
LEAP: A Virtual Platform Architecture for FPGAs
Angshuman Parashar?, Michael Adler?, Kermin E. Fleming†, Michael Pellauer† and Joel S. Emer?†

?VSSAD Group †Computation Structures Group, CSAIL
Intel Corporation Massachusetts Institute of Technology

Hudson, MA Cambridge, MA
{angshuman.parashar, michael.adler}@intel.com {kfleming, pellauer, jsemer}@csail.mit.edu

Abstract—FPGAs are known to be very effective at accelerat-
ing certain classes of algorithms. A variety of FPGA platforms
are available today, but because of the absence of a standardized
platform architecture, each platform comes in the form of a
board with a diverse set of devices and communication endpoints.
Therefore, FPGA programmers typically have to spend signifi-
cant effort in building interfaces to devices and adapting their
applications to work with the semantics of these devices. Further,
an FPGA board by itself is in many cases incapable running
full real-world applications – software support is required.
Working out communication protocols between the FPGA and
software is another unnecessary time sink for programmers who
would rather focus on the high-level functionalities of their
applications. Finally, there is little support for building and
allocating flexible memory hierarchies on FPGA platforms. All of
these problems are further exacerbated by the fact that switching
FPGA platforms usually requires the programmer to re-do a
significant portion of this work.

These are all non-issues for software programmers who live
in a world of block and character devices, hardware-managed
memory hierarchies with rich memory management libraries,
and a plethora of portable communication protocols.

We attempt to bridge this gap between platform support
for software and FPGA application development by proposing
LEAP Virtual Platforms. LEAP (Logic-based Environment for
Application Programming) provides an FPGA application with a
consistent set of useful services and device abstractions, a memory
hierarchy and a flexible communication protocol across a range
of FPGA physical platforms. Tying these functionalities together
is a modular development and build infrastructure. In this paper
we describe the services provided by LEAP and explain how they
are implemented using a multi-layered stack of abstractions.

I. INTRODUCTION

Software programmers today enjoy a rich programming
environment comprised of sophisticated tools and platform
abstraction layers that allow them to express the high-level
semantics of algorithms without having to worry about the
quirks of the hardware platform their code is going to run on.
These include high-level language compilers, device abstrac-
tions, automated resource management (e.g. memory alloca-
tors, CPU schedulers), standardized communication protocols
and a plethora of libraries.

This is in stark contrast to the programming environment
from a few decades back, when programmers coded in assem-
bly and had to learn how to interact with each new platform
device via a thin layer of abstraction. The increasing speed
and capabilities of hardware platforms also made them more
complex over the years, which necessitated the development

of abstraction layers in order to maintain the tractability of
programming complex real-world applications.

Today, the power and thermal walls that processors are
running into are motivating researchers to explore alternative
fabrics for computation. Due to their capacity to support
fine-grained parallel computation, FPGAs are known to be
compelling as compute fabrics for certain classes of algo-
rithms. Because FPGAs have traditionally been used in ASIC
logic replacement and prototyping roles instead of algorithmic
computation, the middleware, abstraction layers and tools that
facilitate ease of programming are nowhere close to the level
of sophistication found in the software world.

Thus, FPGA programmers have to write applications in lan-
guages more analogous to assembly than C. They have to deal
with complex, quirky, low-level and often non-standardized
interfaces to talk to devices and communication endpoints.
Application programmers cannot be effective when they have
to worry that the constraints for a DDR2 memory controller’s
DQ read capture flops are correct, instead of being able to
malloc() a region of hardware-cached memory.

Unfortunately, this is a chicken-and-egg problem. Until
FPGA use for application programming gains widespread
adoption, there isn’t much incentive to develop standardized
layers of middleware. On the other hand, the absence of such
middleware is one of the factors that hinders the widespread
adoption of FPGAs for computing.

In this paper we present LEAP (Logic-based Environment
for Application Programming), our attempt at breaking this
deadlock by re-creating a small but critical subset of the soft-
ware programming environment on FPGA platforms. LEAP is
a Virtual Platform that provides a consistent set of interfaces
and functionalities to an FPGA application across a range of
physical FPGA platforms. Some of the core functionalities
provided by LEAP are:

• A library of services and device abstractions that allow
the FPGA application to talk to software processes and
hardware devices using stylized interfaces without wor-
rying about particular platform-specific device semantics
(analogous to standard libraries and block/character de-
vice drivers in software).

• A multi-layered distributed and flexible cache/memory
hierarchy for the FPGA that can make use of on-chip
Block RAM, on-board memory banks and host memory
with support for dynamic allocation and de-allocation
(analogous to multi-level hardware caches and libc mem-



ory management in software).
• A protocol that allows programmers to communicate

between an FPGA and a software process using user-
defined types and method interfaces (analogous to Re-
mote Procedure Calls [7] in software).

LEAP is implemented as a hierarchy of abstraction layers
that have been carefully delineated to maximize code reuse
across implementations on multiple FPGA platforms. LEAP
has been implemented for a range of FPGA platforms using
Bluespec System Verilog (BSV) [8] for FPGA code and C++
for software. All implementations are currently available for
download [1] under the GNU General Public License (GPL)
version 2.

II. MOTIVATION

The richness and sophistication of the software program-
ming environment is evident even from the following simple
C program.

int main (int argc, char* argv[]) {
int n = atoi(argv[1]);
for (int i = 0; i < n; i++)

printf("Hello, world!\n");
return 0;

}

The compiler, standard C libraries and operating system
provide a large amount of behind-the-scenes support to execute
this simple-to-write program. The loader loads the program
into memory and starts execution at the main symbol.
Command-line arguments parsed in from the shell are passed
into the program. The printf routine makes a system call
to add the string to an output buffer that eventually gets
channeled to the standard output stream.

An FPGA “program” to achieve the same results is far
more involved in the absence of similar platform support.
Using a high-level description language such as Bluespec
System Verilog [8] goes a long way towards simplifying the
specification of the program behavior itself. LEAP attempts to
provide the missing platform support to further bridge the gap
in development effort between FPGA and software application
development. A BSV Hello World program using LEAP would
look like the following (slightly stylized for presentation):

def STREAMS.HELLO "Hello, World!\n";
...
%param --dynamic N "number of iterations"
...
module mkApplication();

ParamNode pnode <- mkParamNode();
Param#(8) n <- mkParam(‘PARAM_N, pnode);
StreamsNode out <- mkStreamsNode();
Reg#(bool) initialized <- mkReg(False);
Reg#(Bit#(8)) count <- mkReg(0);

rule init (!initialized);
initialized <= True;
count <= n;

endrule

rule hello (initialized && count != 0);
out.makeRequest(‘STREAMS_HELLO);
count <= count - 1;

endrule
endmodule

This example demonstrates the use of two LEAP services,
Parameters and Streams. An array of such useful virtual
services forms the standardized cross-platform interface that
LEAP provides to an FPGA programmer on every supported
FPGA platform.

We describe these services and their functionalities in
greater detail in Section III. Next, we describe how these
services are implemented in a layered manner in Section
IV, following which we discuss our development and build
infrastructure in Section V. Finally, we cover some related
work and conclude the paper.

III. LEAP SERVICES

A. Standard Platform Services

LEAP offers a library of cross-FPGA-platform services to
an FPGA application. Some services provide platform support
for tasks such as application initialization, parameterization,
assertion-handling and dumping of statistics. Others serve as
virtual device abstractions such as output streams and a front
panel. LEAP also provides a service for organizing memory
blocks on the FPGA itself, the FPGA board and host memory
into a flexible shared cache hierarchy. We describe a few key
services in this paper and encourage the reader to download
LEAP from [1] and experiment with the full range of services.

1) Initialization and Startup: Almost all LEAP applications
are hybrid FPGA/software applications that are launched from
a software terminal. LEAP first programs the target config-
uration bitstream onto the FPGA using a platform vendor-
provided API hook or script. Unnecessary re-configuration
can avoided on some platforms by maintaining a hash of the
last-loaded bitfile. If the hash matches, LEAP sends a soft-
reset signal to a monitor module on the FPGA. All of this is
completely hidden from the end user.

Post-initialization, LEAP provides the user with a Starter
service that an FPGA module can use to synchronize with
software. The FPGA receives a Start() method call through
the service that indicates that the software is ready. At the end
of application execution, an FPGA user module can call the
Stop() method on the Starter to terminate the software process.

2) Parameters: As demonstrated in the BSV example from
the previous section, the Parameters service receives dynamic
parameters from the command line at application launch. This
allows for dynamic parameterization of the application without
re-synthesizing the design.

Multiple FPGA user modules could desire their own set of
dynamic parameters. LEAP provides a clean and intuitive way
to accomplish this. A user first declares a module’s parameters
in a meta language. Inside the module, the user instantiates a
parameter receiver node, and then instantiates a data structure
(essentially a typed register) for each parameter and associates
it with the receiver node. Dynamic parameters automatically
get filled into the corresponding register at initialization.

Behind the scenes, the software side of the LEAP Pa-
rameters service reads in the parameters from the command
line, tags them with the recipient’s module ID on the FPGA
and sends them to the FPGA via LEAP communication



channels (described shortly). On the FPGA, LEAP instantiates
a centralized Parameters controller. During compilation, FPGA
user modules that instantiate a parameter receiver node are
collected together using Soft Connections [18], an abstraction
for automatically generating networks using static elaboration.
These nodes are connected to the central Parameters controller,
from which they receive the stream of parameters. Many
other LEAP services (e.g., statistics, assertions, debugging
messages, etc.) also make use of the automated network
generation using Soft Connections.

B. Scratchpads

The state of memory management on reconfigurable logic is
woefully unadvanced. FPGA synthesis tools support relatively
easy management of on-die memory arrays. But what if an
algorithm needs more memory than is available on-die? At
best, designers are offered low-level device drivers for embed-
ded memory controllers, embedded PCIe DMA controllers or
some other bus. Building an FPGA-side memory hierarchy is
treated as an application-specific problem. On general purpose
CPU-based hardware the memory hierarchy is invisible to a
software application, except for timing. A similar memory
abstraction, identical to the interface to on-die RAM blocks
but implementing a full storage hierarchy, is equally useful
for a range of FPGA-based applications.

LEAP provides a service called Scratchpads [6] that dy-
namically allocate and manage multiple, independent, memory
arrays in a large backing store. Scratchpad accesses are cached
automatically in multiple levels, ranging from shared on-board,
RAM-based, set-associate caches to private caches stored in
FPGA RAM blocks. In the LEAP framework, scratchpads
share the same interface as on-die RAM blocks and are plug-in
replacements. Additional libraries support heap management
within a storage set. Like software developers, accelerator
authors using scratchpads may focus more on core algorithms
and less on memory management.

LEAP defines a single, timing insensitive, interface to
memory. The same write, read request and read response
interface methods are used for any memory implementation
defined by the platform, along with the predicates governing
whether the methods may be invoked in a given FPGA cycle.
The simplest memory device allocates an on-die RAM block.
However, LEAP memory stacks sharing the same interface
can be configured for a variety of hierarchies. The most
complicated has three levels: a large storage region such as
virtual memory in a host system, a medium sized intermediate
latency memory such as SDRAM controlled by an FPGA,
and fast, small memories such as on-FPGA RAM blocks.
Converting a client from using on-die memory to a complex
memory hierarchy is simply a matter of invoking a different
memory module with identical connections.

C. Dictionaries

LEAP provides a namespace management tool for gener-
ating unique identifiers. This dictionary tool was originally
conceived for mapping integer identifiers to strings in order to

trigger printing of messages on a host from an FPGA without
having to specify hardware logic for passing variable length
strings. We have extended it to solve the general problem
of managing identifier spaces, including syntax for managing
numerically dense subspaces.

An example of a dictionary specification is:
def MESSAGE.HELLO

"Hello, world!\n";
def MESSAGE.ERROR

"Encountered error %d in cycle %d.\n";

The dotted notation represents numerically dense subre-
gions.

Dictionaries are internally used by several LEAP services
such as Parameters, Streams and Scratchpads for naming
and identification. For example, using LEAP dictionaries and
conventions, an implementor allocating scratchpad IDs would
specify:

def VDEV.SCRATCH.FBUF_Y "Frame buffer Y";
def VDEV.SCRATCH.FBUF_U "Frame buffer U";
def VDEV.SCRATCH.FBUF_V "Frame buffer V";

in order to allocate a group of scratchpads named FBUF Y,
FBUF U and FBUF V.

D. Remote Request-Response

While platform services like scratchpads and parameters
together provide a number of utilitarian services for FPGA
applications, there are often occasions where a more general
communication protocol between an FPGA module and a
software module prove to be useful.

Most of LEAP’s services are in fact implemented on
top of a typed asynchronous request-response protocol [17]
called RRR (for Remote Request Response) that allows typed
method-call-like communication between an FPGA and a
software process. Similar to Remote Procedure Calls [7], the
user defines services whose servers reside on either the FPGA
or in software, with the client residing at the opposite end. The
user defines the interface exported by each server, as shown
in the following example:

service ISA_EMULATOR {
server fpga <- cpu {

method UpdateRegister(in REGINFO rinfo);
};
server cpu <- fpga {

method Sync(in REGINFO rinfo);
method Emulate(in IINFO iinfo,

out IADDR newPc);
};

};

At compile time, RRR stub compilers generate the marshaling,
demarshalling and multiplexing code that plumb the user code
into underlying LEAP communication channels.

RRR is also exposed to the programmer as part of the
standard LEAP interface.

RRR is implemented on top of a set of fixed-width bi-
directional virtual communication channels between the CPU
and the FPGA that we call ChannelIO. This is explained in
more detail in the next section on LEAP implementation.



IV. LEAP IMPLEMENTATION

LEAP is built up as a stack of abstraction layers starting
with low-level FPGA platform devices and ending with the
high-level services described in the previous section. A picto-
rial representation of the hierarchy is depicted in Figure 1.

Platform Interface

I/O Interface Logic

Physical Platform
(specific to

particular FPGAs)

Virtual Platform
(reusable across

all FPGAs)

I/O Interface Software

ChannelIO ChannelIO
Remote
Memory

Local
Memory

Remote Request/Response (RRR) Remote Request/Response (RRR)

Scratchpad Memory Streams

User Design
FPGA Software

User Application

Fig. 1. LEAP abstraction hierarchy. I/O Interface Logic refers to the
collection of physical devices available on the platform.

A. Physical Devices

Every production FPGA platform ships with a set of
peripheral interfaces which include devices such as LEDs
and switches, on-board memory banks and communication
interfaces such as ethernet, PCI-express or serial I/O endpoints.
The platform vendor usually includes a layer of gateware to
communicate with these devices. This gateware could be a
anything from direct connections to devices such as LEDs
and switches, to sophisticated state machines like memory
controllers.

We wrap the vendor-provided gateware in thin layers of
abstraction called physical devices. The entire LEAP hierarchy
is built on top of the interfaces exported by these devices.
Because the set of devices on each FPGA platform could
be very different and use a diverse range of semantics, user
applications in the absence of a virtual platform could require
significant work to port across multiple FPGA platforms. Our
goal is to build one or more layers of abstraction such that
a change in the physical device interfaces of the platform
has minimal impact on the functionality of the user appli-
cation. At the same time, mandating a re-write of the entire
LEAP implementation for each FPGA platform is also a non-
solution. We therefore partition the LEAP implementation
into a carefully-organized hierarchy of abstraction layers that
are intended to minimize their own re-implementation across
multiple platforms.

B. Physical Platform Interfaces

The Physical Platform Interfaces are a collection of modules
built on top of a subset of physical devices, in particular, de-
vices providing communication and memory-access services.
These modules expose the functionalities of the underlying
platform-specific devices in a more stylized form by wrapping
them in general cross-platform interfaces. These modules thus
form an abstraction layer that separate the platform-specific
layers of LEAP from the platform-independent layers.

1) ChannelIO: Using one or more physical devices avail-
able on an FPGA platform (e.g., a PCI-Express bus), we
implement a primitive fixed-width bi-directional communica-
tion channel between the FPGA and a host software process.
We call this a physical channel. The interface to a physical
channel’s endpoint consists of simple fixed-width read() and
write() methods on the FPGA side, and both blocking and
non-blocking versions of the same methods on the software
side.

A working physical channel between the FPGA and a
software process acts as a bootstrap for the remainder of the
LEAP layers. Almost all of the LEAP functionality becomes
available – most notably the RRR communication protocol –
the moment this channel starts functioning. This greatly eases
the development and debugging effort in bringing up other
platform functionalities.

The physical channel can be multiplexed into multiple
virtual channels. Sharing a communication medium between
multiple clients necessitates some form of flow control in
order to avoid deadlocks. Our channel implementations leave
the burden of ensuring deadlock-free operation to the channel
users because we found the buffering requirements for flow
control to be prohibitively expensive. However, alternative
buffered channel implementations could be shipped with a
LEAP distribution and users could pick an implementation
suitable to their design. We call the LEAP module exporting
the set of virtual channels ChannelIO.

2) Local Memory: FPGA boards often ship with banks
of on-board SRAM or DRAM. The controllers required to
interact with these devices are instantiated in FPGA gateware
and in LEAP are organized as part of the memory’s physical
device module. The interface exported by various flavors of
SRAM and DRAM controllers are sufficiently different for
higher-level LEAP layers to benefit from a thin layer of
abstraction that we call Local Memory. The interface consists
of methods to read and write at parameterizable word and
line granularities. Reading uses a request-response protocol.
Masked writes are also supported.

The availability of on-board memory varies from platform
to platform. LEAP provides multiple implementations of the
local memory abstraction to cater to these platform variations.
The interface stays the same but the application writer may
tailor physical storage to different hierarchies.

Higher-level LEAP services such as Scratchpads use this
Local Memory interface to talk to on-board memory banks.

3) Remote Memory: Remote Memory provides an interface
for the FPGA to talk to host system memory on platforms that
support direct memory access, e.g., PCI-Express based FPGA
platforms and Intel Front Side Bus (FSB) based platforms
such as the ACP M2 [15]. The interface supports both line
read/write as well as a larger granularity burst read/write for
long sequential DMA transactions.

Depending on the organization and semantics of the physical
devices on the particular platform, Remote Memory and
Physical Channel may have to share the use of one or more
devices to implement their functionalities. For example, on an



FSB-based FPGA platform, certain regions of host memory
could be used to implement a channel while other regions
could be exposed to the FPGA via Remote Memory. In such
a scenario, partitioning of the address space could take place
either within the physical device implementations, or in the
remote memory and physical channel implementations.

C. Remote Request-Response

A set of virtualized channels between the FPGA and a
software process provides a primitive communication medium
between the two compute nodes. The RRR framework is built
on top of these channels.

The RRR implementation instantiates a client and server
manager on the FPGA and in software and uses one LEAP
virtual channel to communicate between each client-server
pair. Each manager module multiplexes its virtual channel
further into the number of services it manages. The managers
can choose from among a number of arbitration protocols to
multiplex traffic from the numerous services into the virtual
channels. Our current implementation supports static priority
and round-robin scheduling.

The client and server managers instantiate a client or server
stub for each service. These FPGA- and software-side stubs are
generated during compile time based on the set of RRR spec-
ifications given by the user across the entire application. The
stubs are responsible for marshalling and demarshalling the
multiple typed arguments and return values for each method
call, and packetizing and de-packetizing them to stream them
through the virtual channels.

Implementation of high-level LEAP services such as the
Starter, Parameters, Scratchpads, etc., is facilitated by the nam-
ing, multiplexing and typed method-call-style communication
services provided by RRR.

D. Supported FPGA Platforms

LEAP currently supports the following FPGA platforms:
• Nallatech ACP M2 [15]
• HiTech Global v5 PCI-Express [3]
• Xilinx XUPv2 and XUPv5 [5]
• Xilinx ML605 (work-in-progress) [4]
• Altera DE2 and DE3 [2]
• Altera DE4 (work-in-progress) [2]
• Altera Arria II GX [2]
• Hybrid Bluesim/Software simulation
To support these different platforms, a LEAP distribution

contains a number of modules providing alternative imple-
mentations of the same interface, particularly for the lower-
level platform-specific physical device interfaces. Managing
these modules is a non-trivial problem. Another problem is
that swapping device modules is not sufficient for seamless
FPGA platform portability if the FPGAs are from different
vendors because each vendor has their own synthesis, place
and route tool-chain.

LEAP addresses these problems by using a sophisticated set
of infrastructural tools for modular application development
and building. We discuss these in the following section.

V. LEAP INFRASTRUCTURE

A. Architect’s Workbench

The Architect’s Workbench [11], [10] or AWB is a struc-
tured hybrid application development framework that focuses
on supporting modularity and code reuse. AWB was originally
conceived as a framework for the development of software
performance models. It was later extended to support FPGA-
based modeling [9], [20], [19] in specific and hybrid FPGA-
software application development in general. Applications are
represented in AWB as a hierarchical tree of modules, where
each module can be replaced with alternative implementations
that satisfy the interface requirements of the module. This
“plug-N-play” functionality allows a variety of applications
to be constructed out a common pool of modules. AWB
allows these modules to be obtained from an arbitrary set of
independently-maintained source-code repositories.

AWB’s support for modular plug-N-play synergizes nicely
with LEAP’s goal of providing a common set of virtualized
interfaces across a range of platforms via alternative imple-
mentations of the same interface. A LEAP configuration for a
particular FPGA platform is represented by an AWB module
hierarchy comprising of module selections to implement the
required functionalities on that platform (though many of these
modules are shared across multiple platforms). Instances of
these configurations for every supported FPGA platform are
provided standard as part of a LEAP distribution. Porting a
user application from one FPGA platform to another requires
a single double-click to switch the platform configuration and
a button click to start the automated build/synthesis process.

Swapping platform configurations via AWB plug-N-play is
also useful for debugging. Hybrid Simulation is one of the
available platform configurations, which runs the FPGA part
of the application in an RTL simulator that communicates with
a software process via a UNIX pipe. Users can debug their
applications in this environment without having to go through
a synthesis process.

B. Build Pipeline

The proper use of the EDA tools, particularly the use
FPGA tools, is difficult. Each of the several tools in a
tool chain may have dozens of options, some of which are
critical and some of which are obsolete. Makefiles for these
processes, when extension is possible or even considered,
quickly become incomprehensible. High-level FPGA IDEs
automatically produce makefile schema, but these are difficult
to extend, even when using tools from the same vendor.
These concerns represent a serious impediment to the FPGA
designer, particularly new users or those accustomed to more
refined software build systems. LEAP addresses these issues
by providing a parallel, extensible, transparent and, best of all,
automated build system.

LEAP achieves these goals by requiring each FPGA en-
vironment to provide its own, environment-specific build
specification. For example, each Xilinx environment carries
with it a build specification targeting Xilinx tools like XST.



Users need not concern themselves with specifying a build
procedure beyond selecting the platform which they are tar-
geting. Clicking on configure and build buttons within the
AWB GUI will produce a functional FPGA implementation
for an FPGA environment. For those few users extending the
build system, LEAP provides proper programming abstraction
with an accompanying API and data-structures which permit
users to integrate new tools and to compose tool chains. For
example, the LEAP build pipelines for Xilinx and Altera
may share tool modules like Synplify, but may also use their
own vendor-specific synthesis tools, in the same plug-n-play
manner as hardware modules. We view this extensibility as
a major feature. By creating a new build specification in
LEAP, a tool developer automatically gains access to the large
and growing number of designs implemented on the LEAP
infrastructure. Of course, to the end user, these changes are
observable in the quality of results.

The basic build unit in LEAP is the “Synthesis Boundary”,
a stylized hardware module having only LEAP-managed la-
tency insensitive FIFO connections its I/O interface. All tools
operate on this abstraction, though they may also aggregate
the several modules of a design together in their operation,
for example linking object code to produce a final binary.
By operating on synthesis boundaries as first class objects,
we actually obtain a good degree of parallelism in the build
process. For all but a few processes, the tasks for each
synthesis boundary remain independent, permitting LEAP to
stripe jobs across cores in a single machine or to run jobs in
a batch system such as Condor.

VI. RELATED WORK AND CONCLUDING REMARKS

Many of the services provided by LEAP (such as RRR
and Scratchpads) have been inspired by decades-old innova-
tions in the software programming environment. There have
been several related efforts at creating FPGA middleware for
hardware abstraction and/or communication [21], [13], [23],
some of which are targeted at domain-specific applications.
BORPH [22] maps FPGA registers and RAM blocks into
registers and memory regions in the host operating system
kernel. RDL [24] provides a language and framework for
describing module interfaces and timing characteristics of an
FPGA-based performance model.

We believe LEAP is unique because it provides a cohesive
package of cross-FPGA-platform functionalities to virtualize
the FPGA platform starting with device abstraction layers and
extending to a communication protocol, a range of useful
platform services and a memory hierarchy, all tied together
with an easy-to-use development and build infrastructure.

LEAP currently supports a range of FPGA platforms (listed
in Section IV) and is being actively used at Intel, MIT, and
Seoul National University for a variety of FPGA projects
including the HAsim performance modeling framework [19],
an H.264 decoder[12], an OFDM framework [16], an SSD
[14], and several class projects.

REFERENCES

[1] [Online]. Available: http://asim.csail.mit.edu/redmine/projects/show/leap
[2] “Altera development and education boards.” [Online]. Avail-

able: http://www.altera.com/education/univ/materials/boards/unv-dev-
edu-boards.html

[3] “Hitech global.” [Online]. Available: http://www.hitechglobal.com/
[4] “Virtex-6 fpga ml605 evaluation kit.” [Online]. Available:

http://www.xilinx.com/products/devkits/EK-V6-ML605-G.htm
[5] “Xilinx university program.” [Online]. Available:

http://www.xilinx.com/university/
[6] M. Adler, K. E. Fleming, A. Parashar, M. Pellauer, and J. Emer, “Leap

scratchpads: Automatic memory and cache management for reconfig-
urable logic,” in 19th Annual ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA 2011), February/March 2011.

[7] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,”
ACM Transactions on Computer Systems, vol. 2, no. 1, pp. 39–59, 1984.

[8] Bluespec, Inc., “Bluespec system verilog reference guide,”
http://www.bluespec.com/, 2007.

[9] N. Dave, M. Pellauer, and J. Emer, “Implementing a functional/timing
partitioned microprocessor simulator with an fpga,” in 2nd Workshop on
Architecture Research using FPGA Platforms (WARFP 2006), February
2006.

[10] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne, S. S.
Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan,
“Asim: A performance model framework,” Computer, vol. 35, no. 2,
pp. 68–76, 2002.

[11] J. Emer, C. Beckmann, and M. Pellauer, “Awb: The asim architect’s
workbench,” in 3rd Annual Workshop on Modeling, Benchmarking, and
Simulation (MoBS 2007), June 2007.

[12] K. Fleming, C. Lin, N. Dave, Arvind, G. Raghavan, and J. Hicks, “H.264
decoder: A case study in multiple design points,” in MEMOCODE, 2008.

[13] S. H. Kim, W. H. Tranter, and S. F. Midkiff, “Middleware for a
distributed reconfigurable simulator,” Simulation Symposium, Annual,
vol. 0, p. 0253, 2002.

[14] S. Lee, K. Fleming, J. Park, K. Ha, A. Caulfield, S. Swanson, Arvind,
and J. Kim, “Bluessd: An open platform for cross-layer experiments for
nand flash-based ssds,” in The 5th Workshop on Architectural Research
Prototyping, ser. WARP, 2010.

[15] Nallatech, “Intel xeon fsb fpga socket fillers,”
http://www.nallatech.com/intel-xeon-fsb-fpga-socket-fillers.html.

[16] M. C. Ng, K. Fleming, M. Vutukuru, S. Gross, Arvind, and H. Balakrish-
nan, “Airblue: a system for cross-layer wireless protocol development,”
in 6th Symposium on Architectures for Networking and Communications
Systems, ser. ANCS ’10, 2010.

[17] A. Parashar, M. Adler, M. Pellauer, and J. Emer, “Hybrid cpu/fpga
performance models,” in 3rd Workshop on Architectural Research Pro-
totyping (WARP 2008), June 2008.

[18] M. Pellauer, M. Adler, D. Chiou, and J. Emer, “Soft connections:
Addressing the hardware-design modularity problem,” in 46th Design
Automation Conference (DAC 2009), July 2009.

[19] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer, “Quick
performance models quickly: Timing-directed simulation on fpgas,” in
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), April 2008.

[20] M. Pellauer, M. Vijayaraghavan, M. Adler, . Arvind, and J. Emer, “A-
ports: an efficient abstraction for cycle-accurate performance models on
fpgas,” in FPGA ’08: Proceedings of the 16th international ACM/SIGDA
symposium on Field programmable gate arrays, 2008.

[21] X. Reves, V. Marojevic, R. Ferrus, and A. Gelonch, “Fpga’s middleware
for software defined radio applications,” aug. 2005, pp. 598 – 601.

[22] H. K.-H. So and R. Brodersen, “Improving usability of fpga-based
reconfigurable computers through operating system support,” in Field
Programmable Logic and Applications, 2006. FPL ’06. International
Conference on, 2006, pp. 1 –6.

[23] F. Villanueva, D. Villa, F. Moya, J. Barba, F. Rincon, and J. Lopez,
“Lightweight middleware for seamless hw-sw interoperability, with
application to wireless sensor networks,” apr. 2007, pp. 1 –6.

[24] J. Wawrzynek, D. Patterson, M. Oskin, S.-L. Lu, C. Kozyrakis, J. C. Hoe,
D. Chiou, and K. Asanovic, “Ramp: Research accelerator for multiple
processors,” IEEE Micro, vol. 27, no. 2, pp. 46–57, 2007.


