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Abstract—In this paper we consider the pollution attack in
network coded systems where network nodes are computationally
limited. We consider the combined use of cryptographic signature
based security and information theoretic network error correc-
tion and propose a fountain-like network error correction code
construction suitable for this purpose.

I. INTRODUCTION

In this paper we consider the problem of adversarial errors
in single-source multicast networks with limited computational
power (e.g. wireless or sensor networks). Most existing results
on information theoretic multicast network error correction
assume a given bound on the number of adversarial errors,
e.g. [5], [8], for which random linear network coding achieves
capacity [9]. If zu is the upper bound on the number of errors
that can occur in the network, noncoherent network coding is
used at all nodes and M is the minimum cut of the network, the
error correcting code that achieves information rate M − 2zu

can be constructed [5].
An alternative approach to network error correction is equip-

ping each network packet with a cryptographic signature, e.g.
[10], [1]. Then, if each network node checks all packets and
all nodes perform network coding, for any number of network
errors z the information rate M − z can be achieved without
the need for further information-theoretic error correction.
However, performing signature checks at all network nodes
may limit throughput in a network with limited computational
resources, since such cryptographic operations are typically
more expensive than network coding operations. Therefore,
we are interested in combining benefits of both approaches.
We consider probabilistic verification of a subset of packets
in conjunction with information-theoretic redundancy so as to
achieve intermediate information rates r with

M − 2zu ≤ r ≤ M − z

subject to computational budget constraints at each node.
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In order to solve this problem, we need to develop a
framework to use network error correction in a probabilistic
setting. In existing network error correcting algorithms, the
deterministic bound on the number of erroneous packets needs
to be known in advance for code construction [5]. This can
result in a very conservative upper bound when packets are
checked probabilistically. In this paper we propose a fountain-
like network error correcting code construction that can be
used in networks where the upper bound on the number
of errors is unknown a priori. Instead of including a fixed
number of redundant bits in each packet, we incrementally
add redundancy until decoding succeeds.

II. PROBLEM STATEMENT

Let G be an acyclic network with source S and sink T .
Let M be the minimum cut of G. The nodes of G are limited
in computational power and outgoing capacity. Let n be the
number of nodes in G. Errors can occur on some links of G.

Let N i
in be the number of packets incoming to node i, and

let N i
out be the number of packets outgoing from node i. Let

Ai be the computational budget available at node i. Given
Ai, we assume that in addition to forwarding all outgoing
packets, each node i has the capacity to check a fraction ρi of
incoming packets and to form a fraction γi of outgoing packets
by creating random linear combinations of packets incoming
to node i, so that

ρiN
i
in + γiN

i
out ≤ Ai.

Let −→ρ = (ρ1, ρ2, . . . , ρn) be the vector that defines the
checking strategy at nodes of G. Let −→γ = (γ1, γ2, . . . , γn) be
the vector that defines the network coding strategy at nodes of
G. Let

−→
A = (A1, A2, . . . , An) be the vector of computational

budgets available at nodes of G. Let

Σ = {−→ρ ,−→γ | −→ρ ,−→γ are feasible for a given
−→
A}

be the set of all strategies feasible at nodes of G for a given
budget constraint

−→
A . Let rσ(

−→
A ) be the information rate that

can be achieved for a given σ ∈ Σ and
−→
A .

In this paper, we focus on how to construct the error
correcting code that achieves rσ(

−→
A ) for a given σ ∈ Σ. For



each σ ∈ Σ the number of erroneous packets available at the
sink is unknown in advance, therefore, we want to construct
the code that can adapt to the actual number of errors present
at the sink. Moreover, if an erroneous packet injected to link l
remains unchecked due to computational budget constraint and
random linear coding is performed, any subsequent signature
check will identify packets contained on links downstream of
l as erroneous and will eliminate them. Therefore, we require
that the code that we construct be applicable in networks with
unknown time-varying minimum cut and number of errors.

III. CODE CONSTRUCTION

Throughout the paper, we use the following notation. For
any matrix A, let rows(A) denote the set of vectors that form
rows of A. Let Ia denote an a×a identity matrix. Also, let ia
denote an a2 × 1 vector that is obtained by stacking columns
of Ia one after the other. Let Fq be the finite field over which
coding occurs. Each source packet contains K symbols from
Fq .

A. Encoder

In each block S transmits BK independent information
symbols from Fq to T . Let W be a B × K matrix whose
elements are the information symbols. The source transmits
rows(X0), where X0 =

(
W IB

)
. Suppose that while

transmitting rows(X0) by means of random linear network
coding, the network has incurred z0 > 0 errors. Then since
there are z0 additions and d0 = B − z0 deletions to/from
rowspace(X0), T would not be able to recover X0.

By [2], if there are d0 = B − z0 deletions and no
additions from rowspace(X0), sending δ = d0 additional
linear combinations of rows(X0) ensures successful decoding.
Similarly, by [5], in case of z0 additions and no deletions,
sending σK > z0K redundant bits helps to decode. By
making use of the two above-mentioned ideas, we propose
an iterative algorithm that resembles a ”digital error fountain”
by incrementally adding redundancy, that ensures decoding of
the source packets in finite number of iterations.

An end to end error detection scheme is needed so that
the sink can determine when decoding is successful. For
instance, the source can include a cryptographic signature, e.g.
[1], in each packet. Upon failing to decode X0 successfully
from the initial transmission, S sends an additional batch
of σ1 linearly independent redundant packets and δ1 linearly
dependent redundant packets, and T attempts to decode using
both the initial and the redundancy batch. Additional batches
of redundant symbols are transmitted until decoding succeeds,
whereupon the sink sends feedback telling the source to move
onto the next batch.

The ith stage of the reencoding algorithm can be generalized
as follows (see Fig. 1):

• Let σi = m/2. The encoder arranges the matrix of
information symbols W in an BK × 1 vector w. Let Si

be a σiK × BK. Define a vector of redundant symbols
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Fig. 1. Code construction.

yi as

yi = Siw or, equivalently,
(

Si −IσiK

)(
w
yi

)
= 0. (1)

After computing yi, the encoder arranges it into a σi ×
(K + (i + 1)m) matrix Yi column by column. Set

A1
i =

(
Y 1

i 0 Iσi

)
, (2)

where 0 is a σi×(B+(i−1)m) matrix with zero entries.

• Let δi = m/2. Let Di be a δi ×

B +

i∑

j=1

σj


 matrix

with random entries from Fq . Define a δi×(K+(B+im))
matrix A2

i as

A2
i = Di




X0 0 0 . . . 0
A1

1 0 . . . 0
A1

2 . . . 0
. . .
A1

i


 . (3)

• At the ith stage, the source transmits Xi =
(

A1
i

A2
i

)
.

B. Decoder

Let zi be the number of errors, i.e. packets corrupted by the
adversary, at the ith stage. Let Zi be the matrix whose rows are
the error packets injected to the network at the ith stage that
are linearly independent of the Xi packets, i.e. rowspace(Xi)∩
rowspace(Zi) = 0. Let

Yi = TiXi + QiZi (4)

be the matrix, such that rows(Yi) are the packets received at
T at the ith stage, where Ti is the transfer matrix from all
links in G to the packets received at T , and Qi is the transfer
matrix from error packets to the packets received at T at the
ith stage. For notational convenience, define



Y i =




Y0

Y1

. . .
Yi


 T i =




T0 0 . . . 0
0 T1 . . . 0

. . . . . . . . . . . .
0 0 . . . Ti




Qi =




Q0 0 . . . 0
0 Q1 . . . 0

. . . . . . . . . . . .
0 0 . . . Qi




Xi =




X0 0 0 . . . 0
X1 0 . . . 0

X2 . . . 0
. . .
Xi




Zi =




Z0 0 0 . . . 0
Z1 0 . . . 0

Z2 . . . 0
. . .
Zi




Note that for any i we can write

Y i = T iXi + QiZi.

The source transmits at the minimum cut rate M . Thus,
X0 is transmitted in NB = B

M time units and each Xi, i =
1, 2, . . . is transmitted in Nm = m

M time units. For each j =
1, 2, . . . , B denote the part of X0 transmitted at the jth time
unit by Xj

0 . Similarly, for each j = 1, 2, . . . ,m, i = 1, 2, . . .
denote the part of Xi by transmitted at the jth time unit by
Xj

i . For each i, j, define Ej
i to be a random variable that

corresponds to the number of errors that occurred in G while

transmitting Xj
i . Define E0 =

NB∑

j=1

Ej
i and Ei =

Nm∑

j=1

Ej
i , i =

1, 2, . . .. Recall that σi = δi = m
2 .

Lemma 1: Suppose that for each i, j, there exists εj
i > 0

such that

E[Ej
i ] <

M

2
− εj

i . (5)

Then for some finite N , we will have

N∑

i=0

zi <

N∑

i=1

δi (6)

N∑

i=0

zi <

N∑

i=1

σi (7)

Proof: Let ε = min
i,j

εj
i . Note that

E[E0] =
NB∑

j=1

E[Ej
0] <

B

2
− εNB <

B

2

E[Ei] =
Nm∑

j=1

E[Ej
i ] <

m

2
− εNm, i = 1, 2, . . .

Then for L∗ > B
2εNm

L∗∑

i=0

E[Ei] < E[E0] +
mL∗

2
− L∗εNm

<
B

2
+

mL∗

2
− L∗εNm <

mL∗

2
.

Therefore, for some finite N > L∗, we will have

N∑

i=0

zi ≤
N∑

i=0

E[Ei] <
mN

2
, (8)

hence, we have
N∑

i=0

zi <

N∑

i=1

δi and
N∑

i=0

zi <

N∑

i=1

σi.

Lemma 2: If

N∑

i=0

zi ≤
N∑

i=1

δi, (9)

then with high probability columns of TN and QN span
disjoint vector spaces.

Proof: Note that
N∑

i=1

δi +
N∑

i=1

σi + B = Nm + B. Then

by adding
N∑

i=1

σi + B to both sides of (9), we get

N∑

i=0

zi +
N∑

i=1

σi + B ≤ Nm + B,

or

rank(XN ) + rank(ZN ) ≤ Nm + B.

Therefore, if the error packets were replaced by additional
source packets, the total number of source packets would be
at most Nm+B. By [3], with high probability, random linear
network coding allows T to decode all source packets. This
corresponds to

(
TN QN

)
having full column rank, hence,

column spaces of TN and QN being disjoint except in the zero
vector.

Let N be such that conditions (6)-(7) are satisfied. Then
in order to decode, we need to solve the following system of
linear equations:

Y N = T NXN + QNZN (10)


S1 −I mK
2

. . . 0

S2 0 . . . 0
. . .

SN 0 . . . −I mK
2







w
y1

. . .
yN


 = 0 (11)

Theorem 1: Let N be such that equations (6) and (7) are
satisfied. Then with probability greater than 1 − q−εK , the
system of linear equations (10)-(11) can be solved for x.



Proof: The proof of this theorem is constructive and is
similar to [5]. Note that

XN =




X0 0 0 . . . 0
X1 0 . . . 0

X2 . . . 0
. . .
XN


 =




X0 0 0 . . . 0
A1

1 0 . . . 0
A2

1 0 . . . 0
A1

2 . . . 0
A2

2 . . . 0
. . .
A1

N

A2
N




.

Define

X =




X0 0 0 . . . 0
A1

1 0 . . . 0
A1

2 . . . 0
. . .
A1

N




=




W IB 0 . . . 0
Y1 0 Im/2 . . . 0

. . .
YN 0 0 . . . Im/2


 (12)

Let 0a,b denote a zero matrix with a rows and b columns.
Note that by (3) XN = DNX , where

DN =




IB 0B,m/2 0B,m/2 . . . 0B,m/2

0m/2,B Im/2 0m/2,m/2 . . . 0m/2,m/2

D1 0m/2,m/2 . . . 0m/2,m/2

0m/2,B Im/2 0m/2,m/2 . . . 0m/2,m/2

D2 . . . 0m/2,m/2

. . . . . . . . . . . . . . .
0m/2,B 0m/2,m/2 0m/2,m/2 . . . Im/2

DN




Let T = TNDN . Then (10) is equivalent to

Y = TX + QZ, (13)

where Y = Y N , Q = QN and Z = ZN .

Let b = B +
N∑

i=1

σi = B +
mN

2
. The identity matrix of

dimension b sent by S undergoes the same transformation as
the rest of the batch. Hence, T̂ = TIb + QL, where T̂ and L
are the columns that correspond to the location of the identity
matrix in Y and Z respectively. Then we can write

Y = T̂X + Q(Z − LX) = T̂X + E,

with E = Q(Z − LX).
Assume that Y full row rank, otherwise, discard linearly

dependent rows of Y . Define z = rank(QZ). By Lemma 2
z = rank(Y ) − b and TN and Q span disjoint vector spaces.
Since columns of T = TNDN are linear combinations of
columns of TN , T and Q also span disjoint vector spaces.
Because the decoder cannot directly estimate the basis for the
column space of E, it instead chooses a proxy error matrix
T ′′ whose columns act as a proxy error basis for the columns
of E. T ′′ is chosen as the matrix that corresponds to the first
z columns of Y . As in [5], we then have

Y =
(

T ′′ T̂
) (

Iz F Z 0
0 F X Ib

)
. (14)

Let X =
(

J1 J2 J3

)
, where J1 corresponds to the first

z columns of X , J3 corresponds to the last b columns of X ,
and J2 corresponds to the remaining columns of X . Then by
Claim 4 in [5], (14) is equivalent to the matrix equation

T̂ J2 = T̂ (FX + J1F
Z). (15)

Now, in order to decode, we need to solve the system formed
by the linear equations (11) and (15).

For i = 1, 2 denote by ji the vector obtained by stacking
the columns of Ji one on top of the other. Note that by (12),

(
j1
j2

)
= P




w
y1

. . .
yN


 ,

where P is a permutation matrix.
Denote by fX the vector formed by stacking columns of

the matrix FX one on top of another, and by fi,j the (i, j)th
entry of the matrix FZ . Let α = K − z. The system of linear
equations given by (11) and (15) can be written in matrix form
as

A

(
j1
j2

)
=




T̂ fX

0
. . .
0


 ,

where A is given by

A =




−f1,1T̂ −f2,1T̂ . . . −fz,1T̂ T̂ 0 . . . 0

−f1,2T̂ −f2,2T̂ . . . −fz,2T̂ 0 T̂ . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

−f1,αT̂ −f2,αT̂ . . . −fz,αT̂ 0 0 . . . T̂
SP




with SP =




S1 −I mK
2

0 . . . 0

S2 0 −I mK
2

. . . 0

. . . . . . . . . . . . . . .
SN 0 0 . . . −I mK

2


 P−1.

In order to show that we can decode, we need to prove that
A has full column rank. By Lemma 2, T̂ is a (b + z) × b
matrix of full column rank. Therefore, the last αb columns of
A have full column rank. Denote the first z block-columns
of A by {u1, u2, . . . , uz}, and the last α block-columns of
A by {v1, v2, . . . , vα}. For each i, let ui =

(
u1

i u2
i

)T ,
where u1

i are the first α(b+ z) rows and u2
i are the remaining

rows of ui. Similarly, let vi =
(

v1
i v2

i

)T , where v1
i are

the first α(b + z) rows and v2
i are the remaining rows of vi.

Note that for each i = 1 . . . z, u1
i +

∑

j

fi,jv
1
i = 0. Define

wi = u2
i +

∑

j

fi,jv
2
i . Let Ã be the resulting matrix after

Gaussian elimination is performed on the upper left-hand side
of A. A has full rank iff the lower submatrix of Ã formed by
wi and v2

i has full rank. Note that since P is a permutation
matrix, P−1 is also a permutation matrix. Therefore, SP is a

permutation of columns of the random matrix S =




S1

S2

. . .
SN






and the identity matrix; hence, u2
i and v2

i are the columns of S
and the identity matrix. Since entries of S are independently
and uniformly distributed in Fq , so are wi for fixed values of
fi,j . The probability that A does not have full column rank

is 1 −
bz∏

l=1

(
1− 1

q
∑

σiK−l+1

)
, which is upper-bounded by

qbz−∑
σiK . By the union bound over all qαz possible values

of variables fi,j , we have qbz−∑
σiK+αz ≤ qK(z−∑

σi).
Therefore, decoding succeeds with probability at least q−Kε

if
∑

σi > z + ε, which follows from equation (7).
Theorem 2: For each i, j, let Ej

i be random variables with
the same mean such that (5) is satisfied. Let N be such that
equations (6)-(7) are satisfied. Then the above-described code
construction achieves the information rate

r ≤ MA − 2E[E1
0 ]− ε, (16)

where MA is the average throughput of linearly independent
packets, and ε decreases with increasing B.

Proof: Define ε1 = mN
2 −

N∑

i=0

E[Ei]. By (8) ε1 > 0.

Since for each i,j, the actual minimum cut of the network
varies depending on the strategy used, define M j

i to be the
throughput of linearly independent packets while transmitting
Xj

i . Then the achievable rate is given by:

r ≤

NB∑

j=1

M j
0 +

N∑

i=1

Nm∑

j=1

M j
i −

N∑

i=1

(σi + δi)

NB + NNm

= MA − 2

NB∑

j=1

E[Ej
0] +

N∑

i=1

Nm∑

j=1

E[Ej
i ]

NB + NNm
− 2ε1

NB + NNm

= MA − 2
E[E1

0 ](NB + NNm)
NB + NNm

− 2ε1M

B + mN
,

where ε = 2ε1M
B+mN .

IV. EXAMPLE: WIRELESS BUTTERFLY NETWORK

We consider a wireless butterfly network where a computa-
tionally limited network coding node D receives z adversarial
packets (see Fig. 2(a)). For a varying computational budget
constraint, we compare three strategies: when network error
correction is performed without cryptographic checking, when
cryptographic checking is performed without network error
correction, and when both cryptographic checking and net-
work error correction are performed. We derived analytical
expressions for the expected information rate for all three
strategies, which are plotted in Fig. 2(b). Note that using
our code construction the expected information rate can be
approached.
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Fig. 2. Example: wireless butterfly network example
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