef

t

(c) Pipelined Deblocking Filter Pro-
cessing Order

Figure 4. Deblocking Edge Orderings

Le
ft

M
ac

ro
bl

oc
k

M
em

or
y

(1
6x

32
)

Current
Macroblock

Memory
(8x32)

Horizontal Filter

Rotation
(Row to Column

Major)

Vertical Filter

Inverse Rotation
(Column to Row

Major)

A
bo

ve
 M

ac
ro

bl
oc

k
M

em
or

y
(1

6x
32

)

Above Block
Data from
External
Storage

Above Block
Data to
External
Storage

Deblocked
Output

Prediction
Input

Figure 6. Optimized Deblocking Filter Design

tion that respected these data dependencies. This order also
shows that we can achieve high temporal locality if the hor-
izontal and the vertical filtrations of a 4× 4 block are done
in close succession. To this end, we constructed a streaming
pipelined implementation of the deblocking filter, sketched
in Figure 6. The new implementation processes horizon-
tal and vertical edges in parallel, using the filter ordering
shown in Figure 4(c). Thus the new design will complete

the horizontal filtration of 4×4 block, and then immediately
commence on the vertical filtration of the block in a stream-
ing fashion. Due to the streaming, the new design stores a
little more than half of a macroblock, inclusive of pipeline
registers. This design also completely overlaps horizontal
and vertical filtration, thereby improving throughput. As a
result of this microarchitectural change, the deblocking fil-
ter implementation area decreased dramatically from 2.74
mm2 to 0.69 mm2. Using the new deblocking filter, we get
a 12% increase in throughput of the entire design, while re-
ducing the design critical path by 35%. Full synthesis and
performance results can be seen in Figure 7.
Methodology Advantages: By treating the overall decoder
design as a latency insensitive pipeline, it is easy to com-
pletely overhaul the memory access patterns and computa-
tion order without affecting correctness. To our knowledge
our implementation is the only fully pipelined deblock-
ing filter done at the sub-macroblock granularity. Chen et
al., [3] state that the 4 × 4 block pipelining of the deblock-
ing filter is impractical due to data dependencies within the
pipeline and large control overhead. The choice of Blue-
spec as our language removed the tedium of manually mod-
ifying the complex module control logic, and allowed us to
focus solely on correcting structural hazards in the pipeline.
Because the Bluespec compiler detects and reports struc-
tural hazards, we were able to quickly spot and modify
problem areas of the pipeline, which greatly reduced debug-
ging time. Our latency-insensitive design meant that timing
changes within the deblocking filter did not impact the be-
havior of other modules in the design. While debugging the
new design, we found no integration bugs external to the
deblocking filter.

4.2 Separating Luma and Chroma
Pipelines

H.264 compresses video streams in the YUV color
space, as opposed to the RGB color space commonly used
in graphics processing. Three image planes are used to de-
scribe a YUV image; Y, the luminance (luma) component
represents light intensity, while U and V, the chrominance
(chroma) components, represent blue and red shades. Since

the human eye is less sensitive to variations in color than to
changes in light intensity, the chroma components may be
represented with less resolution without reducing perceived
image quality. The H.264 CODEC encodes chroma at one
quarter the resolution of luma. It also uses different, but
similar, prediction processes for luma and chroma.

In the video stream, luma and chroma data alternate. For
the most part, the processing dataflow used to decode the
two fields is similar. The original implementation exploited
this similarity by using the same pipeline for both luma and
chroma. The original implementation Each block switches
“modes” at appropriate times to deal with each kind of data.
Outside of a few high-level in-stream control values, there
are no dependencies between the processing of luma and
chroma. By separating the luma and chroma pipelines, we
allow the field computations to be overlapped.

In general, block duplication should increase implemen-
tation area. However, luma and chroma specific logics are
not duplicated and buffering in many modules is reduced
due to improved design parallelism. Due to the complexity
of these tradeoffs, the affect of duplicating the pipeline on
area is difficult to determine without synthesis.

One need not separate luma and chroma processing in
every module. For example, the unified inverse transform
module has sufficient bandwidth to satistify the require-
ments for downstream modules. Therefore, we only con-
sider duplicating the interprediction and the deblocking fil-
ter modules, since these modules are design bottlenecks.

Module specialization turned out to be quite straightfor-
ward. Since Bluespec represents behaviors permissively, by
removing all rules dealing with luma (or chroma) samples,
we immediately obtain the desired behavior. Unused state
and combinational logic associated with the excised rules is
removed automatically by backend tools.

To replace a module with a split version, we need to
split the input stream, pass these streams into the appro-
priate specialized module and then merge the output stream
together. In this form deblocking filter now looks like:
module mkDeblock_split(DeblockIFC);
split <- mkLumaChromaSplitter;
deb_luma <- mkDeblockLuma;
deb_chroma <- mkDeblockChroma;
merge <- mkLumaChromaMerger;
//Chroma Path
mkConnection(split.chromaout,deb_chroma.in);
mkConnection(deb_chroma.out, merge.chromain);
//Luma Path
mkConnection(split.lumaout, deb_luma.in);
mkConnection(deb_luma.out, merge.lumain);
//Interface
input = split.in;
output = merge.out;
endmodule

While this split-join utterance allows us to keep the mod-
ule interfaces the same, when splitting multiple consecutive
blocks it is inefficient. We merge and immediately split two
unrelated streams. To keep the streams separate we must
modify the module interfaces. This modification lead to

a few percent performance gain. In total, splitting luma
and chroma computations achieved a 20% performance im-
provement with only a 10% increase in area.

4.3 Shared Memory and Caching
Interprediction, intraprediction, and deblocking all ac-

cess previously decoded data. Since several previous frames
must be stored at the same time, the memory required
to store all of the necessary data can be quite large, par-
ticular in larger frame sizes (e.g.,1080p). A number of
cost/performance/power tradeoffs are possible in the mem-
ory subsystem. The highest level of performance can be
obtained by giving each module that requires memory its
own private, fast, pipelined SRAM. This configuration is
area-intensive due to the low bit-density of SRAMs. On the
other end of the cost/performance spectrum, a single, low-
bandwidth DRAM could be shared between all the mod-
ules which access memory. DRAM is unattractive for low-
power applications due to its high power consumption per
access. Regardless of the backing memory configuration, a
cache may improve several figures of merit. Small caches
consume far less power than either a large SRAM or a
DRAM, perhaps as much as two orders of magnitude less
energy per access. Additionally, a small cache close to the
block will have lower latency than a larger backing mem-
ory. Since our design is latency insensitive, it is particularly
suited for memory subsystem design explorations.

Intraprediction and Deblocking have well-defined,
highly sequential access patterns. In particular, both use
previously decoded pixels directly above and to the left of
the current block. Each of the previous pixel data is read
exactly once, used for computation, and then never used
again. Since the data to the left of the current macroblock
has high temporal locality and is relatively small, it can be
cached in registers in both deblocking and intraprediction.
The previously decoded data above the current macroblock,
on the other hand, has no temporal locality. To effectively
cache this data, the entire previously decoded row must be
stored in a fast memory. Depending on the image size that
the CODEC is expected to handle, the cache must be scaled
up or down accordingly. Since the access pattern to these
memories is predictable and sequential, prefetching tech-
niques could also be applied to improve memory through-
put. Along this line, our modules optimistically issue mem-
ory accesses early and buffer memory replies to help over-
lap the memory latency with useful computation.

In the interprediction module, pixels may be interpolated
by applying a filter to a set of previously decoded pixels
from an earlier frame. In this process a single pixel may
be reused several times to predict a macroblock in the case
of fractional motion vector compensation. Additionally, if
a pixel is used, there is high probability that nearby pixels
will also be used. The level of temporal These are exactly
the access patterns where caches are targeted.

Since luma and chroma interpolation have different
prediction computations and memory access patterns, the

Version Gates Area Clock Period Max. Power
Original 730822 6.88 mm2 13.41ns 338 mW
Pipelined Deblocking 417256 3.88 mm2 9.91ns 228 mW
Design targeting QCIF@15 fps 234530 2.22 mm2 31.22ns 148 mW
Design targeting 720p@30 fps 262169 2.44 mm2 20.00ns 180 mW
Split Luma/Chroma Deblocking 432971 4.07 mm2 10.31ns 226 mW
Split Luma/Chroma Interpolation 408865 3.85 mm2 10.34ns 279 mW
Full Luma/Chroma Split 447721 4.21 mm2 9.99ns 305 mW

(a) Results of Architectural Exploration

Module Lines Gates Area mm2 Area mm2 % of Critical
of Code Synth PAR Area Path

mkBufferControl 970 32313 .024 .30 0.08
mkDeblockFilter 1110 73725 .054 .69 0.18
mkEntropyDec 1657 27649 .019 .27 0.07
mkInverseTrans 702 34640 .024 .33 0.08
mkPrediction 2189 237901 .169 2.22 0.57
Total 8137 417256 .291 3.88 1.00 9.91 ns

(b) Final Design Code Size, Gate Count, and Post Place-and-Route Area

Clip Resolution Cycles/Frame
Original Pipelined Deblocking Low Area(720p) Full Luma/Chroma Split

1080p 1971000 1900000 N/A 1487000
720p 1070000 940000 1499000 833000
VGA 278000 250000 471000 240000
QCIF 23700 22000 40000 19000

(c) Simulation Throughput

Figure 7. Design Exploration Results

caches should be specialized separately. Figure 9 presents
the results of basic cache experimentation. A direct-
mapped, blocking cache was inserted between the frame
buffer controller and the frame buffer store. Luma and
chroma requests were handled by separate caches. The
memory access patterns tested were taken from a low-
bitrate QCIF video stream and a high-definition 720p clip.
It is evident from Figure 9 that even a small cache is highly
effective in capturing interprediction memory locality. With
a four-byte line size and two one-kilobyte cache, 46% of
luma memory and 30% of chroma memory requests hit in
the cache. Using larger cacheline sizes more than double
the hit rates. The largest gain in caching performance oc-
curs when making the cache large enough to contain the
image data of three adjacent macroblocks at the same time,
that is, large enough to capture the data of the macroblocks
to the immediate left and right of the current macroblock,
since these data values are likely to have been recently used
(left) or to be used again soon (right). Further hit-rate im-
provements require caching the rows of macroblocks above
and below the current macroblock; some of this benifit is
seen by the larger caches in the QCIF experiment.

4.4 Low Area Design
Up to this point, we have discussed design explorations

which focus on mainly improving throughput, typically by
expanding computational circuitry. These improvements

come at the cost of increasing the chip area. We now dis-
cuss the relative ease with which we were able to decrease
the implementation area of our decoder by nearly 50%.
The low area implementations specifically target two per-
formance points, QCIF at 15 fps and 720p at 30 fps. These
points were chosen because of their use in common price-
sensitive commercial applications (e.g.,cellular phones and
HD television sets).

The main area savings were obtained by folding compu-
tation logic. In the high-performance version, we improved
the throughput by applying several data-independent filters
in parallel. Each filter requires multiple additions and mul-
tiplications which require significant implementation area.
In the high-performance implementation, we allow the sys-
tem to instantiate as many filters as necessary to exploit the
parallelism in our design. To reduce area, we constrain the
compiler to implement exactly one filter of each kind. The
compiler automatically generates the necessary multiplex-
ing logic. Such a transformation in Bluespec requires only
a few lines of code; in lower level RTL such a change might
require significant rewriting and debugging.

In our original design exploration, many FIFO buffers
were sized above their minimum (i.e.,one element) to help
smooth dynamic rate mismatches between modules. We
can easily descrease the buffer sizes back to the minimum.
Since our design is latency insensitive, this alteration has

Cache Size Chroma Hit Rate Luma Hit Rate
(8-bit Pixels) Line Size (Pixels) Line Size (Pixels)

4 8 16 32 4 8 16 32
128 .177 .346 .431 .363 .032 .394 .511 .573
256 .336 .530 .636 .453 .033 .398 .516 .576
512 .369 .554 .657 .466 .242 .609 .640 .629
1024 .463 .729 .814 .823 .305 .650 .719 .720
2048 .464 .729 .862 .925 .306 .650 .720 .721
4196 .564 .780 .888 .944 .558 .778 .888 .944

Figure 8. H.264 Interprediction Cache Parameter Exploration (QCIF)
Cache Size Chroma Hit Rate Luma Hit Rate
(8-bit Pixels) Line Size (Pixels) Line Size (Pixels)

4 8 16 32 4 8 16 32
128 .082 .373 .509 .578 .013 .247 .330 .371
256 .138 .429 .565 .635 .067 .275 .348 .384
512 .376 .666 .810 .883 .217 .432 .510 .552
1024 .393 .684 .829 .903 .468 .719 .837 .898
2048 .428 .712 .854 .926 .516 .756 .876 .937
4196 .428 .712 .854 .926 .516 .756 .876 .937

Figure 9. H.264 Interprediction Cache Parameter Exploration (720p)

no impact on correctness of the decoder, though it markedly
decreases throughput.

In addition, some minor area savings were achieved in
the following ways. We reduced the state elements used for
frame related bookkeeping. The widths of these circuits are
directly related to the largest frame that can be processed
by the decoder. Since the decoder is parameterized by the
maximum global frame size, adjusting this variable reduces
all relevant circuits in the decoder. We also gained some
improvement by synthesizing our decoder with a less ag-
gressive clock frequency.

5 Related Work
The literature contains many examples of H.264 hard-

ware designs, most of which target low-power operation.
As such, many of them apply aggressive voltage scaling to
obtain extremely low-power consumption. We expect that if
we applied the power scaling techniques suggested in these
papers we would obtain power improvements.

While a software SystemC reference of H.264 has been
written [1], only small portions of the decoder have been
synthesized into hardware [17].

Chen et al., [3] conclude that only dedicated hardware
accelerators can provide the real-time H.264 decoding at 30
fps, which requires about 3600 GIPS computation and 5570
GBPS memory bandwidth. To meet these throughput re-
quirements, they propose a new hardware architecture with
four stage macro block pipelining, hybrid task pipelining
scheme and low bandwidth motion-compensation scheme.
They implement an H.264 baseline profile decoder that con-
sumes about 186mW for 1080p at 30fps.

Lin et al., [10] describe a low power implementation of
H.264. By using a memory-efficient decoder ordering and
hierarchical syntax parsing they claim to save 28% and 17%
of memory access in the interprediction and intraprediction

units respectively. They are able to save 86% of power by
using gated clocking techniques. According to their simu-
lation results, 720p at 30fps consumes 45 mW.

Liu et al., [11] implement a H.264 decoder for mobile
applications. To conserve power, they employ a 4 × 4 sub-
block level pipelining scheme, clock-gating, voltage scal-
ing, and a three level memory hierarchy. They propose
content-switched, hybrid-scheduled, and code-word parti-
tioning methods to achieve high throughput. They report
865 uW for decoding QCIF at 30fps. Our design may be im-
plemented with the maximally parallel 4 × 4 scheme they
suggest for inter and intra prediction, but our design may
also be parameterized for less parallelism.

Liu et al., [12] improve their pipelining structure by us-
ing domain-pipelined scalability techniques. Their line-
pixel look-ahead scheme provides 51% memory power re-
duction. Operating frequency is reduced by using low-
power motion compensation and deblocking filter. They
fabricated a test chip that is 15.21 mm2 and consumes only
125 µW decoding QCIF at 15 fps.

Kang et al., [8] implement a decoder in three stages. Ini-
tially, they developed a decoder in C and verified it in a
virtual environment. After verification, they ran a video dis-
play test on an FPGA. They also synthesized all the blocks
in a 130 nm ASIC process. Their design, when processing
1080p, consumes about 554 mW at 130 MHz. Some of the
less parallel blocks (e.g.,parsing), are implemented in soft-
ware on an ARM processor.

Shih et al., [16] propose a pipelined implementation of
the deblocking filter. Within a small margin, their proposed
design achieves one filtration step per cycle using a five-
stage processing pipeline. Our implementation can be pa-
rameterized to obtain a similar pipeline, but our design may
be parameterized for greater parallelism.

6 Conclusion
Whether one wants to explore several design alterna-

tives to understand area-power tradeoffs or to incorporate
a complex IP block in several products with different per-
formance, power or price requirements, one needs an RTL
implementation representing each design point. There are a
mature set of commercial tools to synthesize hardware from
structural RTL, but producing high-quality RTL in the first
place remains an expensive proposition. Even retargeting
working RTL to a different design point remains a daunting
challenge. This paper shows that it is possible to generate
multiple RTL designs for a complex IP block (H.264), if one
starts with a high-level parameterized description amenable
to modular refinement. In particular, we have demonstrated
an inexpensive, low-performance decoder targeting mobile
platforms which can be implemented in 2.22 mm2 and a
number of high-performance decoders capable of decoding
1080p video at more than 60 fps that takes only twice that
area. The source code for our decoders is available freely
under open source licensing [13].

It has been shown before that some algorithmic applica-
tions like OFDM-based wireless protocols are amenable to
parametric design exploration [14]. For example, the area
in the design of an 802.11a transmitter is dominated by the
inverse Fourier transform circuit, which can be parametri-
cally folded. H.264, however, offers a greater challenge be-
cause the control flow and processing are much more data-
dependent than OFDM protocols, and require complex ar-
chitectural refinements. We have discussed four major lo-
cal refinements in this paper, which change parallelism to
achieve higher performance, lower power, or reduced area.
Though experienced designers may anticipate some of the
issues in our initial designs, we seriously doubt if one could
have reached our final designs without some experimenta-
tion.

The initial implementation of H.264 was done in Blue-
spec SystemVerilog in less than one man-year, while the re-
finements were done by another designer within 2 to 3 man-
months. Writing RTL for these different variants would
have been a tall order, and unlikely to be carried out in in-
dustry unless the first design did not meet the requirements.
Designers would have used all kinds of ad hoc physical de-
sign tricks, voltage scaling and multi-clock domains before
changing the RTL because of the fear of exacerbating the
verification problem. Also this exploration would have been
practically impossible in C-based languages because of the
lack of control to express these refinements and the lack of
tools that provide high-quality synthesis.

The ability to do modular refinement is essential to avoid
a verification nightmare, and the ability to synthesize de-
signs to gate level is essential to study area and power num-
bers. Thus, the future design methodologies and associated
tools must provide both modular refinement and high-level
synthesis to support the creation of reusable IP blocks.
Acknowledgments: This work was supported by Nokia
sponsored research at CSAIL, MIT. Arvind was partially

supported by NSF grant CCF-0541164. We have benefitted
from many discussions with Daniel Finchelstein, Vivienne
Sze, and Professor Anantha Chandrasakan regarding trans-
formations for low power, particularly field parallelization.
We are also thank Jae Lee for his assitance in extracting an
H.264 CODEC from ffmpeg.

References

[1] I. Amer, M. Sayed, W. Badawy, and G. Jullien. On the way to an
h.264 hw/sw reference model: a systemc modeling strategy to in-
tegrate selected ip-blocks with the h.264 software reference model.
Signal Processing Systems Design and Implementation, 2005. IEEE
Workshop on, pages 178–181, 2-4 Nov. 2005.

[2] Arvind, Rishiyur S. Nikhil, Daniel L. Rosenband, and Nirav Dave.
High-level Synthesis: An Essential Ingredient for Designing Com-
plex ASICs. In Proceedings of ICCAD’04, San Jose, CA, 2004.

[3] Tung-Chien Chen, Chung-Jr Lian, and Liang-Gee Chen. Hardware
Architecture Design of an H.264/AVC Video Codec. In Proceedings
of ACM Asia South pacific Design Automation Conference, 2006.

[4] Nirav Dave, Michael Pellauer, Steve Gerding, and Arvind. 802.11a
Transmitter: A Case Study in Microarchitectural Exploration. In
Proceedings of Formal Methods and Models for Codesign (MEM-
OCODE), Napa, CA, 2006.

[5] FFMPEG Multimedia System. http://www.ffmpeg.org.

[6] ITU-T Video Coding Experts Group. Draft ITU-T Recommendation
and Final Draft International Standard of Joint Video Specification,
May, 2003.

[7] H.264/AVC Reference Software. http://iphome.hhi.de/
suehring/tml/.

[8] Hae-Yong Kang, Kyung-Ah Jeong, Jung-Yang Bae, Yong-Su Leee,
and Seung-Ho Lee. MPEG AVC/H.264 Decoder With Scalable Bus
Architecture and Dual Memory Controller. In ISCAS 2004: Pro-
ceedings of IEEE International Symposium on Circuits and Systems,
2004.

[9] Chun-Chieh Lin. Implementation of H.264 Decoder in Bluespec
System Verilog. Master’s thesis, MIT, Cambridge, MA, Feb 2007.

[10] Ting-An Lin, Tsu-Ming Liu, and Chen-Yi Lee. A Low-Power
H.264/AVC Decoder. In Proceedings of IEEE International Sym-
posium on VLSI Design Automation and Test, pages 283–286, 2005.

[11] Tsu-Ming Liu, Ting-An Lin, Sheng-Zen Wang, Wen-Ping Lee, Jiun-
Yan Yang, Kang-Cheng Hou, and Chen-Yi Lee. An 865 muW
H.264/AVC Video Decoder for Mobile Applications. In Proceedings
of IEEE Asian Solid-State Circuits Conference, 2005.

[12] Tsu-Ming Liu, Ting-An Lin, Sheng-Zen Wang, Wen-Ping Lee, Jiun-
Yan Yang, Kang-Cheng Hou, and Chen-Yi Lee. A 125 µW Fully
Scalable MPEG-2 and H.264/AVC Video Decoder for Mobile Ap-
plications. Solid-State Circuits. IEEE, 42(1):161–169, 2007.

[13] MIT Open Source Hardware Designs.
http://csg.csail.mit.edu/oshd/index.html.

[14] Man Cheuk Ng, Muralidaran Vijayaraghavan, Gopal Raghavan, Ni-
rav Dave, Jamey Hicks, and Arvind. From WiFI to WiMAX: Tech-
niques for IP Reuse Across Different OFDM Protocols. In Proceed-
ings of Formal Methods and Models for Codesign (MEMOCODE),
Nice, France, 2007.

[15] Iain E.G. Richardson. In H.264 and MPEG-4 Video Compression.
John Willey & Sons, 2003.

[16] Shen-Yu Shih, Cheng-Ru Chang, and Youn-Long Lin. A Near Op-
timal Deblocking Filter for H.264 Advanced Video Coding. In The
11th Asia and South Pacific Design Automation Conference, 2006.

[17] Lochi Yu, Samar Abdi, and Daniel D. Gajski. H.264 tlm in systemc
for shared bus platform, January 2007.

